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CHAPTER 8

Mapping Parallel Patterns 
to TBB
It has been said that history does not repeat, it rhymes.

It could be said that software rhymes as well. While we may not write the same code 

over and over, there are patterns that emerge in the problems we solve and the code we 

write. We can learn from similar solutions.

This chapter takes a look at patterns that have proven to be effective in solving 

problems in a scalable manner, and we connect them with how to implement them 

using TBB (Figure 8-1). In order to achieve scalable parallelization, we should focus on 

data parallelism; data parallelism is the best overall strategy for scalable parallelism. 

Our coding needs to encourage the subdivision of any task into multiple tasks, with 

the number of tasks able to grow with the overall problem size; an abundance of tasks 

enables better scaling. Assisted best by the patterns we promote in this chapter, coding 

to provide an abundance of tasks helps us achieve scalability in our algorithms.

We can learn to “Think Parallel” by seeing how others have done it effectively 

already. Of course, we can stand on the shoulders of giants and reach ever further.

This chapter is about learning from prior experiences of parallel programmers, and 

in the course of doing that, learning better how to use TBB. We talk in terms of patterns 

as inspiration and useful tools for “Thinking Parallel.” We do not describe patterns to 

form a perfect taxonomy of programming.

�Parallel Patterns vs. Parallel Algorithms
As we mentioned in Chapter 2, it has been suggested to us by reviewers of this book 

that “TBB parallel algorithms” should be referred to as patterns instead of algorithms. 

That may be true, but in order to align with the terminology that the TBB library has 
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been using for many years, we refer to these features as generic parallel algorithms 

throughout this book and in the TBB documentation. The effect is the same – they offer 

the opportunity for us to benefit from the experience of those who have explored optimal 

solutions to these patterns before us – not only to use them, but to be encouraged to 

prefer using these particular patterns (algorithms) over other possible approaches 

because they tend work best (achieve better scaling).

Figure 8-1.  TBB templates that express important “Patterns that work”

Chapter 8  Mapping Parallel Patterns to TBB



235

�Patterns Categorize Algorithms, Designs, etc.
The value of object-oriented programming was described by the Gang of Four (Gamma, 

Helm, Johnson, and Vlissides) and their landmark work Design Patterns: Elements 

of Reusable Object-Oriented Software (Addison-Wesley). Many credit that book with 

bringing more order to the world of object-oriented programming. Their book gathered 

the collective wisdom of the community and boiled it down into simple “patterns” with 

names, so people could talk about them.

Patterns for Parallel Programming by Mattson, Sanders, and Massingill (Addison-

Wesley) has similarly collected wisdom from the parallel programming community. Experts 

use common tricks and have their own language to talk about techniques. With parallel 

patterns in mind, programmers can quickly come up to speed in parallel programming just 

as object-oriented programmers have done with the famous Gang-of-Four book.

Patterns for Parallel Programming is longer than this book, and very dense reading, but 

with some help from author Tim Mattson, we can summarize how the patterns relate to TBB.

Tim et al. propose that programmers need to work through four design spaces to 

develop a parallel program:

	 1.	 Finding concurrency.

For this design space, we work within our problem domain to 

identify available concurrency and expose it for use in the algorithm 

design. TBB simplifies this effort by encouraging us to find as 

many tasks as we can without having to worry about how to map 

them to hardware threads. We also provide information on how to 

best make the tasks split in half when the task is considered large 

enough. Using this information, TBB then automatically divides 

large tasks repeatedly to help spread work evenly among processor 

cores. An abundance of tasks leads to scalability for our algorithms.

	 2.	 Algorithm structures.

This design space embodies our high-level strategy for organizing a 

parallel algorithm. We need to figure out how we want to organize 

our workflow. Figure 8-1 lists important patterns that we can consult 

to guide our selection toward a pattern that best suits our needs. 

These “patterns that work” are the focus of Structured Parallel 

Programming by McCool, Robison, and Reinders (Elsevier).
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	 3.	 Supporting structures.

This step involves the details for turning algorithm strategy 

into actual code. We consider how the parallel program will be 

organized and the techniques used to manage shared (especially 

mutable) data. These considerations are critical and have an 

impact that reaches across the entire parallel programming 

process. TBB is well designed to encourage the right level of 

abstraction, so this design space is satisfied by using TBB well 

(something we hope we teach in this book).

	 4.	 Implementation mechanisms.

This design space includes thread management and synchronization. 

Threading Building Blocks handles all the thread management, 

leaving us free to worry only about tasks at a higher level of design. 

