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ABSTRACT

Rendering of particle data sets is a common problem in many domains 
including games, film, and scientific visualization. Conventionally, this has been 
accomplished using rasterization-based splatting methods, which scale linearly 
with respect to problem size. Given sufficiently low-cost ray traversal with 
logarithmic complexity, splatting within a ray tracing framework could scale better 
to larger geometry. In this chapter, we provide a method for efficiently rendering 
larger particle data, exploiting ray coherence and leveraging hardware-accelerated 
traversal on architectures such as the NVIDIA RTX 2080 Ti (Turing) GPUs with RT 
Cores technology.

29.1	 �MOTIVATION

Rasterization-based GPU splatting approaches generally break down when 
most primitives have subpixel footprints and when depth sorting is desired. This 
occurs due to the linear cost of depth-sorting fragments, as well as incoherent 
framebuffer traffic, and in practice hampers interactive performance for particle 
counts beyond 20 million depending on the GPU. There are numerous workarounds 
for faster raster performance including view-dependent spatial subdivision, level of 
detail, disabling the depth test and alpha blending, or resampling onto a proxy such 
as texture slices. However, for all of these, performance suffers when one actually 
renders a sufficiently high number of particles.

One could equally use ray tracing architectures to efficiently traverse and render 
full particle data. Traversing an acceleration structure generally has logarithmic 
time complexity; moreover, it can be done in a way that fosters many small, 
localized primitive sorts instead of a single large sort. In this manner, we wish 
performance to mirror the number of primitives actually intersected by each ray, 
not the total complexity of the whole scene. There are other reasons for rendering 
particle data within a ray tracing framework, for example allowing particle 
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effects to be efficiently rendered within reflections. Ray casting large quantities of 
transparent geometry poses its own challenges; this chapter provides one solution 
to this problem. It is particularly geared toward visualization of large sparse 
particle data from N-body and similar simulations, such as the freely available 
DarkSky cosmology data sets [6] shown in Figure 29-1. It could also be of use 
in molecular, materials, and hydrodynamics simulations and potentially larger 
particle effects in games and film.

Figure 29-1.  One hundred million particle subset of the DarkSky N-body gravitational cosmology 
simulation, rendered in its entirety at 35 FPS (1080p) or 14 FPS (4k) without level of detail, on an NVIDIA 
RTX 2080 Ti with RT Cores technology.

29.2	 �ALGORITHM

Our aim is to create a scalable analog to rasterization-based billboard splatting 
(see, e.g., Westover’s work [7]) using ray tracing traversal. The core idea is to 
sample each particle close to its center point along the viewing ray, then integrate 
over the set of depth-sorted samples along that ray.

Our primitive is a radial basis function (RBF) with a radius r, particle center P, and 
bounds defined by a bounding box centered around the particle with width 2r. The 
sample (intersection hit) point X is given by the distance to the center of the particle 
P evaluated along the ray with origin O and direction d,

				    X O P O .= + - d 			   (1)
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We then evaluate a Gaussian radial basis function at this sample point,

				    ( ) ( )X P rX e
2 2/ .f - -=

		  (2)

This primitive test occurs in object space, sampling the RBF within a three-
dimensional bounding box as opposed to a two-dimensional billboard in a 
rasterized splatter. This yields more continuous results when zoomed into particle 
centers and does not require refitting the acceleration structure to camera-aligned 
billboard geometry.

Then, the set of depth-sorted samples {ϕ(Xi)} along each ray is composited using 
the over operator [3],

				    ( )f b1 ,a a= - +c c c
			 

(3)

where the opacity of a sample α = ϕ(Xi) and color c = c(ϕ(Xi)) correspond to the 
current sample mapped via a transfer function, and f and b denote front and back 
values in the blending operation, respectively.

29.3	 �IMPLEMENTATION

Our challenge is now to efficiently traverse and sort as many particles as possible 
within a ray tracing framework. We chose to use the NVIDIA OptiX SDK [4], which 
is suited for scientific visualization and high-performance computing applications 
running under Linux. Though more memory-efficient approaches would be 
beneficial, for this sample we use a generic 16-byte (float4) primitive paired with 
the default acceleration structure and traversal mechanism supplied by the ray 
tracing API.

This method could be implemented naively with an OptiX [4] closest-hit program, 
casting first a primary ray and then a secondary transmission ray for each particle 
hit until termination. However, this would entail large numbers of incoherent rays, 
resulting in poor performance.

