
411
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_16

CHAPTER 16

Tuning TBB Algorithms:
Granularity, Locality,
Parallelism, and
Determinism
In Chapter 2, we described the generic parallel algorithms provided by the TBB library

and gave a few examples to show how they can be used. While doing so, we noted that

the default behavior of the algorithms was often good enough but claimed that there

were ways to tune performance if needed. In this chapter, we back up that claim by

revisiting some TBB algorithms and talk about important features that can be used to

change their default behaviors.

There are three concerns that will dominate our discussions. The first is granularity –

the amount of work that a task does. The TBB library is efficient at scheduling tasks, but

we need to think about the size of the tasks that our algorithms will create since task

size can have a significant impact on performance, especially if the tasks are extremely

small or extremely large. The second issue is data locality. As discussed in detail in the

Preface, how an application uses caches and memory can make or break an application’s

performance. And the final issue is available parallelism. Our goal when using TBB

is to introduce parallelism of course, but we cannot do it blindly without considering

granularity and locality. Tuning an application’s performance is often an exercise in

balancing the trade-offs between these three concerns.

https://doi.org/10.1007/978-1-4842-4398-5_16
https://doi.org/10.1007/978-1-4842-4398-5_2

412

One of the key differences between the TBB algorithms and other interfaces like

Parallel STL is that the TBB algorithms provide hooks and features that let us influence

their behavior around these three concerns. The TBB algorithms are not just black boxes

over which we have no control!

In this chapter, we will first discuss task granularity and arrive at a rule of thumb

about how big is big enough when it comes to task size. We will then focus on the simple

loop algorithms and how to use Ranges and Partitioners to control task granularity

and data locality. We also have a brief discussion about determinism and its impact

on flexibility when tuning for performance. We conclude the chapter by turning our

attention to the TBB pipeline algorithm and discuss how its features affect granularity,

data locality, and maximum parallelism.

�Task Granularity: How Big Is Big Enough?
To let the TBB library have maximum flexibility in balancing the load across threads,

we want to divide the work done by an algorithm into as many pieces as possible. At the

same time, to minimize the overheads of work stealing and task scheduling, we want to

create tasks that are as large as possible. Since these forces oppose each other, the best

performance for an algorithm is found somewhere in the middle.

To complicate matters, the exact best task size varies by platform and application,

and therefore there is no exact guideline that applies universally. Still, it is useful to have

a ballpark number that we can use as a crude guideline. With these caveats in mind, we

therefore offer the following rule of thumb:

RULE OF THUMB  TBB tasks should be on average greater than 1 microsecond to
effectively hide the overheads of work stealing. This translates to several thousand
CPU cycles – if you prefer using cycles, we suggest a 10,000 cycle rule of thumb.

It’s important to keep in mind that not every task needs to be greater than 1

microsecond – in fact, that’s often not possible. In divide and conquer algorithms for

example, we might use small tasks to divide up the work and then use larger tasks at the

leaves. This is how the TBB parallel_for algorithms works. TBB tasks are used to both

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

413

split the range and to apply the body to the final subranges. The split tasks typically do

very little work, while the loop body tasks are much larger. In this case, we can’t make all

of the tasks larger than 1 microsecond, but we can aim to make the average of the task

sizes larger than 1 microsecond.

When we use algorithms like parallel_invoke or use TBB tasks directly, we are in

complete control of the size of our tasks. For example, in Chapter 2, we implemented a

parallel version of quicksort using a parallel_invoke and directed the recursive parallel

implementation to a serial implementation once the array size (and therefore task

execution time) fell below a cutoff threshold:

When we use simple loop algorithms, like parallel_for, parallel_reduce, and

parallel_scan, their range and partitioner arguments provide us with the control we

need. We talk about these in more detail in the next section.

