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CHAPTER 28

Ray Tracing Inhomogeneous Volumes
Matthias Raab
NVIDIA

ABSTRACT

Simulating the interaction of light with scattering and absorbing media requires 
importance sampling of distances proportional to the volume transmittance. 
A simple method originating from neutron transport simulation can be used to 
importance-sample collision events of a particle like a photon with arbitrary media.

28.1	 �LIGHT TRANSPORT IN VOLUMES

When light passes through a volume along a ray, some of it may be scattered or 
absorbed according to the medium’s light interaction properties. This is modeled 
by the medium’s scattering coefficient σ and absorption coefficient α. Generally, 
both are functions that vary with position. Adding the two, we obtain the extinction 
coefficient κ = σ + α, which characterizes total loss due to (out-)scattering and 
absorption.

The ratio of light that is not scattered out or absorbed for a distance s is called 
volume transmittance T and is described by the Beer-Lambert Law: if we follow a 
ray starting at position o in direction d, transmittance is
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This term is prominently featured in the integral equations governing light 
transport. For example, the radiance scattered in along a ray for distance s is given 
by integrating the transmittance-weighted in-scattered radiance (according to 
scattering coefficient σs and phase function fp):
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A Monte Carlo path tracer will typically want to importance-sample a distance 
proportional to T. The physical interpretation is that one would stochastically 
simulate the distance at which an interaction occurs for a photon. The path tracer 
can then randomly decide if the event is absorption or scattering and, in case of the 
latter, continue to trace the photon into a direction sampled according to the phase 
function. The probability density proportional to T is
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In cases where the medium is homogeneous (i.e., κ is constant), this simplifies to 
an exponential distribution κe−κt and the inversion method can be applied to obtain 
the distance

				    ( )t ln 1 / ,x k= - -
	 (4)

with the desired distribution for a uniformly distributed ξ. For an inhomogenous 
medium, however, this will not work, since for general κ the integral in Equation 3 
cannot be solved analytically, or even if so, the inverse might not be available.

28.2	 �WOODCOCK TRACKING

In the context of tracking the trajectories of neutrons (where one deals with the 
same sort of equations as with photons), a technique to importance-sample 
distances in inhomogeneous media found widespread use in the 1960s. It is often 
called Woodcock tracking, referring to a publication by Woodcock et al. [5]

The idea is quite simple and based on the fact that homogeneous volumes can be 
handled easily. To obtain an artificial homogeneous setting, a fictitious extinction 
coefficient is added such that the sum of the actual and the fictitious extinctions 
equals the maximum κmax everywhere. The artificial volume can now be interpreted 
as a mix of actual particles, which actually scatter and absorb, and the fictitious 
ones that will not do anything. See Figure 28-1.
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Using the constant extinction coefficient κmax, a distance can be sampled using 
Equation 4, and the particle will advance to that position. The collision could 
be a real one or a fictitious one, which can be randomly determined based on 
the ratio of actual to fictitious extinctions at that position (the probability of an 
actual collision is κ(x)/κmax). In the case of a fictitious collision, the particle has 
prematurely been stopped and needs to continue its path. Since the exponential 
distribution is memoryless, we may simply continue along the ray from the new 
position by repeating the previous steps until an actual collision occurs. The 
precise mathematics have been described by Coleman [1], including a proof that the 
technique importance-samples the probability density function in Equation 3.

It is worth noting that Woodcock’s original motivation was not to handle arbitrary 
inhomogeneous media, but to simplify and more efficiently handle piecewise 
homogeneous materials: treating the whole reactor as a single medium avoids all 
ray tracing operations with the complex reactor geometry.

Woodcock tracking is an elegant algorithm that works with any kind of medium 
where κmax is known, and it can be implemented in a few lines of code:

1 float sample_distance(Ray ray)

2 {

3     float t = 0.0f;

4     do {

5         t -= logf(1.0f - rand()) / max_extinction;

6     } while (get_extinction(ray.o + ray.d*t) < rand()*max_extinction);

7

8     return t;

9 }

Figure 28-1.  Illustration of a path through inhomogeneous media, with high density in the cloud 
area and lower density around it. Actual “particles” are depicted in gray and fictitious ones in white. 
Collisions with fictitious particles do not affect the trajectory.
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The only precaution that may be needed is to terminate the loop once the ray 
progresses to a surrounding vacuum. In this case no further interaction with the 
medium will occur and FLT_MAX may be returned. Since the procedure is unbiased, 
it is well suited for progressive Monte Carlo rendering.

