
533© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_29

CHAPTER 29

Efficient Particle Volume Splatting
in a Ray Tracer
Aaron Knoll, R. Keith Morley, Ingo Wald, Nick Leaf, and Peter Messmer

NVIDIA

ABSTRACT

Rendering of particle data sets is a common problem in many domains
including games, film, and scientific visualization. Conventionally, this has been
accomplished using rasterization-based splatting methods, which scale linearly
with respect to problem size. Given sufficiently low-cost ray traversal with
logarithmic complexity, splatting within a ray tracing framework could scale better
to larger geometry. In this chapter, we provide a method for efficiently rendering
larger particle data, exploiting ray coherence and leveraging hardware-accelerated
traversal on architectures such as the NVIDIA RTX 2080 Ti (Turing) GPUs with RT
Cores technology.

29.1	 �MOTIVATION

Rasterization-based GPU splatting approaches generally break down when
most primitives have subpixel footprints and when depth sorting is desired. This
occurs due to the linear cost of depth-sorting fragments, as well as incoherent
framebuffer traffic, and in practice hampers interactive performance for particle
counts beyond 20 million depending on the GPU. There are numerous workarounds
for faster raster performance including view-dependent spatial subdivision, level of
detail, disabling the depth test and alpha blending, or resampling onto a proxy such
as texture slices. However, for all of these, performance suffers when one actually
renders a sufficiently high number of particles.

One could equally use ray tracing architectures to efficiently traverse and render
full particle data. Traversing an acceleration structure generally has logarithmic
time complexity; moreover, it can be done in a way that fosters many small,
localized primitive sorts instead of a single large sort. In this manner, we wish
performance to mirror the number of primitives actually intersected by each ray,
not the total complexity of the whole scene. There are other reasons for rendering
particle data within a ray tracing framework, for example allowing particle

https://doi.org/10.1007/978-1-4842-4427-2_29

534

effects to be efficiently rendered within reflections. Ray casting large quantities of
transparent geometry poses its own challenges; this chapter provides one solution
to this problem. It is particularly geared toward visualization of large sparse
particle data from N-body and similar simulations, such as the freely available
DarkSky cosmology data sets [6] shown in Figure 29-1. It could also be of use
in molecular, materials, and hydrodynamics simulations and potentially larger
particle effects in games and film.

Figure 29-1.  One hundred million particle subset of the DarkSky N-body gravitational cosmology
simulation, rendered in its entirety at 35 FPS (1080p) or 14 FPS (4k) without level of detail, on an NVIDIA
RTX 2080 Ti with RT Cores technology.

29.2	 �ALGORITHM

Our aim is to create a scalable analog to rasterization-based billboard splatting
(see, e.g., Westover’s work [7]) using ray tracing traversal. The core idea is to
sample each particle close to its center point along the viewing ray, then integrate
over the set of depth-sorted samples along that ray.

Our primitive is a radial basis function (RBF) with a radius r, particle center P, and
bounds defined by a bounding box centered around the particle with width 2r. The
sample (intersection hit) point X is given by the distance to the center of the particle
P evaluated along the ray with origin O and direction d,

				 X O P O .= + - d 			 (1)

RAY TRACING GEMS

535

We then evaluate a Gaussian radial basis function at this sample point,

				 () ()X P rX e
2 2/ .f - -=

		 (2)

This primitive test occurs in object space, sampling the RBF within a three-
dimensional bounding box as opposed to a two-dimensional billboard in a
rasterized splatter. This yields more continuous results when zoomed into particle
centers and does not require refitting the acceleration structure to camera-aligned
billboard geometry.

Then, the set of depth-sorted samples {ϕ(Xi)} along each ray is composited using
the over operator [3],

				 ()f b1 ,a a= - +c c c
			

(3)

where the opacity of a sample α = ϕ(Xi) and color c = c(ϕ(Xi)) correspond to the
current sample mapped via a transfer function, and f and b denote front and back
values in the blending operation, respectively.

29.3	 �IMPLEMENTATION

Our challenge is now to efficiently traverse and sort as many particles as possible
within a ray tracing framework. We chose to use the NVIDIA OptiX SDK [4], which
is suited for scientific visualization and high-performance computing applications
running under Linux. Though more memory-efficient approaches would be
beneficial, for this sample we use a generic 16-byte (float4) primitive paired with
the default acceleration structure and traversal mechanism supplied by the ray
tracing API.

This method could be implemented naively with an OptiX [4] closest-hit program,
casting first a primary ray and then a secondary transmission ray for each particle
hit until termination. However, this would entail large numbers of incoherent rays,
resulting in poor performance.

We therefore use an approach that coherently traverses and intersects subregions
of the volume in as few traversals as possible, as shown in Figure 29-2. This bears
similarities to the RBF volume methods [2], as well as game particle effects that
resample onto regularly spaced two-dimensional texture slices [1]. However, it is
simpler and more brute-force in the sense that, given a sufficiently large buffer to
prevent overflow, it faithfully reproduces every intersected particle. We implement
this using an any-hit program in OptiX as described in Section 29.3.2.

