
207
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_7

CHAPTER 7

Scalable Memory
Allocation
This chapter discusses a critical part of any parallel program: scalable memory

allocation, which includes use of new as well as explicit calls to malloc, calloc, and so

on. Scalable memory allocation can be used regardless of whether we use any other

part of Threading Building Blocks (TBB). In addition to interfaces to use directly, TBB

offers a “proxy” method to automatically replace C/C++ functions for dynamic memory

allocation, which is an easy, effective, and popular way to get a performance boost

without any code changes. This is important and workvs regardless of how “modern”

you are in your usage of C++, specifically whether you use the modern and encouraged

std::make_shared, or the now discouraged new and malloc. The performance benefits

of using a scalable memory allocator are significant because they directly address issues

that would otherwise limit scaling and risk false sharing. TBB was among the first widely

used scalable memory allocators, in no small part because it came free with TBB to help

highlight the importance of including memory allocation considerations in any parallel

program. It remains extremely popular today and is one of the best scalable memory

allocators available.

Modern C++ programming (which favors smart pointers), combined with parallel
thinking, encourages us to use TBB scalable memory allocators explicitly with
std::allocate_shared or implicitly with std::make_shared.

https://doi.org/10.1007/978-1-4842-4398-5_7

208

�Modern C++ Memory Allocation
While performance is especially interesting for parallel programming, correctness is a

critical topic for all applications. Memory allocation/deallocation issues are a significant

source of bugs in applications, and this has led many additions to the C++ standard and

a shift in what is considered modern C++ programming!

Modern C++ programming encourages use of managed memory allocation with

introduction of smart pointers in C++11 (make_shared, allocate_shared, etc.) and

discourages extensive use of malloc or new. We have used std::make_shared in examples

since the very first chapter of this book. The addition of std::aligned_alloc in C++17

provides for cache alignment to avoid false sharing but does not address scalable

memory allocation. Many additional capabilities are in the works for C++20, but without

explicit support for scalability.

TBB continues to offer this critical piece for parallel programmers: scalable memory

allocation. TBB does this in a fashion that fits perfectly with all versions of C++ and C

standards. The heart and soul of the support in TBB can be described as memory pooling by

threads. This pooling avoids performance degradations caused by memory allocations that

do not seek to avoid unnecessary shifting of data between caches. TBB also offers scalable

memory allocation combined with cache alignment, which offers the scalable attribute

above what one can expect from simply using std::aligned_alloc. Cache alignment is not

a default behavior because indiscriminate usage can greatly expand memory usage.

As we will discuss in this chapter, the use of scalable memory allocation can be

critical to performance. std::make_shared does not provide for the specification of

an allocator, but there is a corresponding std::allocate_shared, which does allow

specification of an allocator.

This chapter focuses on scalable memory allocators, which should then be used

in whatever manner of C++ memory allocation is chosen for an application. Modern

C++ programming, with parallel thinking, would encourage use to use std::allocate_

shared explicitly with TBB scalable memory allocators, or use std::make_shared

implicitly with TBB by overriding the default new to use the TBB scalable memory

allocator. Note, std::make_shared is not affected by the new operator for a particular

class because it actually allocates a larger block of memory to handle both the contents

for a class and its extra space for bookkeeping (specifically, the atomic that is added to

make it a smart pointer). That is why overriding the default new (to use the TBB allocator)

will be sufficient to affect std::make_shared.

Chapter 7 Scalable Memory Allocation

209

Figure 7-1.  Ways to use the TBB scalable memory allocator

�Scalable Memory Allocation: What
This chapter is organized to discuss the scalable memory capabilities of TBB in four

categories as listed in Figure 7-1. Features from all four categories can be freely mixed;

we break them into categories only as a way to explain all the functionality. The C/C++

proxy library is by far the most popular way to use the scalable memory allocator.

The scalable memory allocator is cleanly separate from the rest of TBB so that our

choice of memory allocator for concurrent usage is independent of our choice of parallel

algorithm and container templates.

�Scalable Memory Allocation: Why
While most of this book shows us how to improve our programs speed by doing work in

parallel, memory allocations and deallocations that are not thread-aware can undo our

hard work! There are two primary issues at play in making careful memory allocation

critical in a parallel program: contention for the allocator and cache effects.

