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CHAPTER 6

A Fast and Robust Method for Avoiding 
Self- Intersection
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ABSTRACT

We present a solution to avoid self-intersections in ray tracing that is more robust 
than current common practices while introducing minimal overhead and requiring 
no parameter tweaking.

6.1  INTRODUCTION

Ray and path tracing simulations construct light paths by starting at the camera or 
the light sources and intersecting rays with the scene geometry. As objects are hit, 
new rays are generated on these surfaces to continue the paths. In theory, these 
new rays will not yield an intersection with the same surface again, as intersections 
at a distance of zero are excluded by the intersection algorithm. In practice, 
however, the finite floating-point precision used in the actual implementation often 
leads to false positive results, known as self-intersections, creating artifacts such 
as shadow acne, where the surface sometimes improperly shadows itself.

The most widespread solutions to work around the issue are not robust enough 
to handle a variety of common production content and may even require manual 
parameter tweaking on a per-scene basis. Alternatively, a thorough numerical 
analysis of the source of the numerical imprecision allows for robust handling. 
However, this comes with a considerable performance overhead and requires 
source access to the underlying implementation of the ray/surface intersection 
routine, which is not possible in some software APIs and especially not with 
hardware-accelerated technology, e.g., NVIDIA RTX.

In this chapter we present a method that is reasonably robust, does not require any 
parameter tweaking, and at the same time introduces minimal overhead, making it 
suitable for real-time applications as well as offline rendering.
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6.2  METHOD

Computing a new ray origin in a more robust way consists of two steps. First, we 
compute the intersection point from the ray tracing result so that it is as close to 
the surface as possible, given the underlying floating-point mathematics. Second, 
as we generate the next ray to continue the path, we must take steps to avoid 
having it intersect the same surface again. Section 6.2.2 explains common pitfalls 
with existing methods, as well as presents our solution to the problem.

6.2.1  CALCULATING THE INTERSECTION POINT ON THE SURFACE

Calculating the origin of the next ray along the path usually suffers from finite 
precision. While the different ways of calculating the intersection point are 
mathematically identical, in practice, the choice of the most appropriate method 
is crucial, as it directly affects the magnitude of the resulting numerical error. 
Furthermore, each method comes with its own set of trade-offs.

Computing such a point is commonly done by inserting the hit distance into the 
ray equation. See Figure 6-1. We strongly advise against this procedure, as the 
resulting new origin may be far off the plane of the surface. This is, in particular, 
true for intersections that are far away from the ray origin: due to the exponential 
scale of floating-point numbers, the gaps between representable values grow 
exponentially with intersection distance.
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Figure 6-1. Calculating the ray/surface intersection point X by inserting the intersection distance t 
into the ray equation. In this case, any error introduced through insufficient precision for t will mostly 
shift the computed intersection point X�  along the ray direction d—and, typically, away from the plane 
of the triangle.
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By instead calculating the previous ray’s intersection point based on surface 
parameterization (e.g., using the barycentric coordinates computed during ray/
primitive intersection), the next ray’s origin can be placed as close as possible 
to the surface. See Figure 6-2. While again finite precision computations result 
in some amount of error, when using the surface parameterization this error is 
less problematic: when using the hit distance, any error introduced through finite 
precision shifts the computed intersection point mostly along the line of the original 
ray, which is often away from the surface (and consequently bad for avoiding self-
intersections, as some points will end up in front of and some behind the surface). 
In contrast, when using the surface parameterization, any computational error 
shifts the computed intersection point mostly along the surface—meaning that the 
next ray’s origin may start slightly off the line of the preceding ray, but it is always 
as close as possible to the original surface. Using the surface parameterization 
also guarantees consistency between the new origin and surface properties, such 
as interpolated shading normals and texture coordinates, which usually depend on 
the surface parameterization.

Figure 6-2. Calculating the intersection X with barycentric coordinates (α, β). In this case, the finite 
precision of (α, β) means that the computed intersection point X�  may no longer lie exactly on the ray—
but it will always be very close to the surface.

