
233
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_8

CHAPTER 8

Mapping Parallel Patterns
to TBB
It has been said that history does not repeat, it rhymes.

It could be said that software rhymes as well. While we may not write the same code

over and over, there are patterns that emerge in the problems we solve and the code we

write. We can learn from similar solutions.

This chapter takes a look at patterns that have proven to be effective in solving

problems in a scalable manner, and we connect them with how to implement them

using TBB (Figure 8-1). In order to achieve scalable parallelization, we should focus on

data parallelism; data parallelism is the best overall strategy for scalable parallelism.

Our coding needs to encourage the subdivision of any task into multiple tasks, with

the number of tasks able to grow with the overall problem size; an abundance of tasks

enables better scaling. Assisted best by the patterns we promote in this chapter, coding

to provide an abundance of tasks helps us achieve scalability in our algorithms.

We can learn to “Think Parallel” by seeing how others have done it effectively

already. Of course, we can stand on the shoulders of giants and reach ever further.

This chapter is about learning from prior experiences of parallel programmers, and

in the course of doing that, learning better how to use TBB. We talk in terms of patterns

as inspiration and useful tools for “Thinking Parallel.” We do not describe patterns to

form a perfect taxonomy of programming.

�Parallel Patterns vs. Parallel Algorithms
As we mentioned in Chapter 2, it has been suggested to us by reviewers of this book

that “TBB parallel algorithms” should be referred to as patterns instead of algorithms.

That may be true, but in order to align with the terminology that the TBB library has

https://doi.org/10.1007/978-1-4842-4398-5_8
https://doi.org/10.1007/978-1-4842-4398-5_2

234

been using for many years, we refer to these features as generic parallel algorithms

throughout this book and in the TBB documentation. The effect is the same – they offer

the opportunity for us to benefit from the experience of those who have explored optimal

solutions to these patterns before us – not only to use them, but to be encouraged to

prefer using these particular patterns (algorithms) over other possible approaches

because they tend work best (achieve better scaling).

Figure 8-1.  TBB templates that express important “Patterns that work”

Chapter 8 Mapping Parallel Patterns to TBB

235

�Patterns Categorize Algorithms, Designs, etc.
The value of object-oriented programming was described by the Gang of Four (Gamma,

Helm, Johnson, and Vlissides) and their landmark work Design Patterns: Elements

of Reusable Object-Oriented Software (Addison-Wesley). Many credit that book with

bringing more order to the world of object-oriented programming. Their book gathered

the collective wisdom of the community and boiled it down into simple “patterns” with

names, so people could talk about them.

Patterns for Parallel Programming by Mattson, Sanders, and Massingill (Addison-

Wesley) has similarly collected wisdom from the parallel programming community. Experts

use common tricks and have their own language to talk about techniques. With parallel

patterns in mind, programmers can quickly come up to speed in parallel programming just

as object-oriented programmers have done with the famous Gang-of-Four book.

Patterns for Parallel Programming is longer than this book, and very dense reading, but

with some help from author Tim Mattson, we can summarize how the patterns relate to TBB.

Tim et al. propose that programmers need to work through four design spaces to

develop a parallel program:

	 1.	 Finding concurrency.

For this design space, we work within our problem domain to

identify available concurrency and expose it for use in the algorithm

design. TBB simplifies this effort by encouraging us to find as

many tasks as we can without having to worry about how to map

them to hardware threads. We also provide information on how to

best make the tasks split in half when the task is considered large

enough. Using this information, TBB then automatically divides

large tasks repeatedly to help spread work evenly among processor

cores. An abundance of tasks leads to scalability for our algorithms.

	 2.	 Algorithm structures.

This design space embodies our high-level strategy for organizing a

parallel algorithm. We need to figure out how we want to organize

our workflow. Figure 8-1 lists important patterns that we can consult

to guide our selection toward a pattern that best suits our needs.

These “patterns that work” are the focus of Structured Parallel

Programming by McCool, Robison, and Reinders (Elsevier).

