
521© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_28

CHAPTER 28

Ray Tracing Inhomogeneous Volumes
Matthias Raab
NVIDIA

ABSTRACT

Simulating the interaction of light with scattering and absorbing media requires
importance sampling of distances proportional to the volume transmittance.
A simple method originating from neutron transport simulation can be used to
importance-sample collision events of a particle like a photon with arbitrary media.

28.1	 �LIGHT TRANSPORT IN VOLUMES

When light passes through a volume along a ray, some of it may be scattered or
absorbed according to the medium’s light interaction properties. This is modeled
by the medium’s scattering coefficient σ and absorption coefficient α. Generally,
both are functions that vary with position. Adding the two, we obtain the extinction
coefficient κ = σ + α, which characterizes total loss due to (out-)scattering and
absorption.

The ratio of light that is not scattered out or absorbed for a distance s is called
volume transmittance T and is described by the Beer-Lambert Law: if we follow a
ray starting at position o in direction d, transmittance is

		
() ()

0
exp .

S
T , s t dtkòæ ö+ = - +ç ÷

è ø
o o d o d

		
(1)

This term is prominently featured in the integral equations governing light
transport. For example, the radiance scattered in along a ray for distance s is given
by integrating the transmittance-weighted in-scattered radiance (according to
scattering coefficient σs and phase function fp):

	
() () ()

0
() .

S

s pL , T , t , t f t , , d dts w wò ò
W

æ ö- = + + + -ç ÷
è ø

o d o o d o o d o d d
	

(2)

https://doi.org/10.1007/978-1-4842-4427-2_28

522

A Monte Carlo path tracer will typically want to importance-sample a distance
proportional to T. The physical interpretation is that one would stochastically
simulate the distance at which an interaction occurs for a photon. The path tracer
can then randomly decide if the event is absorption or scattering and, in case of the
latter, continue to trace the photon into a direction sampled according to the phase
function. The probability density proportional to T is

	
() () () () ()

0
exp .

t
p t t T , t t t dtk k kòæ ö= + + = + - +ç ÷

è ø
¢ ¢o d o o d o d o d 	 (3)

In cases where the medium is homogeneous (i.e., κ is constant), this simplifies to
an exponential distribution κe−κt and the inversion method can be applied to obtain
the distance

				 ()t ln 1 / ,x k= - -
	 (4)

with the desired distribution for a uniformly distributed ξ. For an inhomogenous
medium, however, this will not work, since for general κ the integral in Equation 3
cannot be solved analytically, or even if so, the inverse might not be available.

28.2	 �WOODCOCK TRACKING

In the context of tracking the trajectories of neutrons (where one deals with the
same sort of equations as with photons), a technique to importance-sample
distances in inhomogeneous media found widespread use in the 1960s. It is often
called Woodcock tracking, referring to a publication by Woodcock et al. [5]

The idea is quite simple and based on the fact that homogeneous volumes can be
handled easily. To obtain an artificial homogeneous setting, a fictitious extinction
coefficient is added such that the sum of the actual and the fictitious extinctions
equals the maximum κmax everywhere. The artificial volume can now be interpreted
as a mix of actual particles, which actually scatter and absorb, and the fictitious
ones that will not do anything. See Figure 28-1.

RAY TRACING GEMS

523

Using the constant extinction coefficient κmax, a distance can be sampled using
Equation 4, and the particle will advance to that position. The collision could
be a real one or a fictitious one, which can be randomly determined based on
the ratio of actual to fictitious extinctions at that position (the probability of an
actual collision is κ(x)/κmax). In the case of a fictitious collision, the particle has
prematurely been stopped and needs to continue its path. Since the exponential
distribution is memoryless, we may simply continue along the ray from the new
position by repeating the previous steps until an actual collision occurs. The
precise mathematics have been described by Coleman [1], including a proof that the
technique importance-samples the probability density function in Equation 3.

It is worth noting that Woodcock’s original motivation was not to handle arbitrary
inhomogeneous media, but to simplify and more efficiently handle piecewise
homogeneous materials: treating the whole reactor as a single medium avoids all
ray tracing operations with the complex reactor geometry.

Woodcock tracking is an elegant algorithm that works with any kind of medium
where κmax is known, and it can be implemented in a few lines of code:

1 float sample_distance(Ray ray)

2 {

3 float t = 0.0f;

4 do {

5 t -= logf(1.0f - rand()) / max_extinction;

6 } while (get_extinction(ray.o + ray.d*t) < rand()*max_extinction);

7

8 return t;

9 }

Figure 28-1.  Illustration of a path through inhomogeneous media, with high density in the cloud
area and lower density around it. Actual “particles” are depicted in gray and fictitious ones in white.
Collisions with fictitious particles do not affect the trajectory.

