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CHAPTER 7

Scalable Memory 
Allocation
This chapter discusses a critical part of any parallel program: scalable memory 

allocation, which includes use of new as well as explicit calls to malloc, calloc, and so 

on. Scalable memory allocation can be used regardless of whether we use any other 

part of Threading Building Blocks (TBB). In addition to interfaces to use directly, TBB 

offers a “proxy” method to automatically replace C/C++ functions for dynamic memory 

allocation, which is an easy, effective, and popular way to get a performance boost 

without any code changes. This is important and workvs regardless of how “modern” 

you are in your usage of C++, specifically whether you use the modern and encouraged 

std::make_shared, or the now discouraged new and malloc. The performance benefits 

of using a scalable memory allocator are significant because they directly address issues 

that would otherwise limit scaling and risk false sharing. TBB was among the first widely 

used scalable memory allocators, in no small part because it came free with TBB to help 

highlight the importance of including memory allocation considerations in any parallel 

program. It remains extremely popular today and is one of the best scalable memory 

allocators available.

Modern C++ programming (which favors smart pointers), combined with parallel 
thinking, encourages us to use TBB scalable memory allocators explicitly with 
std::allocate_shared or implicitly with std::make_shared.
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�Modern C++ Memory Allocation
While performance is especially interesting for parallel programming, correctness is a 

critical topic for all applications. Memory allocation/deallocation issues are a significant 

source of bugs in applications, and this has led many additions to the C++ standard and 

a shift in what is considered modern C++ programming!

Modern C++ programming encourages use of managed memory allocation with 

introduction of smart pointers in C++11 (make_shared, allocate_shared, etc.) and 

discourages extensive use of malloc or new. We have used std::make_shared in examples 

since the very first chapter of this book. The addition of std::aligned_alloc in C++17 

provides for cache alignment to avoid false sharing but does not address scalable 

memory allocation. Many additional capabilities are in the works for C++20, but without 

explicit support for scalability.

TBB continues to offer this critical piece for parallel programmers: scalable memory 

allocation. TBB does this in a fashion that fits perfectly with all versions of C++ and C 

standards. The heart and soul of the support in TBB can be described as memory pooling by 

threads. This pooling avoids performance degradations caused by memory allocations that 

do not seek to avoid unnecessary shifting of data between caches. TBB also offers scalable 

memory allocation combined with cache alignment, which offers the scalable attribute 

above what one can expect from simply using std::aligned_alloc. Cache alignment is not 

a default behavior because indiscriminate usage can greatly expand memory usage.

As we will discuss in this chapter, the use of scalable memory allocation can be 

critical to performance. std::make_shared does not provide for the specification of 

an allocator, but there is a corresponding std::allocate_shared, which does allow 

specification of an allocator.

This chapter focuses on scalable memory allocators, which should then be used 

in whatever manner of C++ memory allocation is chosen for an application. Modern 

C++ programming, with parallel thinking, would encourage use to use std::allocate_

shared explicitly with TBB scalable memory allocators, or use std::make_shared 

implicitly with TBB by overriding the default new to use the TBB scalable memory 

allocator. Note, std::make_shared is not affected by the new operator for a particular 

class because it actually allocates a larger block of memory to handle both the contents 

for a class and its extra space for bookkeeping (specifically, the atomic that is added to 

make it a smart pointer). That is why overriding the default new (to use the TBB allocator) 

will be sufficient to affect std::make_shared.
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Figure 7-1.  Ways to use the TBB scalable memory allocator

�Scalable Memory Allocation: What
This chapter is organized to discuss the scalable memory capabilities of TBB in four 

categories as listed in Figure 7-1. Features from all four categories can be freely mixed; 

we break them into categories only as a way to explain all the functionality. The C/C++ 

proxy library is by far the most popular way to use the scalable memory allocator.

The scalable memory allocator is cleanly separate from the rest of TBB so that our 

choice of memory allocator for concurrent usage is independent of our choice of parallel 

algorithm and container templates.