When using TBB, most programmers code to avoid explicit 

synchronization coding and debugging. TBB algorithms (Chapter 2) 

and flow graph (Chapter 3) aim to minimize explicit synchronization. 

Chapter 5 discusses synchronization mechanisms for when we do 

need them, and Chapter 6 offers containers and thread local storage to 

help limit the need for explicit synchronization.

Using a pattern language can guide the creation of better parallel 

programming environments and help us make the best use of TBB 

to write parallel software.

�Patterns That Work
Armed with the language of patterns, we should regard them as tools. We emphasize 

patterns that have proven useful for developing the most scalable algorithms. We 

know that two prerequisites for achieving parallel scalability are good data locality and 

avoidance of overhead. Fortunately, many good strategies have been developed for 

achieving these objectives and are accessible using TBB (see table in Figure 8-1).  

Consideration of the need to be well tuned, to real machines, details are already 

provided for within TBB including issues related to the implementation of patterns such 

as granularity control and good use of cache.
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In these terms, TBB handles the details of implementation, so that we can program 

at a higher level. This is what lets code written using TBB be portable, leaving machine-

specific tuning inside of TBB. TBB in turn, by virtue of algorithms such as task-stealing, 

helps minimize the tuning needed to port TBB. The abstraction of the algorithm strategy 

into semantics and implementation has proven to work extremely well in practice. The 

separation makes it possible to reason about the high-level algorithm design and the 

low-level (and often machine-specific) details separately.

Patterns provide a common vocabulary for discussing approaches to problem 

solving and allow reuse of best practices. Patterns transcend languages, programming 

models, and even computer architectures, and we can use patterns whether or not the 

programming system we are using explicitly supports a given pattern with a specific 

feature. Fortunately, TBB was designed to emphasize proven patterns that lead to well-

structured, maintainable, and efficient programs. Many of these patterns are in fact also 

deterministic (or can be run in a deterministic mode – see Chapter 16), which means 

they give the same result every time they are executed. Determinism is a useful property 

since it leads to programs that are easier to understand, debug, test, and maintain.

�Data Parallelism Wins
The best overall strategy for scalable parallelism is data parallelism. Definitions of 

data parallelism vary. We take a wide view and define data parallelism as any kind of 

parallelism that grows as the data set grows or, more generally, as the problem size 

grows. Typically, the data is split into chunks and each chunk processed with a separate 

task. Sometimes, the splitting is flat; other times, it is recursive. What matters is that 

bigger data sets generate more tasks.

Whether similar or different operations are applied to the chunks is irrelevant to our 

definition. In general, data parallelism can be applied whether a problem is regular or 

irregular. Because data parallelism is the best strategy for scalable parallelism, hardware 

support for data parallelism is commonly found in all types of hardware – CPUs, GPUs, 

ASIC designs, and FPGA designs. Chapter 4 discussed support for SIMD precisely to 

connect with such hardware support.

The opposite of data parallelism is functional decomposition (also called task 

parallelism), an approach that runs different program functions in parallel. At best, 

functional decomposition improves performance by a constant factor. For example, if a 

program has functions f, g, and h, running them in parallel at best triples performance, 
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and in practice less. Sometimes functional decomposition can deliver an additional bit 

of parallelism required to meet a performance target, but it should not be our primary 

strategy, because it does not scale.

Figure 8-2.  Nesting pattern: a compositional pattern that allows other patterns 
to be composed in a hierarchy. Nesting is that any task block in a pattern can 
be replaced with a pattern with the same input and output configuration and 
dependencies.

�Nesting Pattern
Nesting (Figure 8-2) may seem obvious and normal, but in the parallel programming 

world it is not. TBB makes life simple – nesting just works, without severe 

oversubscription issues that other models such as OpenMP can have.

Two implications to emphasize what we get because of nesting support:

•	 We do not need to know if we are in a “parallel region” or a “serial 

region” when choosing if we should invoke a TBB template. 

Since using TBB just creates tasks, we do not have to worry about 

oversubscription of threads.

•	 We do not need to worry about calling a library, which was written 

with TBB, and controlling if it might use parallelism.

Nesting can be thought of as a meta-pattern because it means that patterns can 

be hierarchically composed. This is important for modular programming. Nesting is 

extensively used in serial programming for composability and information hiding but 
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can be a challenge to carry over into parallel programming. The key to implementing 

nested parallelism is to specify optional, not mandatory, parallelism. This is one area 

that TBB excels compared to other models.