When ordinary, nonthreaded allocators are used, memory allocation can become

a serious bottleneck in a multithreaded program because each thread competes for a

global lock for each allocation and deallocation of memory from a single global heap.

Programs that run this way are not scalable. In fact, because of this contention, programs

that make intensive use of memory allocation may actually slow down as the number

of processor cores increases! Scalable memory allocators solve this by using more

sophisticated data structures to largely avoid contention.

Chapter 7 Scalable Memory Allocation

210

The other issue, caching effects, happens because the use of memory has an underlying

mechanism in hardware for the caching of data. Data usage in a program will therefore

have an implication on where data needs to be cached. If we allocate memory for thread B

and the allocator gives us memory that was recently freed by thread A, it is highly likely that

we are inadvertently causing data to be copied from cache to cache, which may reduce the

performance of our application needlessly. Additionally, if memory allocations for separate

threads are placed too closely together they can share a cache line. We can describe this

sharing as true sharing (sharing the same object) or false sharing (no objects are shared, but

objects happen to fall in the same cache line). Either type of sharing can have particularly

dramatic negative consequences on performance, but false sharing is of particular interest

because it can be avoided since no sharing was intended. Scalable memory allocators avoid

false sharing by using class cache_aligned_allocator<T> to always allocate beginning on

a cache line and maintaining per-thread heaps, which are rebalanced from time to time if

needed. This organization also helps with the prior contention issue.

The benefits of using a scalable memory allocator can easily be a 20-30%

performance, and we have even heard of 4X program performance in extreme cases by

simply relinking with a scalable memory allocator.

�Avoiding False Sharing with Padding
Padding is needed if the internals of a data structure cause issues due to false

sharing. Starting in Chapter 5, we have used a histogram example. The buckets of

the histogram and the locks for the buckets are both possible data structures which

are packed tightly enough in memory to have more than one task updating data in a

single cache line.

The idea of padding, in a data structure, is to space out elements enough that we do

not share adjacent elements that would be updated via multiple tasks.

Regarding false sharing, the first measure we have to take is to rely on the

tbb::cache_aligned_allocator, instead of std::allocator or malloc, when declaring

the shared histogram (see Figure 5-20) as shown in Figure 7-2.

Figure 7-2.  Simple histogram vector of atomics

Chapter 7 Scalable Memory Allocation

https://doi.org/10.1007/978-1-4842-4398-5_5
https://doi.org/10.1007/978-1-4842-4398-5_5#Fig20

211

However, this is just aligning the beginning of the histogram vector and ensuring

that hist_p[0] will land at the beginning of a cache line. This means that hist_p[0],

hist_p[1], ... , hist_p[15] are stored in the same cache line, which translates

into false sharing when a thread increments hist_p[0] and another thread increments

hist_p[15]. To solve this issue, we need to assure that each position of the histogram,

each bin, is occupying a full cache line, which can be achieved using a padding strategy

shown in Figure 7-3.

As we can see in Figure 7-3, the array of bins, hist_p, is now a vector of structs,

each one containing the atomic variable, but also a dummy array of 60 bytes that

will fill the space of a cache line. This code is, therefore, architecture dependent. In

nowadays Intel processors, the cache line is 64 bytes, but you can find false sharing safe

implementations that assume 128 bytes. This is because cache prefetching (caching line

“i+1” when cache line “i” is requested) is a common technique, and this prefetching is

somehow equivalent to cache lines of size 128 bytes.

Our false-sharing-free data structure does occupy 16 times more space than the

original one. It is yet another example of the space-time trade-off that frequently arises

in computer programming: now we occupy more memory, but the code is faster. Other

examples are smaller code vs. loop unrolling, calling functions vs. function inlining, or

processing of compressed data vs. uncompressed data.

Wait! was not the previous implementation of the bin struct a bit pedestrian? Well, it

certainly was! A less hardwired solution would be this one:

Figure 7-3.  Getting rid of false sharing using padding in the histogram vector of
atomics

Chapter 7 Scalable Memory Allocation

212

Since sizeof() is evaluated at compile time, we can use the same struct for other

padded data structures in which the actual payload (count in this case) has a different

size. But we know a better solution that is available in the C++ standard:

This warrants that each bin of hist_p is occupying a full cache line thanks to the

alignas() method. Just one more thing! We love to write portable code, right? What if

in a different or future architecture cache line size is different. No problem, the C++17

standard has the solution we are looking for:

Great, assuming that we have fixed the false sharing problem, what about the true

sharing one?