6.2.2  AVOIDING SELF-INTERSECTION

Placing the origin of the new ray “exactly” on the surface usually still results in 
self- intersection [4], as the computed distance to the surface is not necessarily 
equal to zero. Therefore, excluding intersections at zero distance is not sufficient, 
and self-intersection must be explicitly avoided. The following subsections present 
an overview of commonly used workarounds and demonstrate the failure cases for 
each scheme. Our suggested method is described in Section 6.2.2.4.
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6.2.2.1  EXCLUSION USING THE PRIMITIVE IDENTIFIER

Self-intersection can often be avoided by explicitly excluding the same primitive 
from intersection using its identifier. While this method is parameter free, is 
scale invariant, and does not skip over nearby geometry, it suffers from two major 
problems. First, intersections on shared edges or coplanar geometry, as well as 
new rays at grazing angles, still cause self-intersection (Figures 6-3 and 6-4). 
Even if adjacency data is available, it would be necessary to distinguish between 
neighboring surfaces that form concave or convex shapes. Second, duplicate or 
overlapping geometry cannot be handled. Still, some production renderers use the 
identifier test as one part of their solution to handle self-intersections [2].

Figure 6-3. Rejecting the surface whose primitive identifier matches the ID of the primitive on which 
the previous intersection X�  was found can fail for the next intersection X ¢�  if the previous intersection 
X�  was on, or very close to, a shared edge. In this example X�  was found on the primitive with ID 0. 
Due to finite precision a false next intersection X ¢�  will be detected on the primitive with ID 1 and is 
considered valid since the IDs mismatch.

Figure 6-4. Rejection with primitive IDs also fails on flat or slightly convex geometry for intersections 
anywhere on the primitive if the next ray exists at a grazing angle. Again, the distance δ of the false 
intersection X ¢�  to the surface of the other primitive gets arbitrarily close to zero, the primitive IDs 
mismatch, and hence this false intersection is considered valid.

Furthermore, note that exclusion using the primitive identifier is applicable to only 
planar surfaces, as nonplanar surfaces can exhibit valid self-intersection.
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6.2.2.2  LIMITING THE RAY INTERVAL

Instead of only excluding intersections at zero distance, one can set the lower 
bound for the allowed interval of distances to a small value ε: tmin = ε > 0. While 
there is no resulting performance overhead, the method is extremely fragile as 
the value of ε itself is scene- dependent and will fail for grazing angles, resulting in 
self-intersection (Figure 6-5) or skipping of nearby surfaces (Figure 6-6).

Figure 6-5. Setting tmin to a small value ε > 0 does not robustly avoid self- intersection, especially for 
rays exiting at grazing angles. In the example the distance t along the ray is greater than tmin, but the 

distance δ of the (false) next intersection X ¢�  to the surface is zero due to finite precision.
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Figure 6-6. Skipping over a valid intersection X̂ ¢  due to setting tmin = ε > 0 is especially visible in 

corners due to paths being pushed into or out of closed objects.
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6.2.2.3  OFFSETTING ALONG THE SHADING NORMAL OR THE OLD RAY DIRECTION

Offsetting the ray origin along the shading normal is similar to setting the lower 
bound of a ray tmin = ε > 0 and features the same failure cases, as this vector is 
not necessarily perpendicular to the surface (due to interpolation or variation 
computed from bump or normal maps).

Shifting the new ray origin along the old ray direction will again suffer from similar 
issues.

6.2.2.4  ADAPTIVE OFFSETTING ALONG THE GEOMETRIC NORMAL

As could be seen in the previous subsections, only the geometric normal, being 
orthogonal to the surface by design, can feature the smallest offset, dependent 
on the distance to the intersection point, to escape self-intersection while not 
introducing any of the mentioned shortcomings. The next step will focus on how to 
compute the offset to place the ray origin along it.

Using any offset of fixed length ε is not scale invariant, and thus not parameter 
free, and will also not work for intersections at varying magnitudes of distance. 
Therefore, analyzing the error of the floating-point calculations to compute the 
intersection point using barycentric coordinates reveals that the distance of the 
intersection to the plane of the surface is proportional to the distance from the 
origin (0,0,0). At the same time the size of the surface also influences the error and 
even becomes dominant for triangles very close to the origin (0,0,0). Using only 
normalized ray directions removes the additional impact of the length of the ray on 
the numerical error. The experimental results in Figure 6-7 for random triangles 
illustrate this behavior: We calculate the average and maximum distance of the 
computed intersection point to 10 million triangles with edge lengths between 2−16 
and 222. As the resulting point can be located on either side of the actual plane, a 
robust offset needs to be at least as large as the maximum distance.
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Figure 6-7. The experimental analysis of the average and maximum distance of a point placed on a 
triangle using barycentric coordinates to its plane for 10 million random triangles at different distances 
to the origin provides the scale for the constants used in Listing 6-1.