The importance of nesting was well understood when TBB was introduced in 2006, 

and it has always been well supported in all of TBB. In contrast, the OpenMP API was 

introduced in 1997 when we did not adequately foresee the critical importance of the 

nesting pattern for future machines. As a result, the nesting pattern is not supported 

throughout OpenMP. This can make OpenMP much more difficult to use for anything 

outside the world of applications which focus almost all work inside computationally 

intensive loop nests. These are the application types that dominated our thinking when 

creating OpenMP and its predecessors in the 1980s and 1990s. The nesting pattern, with  

modularity and composability, was key in our thinking when TBB was created (we credit 

the Cilk research work at MIT for the pioneering work that influenced our thinking 

heavily – see Appendix A for many more comments on influences, including Cilk).

�Map Pattern
The map pattern (Figure 8-3) is the most optimal pattern for parallel programming 

possible: dividing work into uniform independent parts that run in parallel with 

no dependencies. This represents a regular parallelization that is referred to as 

embarrassing parallelism. That is to say, the parallelism seems most obvious in cases 

where there is independent parallel work to be done. There is nothing embarrassing 

about getting great performance when an algorithm scales well! This quality makes 

the map pattern worth using whenever possible since it allows for both efficient 

parallelization and efficient vectorization.

Figure 8-3.  Map pattern: a function is applied to all elements of a collection, 
usually producing a new collection with the same shape as the input.
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A map pattern involves no shared mutable state between the parts; a map function 

(the independent work parts) must be “pure” in the sense that it must not modify shared 

state. Modifying shared (mutable) state would break perfect independence. This can 

result in nondeterminism from data races and result in undefined behavior including 

possible application failure. Hidden shared data can be present when using complex 

data structures, for instance std::share_ptr, which may have sharing implications.

Usages for map patterns include gamma correction and thresholding in images, 

color space conversions, Monte Carlo sampling, and ray tracing. Use parallel_for to 

implement map efficiently with TBB (example in Figure 8-4). Additionally, parallel_

invoke can be used for a small amount of map type parallelism, but the limited amount 

will not provide much scalability unless parallelism also exists at other levels (e.g., inside 

the invoked functions).

�Workpile Pattern
The workpile pattern is a generalized map pattern where each instance (map function) 

can generate more instances. In other words, work can be added to the “pile” of things to 

do. This can be used, for example, in the recursive search of a tree, where we might want 

to generate instances to process each of the children of each node of the tree. Unlike the 

case with the map pattern, with the workpile pattern, the total number of instances of 

the map function is not known in advance nor is the structure of the work regular.  

This makes the workpile pattern harder to vectorize (Chapter 4) than the map pattern. 

Use parallel_do (Chapter 2) to implement workpile efficiently with TBB.

Figure 8-4.  Map pattern realized in parallel with parallel_for
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�Reduction Patterns (Reduce and Scan)
The reduce pattern (Figure 8-5) can be thought of as a map operation where each 

subtask produces a subresult that we need to combine to form a final single answer. 

A reduce pattern combines the multiple subresults using an associative “combiner 

function.” Because of the associativity of the combiner function, different orderings of 

the combining are possible run-to-run which is both a curse and a blessing. The blessing 

is that an implementation is free to maximize performance by combining in any order 

that is most efficient. The curse is that this offers a nondeterminism in the output if 

there are variations run-to-run in results due to rounding or saturation. Combining to 

find the maximum number or to find the boolean AND of all subresults does not suffer 

from these issues. However, a global addition using floating-point numbers will be 

nondeterministic due to rounding variations.

TBB offers both nondeterministic (highest performance) and deterministic (typically 

only a slight performance penalty) for reduction operations. The term deterministic 

refers only to the deterministic order of reduction run-to-run. If the combining function 

is deterministic, such as boolean AND, then the nondeterministic order of parallel_

reduce will yield a deterministic result.

Typical combiner functions include addition, multiplication, maximum, minimum, 

and boolean operations AND, OR, and XOR. We can use parallel_reduce (Chapter 2) to 

implement nondeterministic reduction. We can use parallel_deterministic_reduce 

(Chapter 16) to implement deterministic reduction. Both allow us the ability to define 

our own combiner functions.

Figure 8-5.  Reduction pattern: subtasks produce subresults that are combined to 
form a final single answer.
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The scan pattern (Figure 8-6) computes a prefix computation (also known as a scan) 

in parallel (y[i]=y[i-1] op x[i]). As with other reductions, this can be done in parallel 

if op is associative. This can be useful in scenarios that appear to have inherently serial 

dependencies. Many people are surprised that there is a scalable way to do this at all. 