Two different threads will eventually increment the same bin, which will be ping-

pong from one cache to other. We need a better idea to solve this one! We showed how to

deal with this in Chapter 5 when we discussed privatization and reduction.

�Scalable Memory Allocation Alternatives: Which
These days, TBB is not the only option for scalable memory allocations. While we are

very fond of it, we will introduce the most popular options in this section. When using

TBB for parallel programming, it is essential that we use a scalable memory allocator

whether it is the one supplied by TBB or another. Programs written using TBB can utilize

any memory allocator solution.

Chapter 7 Scalable Memory Allocation

https://doi.org/10.1007/978-1-4842-4398-5_5

213

TBB was the first popular parallel programming method to promote scalable

memory allocation alongside the other parallel programming techniques because

the creators of TBB understood the importance of including memory allocation

considerations in any parallel program. The TBB memory allocator remains extremely

popular today and is definitely still one of the best scalable memory allocators available.

The TBB scalable memory allocator can be used regardless of whether we use any

other part of Threading Building Blocks (TBB). Likewise, TBB can operate with any

scalable memory allocator.

The most popular alternatives to the TBB scalable memory allocator are jemalloc

and tcmalloc. Like the scalable memory allocator in TBB, there are alternatives to

malloc that emphasize fragmentation avoidance while offering scalable concurrency

support. All three are available open source with liberal licensing (BSD or Apache).

There are some people who will tell you that they have compared tbbmalloc for

their application with tcmalloc and jeamalloc and have found it to be superior for

their application. This is very common. However, there are some people who choose

jemalloc or tcmalloc or llalloc even when using the rest of TBB extensively. This

works too. The choice is yours to make.

jemalloc is the FreeBSD libc allocator. More recently, additional developer support

features such as heap profiling and extensive monitoring/tuning hooks have been

added. jemalloc is used by Facebook.

tcmalloc is part of Google’s gperftools, which includes tcmalloc and some

performance analysis tools. tcmalloc is used by Google.

llalloc from Lockless Inc. is available freely as an open-source lockless memory

allocator or can be purchased for use with closed-source software.

The behavior of individual applications, and in particular patterns of memory

allocations and releases, make it impossible to pick a single fits-all winner from these

options. We are confident that any choice of TBBmalloc, jemalloc, and tcmalloc will

be far superior to a default malloc function or new operator if they are of the nonscalable

variety (FreeBSD uses jemalloc as its default malloc).

Chapter 7 Scalable Memory Allocation

214

�Compilation Considerations
When compiling with programs with the Intel compilers or gcc, it is best to pass in the

following flags:

-fno-builtin-malloc (on Windows: /Qfno-builtin-malloc)

-fno-builtin-calloc (on Windows: /Qfno-builtin-calloc)

-fno-builtin-realloc (on Windows: /Qfno-builtin-realloc)

-fno-builtin-free (on Windows: /Qfno-builtin-free)

This is because a compiler may make some optimizations assuming it is using its

own built-in functions. These assumptions may not be true when using other memory

allocators. Failure to use these flags may not cause a problem, but it is not a bad idea to

be safe. It might be wise to check the compiler documentation of your favorite compiler.

�Most Popular Usage (C/C++ Proxy Library): How
Using the proxy methods, we can globally replace new/delete and malloc/calloc/

realloc/free/etc. routines with a dynamic memory interface replacement technique.

This automatic way to replace malloc and other C/C++ functions for dynamic memory

allocation is by far the most popular way to use the TBB scalable memory allocator

capabilities. It is also very effective.

We can replace malloc/calloc/realloc/free/ etc. (see Figure 7-4 for a complete

list) and new/delete by using the tbbmalloc_proxy library. Using this method is easy

and sufficient for most programs. The details of the mechanism used on each operating

system vary a bit, but the net effect is the same everywhere. The library names are shown

in Figure 7-5; a summary of the methods is shown in Figure 7-6.

