
77© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_6

CHAPTER 6

A Fast and Robust Method for Avoiding
Self- Intersection
Carsten Wächter and Nikolaus Binder
NVIDIA

ABSTRACT

We present a solution to avoid self-intersections in ray tracing that is more robust
than current common practices while introducing minimal overhead and requiring
no parameter tweaking.

6.1 INTRODUCTION

Ray and path tracing simulations construct light paths by starting at the camera or
the light sources and intersecting rays with the scene geometry. As objects are hit,
new rays are generated on these surfaces to continue the paths. In theory, these
new rays will not yield an intersection with the same surface again, as intersections
at a distance of zero are excluded by the intersection algorithm. In practice,
however, the finite floating-point precision used in the actual implementation often
leads to false positive results, known as self-intersections, creating artifacts such
as shadow acne, where the surface sometimes improperly shadows itself.

The most widespread solutions to work around the issue are not robust enough
to handle a variety of common production content and may even require manual
parameter tweaking on a per-scene basis. Alternatively, a thorough numerical
analysis of the source of the numerical imprecision allows for robust handling.
However, this comes with a considerable performance overhead and requires
source access to the underlying implementation of the ray/surface intersection
routine, which is not possible in some software APIs and especially not with
hardware-accelerated technology, e.g., NVIDIA RTX.

In this chapter we present a method that is reasonably robust, does not require any
parameter tweaking, and at the same time introduces minimal overhead, making it
suitable for real-time applications as well as offline rendering.

https://doi.org/10.1007/978-1-4842-4427-2_6

78

6.2 METHOD

Computing a new ray origin in a more robust way consists of two steps. First, we
compute the intersection point from the ray tracing result so that it is as close to
the surface as possible, given the underlying floating-point mathematics. Second,
as we generate the next ray to continue the path, we must take steps to avoid
having it intersect the same surface again. Section 6.2.2 explains common pitfalls
with existing methods, as well as presents our solution to the problem.

6.2.1 CALCULATING THE INTERSECTION POINT ON THE SURFACE

Calculating the origin of the next ray along the path usually suffers from finite
precision. While the different ways of calculating the intersection point are
mathematically identical, in practice, the choice of the most appropriate method
is crucial, as it directly affects the magnitude of the resulting numerical error.
Furthermore, each method comes with its own set of trade-offs.

Computing such a point is commonly done by inserting the hit distance into the
ray equation. See Figure 6-1. We strongly advise against this procedure, as the
resulting new origin may be far off the plane of the surface. This is, in particular,
true for intersections that are far away from the ray origin: due to the exponential
scale of floating-point numbers, the gaps between representable values grow
exponentially with intersection distance.

t

O

d

0

X̃

X

Figure 6-1. Calculating the ray/surface intersection point X by inserting the intersection distance t
into the ray equation. In this case, any error introduced through insufficient precision for t will mostly
shift the computed intersection point X� along the ray direction d—and, typically, away from the plane
of the triangle.

RAY TRACING GEMS

79

By instead calculating the previous ray’s intersection point based on surface
parameterization (e.g., using the barycentric coordinates computed during ray/
primitive intersection), the next ray’s origin can be placed as close as possible
to the surface. See Figure 6-2. While again finite precision computations result
in some amount of error, when using the surface parameterization this error is
less problematic: when using the hit distance, any error introduced through finite
precision shifts the computed intersection point mostly along the line of the original
ray, which is often away from the surface (and consequently bad for avoiding self-
intersections, as some points will end up in front of and some behind the surface).
In contrast, when using the surface parameterization, any computational error
shifts the computed intersection point mostly along the surface—meaning that the
next ray’s origin may start slightly off the line of the preceding ray, but it is always
as close as possible to the original surface. Using the surface parameterization
also guarantees consistency between the new origin and surface properties, such
as interpolated shading normals and texture coordinates, which usually depend on
the surface parameterization.

Figure 6-2. Calculating the intersection X with barycentric coordinates (α, β). In this case, the finite
precision of (α, β) means that the computed intersection point X� may no longer lie exactly on the ray—
but it will always be very close to the surface.

6.2.2 AVOIDING SELF-INTERSECTION

Placing the origin of the new ray “exactly” on the surface usually still results in
self- intersection [4], as the computed distance to the surface is not necessarily
equal to zero. Therefore, excluding intersections at zero distance is not sufficient,
and self-intersection must be explicitly avoided. The following subsections present
an overview of commonly used workarounds and demonstrate the failure cases for
each scheme. Our suggested method is described in Section 6.2.2.4.

 A FAST AND ROBUST METHOD FOR AVOIDING SELF- INTERSECTION

80

6.2.2.1 EXCLUSION USING THE PRIMITIVE IDENTIFIER

Self-intersection can often be avoided by explicitly excluding the same primitive
from intersection using its identifier. While this method is parameter free, is
scale invariant, and does not skip over nearby geometry, it suffers from two major
problems. First, intersections on shared edges or coplanar geometry, as well as
new rays at grazing angles, still cause self-intersection (Figures 6-3 and 6-4).
Even if adjacency data is available, it would be necessary to distinguish between
neighboring surfaces that form concave or convex shapes. Second, duplicate or
overlapping geometry cannot be handled. Still, some production renderers use the
identifier test as one part of their solution to handle self-intersections [2].