�Scalable Memory Allocation: Why
While most of this book shows us how to improve our programs speed by doing work in 

parallel, memory allocations and deallocations that are not thread-aware can undo our 

hard work! There are two primary issues at play in making careful memory allocation 

critical in a parallel program: contention for the allocator and cache effects.

When ordinary, nonthreaded allocators are used, memory allocation can become 

a serious bottleneck in a multithreaded program because each thread competes for a 

global lock for each allocation and deallocation of memory from a single global heap. 

Programs that run this way are not scalable. In fact, because of this contention, programs 

that make intensive use of memory allocation may actually slow down as the number 

of processor cores increases! Scalable memory allocators solve this by using more 

sophisticated data structures to largely avoid contention.
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The other issue, caching effects, happens because the use of memory has an underlying 

mechanism in hardware for the caching of data. Data usage in a program will therefore 

have an implication on where data needs to be cached. If we allocate memory for thread B 

and the allocator gives us memory that was recently freed by thread A, it is highly likely that 

we are inadvertently causing data to be copied from cache to cache, which may reduce the 

performance of our application needlessly. Additionally, if memory allocations for separate 

threads are placed too closely together they can share a cache line. We can describe this 

sharing as true sharing (sharing the same object) or false sharing (no objects are shared, but 

objects happen to fall in the same cache line). Either type of sharing can have particularly 

dramatic negative consequences on performance, but false sharing is of particular interest 

because it can be avoided since no sharing was intended. Scalable memory allocators avoid 

false sharing by using class cache_aligned_allocator<T> to always allocate beginning on 

a cache line and maintaining per-thread heaps, which are rebalanced from time to time if 

needed. This organization also helps with the prior contention issue.

The benefits of using a scalable memory allocator can easily be a 20-30% 

performance, and we have even heard of 4X program performance in extreme cases by 

simply relinking with a scalable memory allocator.

�Avoiding False Sharing with Padding
Padding is needed if the internals of a data structure cause issues due to false 

sharing. Starting in Chapter 5, we have used a histogram example. The buckets of 

the histogram and the locks for the buckets are both possible data structures which 

are packed tightly enough in memory to have more than one task updating data in a 

single cache line.

The idea of padding, in a data structure, is to space out elements enough that we do 

not share adjacent elements that would be updated via multiple tasks.

Regarding false sharing, the first measure we have to take is to rely on the 

tbb::cache_aligned_allocator, instead of std::allocator or malloc, when declaring 

the shared histogram (see Figure 5-20) as shown in Figure 7-2.

Figure 7-2.  Simple histogram vector of atomics
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However, this is just aligning the beginning of the histogram vector and ensuring 

that hist_p[0] will land at the beginning of a cache line. This means that hist_p[0], 

hist_p[1], ... , hist_p[15] are stored in the same cache line, which translates 

into false sharing when a thread increments hist_p[0] and another thread increments 

hist_p[15]. To solve this issue, we need to assure that each position of the histogram, 

each bin, is occupying a full cache line, which can be achieved using a padding strategy 

shown in Figure 7-3.

As we can see in Figure 7-3, the array of bins, hist_p, is now a vector of structs, 

each one containing the atomic variable, but also a dummy array of 60 bytes that 

will fill the space of a cache line. This code is, therefore, architecture dependent. In 

nowadays Intel processors, the cache line is 64 bytes, but you can find false sharing safe 

implementations that assume 128 bytes. This is because cache prefetching (caching line 

“i+1” when cache line “i” is requested) is a common technique, and this prefetching is 

somehow equivalent to cache lines of size 128 bytes.

Our false-sharing-free data structure does occupy 16 times more space than the 

original one. It is yet another example of the space-time trade-off that frequently arises 

in computer programming: now we occupy more memory, but the code is faster. Other 

examples are smaller code vs. loop unrolling, calling functions vs. function inlining, or 

processing of compressed data vs. uncompressed data.