Chapter 7 Scalable Memory Allocation

215

Figure 7-4.  List of routines replaced by proxy

Figure 7-5.  Names of the proxy library

Figure 7-6.  Ways to use the proxy library

Chapter 7 Scalable Memory Allocation

216

�Linux: malloc/new Proxy Library Usage
On Linux, we can do the replacement either by loading the proxy library at program

load time using the LD_PRELOAD environment variable (without changing the executable

file, as shown in Figure 7-7), or by linking the main executable file with the proxy

library (-ltbbmalloc_proxy). The Linux program loader must be able to find the proxy

library and the scalable memory allocator library at program load time. For that, we

may include the directory containing the libraries in the LD_LIBRARY_PATH environment

variable or add it to /etc/ld.so.conf. There are two limitations for dynamic memory

replacement: (1) glibc memory allocation hooks, such as __malloc_hook, are not

supported, and (2) Mono (an open source implementation of Microsoft’s .NET Framework

based) is not supported.

�macOS: malloc/new Proxy Library Usage
On macOS, we can do the replacement either by loading the proxy library at program

load time using the DYLD_INSERT_LIBRARIES environment variable (without changing

the executable file, as shown in Figure 7-7), or by linking the main executable file with

the proxy library (-ltbbmalloc_proxy). The macOS program loader must be able to find

the proxy library and the scalable memory allocator library at program load time. For

that, we may include the directory containing the libraries in the DYLD_LIBRARY_PATH

environment variable.

Figure 7-7.  Environment variables to inject the TBB scalable memory allocator

Chapter 7 Scalable Memory Allocation

217

Implementation insight for the curious (not required reading): TBB has a clever
way of overcoming the fact that using DYLD_INSERT_LIBRARIES requires using
flat namespaces in order to access the shared library symbols. Normally, if an
application was built with two-level namespaces, this method would not work, and
forcing usage of flat namespaces would likely lead to a crash. TBB avoids this by
arranging things such that when the libtbbmalloc_proxy library is loaded into
the process; its static constructor is called and registers a malloc zone for TBB
memory allocation routines. This allows redirecting memory allocation routine calls
from a standard C++ library into TBB scalable allocator routines. This means that
the application does not need to use TBB malloc library symbols; it continues
to call standard libc routines. Thus, there are no problems with namespaces.
The macOS malloc zones mechanism also allows applications to have several
memory allocators (e.g., used by different libraries) and manage memory correctly.
This guarantees that Intel TBB will use the same allocator for allocations and
deallocations. It is a safeguard against crashes due to calling a deallocation routine
for a memory object allocated from another allocator.

�Windows: malloc/new Proxy Library Usage
On Windows, we must modify our executable. We can either force the proxy library to be

loaded by adding an #include in our source code, or use certain linker options as shown

in Figure 7-8. The Windows program loader must be able to find the proxy library and

the scalable memory allocator library at program load time. For that, we may include the

directory containing the libraries in the PATH environment variable.

Including tbbmalloc_proxy.h> to a source of any binary (which is loaded during

application startup):

#include <tbb/tbbmalloc_proxy.h>

Chapter 7 Scalable Memory Allocation

218

or add the following parameters to the linker options for the binary (which is loaded

during application startup). They can be specified for the EXE file or a DLL that is loaded

upon application startup:

�Testing our Proxy Library Usage
As a simple double check to see that our program is taking advantage of a faster

allocation, we can use the test program in Figure 7-9 on a multicore machine. In

Figure 7-10, we show how we run this little test and the timing differences we saw on a

quadcore virtual machine running Ubuntu Linux. In Figure 7-11, we show how we run

this little test and the timing difference we saw on a quadcore iMac. On Windows, using

the Visual Studio “Performance Profiler” on a quadcore Intel NUC (Core i7) we saw

times of 94ms without the scalable memory allocator and 50ms with it (adding #include

<tbb/tbbmalloc_proxy.h> into tbb_mem.cpp). All these runs show how this little test

can verify that the injection of the scalable memory allocator is working (for new/delete)

and yielding nontrivial performance boosts! A trivial change to use malloc() and free()

instead shows similar results. We include it as tbb_malloc.cpp in the sample programs

download associated with this book.