 Efficient Particle Volume Splatting in a Ray Tracer

536

29.3.1	 �RAY GENERATION PROGRAM

Our approach proceeds as follows: we intersect the volume bounding box and
divide the resulting interval into slabs, spaced by slab_spacing. For each slab,
we set the ray.tmin and ray.tmax to appropriately prune acceleration structure
traversal. We then traverse with rtTrace(), which fills the buffer in PerRayData
with the intersected samples within that slab. We subsequently sort and integrate
that list of samples in the buffer. The following pseudocode omits some details
(evaluating the radial basis function and applying a transfer function); for complete
code refer to the accompanying source (Section 29.5).

 1 struct ParticleSample {

 2 float t;

 3 uint id;

 4 };

 5

 6 const int PARTICLE_BUFFER_SIZE = 31; // 31 for Turing, 255 for Volta

 7

 8 struct PerRayData {

 9 int tail; // End index of the array

10 int pad;

11 ParticleSample particles[PARTICLE_BUFFER_SIZE]; // Array

12 };

13

Figure 29-2.  Overview of our algorithm. The geometric primitive is a spherical radial basis function
centered at a point. The hit position is the distance to the particle center evaluated along the view ray. To
ensure coherent behavior during traversal of this geometry, we divide the volume into segments along
rays, resulting in slabs. We then traverse and sort the set of intersected particles within each slab.

RAY TRACING GEMS

537

14 rtDeclareVariable(rtObject, top_object, ,);

15 rtDeclareVariable(float, radius, ,);

16 rtDeclareVariable(float3, volume_bbox_min, ,);

17 rtDeclareVariable(float3, volume_bbox_max, ,);

18 rtBuffer<uchar4, 2> output_buffer;

19

20 RT_PROGRAM raygen_program()

21 {

22 optix::Ray ray;

23 PerRayData prd;

24

25 generate_ray(launch_index, camera); // Pinhole camera or similar

26 optix::Aabb aabb(volume_bbox_min, volume_bbox_max);

27

28 float tenter, texit;

29 intersect_Aabb(ray, aabb, tenter, texit);

30

31 float3 result_color = make_float3(0.f);

32 float result_alpha = 0.f;

33

34 if (tenter < texit)

35 {

36 const float slab_spacing =

37 PARTICLE_BUFFER_SIZE * particlesPerSlab * radius;

38 float tslab = 0.f;

39

40 while (tslab < texit && result_alpha < 0.97f)

41 {

42 prd.tail = 0;

43 ray.tmin = fmaxf(tenter, tslab);

44 ray.tmax = fminf(texit, tslab + slabWidth);

45

46 if (ray. tmax > tenter)

47 {

48 rtTrace(top_object, ray, prd);

49

50 sort(prd.particles, prd.tail);

51

52 // Integrate depth-sorted list of particles.

53 for (int i=0; i< prd.tail; i++) {

54 float drbf = evaluate_rbf(prd.particles[i]);

55 float4 color_sample = transfer_function(drbf); // return RGBA

56 float alpha_1msa = color_sample.w * (1.0 - result_alpha);

57 result_color += alpha_1msa * make_float3(

58 color_sample.x, color_sample.y, color_sample.z);

59 result_alpha += alpha_1msa;

60 }

61 }

 Efficient Particle Volume Splatting in a Ray Tracer

538

62 tslab += slab_spacing;

63 }

64 }

65

66 output_buffer[launch_index] = make_color(result_color));

67 }

29.3.2	 �INTERSECTION AND ANY-HIT PROGRAMS

The intersection program is simple even when compared to ray/sphere
intersection: We use the distance to the particle center along the viewing ray as the
hit point sample_pos. We then check whether the sample is within the RBF radius;
if so, we report an intersection. Our any-hit program then appends the intersected
particle to the buffer, which is sorted by the ray generation program when traversal
of the slab completes.

 1 �rtDeclareVariable(ParticleSample,hit_particle,attribute hit_particle,);

 2

 3 RT_PROGRAM void particle_intersect(int primIdx)

 4 {

 5 const float3 center = make_float3(particles_buffer[primIdx]);

 6 const float t = length(center - ray.origin);

 7 const float3 sample_pos = ray.origin + ray.direction * t;

 8 const float3 offset = center - sample_pos;

 9 if (dot(offset, offset) < radius * radius &&

10 rtPotentialIntersection(t))

11 {

12 hit_particle.t = t;

13 hit_particle.id = primIdx;

14 rtReportIntersection(0);

15 }

16 }

17

18 RT_PROGRAM void any_hit()

19 {

20 if (prd.tail < PARTICLE_BUFFER_SIZE) {

21 prd.particles[prd.tail++] = hit_particle;

22 rtIgnoreIntersection();

23 }

24 }

29.3.3	 �SORTING AND OPTIMIZATIONS

The choice of PARTICLE_BUFFER_SIZE and consequently the ideal sorting
algorithm depends on the expected performance of rtTrace(). On the NVIDIA
Turing architecture with dedicated traversal hardware, we achieved the best
performance with an array size of 31 and bubble sort. This is not surprising given
the small size of the array, and that the elements are already partially sorted from

RAY TRACING GEMS

539

bounding volume hierarchy traversal. On architectures with software traversal such
as Volta, we experienced best results with a larger array of 255, relatively fewer slabs
(thus traversals), and bitonic sort. Both are implemented in our reference code.