Wait! was not the previous implementation of the bin struct a bit pedestrian? Well, it 

certainly was! A less hardwired solution would be this one:

 

Figure 7-3.  Getting rid of false sharing using padding in the histogram vector of 
atomics
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Since sizeof() is evaluated at compile time, we can use the same struct for other 

padded data structures in which the actual payload (count in this case) has a different 

size. But we know a better solution that is available in the C++ standard:

 

This warrants that each bin of hist_p is occupying a full cache line thanks to the 

alignas() method. Just one more thing! We love to write portable code, right? What if 

in a different or future architecture cache line size is different. No problem, the C++17 

standard has the solution we are looking for:

 

Great, assuming that we have fixed the false sharing problem, what about the true 

sharing one?

Two different threads will eventually increment the same bin, which will be ping-

pong from one cache to other. We need a better idea to solve this one! We showed how to 

deal with this in Chapter 5 when we discussed privatization and reduction.

�Scalable Memory Allocation Alternatives: Which
These days, TBB is not the only option for scalable memory allocations. While we are 

very fond of it, we will introduce the most popular options in this section. When using 

TBB for parallel programming, it is essential that we use a scalable memory allocator 

whether it is the one supplied by TBB or another. Programs written using TBB can utilize 

any memory allocator solution.
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TBB was the first popular parallel programming method to promote scalable 

memory allocation alongside the other parallel programming techniques because 

the creators of TBB understood the importance of including memory allocation 

considerations in any parallel program. The TBB memory allocator remains extremely 

popular today and is definitely still one of the best scalable memory allocators available.

The TBB scalable memory allocator can be used regardless of whether we use any 

other part of Threading Building Blocks (TBB). Likewise, TBB can operate with any 

scalable memory allocator.

The most popular alternatives to the TBB scalable memory allocator are jemalloc 

and tcmalloc. Like the scalable memory allocator in TBB, there are alternatives to 

malloc that emphasize fragmentation avoidance while offering scalable concurrency 

support. All three are available open source with liberal licensing (BSD or Apache).

There are some people who will tell you that they have compared tbbmalloc for 

their application with tcmalloc and jeamalloc and have found it to be superior for 

their application. This is very common. However, there are some people who choose 

jemalloc or tcmalloc or llalloc even when using the rest of TBB extensively. This 

works too. The choice is yours to make.

jemalloc is the FreeBSD libc allocator. More recently, additional developer support 

features such as heap profiling and extensive monitoring/tuning hooks have been 

added. jemalloc is used by Facebook.

tcmalloc is part of Google’s gperftools, which includes tcmalloc and some 

performance analysis tools. tcmalloc is used by Google.

llalloc from Lockless Inc. is available freely as an open-source lockless memory 

allocator or can be purchased for use with closed-source software.

The behavior of individual applications, and in particular patterns of memory 

allocations and releases, make it impossible to pick a single fits-all winner from these 

options. We are confident that any choice of TBBmalloc, jemalloc, and tcmalloc will 

be far superior to a default malloc function or new operator if they are of the nonscalable 

variety (FreeBSD uses jemalloc as its default malloc).
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�Compilation Considerations
When compiling with programs with the Intel compilers or gcc, it is best to pass in the 

following flags:

-fno-builtin-malloc (on Windows: /Qfno-builtin-malloc)

-fno-builtin-calloc (on Windows: /Qfno-builtin-calloc)

-fno-builtin-realloc (on Windows: /Qfno-builtin-realloc)

-fno-builtin-free (on Windows: /Qfno-builtin-free)

This is because a compiler may make some optimizations assuming it is using its 

own built-in functions. These assumptions may not be true when using other memory 

allocators. Failure to use these flags may not cause a problem, but it is not a bad idea to 

be safe. It might be wise to check the compiler documentation of your favorite compiler.

�Most Popular Usage (C/C++ Proxy Library): How
Using the proxy methods, we can globally replace new/delete and malloc/calloc/

realloc/free/etc. routines with a dynamic memory interface replacement technique. 

This automatic way to replace malloc and other C/C++ functions for dynamic memory 

allocation is by far the most popular way to use the TBB scalable memory allocator 

capabilities. It is also very effective.