28.3	 �EXAMPLE: A SIMPLE VOLUME PATH TRACER

To illustrate the application of Woodcock tracking, we present an implementation of 
a simple Monte Carlo volume path tracer in CUDA. It traces paths from the camera 
through the volume until they leave the medium. Then, it collects the contribution 
from the infinite environment dome, which can be configured to be an environment 
texture or a simple procedural gradient. For the medium we implicitly define the 
scattering coefficient to be proportional to the extinction coefficient by a constant 
albedo ρ, i.e., σ(x) = ρ ⋅ κ(x). All parameters defining the camera, volume procedural, 
and environment light are passed to the rendering kernel.

 1 struct Kernel_params {

 2     // Display

 3     uint2 resolution;

 4     float exposure_scale;

 5     unsigned int *display_buffer;

 6

 7     // Progressive rendering state

 8     unsigned int iteration;

 9     float3 *accum_buffer;

10     // Limit on path length

11     unsigned int max_interactions;

12     // Camera

13     float3 cam_pos;

14     float3 cam_dir;

15     float3 cam_right;

16     float3 cam_up;

17     float  cam_focal;

16

19     // Environment

20     unsigned int environment_type;

21     cudaTextureObject_t env_tex;

22

23     // Volume definition

24     unsigned int volume_type;

25     float max_extinction;

26     float albedo; // sigma / kappa

27 };
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Since we need many random numbers per path and we require that they are safe 
for parallel computing, we use CUDA’s curand.

1 #include <curand_kernel.h>

2 typedef curandStatePhilox4_32_10_t Rand_state;

3 #define rand(state) curand_uniform(state)

The volume data is defined to be restricted to a unit cube centered at the origin. To 
determine the entry point to the medium, we need an intersection routine, and to 
determine when a ray leaves the medium, we need a test for inclusion.

 1 _ _device_ _ inline bool intersect_volume_box(

 2     float &tmin, const float3 &raypos, const float3 & raydir)

 3 {

 4     const float x0 = (-0.5f - raypos.x) / raydir.x;

 5     const float y0 = (-0.5f - raypos.y) / raydir.y;

 6     const float z0 = (-0.5f - raypos.z) / raydir.z;

 7     const float x1 = ( 0.5f - raypos.x) / raydir.x;

 8     const float y1 = ( 0.5f - raypos.y) / raydir.y;

 9     const float z1 = ( 0.5f - raypos.z) / raydir.z;

10

11     tmin = fmaxf(fmaxf(fmaxf(

12           fminf(z0,z1), fminf(y0,y1)), fminf(x0,x1)), 0.0f);

13     const float tmax = fminf(fminf(

14           fmaxf(z0,z1), fmaxf(y0,y1)), fmaxf(x0,x1));

15     return (tmin < tmax);

16 }

17

18 _ _device_ _ inline bool in_volume(

19     const float3 &pos)

20 {

21     return fmaxf(fabsf(pos.x),fmaxf(fabsf(pos.y),fabsf(pos.z))) < 0.5f;

22 }

The actual density of the volume will be driven by an artificial procedural, which 
modulates the extinction coefficient between zero and κmax. For illustration, we have  
implemented two procedurals: a piecewise constant Menger sponge and a smooth  
falloff along a spiral.

 1 _ _device_ _ inline float get_extinction(

 2     const Kernel_params &kernel_params,

 3     const float3 &p)

 4 {

 5     if (kernel_params.volume_type == 0) {

 6         float3 pos = p + make_float3(0.5f, 0.5f, 0.5f);

 7         const unsigned int steps = 3;

 8         for (unsigned int i = 0; i < steps; ++i) {

 9             pos *= 3.0f;
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10             const int s =

11                 ((int)pos.x & 1) + ((int)pos.y & 1) + ((int)pos.z & 1);

12             if (s >= 2)

13                 return 0.0f;

14         }

15         return kernel_params.max_extinction;

16     } else {

17         const float r = 0.5f * (0.5f - fabsf (p.y));

18         const float a = (float)(M_PI * 8.0) * p.y;

19         const float dx = (cosf(a) * r - p.x) * 2.0f;

20         const float dy = (sinf(a) * r - p.z) * 2.0f;

21         return powf (fmaxf((1.0f - dx * dx - dy * dy), 0.0f), 8.0f) *

22               kernel_params.max_extinction;

23     }

24 }

Inside the volume, we use Woodcock tracking to sample the next point of 
interaction, potentially stopping early in case we have left the medium.