Figure 6-3. Rejecting the surface whose primitive identifier matches the ID of the primitive on which
the previous intersection X� was found can fail for the next intersection X ¢� if the previous intersection
X� was on, or very close to, a shared edge. In this example X� was found on the primitive with ID 0.
Due to finite precision a false next intersection X ¢� will be detected on the primitive with ID 1 and is
considered valid since the IDs mismatch.

Figure 6-4. Rejection with primitive IDs also fails on flat or slightly convex geometry for intersections
anywhere on the primitive if the next ray exists at a grazing angle. Again, the distance δ of the false
intersection X ¢� to the surface of the other primitive gets arbitrarily close to zero, the primitive IDs
mismatch, and hence this false intersection is considered valid.

Furthermore, note that exclusion using the primitive identifier is applicable to only
planar surfaces, as nonplanar surfaces can exhibit valid self-intersection.

RAY TRACING GEMS

81

6.2.2.2 LIMITING THE RAY INTERVAL

Instead of only excluding intersections at zero distance, one can set the lower
bound for the allowed interval of distances to a small value ε: tmin = ε > 0. While
there is no resulting performance overhead, the method is extremely fragile as
the value of ε itself is scene- dependent and will fail for grazing angles, resulting in
self-intersection (Figure 6-5) or skipping of nearby surfaces (Figure 6-6).

Figure 6-5. Setting tmin to a small value ε > 0 does not robustly avoid self- intersection, especially for
rays exiting at grazing angles. In the example the distance t along the ray is greater than tmin, but the

distance δ of the (false) next intersection X ¢� to the surface is zero due to finite precision.

X̃

X̃ ' tmin

X̃

X̃X''

Figure 6-6. Skipping over a valid intersection X̂ ¢ due to setting tmin = ε > 0 is especially visible in

corners due to paths being pushed into or out of closed objects.

 A FAST AND ROBUST METHOD FOR AVOIDING SELF- INTERSECTION

82

6.2.2.3 OFFSETTING ALONG THE SHADING NORMAL OR THE OLD RAY DIRECTION

Offsetting the ray origin along the shading normal is similar to setting the lower
bound of a ray tmin = ε > 0 and features the same failure cases, as this vector is
not necessarily perpendicular to the surface (due to interpolation or variation
computed from bump or normal maps).

Shifting the new ray origin along the old ray direction will again suffer from similar
issues.

6.2.2.4 ADAPTIVE OFFSETTING ALONG THE GEOMETRIC NORMAL

As could be seen in the previous subsections, only the geometric normal, being
orthogonal to the surface by design, can feature the smallest offset, dependent
on the distance to the intersection point, to escape self-intersection while not
introducing any of the mentioned shortcomings. The next step will focus on how to
compute the offset to place the ray origin along it.

Using any offset of fixed length ε is not scale invariant, and thus not parameter
free, and will also not work for intersections at varying magnitudes of distance.
Therefore, analyzing the error of the floating-point calculations to compute the
intersection point using barycentric coordinates reveals that the distance of the
intersection to the plane of the surface is proportional to the distance from the
origin (0,0,0). At the same time the size of the surface also influences the error and
even becomes dominant for triangles very close to the origin (0,0,0). Using only
normalized ray directions removes the additional impact of the length of the ray on
the numerical error. The experimental results in Figure 6-7 for random triangles
illustrate this behavior: We calculate the average and maximum distance of the
computed intersection point to 10 million triangles with edge lengths between 2−16
and 222. As the resulting point can be located on either side of the actual plane, a
robust offset needs to be at least as large as the maximum distance.

RAY TRACING GEMS

83

Figure 6-7. The experimental analysis of the average and maximum distance of a point placed on a
triangle using barycentric coordinates to its plane for 10 million random triangles at different distances
to the origin provides the scale for the constants used in Listing 6-1.

To handle the varying distance of the intersection point implicitly, we use integer
mathematics on the floating-point number integer representation when offsetting
the ray origin along the direction of the geometric normal. This results in the offset
becoming scale-invariant and thus prevents self-intersections at distances of
different magnitudes.

To handle surfaces/components of the intersection point that are nearly at the
origin/zero, we must approach each one separately. The floating-point exponent
of the ray direction components will differ greatly from the exponents of the
components of the intersection point; therefore, offsetting using the fixed integer ε
is not a viable option for dealing with the numerical error that can arise during the
ray/plane intersection calculations. Thus, a tiny constant floating-point value ε is
used to handle this special case to avoid introducing an additional costly fallback.
The resulting source code is shown in Listing 6-1. The provided constants were
chosen according to Figure 6-7 and include a small margin of safety to handle more
extreme cases that were not included in the experiment.