The value of particlesPerSlab should be chosen carefully based on the desired
radius and degree of particle overlap; in our cosmology sample we default to 16.
For larger radius values particles may overlap such that a larger
PARTICLE_BUFFER_SIZE is required for correctness.

29.4	 �RESULTS

Performance of our technique on both NVIDIA RTX 2080 Ti (Turing) and Titan
V (Volta) architectures is provided in Table 29-1, for a screen-filling view of the
DarkSky data set at 1080p (2 megapixel) and 4k (8 megapixel) screen resolutions.
The RT Cores technology in Turing enables performance at least 3× faster than on
Volta, and up to nearly 6× in the case of smaller scenes.

Table 29-1.  Performance in milliseconds for screen-filling DarkSky reference scenes of varying
numbers of particles.

We found that our slab-based approach was roughly 3× faster than the naive
closest-hit approach mentioned in Section 29.2 on Turing, and 6–10× faster on
Volta. We also experimented with a method based on insertion sort, which has the
advantage of never over-running our fixed-size buffer; this was generally 2× and
2.5× slower than the slabs approach on Turing and Volta, respectively. Lastly, we
compared performance with a rasterized splatter [5], and we found that our ray
tracing method was 7× faster for the 100M particle data set for both 4k and 1080p
resolution on the NVIDIA RTX 2080 Ti, with similar cameras and radii.

29.5	 �SUMMARY

In this chapter, we describe a method for efficiently splatting on Turing and future
NVIDIA RTX architectures leveraging hardware ray traversal. Despite using custom
primitives, our method is 3× faster on Turing than on Volta, roughly 3× faster
than a naive closest-hit approach, and nearly an order of magnitude faster than a

 Efficient Particle Volume Splatting in a Ray Tracer

540

comparable rasterization-based splatter with depth sorting. It enables real-time
rendering of 100 million particles with full depth sorting and blending, without
requiring level of detail.

Our approach is geared primarily toward sparse particle data from scientific
visualization, but it could easily be adapted to other particle data. When particles
significantly overlap, full RBF volume rendering, or resampling onto proxy
geometry or structured volumes, may prove more advantageous.

We have released our code as open source in the OptiX Advanced Samples Github
repository: https://github.com/nvpro-samples/optix_advanced_samples.

REFERENCES

	 [1]	� Green, S. Volumetric Particle Shadows. NVIDIA Developer Zone, https://developer.
download.nvidia.com/assets/cuda/files/smokeParticles.pdf, 2008.

	 [2]	� Knoll, A., Wald, I., Navratil, P., Bowen, A., Reda, K., Papka, M. E., and Gaither, K. RBF Volume Ray
Casting on Multicore and Manycore CPUs. Computer Graphics Forum 33, 3 (2014), 71–80.

	 [3]	� Levoy, M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications, 3
(1988), 29–30.

	 [4]	� Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D.,
McGuire, M., Morley, K., Robison, A., et al. OptiX: A General Purpose Ray Tracing Engine. ACM
Transactions on Graphics 29, 4 (2010), 66:1–66:13.

	 [5]	� Preston, A., Ghods, R., Xie, J., Sauer, F., Leaf, N., Ma, K.-L., Rangel, E., Kovacs, E., Heitmann,
K., and Habib, S. An Integrated Visualization System for Interactive Analysis of Large,
Heterogeneous Cosmology Data. In Pacific Visualization Symposium (2016), pp. 48–55.

	 [6]	� Skillman, S. W., Warren, M. S., Turk, M. J., Wechsler, R. H., Holz, D. E., and Sutter, P. M. Dark Sky
Simulations: Early Data Release. arXiv, https://arxiv.org/abs/1407.2600, July 2014.

	 [7]	� Westover, L. Footprint Evaluation for Volume Rendering. Computer Graphics (SIGGRAPH) 24, 4
(1990), 367–376.

RAY TRACING GEMS

https://github.com/nvpro-samples/optix_advanced_samples
https://developer.download.nvidia.com/assets/cuda/files/smokeParticles.pdf
https://developer.download.nvidia.com/assets/cuda/files/smokeParticles.pdf
https://arxiv.org/abs/1407.2600

541

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

 Efficient Particle Volume Splatting in a Ray Tracer

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 29: Efficient Particle Volume Splatting in a Ray Tracer
	29.1	 Motivation
	29.2	 Algorithm
	29.3	 Implementation
	29.3.1	 Ray Generation Program
	29.3.2	 Intersection and Any-Hit Programs
	29.3.3	 Sorting and Optimizations

	29.4	 Results
	29.5	 Summary