To handle the varying distance of the intersection point implicitly, we use integer 
mathematics on the floating-point number integer representation when offsetting 
the ray origin along the direction of the geometric normal. This results in the offset 
becoming scale-invariant and thus prevents self-intersections at distances of 
different magnitudes.

To handle surfaces/components of the intersection point that are nearly at the 
origin/zero, we must approach each one separately. The floating-point exponent 
of the ray direction components will differ greatly from the exponents of the 
components of the intersection point; therefore, offsetting using the fixed integer ε 
is not a viable option for dealing with the numerical error that can arise during the 
ray/plane intersection calculations. Thus, a tiny constant floating-point value ε is 
used to handle this special case to avoid introducing an additional costly fallback. 
The resulting source code is shown in Listing 6-1. The provided constants were 
chosen according to Figure 6-7 and include a small margin of safety to handle more 
extreme cases that were not included in the experiment.
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6.3  CONCLUSION

The suggested two-step procedure for calculating a robust origin for the next ray 
along a path first sets an initial position as close as possible to the plane of the 
surface using the surface parameterization. It then shifts the intersection away from 
the surface by applying a scale-invariant offset to the position, along the geometric 
normal. Our extensive evaluation shows that this method is sufficiently robust in 
practice and is simple to include in any existing renderer. It has been part of the Iray 
rendering system for more than a decade [1] to avoid self-intersection for triangles. 

Figure 6-8. Very fine geometric detail such as a deep, thin crevice cannot be robustly handled by any 
of the listed methods. In this example the initial intersection X�  is slightly below the actual surface. 
Left: limiting the ray interval can help to avoid self-intersection for some rays (upper ray), but may also 
fail for others (lower ray). Right: offsetting along the surface normal may move the origin of the next 
ray X ¢�  into the same or neighboring object.

Listing 6-1. Implementation of our method as described in Section 6.2.2.4.

 1 constexpr float origin()      { return 1.0f / 32.0f; }

 2 constexpr float float_scale() { return 1.0f / 65536.0f; }

 3 constexpr float int_scale()   { return 256.0f; }

 4

 5 // Normal points outward for rays exiting the surface, else is flipped.

 6 float3 offset_ray(const float3 p, const float3 n)

 7 {

 8   int3 of_i(int_scale() * n.x, int_scale() * n.y, int_scale() * n.z);

 9

10   float3 p_i(

11       int_as_float(float_as_int(p.x)+((p.x < 0) ? -of_i.x : of_i.x)),

12       int_as_float(float_as_int(p.y)+((p.y < 0) ? -of_i.y : of_i.y)),

13       int_as_float(float_as_int(p.z)+((p.z < 0) ? -of_i.z : of_i.z)));

14

15   return float3(fabsf(p.x) < origin() ? p.x+ float_scale()*n.x : p_i.x,

16                 fabsf(p.y) < origin() ? p.y+ float_scale()*n.y : p_i.y,

17                 fabsf(p.z) < origin() ? p.z+ float_scale()*n.z : p_i.z);

18 }

Even with our method, there still exist situations in which shifting along the 
geometric normal skips over a surface. An example of such a situation is the 
crevice shown in Figure 6-8. Similar failure cases can certainly be constructed 
and do sometimes happen in practice. However, they are significantly less likely to 
occur than the failure cases for the simpler approaches discussed previously.
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The remaining failure cases are rare special cases, but note that huge translation or 
scaling values in instancing transformations will result in larger offset values as well 
(for an analysis, see Physically Based Rendering (third edition) [3]). This phenomenon 
leads to a general quality issue because all lighting, direct and indirect, will be 
noticeably “offset” as well, which becomes apparent especially in nearby reflections, 
even leading to artifacts. To tackle this problem, we recommend storing all meshes 
in world units centered around the origin (0,0,0). Further, one should extract 
translation and scaling from the camera transformation and instead include them 
in the object instancing matrices. Doing so effectively moves all calculations closer 
to the origin (0,0,0). This procedure allows our method to work with the presented 
implementation and, in addition, avoids rendering artifacts due to large offsets.

As excluding flat primitives using the primitive identifier from the previously found 
intersection does not result in false negatives, this can in addition be included as a fast 
and trivial test, often preventing an unnecessary surface intersection in the first place.
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