 1 _ _device_ _ inline bool sample_interaction(

 2     Rand_state &rand_state,

 3     float3 &ray_pos,

 4     const float3 &ray_dir,

 5     const Kernel_params &kernel_params)

 6 {

 7     float t = 0.0f;

 8     float3 pos;

 9     do {

10         t -= logf(1.0f - rand(&rand_state)) /

11               kernel_params.max_extinction;

12

13         pos = ray_pos + ray_dir * t;

14         if (!in_volume(pos))

15             return false;

16

17     } while (get_extinction(kernel_params, pos) < rand(&rand_state) *

18           kernel_params.max_extinction);

19

20     ray_pos = pos;

21     return true;

22 }

Now with all the utilities in place, we can trace a path through the volume. For that, 
we start by intersecting the path with the volume cube and then advance into the 
medium. Once inside, we apply Woodcock tracking to determine the next interaction. 
At each interaction point, we weight by the albedo and apply Russian roulette to 
probabilistically terminate paths with a weight smaller than 0.2 (and unconditionally 
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terminate paths that exceed the maximum length). If no termination occurs, we 
continue by sampling the (isotropic) phase function. Once we happen to leave the 
medium, we can look up the environment light contribution and end the path.

 1 _ _device_ _ inline float3 trace_volume(

 2     Rand_state &rand_state,

 3     float3 &ray_pos,

 4     float3 &ray_dir,

 5     const Kernel_params &kernel_params)

 6 {

 7     float t0;

 8     float w = 1.0f;

 9     if (intersect_volume_box(t0, ray_pos, ray_dir)) {

10

11         ray_pos += ray_dir * t0;

12

13         unsigned int num_interactions = 0;

14         while (sample_interaction(rand_state, ray_pos, ray_dir,

15               kernel_params))

16         {

17             // Is the path length exceeded?

18             if (num_interactions++ >= kernel_params.max_interactions)

19                 return make_float3(0.0f, 0.0f, 0.0f);

20

21             w *= kernel_params.albedo;

22             // Russian roulette absorption

23             if (w < 0.2f) {

24                 if (rand(&rand_state) > w * 5.0f) {

25                     return make_float3(0.0f, 0.0f, 0.0f);

26                 }

27                 w = 0.2f;

28             }

29

30             // Sample isotropic phase function

31             const float phi = (float)(2.0 * M_PI) * rand(&rand_state);

32             const float cos_theta = 1.0f - 2.0f * rand(&rand_state);

33             �const float sin_theta = sqrtf (1.0f - cos_theta * cos_theta);

34             ray_dir = make_float3(

35                 cosf(phi) * sin_theta,

36                 sinf(phi) * sin_theta,

37                 cos_theta);

38         }

39     }

40

41     // Look up the environment.

42     if (kernel_params.environment_type == 0) {

43         const float f = (0.5f + 0.5f * ray_dir.y) * w;

44         return make_float3(f, f, f);
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45     } else {

46         const float4 texval = tex2D<float4>(

47             kernel_params.env_tex,

48             atan2f(ray_dir.z, ray_dir.x) * (float)(0.5 / M_PI) + 0.5f,

49             acosf(fmaxf(fminf(ray_dir.y, 1.0f), -1.0f)) *

50                     (float)(1.0 / M_PI));

51          return make_float3(texval.x * w, texval.y * w, texval.z * w);

52     }

53 }

Finally, we add the logic to start paths from the camera for each pixel. The results 
are progressively accumulated and transferred to a tone-mapped buffer for display 
after each iteration.

 1 extern "C" _ _global_ _ void volume_rt_kernel(

 2     const Kernel_params kernel_params)

 3 {

 4     const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;

 5     const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

 6     if (x >= kernel_params.resolution.x ||

 7           y >= kernel_params.resolution.y)

 8         return;

 9

10     // Initialize pseudorandom number generator (PRNG);

11     // assume we need no more than 4096 random numbers.

12     const unsigned int idx = y * kernel_params.resolution.x + x;

13     Rand_state rand_state;

14     curand_init(idx, 0, kernel_params.iteration * 4096, &rand_state);

15

16     // Trace from the pinhole camera.

17     const float inv_res_x = 1.0f / (float)kernel_params.resolution.x;

18     const float inv_res_y = 1.0f / (float)kernel_params.resolution.y;

19     �const float pr = (2.0f * ((float)x + rand(&rand_state)) * inv_res_x

20           - 1.0f);

21       const float pu = (2.0f * ((float)y + rand(&rand_state)) * inv_res_y

22           - 1.0f);

23     �const float aspect = (float)kernel_params.resolution.y * inv_res_x;

24     float3 ray_pos = kernel_params.cam_pos;

25     float3 ray_dir = normalize(

26           kernel_params.cam_dir * kernel_params.cam_focal +

27           kernel_params.cam_right * pr +

28           kernel_params.cam_up * aspect * pu);

29     const float3 value = trace_volume(rand_state, ray_pos, ray_dir,

30           kernel_params);

31
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32     // Accumulate.