�Choosing Ranges and Partitioners for Loops
As introduced in Chapter 2, a Range represents a recursively divisible set of values –

typically a loop’s iteration space. We use Ranges with the simple loop algorithms:

parallel_for, parallel_reduce, parallel_deterministic_reduce, and parallel_

scan. A TBB algorithm partitions its range and applies the algorithm’s body object(s)

to these subranges using TBB tasks. Combined with Partitioners, Ranges provide a

simple, but powerful way to represent iterations spaces and control how they should be

partitioned into tasks and assigned to worker threads. This partitioning can be used to

tune task granularity and data locality.

To be a Range, a class must model the Range Concept shown in Figure 16-1. A Range

can be copied, can be split using a splitting constructor, and may optionally provide a

proportional splitting constructor. It also must provide methods to check if it is empty

or divisible and provide a boolean constant that is true if it defines the proportional

splitting constructor.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://doi.org/10.1007/978-1-4842-4398-5_2
https://doi.org/10.1007/978-1-4842-4398-5_2

414

While we can define our own Range types, the TBB library provides the blocked

ranges shown in Figure 16-2, which will cover most situations. For example, we can

represent the iteration space of the following nested loop with a blocked_range2d<int,

int> r(i_begin, i_end, j_begin, j_end):

Figure 16-1.  The Range concept

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

415

For interested readers, we describe how to define a custom range type in the “Deep

in the Weeds” section at the end of this chapter.

�An Overview of Partitioners
Along with Ranges, TBB algorithms support Partitioners that specify how an algorithm

should partition its Range. The different Partitioner types are shown in Figure 16-3.

Figure 16-2.  The blocked ranges provided by the TBB library

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

416

A simple_partitioner is used to recursively divide a Range until its is_divisible

method returns false. For the blocked range types, this means the range will be divided

until its size is less than or equal to its grainsize. If we have highly tuned our grainsize

(and we will talk about this in the next section), we want to use a simple_partitioner

since it ensures that the final subranges respect the provided grainsizes.

An auto_partitioner uses a dynamic algorithm to sufficiently split a range to

balance load, but it does not necessarily divide a range as finely as is_divisible allows.

When used with the blocked range classes, the grainsize still provides a lower bound on

the size of the final chunks but is much less important since the auto_partitioner can

decide to use larger grainsizes. It is therefore commonly acceptable to use a grainsize

of 1 and just let the auto_partitioner determine the best grainsize. In TBB 2019, the

default Partitioner type used for parallel_for, parallel_reduce, and parallel_scan is

an auto_partitioner with a grainsize of 1.

A static_partitioner distributes the range over the worker threads as uniformly

as possible without the possibility for further load balancing. The work distribution and

mapping to threads is deterministic and only depends on the number of iterations, the

grainsize, and the number of threads. The static_partitioner has the lowest overhead

of all partitioners, since it makes no dynamic decisions. Using a static_partitioner

can also result in improved cache behavior since the scheduling pattern will be

Figure 16-3.  The partitioners provided by the TBB library

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

417

repeated across executions of the same loop. A static_partitioner however severely

restricts load balancing so it needs to be used judiciously. In section “Using a static_

partitioner,” we will highlight the strengths and weaknesses of static_partitioner.

The affinity_partitioner combines the best from auto_partitioner and

static_partitioner and improves cache affinity if the same partitioner object is reused

when a loop is re-executed over the same data set. The affinity_partitioner, like

static_partitioner, initially creates a uniform distribution but allows for additional

load balancing. It also keeps a history of which thread executes which chunk of the range

and tries to recreate this execution pattern on subsequent executions. If a data set fits

completely within the processors’ caches, repeating the scheduling pattern can result in

significant performance improvements.

�Choosing a Grainsize (or Not) to Manage Task Granularity
At the beginning of this chapter, we talked about how important task granularity can be.

When we use a blocked range type, we should always then highly tune our grainsize,

right? Not necessarily. Selecting the right grainsize when using a blocked range can be

extremely important – or almost irrelevant – it all depends on the Partitioner being used.