Chapter 8 Mapping Parallel Patterns to TBB

236

	 3.	 Supporting structures.

This step involves the details for turning algorithm strategy

into actual code. We consider how the parallel program will be

organized and the techniques used to manage shared (especially

mutable) data. These considerations are critical and have an

impact that reaches across the entire parallel programming

process. TBB is well designed to encourage the right level of

abstraction, so this design space is satisfied by using TBB well

(something we hope we teach in this book).

	 4.	 Implementation mechanisms.

This design space includes thread management and synchronization.

Threading Building Blocks handles all the thread management,

leaving us free to worry only about tasks at a higher level of design.

When using TBB, most programmers code to avoid explicit

synchronization coding and debugging. TBB algorithms (Chapter 2)

and flow graph (Chapter 3) aim to minimize explicit synchronization.

Chapter 5 discusses synchronization mechanisms for when we do

need them, and Chapter 6 offers containers and thread local storage to

help limit the need for explicit synchronization.

Using a pattern language can guide the creation of better parallel

programming environments and help us make the best use of TBB

to write parallel software.

�Patterns That Work
Armed with the language of patterns, we should regard them as tools. We emphasize

patterns that have proven useful for developing the most scalable algorithms. We

know that two prerequisites for achieving parallel scalability are good data locality and

avoidance of overhead. Fortunately, many good strategies have been developed for

achieving these objectives and are accessible using TBB (see table in Figure 8-1).

Consideration of the need to be well tuned, to real machines, details are already

provided for within TBB including issues related to the implementation of patterns such

as granularity control and good use of cache.

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_2
https://doi.org/10.1007/978-1-4842-4398-5_3
https://doi.org/10.1007/978-1-4842-4398-5_5
https://doi.org/10.1007/978-1-4842-4398-5_6

237

In these terms, TBB handles the details of implementation, so that we can program

at a higher level. This is what lets code written using TBB be portable, leaving machine-

specific tuning inside of TBB. TBB in turn, by virtue of algorithms such as task-stealing,

helps minimize the tuning needed to port TBB. The abstraction of the algorithm strategy

into semantics and implementation has proven to work extremely well in practice. The

separation makes it possible to reason about the high-level algorithm design and the

low-level (and often machine-specific) details separately.

Patterns provide a common vocabulary for discussing approaches to problem

solving and allow reuse of best practices. Patterns transcend languages, programming

models, and even computer architectures, and we can use patterns whether or not the

programming system we are using explicitly supports a given pattern with a specific

feature. Fortunately, TBB was designed to emphasize proven patterns that lead to well-

structured, maintainable, and efficient programs. Many of these patterns are in fact also

deterministic (or can be run in a deterministic mode – see Chapter 16), which means

they give the same result every time they are executed. Determinism is a useful property

since it leads to programs that are easier to understand, debug, test, and maintain.

�Data Parallelism Wins
The best overall strategy for scalable parallelism is data parallelism. Definitions of

data parallelism vary. We take a wide view and define data parallelism as any kind of

parallelism that grows as the data set grows or, more generally, as the problem size

grows. Typically, the data is split into chunks and each chunk processed with a separate

task. Sometimes, the splitting is flat; other times, it is recursive. What matters is that

bigger data sets generate more tasks.

Whether similar or different operations are applied to the chunks is irrelevant to our

definition. In general, data parallelism can be applied whether a problem is regular or

irregular. Because data parallelism is the best strategy for scalable parallelism, hardware

support for data parallelism is commonly found in all types of hardware – CPUs, GPUs,

ASIC designs, and FPGA designs. Chapter 4 discussed support for SIMD precisely to

connect with such hardware support.

The opposite of data parallelism is functional decomposition (also called task

parallelism), an approach that runs different program functions in parallel. At best,

functional decomposition improves performance by a constant factor. For example, if a

program has functions f, g, and h, running them in parallel at best triples performance,

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_4

238

and in practice less. Sometimes functional decomposition can deliver an additional bit

of parallelism required to meet a performance target, but it should not be our primary

strategy, because it does not scale.