The example programs do use a lot of stack space, so “ulimit –s unlimited”

(Linux/macOS) or “/STACK:10000000” (Visual Studio: Properties > Configuration

Properties > Linker > System > Stack Reserve Size) will be important to avoid immediate

crashes.

Figure 7-8.  Ways to use the proxy library on Windows (note: win32 has an
additional underscore vs. win64)

Chapter 7 Scalable Memory Allocation

219

Figure 7-9.  Small test program (tbb_mem.cpp) for speed of new/delete

Figure 7-10.  Running and timing tbb_mem.cpp on a quadcore virtual Linux
machine

Figure 7-11.  Running and timing tbb_mem.cpp on a quadcore iMac (macOS)

Chapter 7 Scalable Memory Allocation

220

�C Functions: Scalable Memory Allocators for C
A set of functions, listed in Figure 7-12, provide a C level interface to the scalable

memory allocator. Since TBB programming uses C++, these interfaces are not here for

TBB users – they are here for use with C code.

Each allocation routine scalable_x behaves analogously to a library function x.

The routines form the two families shown in the Figure 7-13. Storage allocated by a

scalable_x function in one family must be freed or resized by a scalable_x function

in the same family, and not by a C standard library function. Similarly, any storage

allocated by a C standard library function, or C++ new, should not be freed or resized by a

scalable_x function.

These functions are defined by the specific #include <tbb/scalable_allocator.h>".

Figure 7-12.  Functions offered by the TBB scalable memory allocator

Chapter 7 Scalable Memory Allocation

221

�C++ Classes: Scalable Memory Allocators for C++
While the proxy library offers a blanket solution to adopting scalable memory allocation,

it is all based on specific capabilities that we might choose to use directly. TBB offers C++

classes for allocation in three ways: (1) allocators with the signatures needed by the C++

STL std::allocator<T>, (2) memory pool support for STL containers, and (3) a specific

allocator for aligned arrays.

Figure 7-13.  Coupling of allocate-deallocate functions by families

Figure 7-14.  Classes offered by the TBB scalable memory allocator

Chapter 7 Scalable Memory Allocation

222

�Allocators with std::allocator<T> Signature
A set of classes, listed in Figure 7-14, provide a C++ level interface to the scalable

memory allocator. TBB has four template classes (tbb_allocator, cached_aligned_

allocator, zero_allocator, and scalable_allocator) that support the same

signatures as std::allocator<T> per the C++ standards. This includes supporting

<void> in addition to <T>, per the C++11 and prior standards, which is deprecated in

C++17 and will likely be removed in C++20. This means they can be passed as allocation

routines to be used by STL templates such as vector. All four classes model an allocator

concept that meets all the “Allocator requirements” of C++, but with additional

guarantees required by the Standard for use with ISO C++ containers.

�scalable_allocator
The scalable_allocator template allocates and frees memory in a way that scales with

the number of processors. Using a scalable_allocator in place of std::allocator may

improve program performance. Memory allocated by a scalable_allocator should be

freed by a scalable_allocator, not by a std::allocator.

The scalable_allocator allocator template requires that the TBBmalloc library be

available. If the library is missing, calls to the scalable_allocator template will fail.

In contrast, if the memory allocator library is not available, the other allocators

(tbb_allocator, cached_aligned_allocator, or zero_allocator) fall back on malloc

and free.

This class is defined with #include <tbb/scalable_allocator.h> and is notably

not included by the (usually) all-inclusive tbb/tbb.h.

�tbb_allocator
The tbb_allocator template allocates and frees memory via the TBBmalloc library

if it is available; otherwise, it reverts to using malloc and free. The cache_alligned_

allocator and zero_allocator use tbb_allocator; therefore, they offer the same

fall back on malloc, but scalable_allocator does not and therefore will fail if the

TBBmalloc library is unavailable. This class is defined with #include <tbb/tbb_

allocator.h>

Chapter 7 Scalable Memory Allocation

223

�zero_allocator
The zero_allocator allocates zeroed memory. A zero_allocator<T,A> can be

instantiated for any class A that models the Allocator concept. The default for A is

tbb_allocator. The zero_allocator forwards allocation requests to A and zeros the

allocation before returning it. This class is defined with #include <tbb/tbb_allocator.h>.