 Ray Tracing Inhomogeneous Volumes

524

The only precaution that may be needed is to terminate the loop once the ray
progresses to a surrounding vacuum. In this case no further interaction with the
medium will occur and FLT_MAX may be returned. Since the procedure is unbiased,
it is well suited for progressive Monte Carlo rendering.

28.3	 �EXAMPLE: A SIMPLE VOLUME PATH TRACER

To illustrate the application of Woodcock tracking, we present an implementation of
a simple Monte Carlo volume path tracer in CUDA. It traces paths from the camera
through the volume until they leave the medium. Then, it collects the contribution
from the infinite environment dome, which can be configured to be an environment
texture or a simple procedural gradient. For the medium we implicitly define the
scattering coefficient to be proportional to the extinction coefficient by a constant
albedo ρ, i.e., σ(x) = ρ ⋅ κ(x). All parameters defining the camera, volume procedural,
and environment light are passed to the rendering kernel.

 1 struct Kernel_params {

 2 // Display

 3 uint2 resolution;

 4 float exposure_scale;

 5 unsigned int *display_buffer;

 6

 7 // Progressive rendering state

 8 unsigned int iteration;

 9 float3 *accum_buffer;

10 // Limit on path length

11 unsigned int max_interactions;

12 // Camera

13 float3 cam_pos;

14 float3 cam_dir;

15 float3 cam_right;

16 float3 cam_up;

17 float cam_focal;

16

19 // Environment

20 unsigned int environment_type;

21 cudaTextureObject_t env_tex;

22

23 // Volume definition

24 unsigned int volume_type;

25 float max_extinction;

26 float albedo; // sigma / kappa

27 };

RAY TRACING GEMS

525

Since we need many random numbers per path and we require that they are safe
for parallel computing, we use CUDA’s curand.

1 #include <curand_kernel.h>

2 typedef curandStatePhilox4_32_10_t Rand_state;

3 #define rand(state) curand_uniform(state)

The volume data is defined to be restricted to a unit cube centered at the origin. To
determine the entry point to the medium, we need an intersection routine, and to
determine when a ray leaves the medium, we need a test for inclusion.

 1 _ _device_ _ inline bool intersect_volume_box(

 2 float &tmin, const float3 &raypos, const float3 & raydir)

 3 {

 4 const float x0 = (-0.5f - raypos.x) / raydir.x;

 5 const float y0 = (-0.5f - raypos.y) / raydir.y;

 6 const float z0 = (-0.5f - raypos.z) / raydir.z;

 7 const float x1 = (0.5f - raypos.x) / raydir.x;

 8 const float y1 = (0.5f - raypos.y) / raydir.y;

 9 const float z1 = (0.5f - raypos.z) / raydir.z;

10

11 tmin = fmaxf(fmaxf(fmaxf(

12 fminf(z0,z1), fminf(y0,y1)), fminf(x0,x1)), 0.0f);

13 const float tmax = fminf(fminf(

14 fmaxf(z0,z1), fmaxf(y0,y1)), fmaxf(x0,x1));

15 return (tmin < tmax);

16 }

17

18 _ _device_ _ inline bool in_volume(

19 const float3 &pos)

20 {

21 return fmaxf(fabsf(pos.x),fmaxf(fabsf(pos.y),fabsf(pos.z))) < 0.5f;

22 }

The actual density of the volume will be driven by an artificial procedural, which
modulates the extinction coefficient between zero and κmax. For illustration, we have
implemented two procedurals: a piecewise constant Menger sponge and a smooth
falloff along a spiral.

 1 _ _device_ _ inline float get_extinction(

 2 const Kernel_params &kernel_params,

 3 const float3 &p)

 4 {

 5 if (kernel_params.volume_type == 0) {

 6 float3 pos = p + make_float3(0.5f, 0.5f, 0.5f);

 7 const unsigned int steps = 3;

 8 for (unsigned int i = 0; i < steps; ++i) {

 9 pos *= 3.0f;

 Ray Tracing Inhomogeneous Volumes

526

10 const int s =

11 ((int)pos.x & 1) + ((int)pos.y & 1) + ((int)pos.z & 1);

12 if (s >= 2)

13 return 0.0f;

14 }

15 return kernel_params.max_extinction;

16 } else {

17 const float r = 0.5f * (0.5f - fabsf (p.y));

18 const float a = (float)(M_PI * 8.0) * p.y;

19 const float dx = (cosf(a) * r - p.x) * 2.0f;

20 const float dy = (sinf(a) * r - p.z) * 2.0f;

21 return powf (fmaxf((1.0f - dx * dx - dy * dy), 0.0f), 8.0f) *

22 kernel_params.max_extinction;

23 }

24 }

Inside the volume, we use Woodcock tracking to sample the next point of
interaction, potentially stopping early in case we have left the medium.