Figure 8-2.  Nesting pattern: a compositional pattern that allows other patterns
to be composed in a hierarchy. Nesting is that any task block in a pattern can
be replaced with a pattern with the same input and output configuration and
dependencies.

�Nesting Pattern
Nesting (Figure 8-2) may seem obvious and normal, but in the parallel programming

world it is not. TBB makes life simple – nesting just works, without severe

oversubscription issues that other models such as OpenMP can have.

Two implications to emphasize what we get because of nesting support:

•	 We do not need to know if we are in a “parallel region” or a “serial

region” when choosing if we should invoke a TBB template.

Since using TBB just creates tasks, we do not have to worry about

oversubscription of threads.

•	 We do not need to worry about calling a library, which was written

with TBB, and controlling if it might use parallelism.

Nesting can be thought of as a meta-pattern because it means that patterns can

be hierarchically composed. This is important for modular programming. Nesting is

extensively used in serial programming for composability and information hiding but

Chapter 8 Mapping Parallel Patterns to TBB

239

can be a challenge to carry over into parallel programming. The key to implementing

nested parallelism is to specify optional, not mandatory, parallelism. This is one area

that TBB excels compared to other models.

The importance of nesting was well understood when TBB was introduced in 2006,

and it has always been well supported in all of TBB. In contrast, the OpenMP API was

introduced in 1997 when we did not adequately foresee the critical importance of the

nesting pattern for future machines. As a result, the nesting pattern is not supported

throughout OpenMP. This can make OpenMP much more difficult to use for anything

outside the world of applications which focus almost all work inside computationally

intensive loop nests. These are the application types that dominated our thinking when

creating OpenMP and its predecessors in the 1980s and 1990s. The nesting pattern, with

modularity and composability, was key in our thinking when TBB was created (we credit

the Cilk research work at MIT for the pioneering work that influenced our thinking

heavily – see Appendix A for many more comments on influences, including Cilk).

�Map Pattern
The map pattern (Figure 8-3) is the most optimal pattern for parallel programming

possible: dividing work into uniform independent parts that run in parallel with

no dependencies. This represents a regular parallelization that is referred to as

embarrassing parallelism. That is to say, the parallelism seems most obvious in cases

where there is independent parallel work to be done. There is nothing embarrassing

about getting great performance when an algorithm scales well! This quality makes

the map pattern worth using whenever possible since it allows for both efficient

parallelization and efficient vectorization.

Figure 8-3.  Map pattern: a function is applied to all elements of a collection,
usually producing a new collection with the same shape as the input.

Chapter 8 Mapping Parallel Patterns to TBB

240

A map pattern involves no shared mutable state between the parts; a map function

(the independent work parts) must be “pure” in the sense that it must not modify shared

state. Modifying shared (mutable) state would break perfect independence. This can

result in nondeterminism from data races and result in undefined behavior including

possible application failure. Hidden shared data can be present when using complex

data structures, for instance std::share_ptr, which may have sharing implications.

Usages for map patterns include gamma correction and thresholding in images,

color space conversions, Monte Carlo sampling, and ray tracing. Use parallel_for to

implement map efficiently with TBB (example in Figure 8-4). Additionally, parallel_

invoke can be used for a small amount of map type parallelism, but the limited amount

will not provide much scalability unless parallelism also exists at other levels (e.g., inside

the invoked functions).

�Workpile Pattern
The workpile pattern is a generalized map pattern where each instance (map function)

can generate more instances. In other words, work can be added to the “pile” of things to

do. This can be used, for example, in the recursive search of a tree, where we might want

to generate instances to process each of the children of each node of the tree. Unlike the

case with the map pattern, with the workpile pattern, the total number of instances of

the map function is not known in advance nor is the structure of the work regular.

This makes the workpile pattern harder to vectorize (Chapter 4) than the map pattern.