We can replace malloc/calloc/realloc/free/ etc. (see Figure 7-4 for a complete 

list) and new/delete by using the tbbmalloc_proxy library. Using this method is easy 

and sufficient for most programs. The details of the mechanism used on each operating 

system vary a bit, but the net effect is the same everywhere. The library names are shown 

in Figure 7-5; a summary of the methods is shown in Figure 7-6.
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Figure 7-4.  List of routines replaced by proxy

Figure 7-5.  Names of the proxy library

Figure 7-6.  Ways to use the proxy library
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�Linux: malloc/new Proxy Library Usage
On Linux, we can do the replacement either by loading the proxy library at program 

load time using the LD_PRELOAD environment variable (without changing the executable 

file, as shown in Figure 7-7), or by linking the main executable file with the proxy 

library (-ltbbmalloc_proxy). The Linux program loader must be able to find the proxy 

library and the scalable memory allocator library at program load time. For that, we 

may include the directory containing the libraries in the LD_LIBRARY_PATH environment 

variable or add it to /etc/ld.so.conf. There are two limitations for dynamic memory 

replacement: (1) glibc memory allocation hooks, such as __malloc_hook, are not 

supported, and (2) Mono (an open source implementation of Microsoft’s .NET Framework 

based) is not supported.

�macOS: malloc/new Proxy Library Usage
On macOS, we can do the replacement either by loading the proxy library at program 

load time using the DYLD_INSERT_LIBRARIES environment variable (without changing 

the executable file, as shown in Figure 7-7), or by linking the main executable file with 

the proxy library (-ltbbmalloc_proxy). The macOS program loader must be able to find 

the proxy library and the scalable memory allocator library at program load time. For 

that, we may include the directory containing the libraries in the DYLD_LIBRARY_PATH 

environment variable.

Figure 7-7.  Environment variables to inject the TBB scalable memory allocator
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Implementation insight for the curious (not required reading): TBB has a clever 
way of overcoming the fact that using DYLD_INSERT_LIBRARIES requires using 
flat namespaces in order to access the shared library symbols. Normally, if an 
application was built with two-level namespaces, this method would not work, and 
forcing usage of flat namespaces would likely lead to a crash. TBB avoids this by 
arranging things such that when the libtbbmalloc_proxy library is loaded into 
the process; its static constructor is called and registers a malloc zone for TBB 
memory allocation routines. This allows redirecting memory allocation routine calls 
from a standard C++ library into TBB scalable allocator routines. This means that 
the application does not need to use TBB malloc library symbols; it continues 
to call standard libc routines. Thus, there are no problems with namespaces. 
The macOS malloc zones mechanism also allows applications to have several 
memory allocators (e.g., used by different libraries) and manage memory correctly. 
This guarantees that Intel TBB will use the same allocator for allocations and 
deallocations. It is a safeguard against crashes due to calling a deallocation routine 
for a memory object allocated from another allocator.

�Windows: malloc/new Proxy Library Usage
On Windows, we must modify our executable. We can either force the proxy library to be 

loaded by adding an #include in our source code, or use certain linker options as shown 

in Figure 7-8. The Windows program loader must be able to find the proxy library and 

the scalable memory allocator library at program load time. For that, we may include the 

directory containing the libraries in the PATH environment variable.

Including tbbmalloc_proxy.h> to a source of any binary (which is loaded during 

application startup):

#include <tbb/tbbmalloc_proxy.h> 
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or add the following parameters to the linker options for the binary (which is loaded 

during application startup). They can be specified for the EXE file or a DLL that is loaded 

upon application startup:

�Testing our Proxy Library Usage
As a simple double check to see that our program is taking advantage of a faster 

allocation, we can use the test program in Figure 7-9 on a multicore machine. In 

Figure 7-10, we show how we run this little test and the timing differences we saw on a 

quadcore virtual machine running Ubuntu Linux. In Figure 7-11, we show how we run 

this little test and the timing difference we saw on a quadcore iMac. On Windows, using 

the Visual Studio “Performance Profiler” on a quadcore Intel NUC (Core i7) we saw 

times of 94ms without the scalable memory allocator and 50ms with it (adding #include 