A sample of what serial code may look like is shown in Figure 8-7. A parallel version 

requires more operations than a serial version, but it offers scaling. TBB parallel_scan 

(Chapter 2) is used to implement scan operations.

Figure 8-6.  Scan pattern: the complexity gives a visualization of the extra 
operations needed to offering scaling.

Figure 8-7.  Serial code doing a scan operation
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�Fork-Join Pattern
The fork-join pattern (Figure 8-8) recursively subdivides a problem into subparts and 

can be used for both regular and irregular parallelization. It is useful for implementing 

a divide-and-conquer strategy (sometimes called a pattern itself) or a branch-and-
bound strategy (also, sometimes called a pattern itself). A fork-join should not be 

confused with barriers. A barrier is a synchronization construct across multiple threads. 

In a barrier, each thread must wait for all other threads to reach the barrier before any of 

them leaves. A join also waits for all threads to reach a common point, but the difference 

is that after a barrier, all threads continue, but after a join, only one does. Work that 

runs independently for a while, then uses barriers to synchronize, and then proceeds 

independently again is effectively the same as using the map pattern repeatedly with 

barriers in between. Such programs are subject to Amdahl’s Law penalties (see more in 

the Preface) because time is spent waiting instead of working (serialization).

Figure 8-8.  Fork-join pattern: allows control flow fork into multiple parallel flows 
that rejoin later
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We should consider parallel_for and parallel_reduce since they automatically 

implement capabilities that may do what we need if our needs are not too irregular. TBB 

templates parallel_invoke (Chapter 2), task_group (Chapter 10), and flow_graph 

(Chapter 3) are ways to implement the fork-join pattern. Aside from these direct 

coding methods, it is worth noting that fork-join usage and nesting support within the 

implementation of TBB makes it possible to get the benefits of fork-join and nesting 

without explicitly coding either. A parallel_for will automatically use an optimized 

fork-join implementation to help span the available parallelism while remaining 

composable so that nesting (including nested parallel_for loops) and other forms of 

parallelism can be active at the same time.

�Divide-and-Conquer Pattern
The fork-join pattern can be considered the basic pattern, with divide-and-conquer 

being a strategy in how we fork and join. Whether this is a distinct pattern is a matter of 

semantics, and is not important for our purposes here.

A divide-and-conquer pattern applies if a problem can be divided into smaller 

subproblems recursively until a base case is reached that can be solved serially. Divide-

and-conquer can be described as dividing (partitioning) a problem and then using the 

map pattern to compute solutions to each subproblem in the partition. The resulting 

solutions to subproblems are combined to give a solution to the original problem. 

Divide-and-conquer lends itself to parallel implementation because of ease of which 

work can be subdivided whenever more workers (tasks) would be advantageous.

The parallel_for and parallel_reduce implement capabilities that should be 

considered first when divide-and-conquer is desired. Also, divide-and-conquer can be 

implemented with the same templates which can serve as methods to implement the 

fork-join pattern (parallel_invoke, task_group, and flow_graph).

�Branch-and-Bound Pattern
The fork-join pattern can be considered the basic pattern, with branch-and-bound 

being a strategy in how we fork and join. Whether this is a distinct pattern is a matter of 

semantics and is not important for our purposes here.
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Branch-and-bound is a nondeterministic search method to find one satisfactory 

answer when many may be possible. Branch refers to using concurrency, and bound 

refers to limiting the computation in some manner – for example, by using an upper 

bound (such as the best result found so far). The name “branch and bound” comes from 

the fact that we recursively divide the problem into parts, then bound the solution in 

each part. Related techniques, such as alpha-beta pruning, are also used in state-space 

search in artificial intelligence including move evaluations for Chess and other games.

Branch-and-bound can lead to superlinear speedups, unlike many other parallel 

algorithms. However, whenever there are multiple possible matches, this pattern 

is nondeterministic because which match is returned depends on the timing of the 

searches over each subset. To get a superlinear speedup, the cancellation of in-progress 

tasks needs to be implemented in an efficient manner (see Chapter 15).