Use parallel_do (Chapter 2) to implement workpile efficiently with TBB.

Figure 8-4.  Map pattern realized in parallel with parallel_for

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_4
https://doi.org/10.1007/978-1-4842-4398-5_2

241

�Reduction Patterns (Reduce and Scan)
The reduce pattern (Figure 8-5) can be thought of as a map operation where each

subtask produces a subresult that we need to combine to form a final single answer.

A reduce pattern combines the multiple subresults using an associative “combiner

function.” Because of the associativity of the combiner function, different orderings of

the combining are possible run-to-run which is both a curse and a blessing. The blessing

is that an implementation is free to maximize performance by combining in any order

that is most efficient. The curse is that this offers a nondeterminism in the output if

there are variations run-to-run in results due to rounding or saturation. Combining to

find the maximum number or to find the boolean AND of all subresults does not suffer

from these issues. However, a global addition using floating-point numbers will be

nondeterministic due to rounding variations.

TBB offers both nondeterministic (highest performance) and deterministic (typically

only a slight performance penalty) for reduction operations. The term deterministic

refers only to the deterministic order of reduction run-to-run. If the combining function

is deterministic, such as boolean AND, then the nondeterministic order of parallel_

reduce will yield a deterministic result.

Typical combiner functions include addition, multiplication, maximum, minimum,

and boolean operations AND, OR, and XOR. We can use parallel_reduce (Chapter 2) to

implement nondeterministic reduction. We can use parallel_deterministic_reduce

(Chapter 16) to implement deterministic reduction. Both allow us the ability to define

our own combiner functions.

Figure 8-5.  Reduction pattern: subtasks produce subresults that are combined to
form a final single answer.

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_2
https://doi.org/10.1007/978-1-4842-4398-5_16

242

The scan pattern (Figure 8-6) computes a prefix computation (also known as a scan)

in parallel (y[i]=y[i-1] op x[i]). As with other reductions, this can be done in parallel

if op is associative. This can be useful in scenarios that appear to have inherently serial

dependencies. Many people are surprised that there is a scalable way to do this at all.

A sample of what serial code may look like is shown in Figure 8-7. A parallel version

requires more operations than a serial version, but it offers scaling. TBB parallel_scan

(Chapter 2) is used to implement scan operations.

Figure 8-6.  Scan pattern: the complexity gives a visualization of the extra
operations needed to offering scaling.

Figure 8-7.  Serial code doing a scan operation

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_2

243

�Fork-Join Pattern
The fork-join pattern (Figure 8-8) recursively subdivides a problem into subparts and

can be used for both regular and irregular parallelization. It is useful for implementing

a divide-and-conquer strategy (sometimes called a pattern itself) or a branch-and-
bound strategy (also, sometimes called a pattern itself). A fork-join should not be

confused with barriers. A barrier is a synchronization construct across multiple threads.

In a barrier, each thread must wait for all other threads to reach the barrier before any of

them leaves. A join also waits for all threads to reach a common point, but the difference

is that after a barrier, all threads continue, but after a join, only one does. Work that

runs independently for a while, then uses barriers to synchronize, and then proceeds

independently again is effectively the same as using the map pattern repeatedly with

barriers in between. Such programs are subject to Amdahl’s Law penalties (see more in

the Preface) because time is spent waiting instead of working (serialization).

Figure 8-8.  Fork-join pattern: allows control flow fork into multiple parallel flows
that rejoin later

Chapter 8 Mapping Parallel Patterns to TBB

244

We should consider parallel_for and parallel_reduce since they automatically

implement capabilities that may do what we need if our needs are not too irregular. TBB

templates parallel_invoke (Chapter 2), task_group (Chapter 10), and flow_graph

(Chapter 3) are ways to implement the fork-join pattern. Aside from these direct

coding methods, it is worth noting that fork-join usage and nesting support within the

implementation of TBB makes it possible to get the benefits of fork-join and nesting

without explicitly coding either. A parallel_for will automatically use an optimized

fork-join implementation to help span the available parallelism while remaining

composable so that nesting (including nested parallel_for loops) and other forms of

parallelism can be active at the same time.