<tbb/tbbmalloc_proxy.h> into tbb_mem.cpp). All these runs show how this little test 

can verify that the injection of the scalable memory allocator is working (for new/delete) 

and yielding nontrivial performance boosts! A trivial change to use malloc() and free() 

instead shows similar results. We include it as tbb_malloc.cpp in the sample programs 

download associated with this book.

The example programs do use a lot of stack space, so “ulimit –s unlimited” 

(Linux/macOS) or “/STACK:10000000” (Visual Studio: Properties > Configuration 

Properties > Linker > System > Stack Reserve Size) will be important to avoid immediate 

crashes.

Figure 7-8.  Ways to use the proxy library on Windows (note: win32 has an 
additional underscore vs. win64)
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Figure 7-9.  Small test program (tbb_mem.cpp) for speed of new/delete

Figure 7-10.  Running and timing tbb_mem.cpp on a quadcore virtual Linux 
machine

Figure 7-11.  Running and timing tbb_mem.cpp on a quadcore iMac (macOS)
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�C Functions: Scalable Memory Allocators for C
A set of functions, listed in Figure 7-12, provide a C level interface to the scalable 

memory allocator. Since TBB programming uses C++, these interfaces are not here for 

TBB users – they are here for use with C code.

Each allocation routine scalable_x behaves analogously to a library function x. 

The routines form the two families shown in the Figure 7-13. Storage allocated by a 

scalable_x function in one family must be freed or resized by a scalable_x function 

in the same family, and not by a C standard library function. Similarly, any storage 

allocated by a C standard library function, or C++ new, should not be freed or resized by a 

scalable_x function.

These functions are defined by the specific #include <tbb/scalable_allocator.h>".

Figure 7-12.  Functions offered by the TBB scalable memory allocator
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�C++ Classes: Scalable Memory Allocators for C++
While the proxy library offers a blanket solution to adopting scalable memory allocation, 

it is all based on specific capabilities that we might choose to use directly. TBB offers C++ 

classes for allocation in three ways: (1) allocators with the signatures needed by the C++ 

STL std::allocator<T>, (2) memory pool support for STL containers, and (3) a specific 

allocator for aligned arrays.

Figure 7-13.  Coupling of allocate-deallocate functions by families

Figure 7-14.  Classes offered by the TBB scalable memory allocator
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�Allocators with std::allocator<T> Signature
A set of classes, listed in Figure 7-14, provide a C++ level interface to the scalable 

memory allocator. TBB has four template classes (tbb_allocator, cached_aligned_

allocator, zero_allocator, and scalable_allocator) that support the same 

signatures as std::allocator<T> per the C++ standards. This includes supporting 

<void> in addition to <T>, per the C++11 and prior standards, which is deprecated in 

C++17 and will likely be removed in C++20. This means they can be passed as allocation 

routines to be used by STL templates such as vector. All four classes model an allocator 

concept that meets all the “Allocator requirements” of C++, but with additional 

guarantees required by the Standard for use with ISO C++ containers.

�scalable_allocator
The scalable_allocator template allocates and frees memory in a way that scales with 

the number of processors. Using a scalable_allocator in place of std::allocator may 

improve program performance. Memory allocated by a scalable_allocator should be 

freed by a scalable_allocator, not by a std::allocator.

The scalable_allocator allocator template requires that the TBBmalloc library be 

available. If the library is missing, calls to the scalable_allocator template will fail.  

In contrast, if the memory allocator library is not available, the other allocators  

(tbb_allocator, cached_aligned_allocator, or zero_allocator) fall back on malloc 

and free.

This class is defined with #include <tbb/scalable_allocator.h> and is notably 

not included by the (usually) all-inclusive tbb/tbb.h.