 1 _ _device_ _ inline bool sample_interaction(

 2 Rand_state &rand_state,

 3 float3 &ray_pos,

 4 const float3 &ray_dir,

 5 const Kernel_params &kernel_params)

 6 {

 7 float t = 0.0f;

 8 float3 pos;

 9 do {

10 t -= logf(1.0f - rand(&rand_state)) /

11 kernel_params.max_extinction;

12

13 pos = ray_pos + ray_dir * t;

14 if (!in_volume(pos))

15 return false;

16

17 } while (get_extinction(kernel_params, pos) < rand(&rand_state) *

18 kernel_params.max_extinction);

19

20 ray_pos = pos;

21 return true;

22 }

Now with all the utilities in place, we can trace a path through the volume. For that,
we start by intersecting the path with the volume cube and then advance into the
medium. Once inside, we apply Woodcock tracking to determine the next interaction.
At each interaction point, we weight by the albedo and apply Russian roulette to
probabilistically terminate paths with a weight smaller than 0.2 (and unconditionally

RAY TRACING GEMS

527

terminate paths that exceed the maximum length). If no termination occurs, we
continue by sampling the (isotropic) phase function. Once we happen to leave the
medium, we can look up the environment light contribution and end the path.

 1 _ _device_ _ inline float3 trace_volume(

 2 Rand_state &rand_state,

 3 float3 &ray_pos,

 4 float3 &ray_dir,

 5 const Kernel_params &kernel_params)

 6 {

 7 float t0;

 8 float w = 1.0f;

 9 if (intersect_volume_box(t0, ray_pos, ray_dir)) {

10

11 ray_pos += ray_dir * t0;

12

13 unsigned int num_interactions = 0;

14 while (sample_interaction(rand_state, ray_pos, ray_dir,

15 kernel_params))

16 {

17 // Is the path length exceeded?

18 if (num_interactions++ >= kernel_params.max_interactions)

19 return make_float3(0.0f, 0.0f, 0.0f);

20

21 w *= kernel_params.albedo;

22 // Russian roulette absorption

23 if (w < 0.2f) {

24 if (rand(&rand_state) > w * 5.0f) {

25 return make_float3(0.0f, 0.0f, 0.0f);

26 }

27 w = 0.2f;

28 }

29

30 // Sample isotropic phase function

31 const float phi = (float)(2.0 * M_PI) * rand(&rand_state);

32 const float cos_theta = 1.0f - 2.0f * rand(&rand_state);

33 �const float sin_theta = sqrtf (1.0f - cos_theta * cos_theta);

34 ray_dir = make_float3(

35 cosf(phi) * sin_theta,

36 sinf(phi) * sin_theta,

37 cos_theta);

38 }

39 }

40

41 // Look up the environment.

42 if (kernel_params.environment_type == 0) {

43 const float f = (0.5f + 0.5f * ray_dir.y) * w;

44 return make_float3(f, f, f);

 Ray Tracing Inhomogeneous Volumes

528

45 } else {

46 const float4 texval = tex2D<float4>(

47 kernel_params.env_tex,

48 atan2f(ray_dir.z, ray_dir.x) * (float)(0.5 / M_PI) + 0.5f,

49 acosf(fmaxf(fminf(ray_dir.y, 1.0f), -1.0f)) *

50 (float)(1.0 / M_PI));

51 return make_float3(texval.x * w, texval.y * w, texval.z * w);

52 }

53 }

Finally, we add the logic to start paths from the camera for each pixel. The results
are progressively accumulated and transferred to a tone-mapped buffer for display
after each iteration.

 1 extern "C" _ _global_ _ void volume_rt_kernel(

 2 const Kernel_params kernel_params)

 3 {

 4 const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;

 5 const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

 6 if (x >= kernel_params.resolution.x ||

 7 y >= kernel_params.resolution.y)

 8 return;

 9

10 // Initialize pseudorandom number generator (PRNG);

11 // assume we need no more than 4096 random numbers.

12 const unsigned int idx = y * kernel_params.resolution.x + x;

13 Rand_state rand_state;

14 curand_init(idx, 0, kernel_params.iteration * 4096, &rand_state);

15

16 // Trace from the pinhole camera.