Search problems do lend themselves to parallel implementation, since there 

are many points to search. However, because enumeration is far too expensive 

computationally, the searches should be coordinated in some way. A good solution is to 

use a branch-and-bound strategy. Instead of exploring all possible points in the search 

space, we choose to repetitively divide the original problem into smaller subproblems, 

evaluate specific characteristics of the subproblems so far, set up constraints (bounds) 

according to the information at hand, and eliminate subproblems that do not satisfy the 

constraints. This elimination is often referred to as “pruning.” The bounds are used to 

“prune” the search space, eliminating candidate solutions that can be proven will not 

contain an optimal solution. By this strategy, the size of the feasible solution space can 

be reduced gradually. Therefore, we will need to explore only a small part of the possible 

input combinations to find the optimal solution.

Branch-and-bound is a nondeterministic method and a good example of when 

nondeterminism can be useful. To do a parallel search, the simplest approach is to 

partition the set and search each subset in parallel. Consider the case where we only 

need one result, and any data that satisfies the search criteria is acceptable. In that case, 

once an item matching the search criteria is found, in any one of the parallel subset 

searches, the searches in the other subsets can be canceled.

Branch-and-bound can also be used for mathematical optimization, with some 

additional features. In mathematical optimization, we are given an objective function, 

some constraint equations, and a domain. The function depends on certain parameters. 

The domain and the constraint equations define legal values for the parameters. Within 

the given domain, the goal of optimization is to find values of the parameters that 

maximize (or minimize) the objective function.
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The parallel_for and parallel_reduce implement capabilities that should be 

considered first when branch-and-bound is desired. Also, divide-and-conquer can be 

implemented with the same templates which can serve as methods to implement the 

fork-join pattern (parallel_invoke, task_group and flow_graph). Understanding TBB 

support for cancellation (see Chapter 15) may be particularly useful when implementing 

branch-and-bound.

�Pipeline Pattern
The pipeline pattern (Figure 8-9) can be easily underestimated. The opportunities for 

parallelism through nesting and pipelining are enormous. A pipeline pattern connects 

tasks in a producer-consumer relationship in a regular, nonchanging data flow.

Conceptually, all stages of the pipeline are active at once, and each stage can maintain 

state which can be updated as data flows through them. This offers parallelism through 

pipelining. Additionally, each stage can have parallelism within itself thanks to nesting 

support in TBB. TBB parallel_pipeline (Chapter 2) supports basic pipelines. More 

generally, a set of stages could be assembled in a directed acyclic graph (a network). TBB 

flow_graph (Chapter 3) supports both pipelines and generalized pipelines.

Figure 8-9.  Pipeline pattern: tasks connected in a regular nonchanging producer-
consumer relationship

Figure 8-10.  Event-based coordination pattern: tasks connected in a producer-
consumer relationship with an irregular, and possibly changing, interaction 
between tasks
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�Event-Based Coordination Pattern (Reactive 
Streams)
The event-based coordination pattern (Figure 8-10) connects tasks in a producer-

consumer relationship with an irregular, and possibly changing, interaction between 

tasks. Dealing with asynchronous activities is a common programming challenge.

This pattern can be easily underestimated for the same reasons many underestimate 

the scalability of a pipeline. The opportunities for parallelism through nesting and 

pipelining are enormous.

We are using the term “event-based coordination,” but we are not trying to 

differentiate it from “actors,” “reactive streams,” “asynchronous data streams,” or “event-

based asynchronous.”

The unique control flow aspects needed for this pattern led to the development of 

the flow_graph (Chapter 3) capabilities in TBB.

Examples of asynchronous events include interrupts from multiple real-time data 

feed sources such as image feeds or Twitter feeds, or user interface activities such as 

mouse events. Chapter 3 offers much more detail on flow_graph.

�Summary
TBB encourages us to think about patterns that exist in our algorithmic thinking, and in 

our applications, and to map those patterns only onto capabilities that TBB offers. TBB 

offers support for patterns that can be effective for scalable applications, while proving 

an abstraction dealing with implementation details to keep everything modular and fully 

composable. The “super pattern” of nesting is very well supported in TBB, and therefore 

TBB offers composability not associated with many parallel programming models.

�For More Information
TBB can be used to implement additional patterns which we did not discuss. We 

highlighted what we have found to be key patterns and their support in TBB, but one 

chapter can hardly compete with entire books on patterns.
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Structured Parallel Programming by McCool, Robison, and Reinders (Elsevier, 2012) 

offers a hands-on coverage of “patterns that work.” This is a book for programmers 

looking to have a more in-depth look at patterns with hands-on examples.

Patterns for Parallel Programming by Mattson, Sanders, and Massingill (Addison-

Wesley, 2004) offers a much deeper, and more academic, look at patterns and their 

taxonomy and components.
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