�tbb_allocator
The tbb_allocator template allocates and frees memory via the TBBmalloc library 

if it is available; otherwise, it reverts to using malloc and free. The cache_alligned_

allocator and zero_allocator use tbb_allocator; therefore, they offer the same 

fall back on malloc, but scalable_allocator does not and therefore will fail if the 

TBBmalloc library is unavailable. This class is defined with #include <tbb/tbb_

allocator.h>
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�zero_allocator
The zero_allocator allocates zeroed memory. A zero_allocator<T,A> can be 

instantiated for any class A that models the Allocator concept. The default for A is  

tbb_allocator. The zero_allocator forwards allocation requests to A and zeros the 

allocation before returning it. This class is defined with #include <tbb/tbb_allocator.h>.

�cached_aligned_allocator
The cached_aligned_allocator template offers both scalability and protection against 

false sharing. It addresses false sharing by making sure each allocation is done on a 

separate cache line.

Use cache_aligned_allocator only if false sharing is likely to be a real problem  

(see Figure 7-2). The functionality of cache_aligned_allocator comes at some cost in 

space because it allocates in multiples of cache-line-size memory chunks, even for a 

small object. The padding is typically 128 bytes. Hence, allocating many small objects 

with cache_aligned_allocator may increase memory usage.

Trying both tbb_allocator and the cache_aligned_allocator and measuring the 

resulting performance for a particular application is a good idea.

Note that protection against false sharing between two objects is guaranteed only 

if both are allocated with cache_aligned_allocator. For instance, if one object is 

allocated by cache_aligned_allocator<T> and another object is allocated some other 

way, there is no guarantee against false sharing because cache_aligned_allocator<T> 

starts an allocation on a cache line boundary but does not necessarily allocate to the 

end of a cache line. If an array or structure is being allocated, since only the start of 

the allocation is aligned, the individual array or structure elements may land together 

on cache lines with other elements. An example of this, along with padding to force 

elements onto individual cache line, is show in Figure 7-3.

This class is defined with #include <tbb/cache_alligned_allocator.h>.

�Memory Pool Support: memory_pool_allocator
Pool allocators are an extremely efficient method for providing allocation of numerous 

objects of fixed size P. Our first allocator usage is special and asks to reserve enough 

memory to store T objects of size P. Thereafter, when the allocator is used to provide a 
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chunk of memory, it returns an offset mod P into the allocated chunk. This is far more 

efficient than calling operator new separately for each request because it avoids the 

bookkeeping overhead required of a general-purpose memory allocator that services 

numerous requests for different-sized allocations.

The class is mainly intended to enable memory pools within STL containers. This 

is a “preview” feature as we write this book (likely to promote to a regular feature in the 

future). Use #define TBB_PREVIEW_MEMORY_POOL 1 to enable while this is still a preview 

feature.

Support is provided by tbb::memory_pool_allocator and tbb:: memory_pool_

allocator. These require

 

�Array Allocation Support: aligned_space
This template class (aligned_space) occupies enough memory and is sufficiently aligned 

to hold an array T[N]. Elements are not constructed or destroyed by this class; the client 

is responsible for initializing or destroying the objects. An aligned_space is typically 

used as a local variable or field in scenarios where a block of fixed-length uninitialized 

memory is needed. This class is defined with #include <tbb/aligned_space.h>.

�Replacing new and delete Selectively
There are a number of reasons one might develop custom new/delete operators, 

including error checking, debugging, optimization, and usage statistics gathering.

We can think of new/delete as coming in variations for individual objects and for 

arrays of objects. Additionally, C++11 defines throwing, nonthrowing, and placement 

versions of each of these: either the global set (::operator new, ::operator new[], 

::operator delete and ::operator delete[]) or the class specific sets (for class X, we 

have X::operator new, X::operator new[], X::operator delete and X::operator 

delete[]). Finally, C++17 adds an optional alignment parameter to all versions of new.