�cached_aligned_allocator
The cached_aligned_allocator template offers both scalability and protection against

false sharing. It addresses false sharing by making sure each allocation is done on a

separate cache line.

Use cache_aligned_allocator only if false sharing is likely to be a real problem

(see Figure 7-2). The functionality of cache_aligned_allocator comes at some cost in

space because it allocates in multiples of cache-line-size memory chunks, even for a

small object. The padding is typically 128 bytes. Hence, allocating many small objects

with cache_aligned_allocator may increase memory usage.

Trying both tbb_allocator and the cache_aligned_allocator and measuring the

resulting performance for a particular application is a good idea.

Note that protection against false sharing between two objects is guaranteed only

if both are allocated with cache_aligned_allocator. For instance, if one object is

allocated by cache_aligned_allocator<T> and another object is allocated some other

way, there is no guarantee against false sharing because cache_aligned_allocator<T>

starts an allocation on a cache line boundary but does not necessarily allocate to the

end of a cache line. If an array or structure is being allocated, since only the start of

the allocation is aligned, the individual array or structure elements may land together

on cache lines with other elements. An example of this, along with padding to force

elements onto individual cache line, is show in Figure 7-3.

This class is defined with #include <tbb/cache_alligned_allocator.h>.

�Memory Pool Support: memory_pool_allocator
Pool allocators are an extremely efficient method for providing allocation of numerous

objects of fixed size P. Our first allocator usage is special and asks to reserve enough

memory to store T objects of size P. Thereafter, when the allocator is used to provide a

Chapter 7 Scalable Memory Allocation

224

chunk of memory, it returns an offset mod P into the allocated chunk. This is far more

efficient than calling operator new separately for each request because it avoids the

bookkeeping overhead required of a general-purpose memory allocator that services

numerous requests for different-sized allocations.

The class is mainly intended to enable memory pools within STL containers. This

is a “preview” feature as we write this book (likely to promote to a regular feature in the

future). Use #define TBB_PREVIEW_MEMORY_POOL 1 to enable while this is still a preview

feature.

Support is provided by tbb::memory_pool_allocator and tbb:: memory_pool_

allocator. These require

�Array Allocation Support: aligned_space
This template class (aligned_space) occupies enough memory and is sufficiently aligned

to hold an array T[N]. Elements are not constructed or destroyed by this class; the client

is responsible for initializing or destroying the objects. An aligned_space is typically

used as a local variable or field in scenarios where a block of fixed-length uninitialized

memory is needed. This class is defined with #include <tbb/aligned_space.h>.

�Replacing new and delete Selectively
There are a number of reasons one might develop custom new/delete operators,

including error checking, debugging, optimization, and usage statistics gathering.

We can think of new/delete as coming in variations for individual objects and for

arrays of objects. Additionally, C++11 defines throwing, nonthrowing, and placement

versions of each of these: either the global set (::operator new, ::operator new[],

::operator delete and ::operator delete[]) or the class specific sets (for class X, we

have X::operator new, X::operator new[], X::operator delete and X::operator

delete[]). Finally, C++17 adds an optional alignment parameter to all versions of new.

If we want to globally replace all the new/delete operators and do not have any

custom needs, we would use the proxy library. This also has the benefit of replacing

malloc/free and related C functions.

Chapter 7 Scalable Memory Allocation

225

For custom needs, it is most common to overload the class-specific operators rather

than the global operators. This section shows how to replace the global new/delete

operators as an example which can be customized for particular needs. We show

throwing and nonthrowing versions, but we did not override the placement versions

since they do not actually allocate memory. We also did not implement versions with

alignment (C++17) parameters. It is also possible to replace new/delete operators for

individual classes using the same concepts, in which case you may choose to implement

placement versions and alignment capabilities. All these are handled by TBB if the proxy

library is used.

Figures 7-15 and 7-16 together show a method to replace new and delete, and

Figure 7-17 demonstrates their usage. All versions of new and delete should be replaced

at once, which amounts to four versions of new and four versions of delete. Of course, it

is necessary to link with the scalable memory library.