We therefore use an approach that coherently traverses and intersects subregions 
of the volume in as few traversals as possible, as shown in Figure 29-2. This bears 
similarities to the RBF volume methods [2], as well as game particle effects that 
resample onto regularly spaced two-dimensional texture slices [1]. However, it is 
simpler and more brute-force in the sense that, given a sufficiently large buffer to 
prevent overflow, it faithfully reproduces every intersected particle. We implement 
this using an any-hit program in OptiX as described in Section 29.3.2.
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29.3.1	 �RAY GENERATION PROGRAM

Our approach proceeds as follows: we intersect the volume bounding box and 
divide the resulting interval into slabs, spaced by slab_spacing. For each slab, 
we set the ray.tmin and ray.tmax to appropriately prune acceleration structure 
traversal. We then traverse with rtTrace(), which fills the buffer in PerRayData 
with the intersected samples within that slab. We subsequently sort and integrate 
that list of samples in the buffer. The following pseudocode omits some details 
(evaluating the radial basis function and applying a transfer function); for complete 
code refer to the accompanying source (Section 29.5).

 1 struct ParticleSample {

 2   float t;

 3   uint id;

 4 };

 5

 6 const int PARTICLE_BUFFER_SIZE = 31;   // 31 for Turing, 255 for Volta

 7

 8 struct PerRayData {

 9   int           tail;                 // End index of the array

10   int           pad;

11   ParticleSample    particles[PARTICLE_BUFFER_SIZE]; // Array

12 };

13

Figure 29-2.  Overview of our algorithm. The geometric primitive is a spherical radial basis function 
centered at a point. The hit position is the distance to the particle center evaluated along the view ray. To 
ensure coherent behavior during traversal of this geometry, we divide the volume into segments along 
rays, resulting in slabs. We then traverse and sort the set of intersected particles within each slab.
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14 rtDeclareVariable(rtObject,       top_object, , );

15 rtDeclareVariable(float,          radius, , );

16 rtDeclareVariable(float3,         volume_bbox_min, , );

17 rtDeclareVariable(float3,         volume_bbox_max, , );

18 rtBuffer<uchar4, 2>               output_buffer;

19

20 RT_PROGRAM raygen_program()

21 {

22   optix::Ray ray;

23   PerRayData prd;

24

25   generate_ray(launch_index, camera); // Pinhole camera or similar

26   optix::Aabb aabb(volume_bbox_min, volume_bbox_max);

27

28   float tenter, texit;

29   intersect_Aabb(ray, aabb, tenter, texit);

30

31   float3 result_color = make_float3(0.f);

32   float result_alpha = 0.f;

33

34   if (tenter < texit)

35   {

36     const float slab_spacing =

37           PARTICLE_BUFFER_SIZE * particlesPerSlab * radius;

38     float tslab = 0.f;

39

40     while (tslab < texit && result_alpha < 0.97f)

41     {

42       prd.tail = 0;

43       ray.tmin = fmaxf(tenter, tslab);

44       ray.tmax = fminf(texit, tslab + slabWidth);

45

46       if (ray. tmax > tenter)

47       {

48         rtTrace(top_object, ray, prd);

49

50         sort(prd.particles, prd.tail);

51

52         // Integrate depth-sorted list of particles.

53         for (int i=0; i< prd.tail; i++) {

54           float drbf = evaluate_rbf(prd.particles[i]);

55            float4 color_sample = transfer_function(drbf); // return RGBA

56           float alpha_1msa = color_sample.w * (1.0 - result_alpha);

57           result_color += alpha_1msa * make_float3(

58                 color_sample.x, color_sample.y, color_sample.z);

59           result_alpha += alpha_1msa;

60         }

61       }
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62       tslab += slab_spacing;

63     }

64   }

65

66   output_buffer[launch_index] = make_color( result_color ));

67 }

29.3.2	 �INTERSECTION AND ANY-HIT PROGRAMS

The intersection program is simple even when compared to ray/sphere 
intersection: We use the distance to the particle center along the viewing ray as the 
hit point sample_pos. We then check whether the sample is within the RBF radius; 
if so, we report an intersection. Our any-hit program then appends the intersected 
particle to the buffer, which is sorted by the ray generation program when traversal 
of the slab completes.

 1 �rtDeclareVariable(ParticleSample,hit_particle,attribute hit_particle,);

 2

 3 RT_PROGRAM void particle_intersect( int primIdx )

 4 {

 5   const float3 center = make_float3(particles_buffer[primIdx]);

 6   const float t = length(center - ray.origin);

 7   const float3 sample_pos = ray.origin + ray.direction * t;

 8   const float3 offset = center - sample_pos;

 9   if ( dot(offset, offset) < radius * radius &&

10        rtPotentialIntersection(t) )

11   {

12     hit_particle.t = t;

13     hit_particle.id = primIdx;

14     rtReportIntersection( 0 );

15   }

16 }

17

18 RT_PROGRAM void any_hit()

19 {

20   if (prd.tail < PARTICLE_BUFFER_SIZE) {

21     prd.particles[prd.tail++] = hit_particle;

22     rtIgnoreIntersection();

23   }

24 }

29.3.3	 �SORTING AND OPTIMIZATIONS

The choice of PARTICLE_BUFFER_SIZE and consequently the ideal sorting 
algorithm depends on the expected performance of rtTrace(). On the NVIDIA 
Turing architecture with dedicated traversal hardware, we achieved the best 
performance with an array size of 31 and bubble sort. This is not surprising given 
the small size of the array, and that the elements are already partially sorted from 
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bounding volume hierarchy traversal. On architectures with software traversal such 
as Volta, we experienced best results with a larger array of 255, relatively fewer slabs 
(thus traversals), and bitonic sort. Both are implemented in our reference code.