If we want to globally replace all the new/delete operators and do not have any 

custom needs, we would use the proxy library. This also has the benefit of replacing 

malloc/free and related C functions.
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For custom needs, it is most common to overload the class-specific operators rather 

than the global operators. This section shows how to replace the global new/delete 

operators as an example which can be customized for particular needs. We show 

throwing and nonthrowing versions, but we did not override the placement versions 

since they do not actually allocate memory. We also did not implement versions with 

alignment (C++17) parameters. It is also possible to replace new/delete operators for 

individual classes using the same concepts, in which case you may choose to implement 

placement versions and alignment capabilities. All these are handled by TBB if the proxy 

library is used.

Figures 7-15 and 7-16 together show a method to replace new and delete, and  

Figure 7-17 demonstrates their usage. All versions of new and delete should be replaced 

at once, which amounts to four versions of new and four versions of delete. Of course, it 

is necessary to link with the scalable memory library.

Our example chooses to ignore any new handler because there are thread-safety 

issues, and it always throws std::bad_alloc(). The variation of the basic signature 

includes the additional parameter const std::nothrow_t& that means that this 

operator will not throw an exception but will return NULL if the allocation fails. These four 

nonthrowing exception operators can be used for C runtime libraries.

We do not have to initialize the task scheduler to be able to use the memory allocator. 

We do initialize it in this example because it uses parallel_for in order to demonstrate 

the use of memory allocation and deallocation in multiple tasks. Similarly, the only 

header file that is required for the memory allocator is tbb/tbb_allocator.h.
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Figure 7-15.  Demonstration of replacement of new operators (tbb_nd.cpp)
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Figure 7-16.  Continuation from the previous figure, replacement of delete operators

Figure 7-17.  Driver program to demonstrate the new/delete replacements
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�Performance Tuning: Some Control Knobs
TBB offers some special controls regarding allocations from the OS, huge page support, 

and flushing of internal buffers. Each of these is provided to fine-tune performance.

Huge pages (large pages on Windows) are used to improve the performance for 

programs that utilize a very large amount of memory. In order to use huge pages, we 

need a processor with support, an operating system with support, and then we need 

to do something so our application takes advantage of huge pages. Fortunately, most 

systems have all this available, and TBB includes support.

�What Are Huge Pages?
In most cases, a processor allocates memory 4K bytes at a time in what are commonly 

called pages. Virtual memory systems use page tables to map addresses to actual 

memory locations. Without diving in too deep, suffice to say that the more pages of 

memory that an application uses, the more page descriptors are needed, and having a 

lot of page descriptors flying around causes performance issues for a variety of reasons. 

To help with this issue, modern processors support additional page sizes that are 

much larger than 4K (e.g., 4 MB). For a program using 2 GB of memory, 524,288 page 

descriptions are needed to describe the 2 GB of memory with 4K pages. Only 512 page 

descriptions are needed using 4 MB descriptors and only two if 1 GB descriptors are 

available.

�TBB Support for Huge Pages
To use huge pages with TBB memory allocation, it should be explicitly enabled by  

calling scalable_allocation_mode( TBBMALLOC_USE_HUGE_PAGES,1), or by setting the 

TBB_MALLOC_USE_HUGE_PAGES environment variable to 1. The environment variable is 

useful when substituting the standard malloc routines with the tbbmalloc_proxy library.

These provide ways to tweak the algorithms used for all usages of the TBB scalable 

memory allocator (regardless of the method of usage: proxy library, C functions, or C++ 

classes). The functions take precedence over any environment variable settings. These 

are definitely not for casual use, they are here for self-proclaimed “control freaks” and 

offer great ways to optimize performance for particular needs. We recommend careful 

evaluation of the performance impact on an application, in the target environment, 

when using these features.
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Of course, both methods assume that the system/kernel is configured to allocate 

huge pages. The TBB memory allocator also supports pre-allocated and transparent 

huge pages, which are automatically allocated by the Linux kernel when suitable. Huge 

pages are not a panacea; they can have negative impact on performance if their usage is 

not well considered.

The functions, as listed in Figure 7-18, are defined with #include  

<tbb/tbb_allocator.h>.