If we use a simple_partitioner, the grainsize is the sole determinant of the size

of the ranges that will be passed to the body. When a simple_partitioner is used, the

range is recursively subdivided until is_divisible returns false. In contrast, all of the

other Partitioners have their own internal algorithms for deciding when to stop dividing

ranges. Choosing a grainsize of 1 is typically sufficient for these other partitioners that

use is_divisible as only a lower bound.

To demonstrate the impact of grainsize on the different Partitioners, we can use a

simple parallel_for microbenchmark and vary the number of iterations in the loop (N),

the grainsize, the execution time per loop iteration, and the Partitioner.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

418

All performance results presented in this chapter were collected on a single socket

server with an Intel Xeon Processor E3-1230 with four cores supporting two hardware

threads per core; the processor has a base frequency of 3.4 GHz, a shared 8 MB L3

cache, and per-core 256 KB L2 caches. The system was running SUSE Linux Enterprise

Server 12. All samples were compiled using the Intel C++ Compiler 19.0 with Threading

Building Blocks 2019, using the compiler flags “–std=c++11 –O2 –tbb”.

Figure 16-5 shows the results of the program in Figure 16-4 when executed for N=218

using each of the Partitioner types available in TBB and with a range of grainsizes. We

can see that for a very small time_per_iteration of 10 ns, the simple_partitioner

approaches the other partitioner’s maximum performance when the grainsize is

>= 128. As the time-per-iteration increases, the simple_partitioner approaches the

maximum performance more quickly, since fewer iterations are needed to overcome

scheduling overheads.

Figure 16-4.  A function used to measure the time to execute a parallel_for with
N iterations using a partitioner (p), a grainsize (gs), and time-per-iteration (tpi)

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

419

For all of the Partitioner types shown in Figure 16-5 except simple_partitioner,

we see maximum performance from a grainsize of 1 until 4096. Our platform has 8

logical cores and therefore we need a grainsize less than or equal to 218/8 == 32,768 to

provide at least one chunk to each thread; consequently, all of the Partitioners begin

to tail off after a grainsize of 32768. We might also note that at a grainsize of 4096, the

auto_partitioner and affinity_partitioner show drops in performance in all of

the figures. This is because picking large grainsizes limits the choices available to these

algorithms, interfering with their ability to complete their automated partitioning.

This small experiment confirms that the grainsize is critically important for simple_

partitioner. We can use a simple_partitioner to manually select the size of our tasks,

but when we do so, we need to be more accurate in our choices.

A second take-away is that efficient execution, with a speedup close to the linear

upper bound, is seen when the body size approaches 1 us (10ns x 128 = 1.28 us). This

result reinforces the rule of thumb we presented earlier in the chapter! This should not

be surprising since experience and experiments like these are the reason for our rule

of thumb in the first place.

Figure 16-5.  Speedup for different Partitioner types and increasing grainsizes.
The total number of iterations in the loop being tested is 218 == 262144

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

420

�Ranges, Partitioners, and Data Cache Performance
Ranges and Partitioners can improve data cache performance by enabling cache-

oblivious algorithms or by enabling cache affinity. Cache-oblivious algorithms are

useful when a data set is too large to fit into the data caches, but reuse of data within

the algorithm can be exploited if it is solved using a divide and conquer approach.

In contrast, cache affinity is useful when the data set completely fits into the caches.

Cache affinity is used to repeatedly schedule the same parts of a range onto the same

processors – so that the data that fits in the cache can be accessed again from the same

cache.

�Cache-Oblivious Algorithms

A cache-oblivious algorithm is an algorithm that achieves good (or even optimal) use of

data caches without depending upon knowledge of the hardware’s cache parameters.

The concept is similar to loop tiling or loop blocking but does not require an accurate tile

or block size. Cache-oblivious algorithms often recursively divide problems into smaller

and smaller subproblems. At some point, these small subproblems begin to fit into a

machine’s caches. The recursive subdivision might continue all the way down to the

smallest possible size or there may be a cutoff point for efficiency – but this cutoff point

is not related to the cache size and typically creates patterns that access data sized well

below any reasonable cache size.