33     if (kernel_params.iteration == 0)

34         kernel_params.accum_buffer[idx] = value;

35     else

36         kernel_params.accum_buffer[idx] =

37               kernel_params.accum_buffer[idx] +

38               (value - kernel_params.accum_buffer[idx]) /

39               (float)(kernel_params.iteration + 1);

40

41     // Update display buffer (simple Reinhard tone mapper + gamma).

42     float3 val = kernel_params.accum_buffer[idx] *

43           kernel_params.exposure_scale;

44     val.x *= (1.0f + val.x * 0.1f) / (1.0f + val.x);

45     val.y *= (1.0f + val.y * 0.1f) / (1.0f + val.y);

46     val.z *= (1.0f + val.z * 0.1f) / (1.0f + val.z);

47     const unsigned int r = (unsigned int)(255.0f *

48           �fminf(powf(fmaxf(val.x, 0.0f), (float)(1.0 / 2.2)), 1.0f));

49     const unsigned int g = (unsigned int) (255.0f *

50           �fminf(powf(fmaxf(val.y, 0.0f), (float)(1.0 / 2.2)), 1.0f));

51     const unsigned int b = (unsigned int) (255.0f *

52           �fminf(powf(fmaxf(val.z, 0.0f), (float)(1.0 / 2.2)), 1.0f));

53     kernel_params.display_buffer[idx] =

54           0xff000000 | (r << 16) | (g << 8) | b;

55 }

Example renderings produced by the presented path tracer can be seen in 
Figure 28-2.
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28.4	 �FURTHER READING

The Woodcock tracking method can also be used to probabilistically evaluate the 
transmittance, as, e.g., required when tracing shadow rays through volumes. This 
can be achieved by sampling (potentially multiple) distances and using the ratio 
of those that “survive the trip” as estimate [4]. As an optimization, the random 
variable for continuing the path may be replaced by its expected value: instead of 
continuing the path with probability 1 − κ(x)/κmax, the product of those probabilities 
(until the distance is covered) may be used [2].

If the maximum extinction coefficient in a scene is much higher than the one 
typically encountered, many iterations are necessary and the method becomes 
inefficient. The detailed state-of-the-art report by Novák et al. [3] provides a good 
summary for further optimization.

Figure 28-2.  The two procedural volume functions implemented in the sample path tracer, lit by a 
simple gradient (top) and an environment map (bottom). The albedo is set to 0.8 and the maximum 
number of volume interactions is limited to 1024. (Environment map image courtesy of Greg Zaal, 
https://hdrihaven.com.)

RAY TRACING GEMS

https://hdrihaven.com


531

REFERENCES

	 [1]	� Coleman, W. Mathematical Verification of a Certain Monte Carlo Sampling Technique and 
Applications of the Technique to Radiation Transport Problems. Nuclear Science and Engineering 
32 (1968), 76–81.

	 [2]	� Novák, J., Selle, A., and Jarosz, W. Residual Ratio Tracking for Estimating Attenuation  
in Participating Media. ACM Transactions on Graphics (SIGGRAPH Asia) 33, 6 (Nov. 2014),  
179:1–179:11.

	 [3]	� Novák, J., Georgiev, I., Hanika, J., and Jarosz, W. Monte Carlo Methods for Volumetric Light 
Transport Simulation. Computer Graphics Forum 37, 2 (May 2018), 551–576.

	 [4]	� Raab, M., Seibert, D., and Keller, A. Unbiased Global Illumination with Participating Media. In 
Monte Carlo and Quasi-Monte Carlo Methods, A. Keller, S. Heinrich, and N. H., Eds. Springer, 2008, 
pp. 591–605.

	 [5]	� Woodcock, E. R., Murphy, T., Hemmings, P. J., and Longworth, T. C. Techniques Used in the 
GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex 
Geometry. In Conference on Applications of Computing Methods to Reactor Problems (1965), 
pp. 557–579.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.

 Ray Tracing Inhomogeneous Volumes

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 28: Ray Tracing Inhomogeneous Volumes
	28.1	 Light Transport in Volumes
	28.2	 Woodcock Tracking
	28.3	 Example: A Simple Volume Path Tracer
	28.4	 Further Reading