The value of particlesPerSlab should be chosen carefully based on the desired 
radius and degree of particle overlap; in our cosmology sample we default to 16. 
For larger radius values particles may overlap such that a larger  
PARTICLE_BUFFER_SIZE is required for correctness.

29.4	 �RESULTS

Performance of our technique on both NVIDIA RTX 2080 Ti (Turing) and Titan 
V (Volta) architectures is provided in Table 29-1, for a screen-filling view of the 
DarkSky data set at 1080p (2 megapixel) and 4k (8 megapixel) screen resolutions. 
The RT Cores technology in Turing enables performance at least 3× faster than on 
Volta, and up to nearly 6× in the case of smaller scenes.

Table 29-1.  Performance in milliseconds for screen-filling DarkSky reference scenes of varying 
numbers of particles.

We found that our slab-based approach was roughly 3× faster than the naive 
closest-hit approach mentioned in Section 29.2 on Turing, and 6–10× faster on 
Volta. We also experimented with a method based on insertion sort, which has the 
advantage of never over-running our fixed-size buffer; this was generally 2× and 
2.5× slower than the slabs approach on Turing and Volta, respectively. Lastly, we 
compared performance with a rasterized splatter [5], and we found that our ray 
tracing method was 7× faster for the 100M particle data set for both 4k and 1080p 
resolution on the NVIDIA RTX 2080 Ti, with similar cameras and radii.

29.5	 �SUMMARY

In this chapter, we describe a method for efficiently splatting on Turing and future 
NVIDIA RTX architectures leveraging hardware ray traversal. Despite using custom 
primitives, our method is 3× faster on Turing than on Volta, roughly 3× faster 
than a naive closest-hit approach, and nearly an order of magnitude faster than a 

 Efficient Particle Volume Splatting in a Ray Tracer



540

comparable rasterization-based splatter with depth sorting. It enables real-time 
rendering of 100 million particles with full depth sorting and blending, without 
requiring level of detail.

Our approach is geared primarily toward sparse particle data from scientific 
visualization, but it could easily be adapted to other particle data. When particles 
significantly overlap, full RBF volume rendering, or resampling onto proxy 
geometry or structured volumes, may prove more advantageous.

We have released our code as open source in the OptiX Advanced Samples Github 
repository: https://github.com/nvpro-samples/optix_advanced_samples.

REFERENCES

	 [1]	� Green, S. Volumetric Particle Shadows. NVIDIA Developer Zone, https://developer.
download.nvidia.com/assets/cuda/files/smokeParticles.pdf, 2008.

	 [2]	� Knoll, A., Wald, I., Navratil, P., Bowen, A., Reda, K., Papka, M. E., and Gaither, K. RBF Volume Ray 
Casting on Multicore and Manycore CPUs. Computer Graphics Forum 33, 3 (2014), 71–80.

	 [3]	� Levoy, M. Display of Surfaces from Volume Data. IEEE Computer Graphics and Applications, 3 
(1988), 29–30.

	 [4]	� Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., 
McGuire, M., Morley, K., Robison, A., et al. OptiX: A General Purpose Ray Tracing Engine. ACM 
Transactions on Graphics 29, 4 (2010), 66:1–66:13.

	 [5]	� Preston, A., Ghods, R., Xie, J., Sauer, F., Leaf, N., Ma, K.-L., Rangel, E., Kovacs, E., Heitmann, 
K., and Habib, S. An Integrated Visualization System for Interactive Analysis of Large, 
Heterogeneous Cosmology Data. In Pacific Visualization Symposium (2016), pp. 48–55.

	 [6]	� Skillman, S. W., Warren, M. S., Turk, M. J., Wechsler, R. H., Holz, D. E., and Sutter, P. M. Dark Sky 
Simulations: Early Data Release. arXiv, https://arxiv.org/abs/1407.2600, July 2014.

	 [7]	� Westover, L. Footprint Evaluation for Volume Rendering. Computer Graphics (SIGGRAPH) 24, 4 
(1990), 367–376.

RAY TRACING GEMS

https://github.com/nvpro-samples/optix_advanced_samples
https://developer.download.nvidia.com/assets/cuda/files/smokeParticles.pdf
https://developer.download.nvidia.com/assets/cuda/files/smokeParticles.pdf
https://arxiv.org/abs/1407.2600


541

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.
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