�Divide-and-Conquer Pattern
The fork-join pattern can be considered the basic pattern, with divide-and-conquer

being a strategy in how we fork and join. Whether this is a distinct pattern is a matter of

semantics, and is not important for our purposes here.

A divide-and-conquer pattern applies if a problem can be divided into smaller

subproblems recursively until a base case is reached that can be solved serially. Divide-

and-conquer can be described as dividing (partitioning) a problem and then using the

map pattern to compute solutions to each subproblem in the partition. The resulting

solutions to subproblems are combined to give a solution to the original problem.

Divide-and-conquer lends itself to parallel implementation because of ease of which

work can be subdivided whenever more workers (tasks) would be advantageous.

The parallel_for and parallel_reduce implement capabilities that should be

considered first when divide-and-conquer is desired. Also, divide-and-conquer can be

implemented with the same templates which can serve as methods to implement the

fork-join pattern (parallel_invoke, task_group, and flow_graph).

�Branch-and-Bound Pattern
The fork-join pattern can be considered the basic pattern, with branch-and-bound

being a strategy in how we fork and join. Whether this is a distinct pattern is a matter of

semantics and is not important for our purposes here.

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_2
https://doi.org/10.1007/978-1-4842-4398-5_10
https://doi.org/10.1007/978-1-4842-4398-5_3

245

Branch-and-bound is a nondeterministic search method to find one satisfactory

answer when many may be possible. Branch refers to using concurrency, and bound

refers to limiting the computation in some manner – for example, by using an upper

bound (such as the best result found so far). The name “branch and bound” comes from

the fact that we recursively divide the problem into parts, then bound the solution in

each part. Related techniques, such as alpha-beta pruning, are also used in state-space

search in artificial intelligence including move evaluations for Chess and other games.

Branch-and-bound can lead to superlinear speedups, unlike many other parallel

algorithms. However, whenever there are multiple possible matches, this pattern

is nondeterministic because which match is returned depends on the timing of the

searches over each subset. To get a superlinear speedup, the cancellation of in-progress

tasks needs to be implemented in an efficient manner (see Chapter 15).

Search problems do lend themselves to parallel implementation, since there

are many points to search. However, because enumeration is far too expensive

computationally, the searches should be coordinated in some way. A good solution is to

use a branch-and-bound strategy. Instead of exploring all possible points in the search

space, we choose to repetitively divide the original problem into smaller subproblems,

evaluate specific characteristics of the subproblems so far, set up constraints (bounds)

according to the information at hand, and eliminate subproblems that do not satisfy the

constraints. This elimination is often referred to as “pruning.” The bounds are used to

“prune” the search space, eliminating candidate solutions that can be proven will not

contain an optimal solution. By this strategy, the size of the feasible solution space can

be reduced gradually. Therefore, we will need to explore only a small part of the possible

input combinations to find the optimal solution.

Branch-and-bound is a nondeterministic method and a good example of when

nondeterminism can be useful. To do a parallel search, the simplest approach is to

partition the set and search each subset in parallel. Consider the case where we only

need one result, and any data that satisfies the search criteria is acceptable. In that case,

once an item matching the search criteria is found, in any one of the parallel subset

searches, the searches in the other subsets can be canceled.

Branch-and-bound can also be used for mathematical optimization, with some

additional features. In mathematical optimization, we are given an objective function,

some constraint equations, and a domain. The function depends on certain parameters.

The domain and the constraint equations define legal values for the parameters. Within

the given domain, the goal of optimization is to find values of the parameters that

maximize (or minimize) the objective function.

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_15

246

The parallel_for and parallel_reduce implement capabilities that should be

considered first when branch-and-bound is desired. Also, divide-and-conquer can be

implemented with the same templates which can serve as methods to implement the

fork-join pattern (parallel_invoke, task_group and flow_graph). Understanding TBB

support for cancellation (see Chapter 15) may be particularly useful when implementing

branch-and-bound.