17 const float inv_res_x = 1.0f / (float)kernel_params.resolution.x;

18 const float inv_res_y = 1.0f / (float)kernel_params.resolution.y;

19 �const float pr = (2.0f * ((float)x + rand(&rand_state)) * inv_res_x

20 - 1.0f);

21     const float pu = (2.0f * ((float)y + rand(&rand_state)) * inv_res_y

22 - 1.0f);

23 �const float aspect = (float)kernel_params.resolution.y * inv_res_x;

24 float3 ray_pos = kernel_params.cam_pos;

25 float3 ray_dir = normalize(

26 kernel_params.cam_dir * kernel_params.cam_focal +

27 kernel_params.cam_right * pr +

28 kernel_params.cam_up * aspect * pu);

29 const float3 value = trace_volume(rand_state, ray_pos, ray_dir,

30 kernel_params);

31

RAY TRACING GEMS

529

32 // Accumulate.

33 if (kernel_params.iteration == 0)

34 kernel_params.accum_buffer[idx] = value;

35 else

36 kernel_params.accum_buffer[idx] =

37 kernel_params.accum_buffer[idx] +

38 (value - kernel_params.accum_buffer[idx]) /

39 (float)(kernel_params.iteration + 1);

40

41 // Update display buffer (simple Reinhard tone mapper + gamma).

42 float3 val = kernel_params.accum_buffer[idx] *

43 kernel_params.exposure_scale;

44 val.x *= (1.0f + val.x * 0.1f) / (1.0f + val.x);

45 val.y *= (1.0f + val.y * 0.1f) / (1.0f + val.y);

46 val.z *= (1.0f + val.z * 0.1f) / (1.0f + val.z);

47 const unsigned int r = (unsigned int)(255.0f *

48 �fminf(powf(fmaxf(val.x, 0.0f), (float)(1.0 / 2.2)), 1.0f));

49 const unsigned int g = (unsigned int) (255.0f *

50 �fminf(powf(fmaxf(val.y, 0.0f), (float)(1.0 / 2.2)), 1.0f));

51 const unsigned int b = (unsigned int) (255.0f *

52 �fminf(powf(fmaxf(val.z, 0.0f), (float)(1.0 / 2.2)), 1.0f));

53 kernel_params.display_buffer[idx] =

54 0xff000000 | (r << 16) | (g << 8) | b;

55 }

Example renderings produced by the presented path tracer can be seen in
Figure 28-2.

 Ray Tracing Inhomogeneous Volumes

530

28.4	 �FURTHER READING

The Woodcock tracking method can also be used to probabilistically evaluate the
transmittance, as, e.g., required when tracing shadow rays through volumes. This
can be achieved by sampling (potentially multiple) distances and using the ratio
of those that “survive the trip” as estimate [4]. As an optimization, the random
variable for continuing the path may be replaced by its expected value: instead of
continuing the path with probability 1 − κ(x)/κmax, the product of those probabilities
(until the distance is covered) may be used [2].

If the maximum extinction coefficient in a scene is much higher than the one
typically encountered, many iterations are necessary and the method becomes
inefficient. The detailed state-of-the-art report by Novák et al. [3] provides a good
summary for further optimization.

Figure 28-2.  The two procedural volume functions implemented in the sample path tracer, lit by a
simple gradient (top) and an environment map (bottom). The albedo is set to 0.8 and the maximum
number of volume interactions is limited to 1024. (Environment map image courtesy of Greg Zaal,
https://hdrihaven.com.)

RAY TRACING GEMS

https://hdrihaven.com

531

REFERENCES

	 [1]	� Coleman, W. Mathematical Verification of a Certain Monte Carlo Sampling Technique and
Applications of the Technique to Radiation Transport Problems. Nuclear Science and Engineering
32 (1968), 76–81.

	 [2]	� Novák, J., Selle, A., and Jarosz, W. Residual Ratio Tracking for Estimating Attenuation
in Participating Media. ACM Transactions on Graphics (SIGGRAPH Asia) 33, 6 (Nov. 2014),
179:1–179:11.

	 [3]	� Novák, J., Georgiev, I., Hanika, J., and Jarosz, W. Monte Carlo Methods for Volumetric Light
Transport Simulation. Computer Graphics Forum 37, 2 (May 2018), 551–576.

	 [4]	� Raab, M., Seibert, D., and Keller, A. Unbiased Global Illumination with Participating Media. In
Monte Carlo and Quasi-Monte Carlo Methods, A. Keller, S. Heinrich, and N. H., Eds. Springer, 2008,
pp. 591–605.

	 [5]	� Woodcock, E. R., Murphy, T., Hemmings, P. J., and Longworth, T. C. Techniques Used in the
GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex
Geometry. In Conference on Applications of Computing Methods to Reactor Problems (1965),
pp. 557–579.

Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

 Ray Tracing Inhomogeneous Volumes

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 28: Ray Tracing Inhomogeneous Volumes
	28.1	 Light Transport in Volumes
	28.2	 Woodcock Tracking
	28.3	 Example: A Simple Volume Path Tracer
	28.4	 Further Reading