 A FAST AND ROBUST METHOD FOR AVOIDING SELF- INTERSECTION

84

6.3 CONCLUSION

The suggested two-step procedure for calculating a robust origin for the next ray
along a path first sets an initial position as close as possible to the plane of the
surface using the surface parameterization. It then shifts the intersection away from
the surface by applying a scale-invariant offset to the position, along the geometric
normal. Our extensive evaluation shows that this method is sufficiently robust in
practice and is simple to include in any existing renderer. It has been part of the Iray
rendering system for more than a decade [1] to avoid self-intersection for triangles.

Figure 6-8. Very fine geometric detail such as a deep, thin crevice cannot be robustly handled by any
of the listed methods. In this example the initial intersection X� is slightly below the actual surface.
Left: limiting the ray interval can help to avoid self-intersection for some rays (upper ray), but may also
fail for others (lower ray). Right: offsetting along the surface normal may move the origin of the next
ray X ¢� into the same or neighboring object.

Listing 6-1. Implementation of our method as described in Section 6.2.2.4.

 1 constexpr float origin() { return 1.0f / 32.0f; }

 2 constexpr float float_scale() { return 1.0f / 65536.0f; }

 3 constexpr float int_scale() { return 256.0f; }

 4

 5 // Normal points outward for rays exiting the surface, else is flipped.

 6 float3 offset_ray(const float3 p, const float3 n)

 7 {

 8 int3 of_i(int_scale() * n.x, int_scale() * n.y, int_scale() * n.z);

 9

10 float3 p_i(

11 int_as_float(float_as_int(p.x)+((p.x < 0) ? -of_i.x : of_i.x)),

12 int_as_float(float_as_int(p.y)+((p.y < 0) ? -of_i.y : of_i.y)),

13 int_as_float(float_as_int(p.z)+((p.z < 0) ? -of_i.z : of_i.z)));

14

15 return float3(fabsf(p.x) < origin() ? p.x+ float_scale()*n.x : p_i.x,

16 fabsf(p.y) < origin() ? p.y+ float_scale()*n.y : p_i.y,

17 fabsf(p.z) < origin() ? p.z+ float_scale()*n.z : p_i.z);

18 }

Even with our method, there still exist situations in which shifting along the
geometric normal skips over a surface. An example of such a situation is the
crevice shown in Figure 6-8. Similar failure cases can certainly be constructed
and do sometimes happen in practice. However, they are significantly less likely to
occur than the failure cases for the simpler approaches discussed previously.

RAY TRACING GEMS

85

The remaining failure cases are rare special cases, but note that huge translation or
scaling values in instancing transformations will result in larger offset values as well
(for an analysis, see Physically Based Rendering (third edition) [3]). This phenomenon
leads to a general quality issue because all lighting, direct and indirect, will be
noticeably “offset” as well, which becomes apparent especially in nearby reflections,
even leading to artifacts. To tackle this problem, we recommend storing all meshes
in world units centered around the origin (0,0,0). Further, one should extract
translation and scaling from the camera transformation and instead include them
in the object instancing matrices. Doing so effectively moves all calculations closer
to the origin (0,0,0). This procedure allows our method to work with the presented
implementation and, in addition, avoids rendering artifacts due to large offsets.

As excluding flat primitives using the primitive identifier from the previously found
intersection does not result in false negatives, this can in addition be included as a fast
and trivial test, often preventing an unnecessary surface intersection in the first place.

REFERENCES

 [1] Keller, A., Wächter, C., Raab, M., Seibert, D., van Antwerpen, D., Korndörfer, J., and Kettner, L.
The Iray Light Transport Simulation and Rendering System. arXiv, https://arxiv.org/
abs/1705.01263, 2017.

 [2] Pharr, M. Special Issue On Production Rendering and Regular Papers. ACM Transactions on
Graphics 37, 3 (2018).

 [3] Pharr, M., Jakob, W., and Humphreys, G. Physically Based Rendering: From Theory to
Implementation, third ed. Morgan Kaufmann, 2016.

 [4] Woo, A., Pearce, A., and Ouellette, M. It’s Really Not a Rendering Bug, You See... IEEE Computer
Graphics & Applications 16, 5 (Sept. 1996), 21–25.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

 A FAST AND ROBUST METHOD FOR AVOIDING SELF- INTERSECTION

https://arxiv.org/abs/1705.01263
https://arxiv.org/abs/1705.01263
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 6: A Fast and Robust Method for Avoiding Self-Intersection
	6.1	 Introduction
	6.2	 Method
	6.2.1	 Calculating the Intersection Point on the Surface
	6.2.2	 Avoiding Self-Intersection
	6.2.2.1	 Exclusion Using the Primitive Identifier
	6.2.2.2	 Limiting the Ray Interval
	6.2.2.3	 Offsetting Along the Shading Normal or the Old Ray Direction
	6.2.2.4	 Adaptive Offsetting Along the Geometric Normal

	6.3	 Conclusion