�scalable_allocation_mode(int mode, intptr_t value)
The scalable_allocation_mode function may be used to adjust the behavior of the 

scalable memory allocator. The arguments, described in the following two paragraphs, 

control aspects of behavior of the TBB allocators. The function returns TBBMALLOC_OK 

if the operation succeeded, TBBMALLOC_INVALID_PARAM if mode is not one of those 

described in the following subsections, or if value is not valid for the given mode.  

A return value of TBBMALLOC_NO_EFFECT is possible for conditions described when they 

apply (see explanation of each function).

�TBBMALLOC_USE_HUGE_PAGES

scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES,1)

This function enables the use of huge pages by the allocator if supported by the operating 

system; a zero as the second parameter disables it. Setting the TBB_MALLOC_USE_

HUGE_PAGES environment variable to one has the same effect as calling scalable_

allocation_mode to enable this mode. The mode set with scalable_allocation_mode 

Figure 7-18.  Ways to refine TBB scalable memory allocator behaviors
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takes priority over the environment variable. The function will return TBBMALLOC_NO_

EFFECT if huge pages are not supported on the platform.

�TBBMALLOC_SET_SOFT_HEAP_LIMIT
scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, size)

This function sets a threshold of size bytes on the amount of memory the allocator takes 

from the operating systems. Exceeding the threshold will urge the allocator to release 

memory from its internal buffers; however, it does not prevent the TBB scalable memory 

allocator from requesting more memory when needed.

�int scalable_allocation_command(int cmd, void ∗param)
The scalable_allocation_command function may be used to command the scalable 

memory allocator to perform an action specified by the first parameter. The second 

parameter is reserved and must be set to zero. The function will return TBBMALLOC_OK if 

the operation succeeded, TBBMALLOC_INVALID_PARAM if reserved is not equal to zero, or 

if cmd is not a defined command (TBBMALLOC_CLEAN_ALL_BUFFERS or TBBMALLOC_CLEAN_

THREAD_BUFFERS). A return value of TBBMALLOC_NO_EFFECT is possible as we describe next.

�TBBMALLOC_CLEAN_ALL_BUFFERS
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, 0)

This function cleans internal memory buffers of the allocator and possibly reduces 

memory footprint. It may result in increased time for subsequent memory allocation 

requests. The command is not designed for frequent use, and careful evaluation of the 

performance impact is recommended. The function will return TBBMALLOC_NO_EFFECT if 

no buffers were released.

�TBBMALLOC_CLEAN_THREAD_BUFFERS
scalable_allocation_command(TBBMALLOC_CLEAN_THREAD_BUFFERS, 0)

This function cleans internal memory buffers but only for the calling thread. It may result 

in increased time for subsequent memory allocation requests; careful evaluation of the 
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performance impact is recommended. The function will return TBBMALLOC_NO_EFFECT if 

no buffers were released.

�Summary
Using a scalable memory allocator is an essential element in any parallel program. The 

performance benefits can be very significant. Without a scalable memory allocator, 

serious performance issues often arise due to contention for allocation, false sharing, 

and other useless cache to cache transfers. The TBB scalable memory allocation 

(TBBmalloc) capabilities include use of new as well as explicit calls to malloc, and so on, 

all of which can be used directly or they can all be automatically replaced via the proxy 

library capability of TBB. The scalable memory allocation in TBB can be used regardless 

of whether we use any other part of TBB; the rest of TBB can be used regardless of 

which memory allocator is used (TBBmalloc, tcmalloc, jemalloc, malloc, etc.). The 

TBBmalloc library remains extremely popular today and is definitely one of the best 

scalable memory allocators available.

Open Access   This chapter is licensed under the terms of the Creative 

Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any 

noncommercial use, sharing, distribution and reproduction in any medium or format, 

as long as you give appropriate credit to the original author(s) and the source, provide a 

link to the Creative Commons license and indicate if you modified the licensed material. 

You do not have permission under this license to share adapted material derived from 

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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