Our example chooses to ignore any new handler because there are thread-safety

issues, and it always throws std::bad_alloc(). The variation of the basic signature

includes the additional parameter const std::nothrow_t& that means that this

operator will not throw an exception but will return NULL if the allocation fails. These four

nonthrowing exception operators can be used for C runtime libraries.

We do not have to initialize the task scheduler to be able to use the memory allocator.

We do initialize it in this example because it uses parallel_for in order to demonstrate

the use of memory allocation and deallocation in multiple tasks. Similarly, the only

header file that is required for the memory allocator is tbb/tbb_allocator.h.

Chapter 7 Scalable Memory Allocation

226

Figure 7-15.  Demonstration of replacement of new operators (tbb_nd.cpp)

Chapter 7 Scalable Memory Allocation

227

Figure 7-16.  Continuation from the previous figure, replacement of delete operators

Figure 7-17.  Driver program to demonstrate the new/delete replacements

Chapter 7 Scalable Memory Allocation

228

�Performance Tuning: Some Control Knobs
TBB offers some special controls regarding allocations from the OS, huge page support,

and flushing of internal buffers. Each of these is provided to fine-tune performance.

Huge pages (large pages on Windows) are used to improve the performance for

programs that utilize a very large amount of memory. In order to use huge pages, we

need a processor with support, an operating system with support, and then we need

to do something so our application takes advantage of huge pages. Fortunately, most

systems have all this available, and TBB includes support.

�What Are Huge Pages?
In most cases, a processor allocates memory 4K bytes at a time in what are commonly

called pages. Virtual memory systems use page tables to map addresses to actual

memory locations. Without diving in too deep, suffice to say that the more pages of

memory that an application uses, the more page descriptors are needed, and having a

lot of page descriptors flying around causes performance issues for a variety of reasons.

To help with this issue, modern processors support additional page sizes that are

much larger than 4K (e.g., 4 MB). For a program using 2 GB of memory, 524,288 page

descriptions are needed to describe the 2 GB of memory with 4K pages. Only 512 page

descriptions are needed using 4 MB descriptors and only two if 1 GB descriptors are

available.

�TBB Support for Huge Pages
To use huge pages with TBB memory allocation, it should be explicitly enabled by

calling scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES,1), or by setting the

TBB_MALLOC_USE_HUGE_PAGES environment variable to 1. The environment variable is

useful when substituting the standard malloc routines with the tbbmalloc_proxy library.

These provide ways to tweak the algorithms used for all usages of the TBB scalable

memory allocator (regardless of the method of usage: proxy library, C functions, or C++

classes). The functions take precedence over any environment variable settings. These

are definitely not for casual use, they are here for self-proclaimed “control freaks” and

offer great ways to optimize performance for particular needs. We recommend careful

evaluation of the performance impact on an application, in the target environment,

when using these features.

Chapter 7 Scalable Memory Allocation

229

Of course, both methods assume that the system/kernel is configured to allocate

huge pages. The TBB memory allocator also supports pre-allocated and transparent

huge pages, which are automatically allocated by the Linux kernel when suitable. Huge

pages are not a panacea; they can have negative impact on performance if their usage is

not well considered.

The functions, as listed in Figure 7-18, are defined with #include

<tbb/tbb_allocator.h>.

�scalable_allocation_mode(int mode, intptr_t value)
The scalable_allocation_mode function may be used to adjust the behavior of the

scalable memory allocator. The arguments, described in the following two paragraphs,

control aspects of behavior of the TBB allocators. The function returns TBBMALLOC_OK

if the operation succeeded, TBBMALLOC_INVALID_PARAM if mode is not one of those

described in the following subsections, or if value is not valid for the given mode.

A return value of TBBMALLOC_NO_EFFECT is possible for conditions described when they

apply (see explanation of each function).

�TBBMALLOC_USE_HUGE_PAGES

scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES,1)

This function enables the use of huge pages by the allocator if supported by the operating

system; a zero as the second parameter disables it. Setting the TBB_MALLOC_USE_

HUGE_PAGES environment variable to one has the same effect as calling scalable_

allocation_mode to enable this mode. The mode set with scalable_allocation_mode

Figure 7-18.  Ways to refine TBB scalable memory allocator behaviors

Chapter 7 Scalable Memory Allocation

230

takes priority over the environment variable. The function will return TBBMALLOC_NO_

EFFECT if huge pages are not supported on the platform.