�Pipeline Pattern
The pipeline pattern (Figure 8-9) can be easily underestimated. The opportunities for

parallelism through nesting and pipelining are enormous. A pipeline pattern connects

tasks in a producer-consumer relationship in a regular, nonchanging data flow.

Conceptually, all stages of the pipeline are active at once, and each stage can maintain

state which can be updated as data flows through them. This offers parallelism through

pipelining. Additionally, each stage can have parallelism within itself thanks to nesting

support in TBB. TBB parallel_pipeline (Chapter 2) supports basic pipelines. More

generally, a set of stages could be assembled in a directed acyclic graph (a network). TBB

flow_graph (Chapter 3) supports both pipelines and generalized pipelines.

Figure 8-9.  Pipeline pattern: tasks connected in a regular nonchanging producer-
consumer relationship

Figure 8-10.  Event-based coordination pattern: tasks connected in a producer-
consumer relationship with an irregular, and possibly changing, interaction
between tasks

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_15
https://doi.org/10.1007/978-1-4842-4398-5_2
https://doi.org/10.1007/978-1-4842-4398-5_3

247

�Event-Based Coordination Pattern (Reactive
Streams)
The event-based coordination pattern (Figure 8-10) connects tasks in a producer-

consumer relationship with an irregular, and possibly changing, interaction between

tasks. Dealing with asynchronous activities is a common programming challenge.

This pattern can be easily underestimated for the same reasons many underestimate

the scalability of a pipeline. The opportunities for parallelism through nesting and

pipelining are enormous.

We are using the term “event-based coordination,” but we are not trying to

differentiate it from “actors,” “reactive streams,” “asynchronous data streams,” or “event-

based asynchronous.”

The unique control flow aspects needed for this pattern led to the development of

the flow_graph (Chapter 3) capabilities in TBB.

Examples of asynchronous events include interrupts from multiple real-time data

feed sources such as image feeds or Twitter feeds, or user interface activities such as

mouse events. Chapter 3 offers much more detail on flow_graph.

�Summary
TBB encourages us to think about patterns that exist in our algorithmic thinking, and in

our applications, and to map those patterns only onto capabilities that TBB offers. TBB

offers support for patterns that can be effective for scalable applications, while proving

an abstraction dealing with implementation details to keep everything modular and fully

composable. The “super pattern” of nesting is very well supported in TBB, and therefore

TBB offers composability not associated with many parallel programming models.

�For More Information
TBB can be used to implement additional patterns which we did not discuss. We

highlighted what we have found to be key patterns and their support in TBB, but one

chapter can hardly compete with entire books on patterns.

Chapter 8 Mapping Parallel Patterns to TBB

https://doi.org/10.1007/978-1-4842-4398-5_3
https://doi.org/10.1007/978-1-4842-4398-5_3

248

Structured Parallel Programming by McCool, Robison, and Reinders (Elsevier, 2012)

offers a hands-on coverage of “patterns that work.” This is a book for programmers

looking to have a more in-depth look at patterns with hands-on examples.

Patterns for Parallel Programming by Mattson, Sanders, and Massingill (Addison-

Wesley, 2004) offers a much deeper, and more academic, look at patterns and their

taxonomy and components.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 8 Mapping Parallel Patterns to TBB

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 8: Mapping Parallel Patterns to TBB
	Parallel Patterns vs. Parallel Algorithms
	Patterns Categorize Algorithms, Designs, etc.
	Patterns That Work
	Data Parallelism Wins
	Nesting Pattern
	Map Pattern
	Workpile Pattern
	Reduction Patterns (Reduce and Scan)
	Fork-Join Pattern
	Divide-and-Conquer Pattern
	Branch-and-Bound Pattern
	Pipeline Pattern
	Event-Based Coordination Pattern (Reactive Streams)
	Summary
	For More Information