�TBBMALLOC_SET_SOFT_HEAP_LIMIT
scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, size)

This function sets a threshold of size bytes on the amount of memory the allocator takes

from the operating systems. Exceeding the threshold will urge the allocator to release

memory from its internal buffers; however, it does not prevent the TBB scalable memory

allocator from requesting more memory when needed.

�int scalable_allocation_command(int cmd, void ∗param)
The scalable_allocation_command function may be used to command the scalable

memory allocator to perform an action specified by the first parameter. The second

parameter is reserved and must be set to zero. The function will return TBBMALLOC_OK if

the operation succeeded, TBBMALLOC_INVALID_PARAM if reserved is not equal to zero, or

if cmd is not a defined command (TBBMALLOC_CLEAN_ALL_BUFFERS or TBBMALLOC_CLEAN_

THREAD_BUFFERS). A return value of TBBMALLOC_NO_EFFECT is possible as we describe next.

�TBBMALLOC_CLEAN_ALL_BUFFERS
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, 0)

This function cleans internal memory buffers of the allocator and possibly reduces

memory footprint. It may result in increased time for subsequent memory allocation

requests. The command is not designed for frequent use, and careful evaluation of the

performance impact is recommended. The function will return TBBMALLOC_NO_EFFECT if

no buffers were released.

�TBBMALLOC_CLEAN_THREAD_BUFFERS
scalable_allocation_command(TBBMALLOC_CLEAN_THREAD_BUFFERS, 0)

This function cleans internal memory buffers but only for the calling thread. It may result

in increased time for subsequent memory allocation requests; careful evaluation of the

Chapter 7 Scalable Memory Allocation

231

performance impact is recommended. The function will return TBBMALLOC_NO_EFFECT if

no buffers were released.

�Summary
Using a scalable memory allocator is an essential element in any parallel program. The

performance benefits can be very significant. Without a scalable memory allocator,

serious performance issues often arise due to contention for allocation, false sharing,

and other useless cache to cache transfers. The TBB scalable memory allocation

(TBBmalloc) capabilities include use of new as well as explicit calls to malloc, and so on,

all of which can be used directly or they can all be automatically replaced via the proxy

library capability of TBB. The scalable memory allocation in TBB can be used regardless

of whether we use any other part of TBB; the rest of TBB can be used regardless of

which memory allocator is used (TBBmalloc, tcmalloc, jemalloc, malloc, etc.). The

TBBmalloc library remains extremely popular today and is definitely one of the best

scalable memory allocators available.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 7 Scalable Memory Allocation

http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 7: Scalable Memory Allocation
	Modern C++ Memory Allocation
	Scalable Memory Allocation: What
	Scalable Memory Allocation: Why
	Avoiding False Sharing with Padding

	Scalable Memory Allocation Alternatives: Which
	Compilation Considerations
	Most Popular Usage (C/C++ Proxy Library): How
	Linux: malloc/new Proxy Library Usage
	macOS: malloc/new Proxy Library Usage
	Windows: malloc/new Proxy Library Usage
	Testing our Proxy Library Usage

	C Functions: Scalable Memory Allocators for C
	C++ Classes: Scalable Memory Allocators for C++
	Allocators with std::allocator<T> Signature

	scalable_allocator
	tbb_allocator
	zero_allocator
	cached_aligned_allocator
	Memory Pool Support: memory_pool_allocator
	Array Allocation Support: aligned_space

	Replacing new and delete Selectively
	Performance Tuning: Some Control Knobs
	What Are Huge Pages?
	TBB Support for Huge Pages
	scalable_allocation_mode(int mode, intptr_t value)
	TBBMALLOC_USE_HUGE_PAGES
	TBBMALLOC_SET_SOFT_HEAP_LIMIT
	int scalable_allocation_command(int cmd, void ∗param)
	TBBMALLOC_CLEAN_ALL_BUFFERS
	TBBMALLOC_CLEAN_THREAD_BUFFERS

	Summary