Because Cache-oblivious algorithms are not at all disinterested in cache
performance, we’ve heard many other suggested names, such as cache agnostic
since these algorithms optimize for whatever cache they encounter; and cache
paranoid, since they assume there can be infinite levels of caches. But cache
oblivious is the name used in the literature and it has stuck.

Here, we will use matrix transposition as an example of an algorithm that can benefit

from a cache-oblivious implementation. A non-cache-oblivious serial implementation

of matrix transposition is shown in Figure 16-6.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

421

For simplicity, let’s assume that four elements fit in a cache line in our machine.

Figure 16-7 shows the cache lines that will be accessed during the transposition of the

first two rows of the N×N matrix a. If the cache is large enough, it can retain all of the

cache lines accessed in b during that transposition of the first row of a and not need to

reload these during that transposition of the second row of a. But if it is not large enough,

these cache lines will need to be reloaded – resulting in a cache miss at each access to

the matrix b. In the figure, we show a 16×16 array but imagine if it was very large.

A cache-oblivious implementation of this algorithm reduces the amount of data

accessed between reuses of the same cache line or data item. As shown in Figure 16-8, if

we focus on transposing only a small block of matrix a before moving on to other blocks

of matrix a, we can reduce the number of cache lines that hold elements of b that need to

be retained in the cache to get performance gains due to cache line reuse.

Figure 16-6.  A serial implementation of a matrix transposition

b[j*N+0] a[0*N+j] b[j*N+1] a[1*N+j]

Figure 16-7.  The cache lines accessed when transposing the first two rows of the
matrix a. For simplicity, we show four items in each cache line.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

422

A serial implementation of a cache-oblivious implementation of matrix transposition

is shown in Figure 16-9. It recursively subdivides the problem along the i and j

dimensions and uses a serial for-loop when the range drops below a threshold.

Because the implementation alternates between dividing in the i and j direction,

the matrix a is transposed using the traversal pattern shown in Figure 16-10, first

completing block 1, then 2, then 3, and so on. If gs is 4 and our cache line size is 4,

b[j*N+0] a[0*N+j] b[j*N+1] a[1*N+j]

Figure 16-8.  Transposing a block at a time reduces the number of cache lines that
need to be retained to benefit from reuse

Figure 16-9.  A serial cache-oblivious implementation of a matrix transposition

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

423

we get the reuse within each block that we showed in Figure 16-8. But if our cache line

is 8 items instead of 4 (which is much more likely for real systems), we would get reuse

not only within the smallest blocks but also across blocks. For example, if the data cache

can retain all of the cache lines loaded during blocks 1 and 2, these will be reused when

transposing blocks 3 and 4.

This is the true power of cache-oblivious algorithms – we don’t need to exactly know

the sizes of the levels of the memory hierarchy. As the subproblems get smaller, they fit

in progressively smaller parts of the memory hierarchy, improving reuse at each level.

The TBB loop algorithms and the TBB scheduler are designed to specifically support

cache-oblivious algorithms. We can therefore quickly implement a cache-oblivious

parallel implementation of matrix transposition using a parallel_for, a blocked_

range2d, and a simple_partitioner as shown in Figure 16-11. We use a blocked_

range2d because we want the iteration space subdivided into two-dimensional blocks.

Figure 16-10.  A traversal pattern that computes the transpose for sub-blocks of a
before moving on to other blocks

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

424

And we use a simple_partitioner because we only get the benefits from reuse if the

blocks are subdivided down to sizes smaller than the cache size; the other Partitioner

types optimize load balancing and so may choose larger range sizes if those are sufficient

to balance load.

Figure 16-12 shows that the way the TBB parallel_for recursively subdivides ranges

creates the same blocks that we want for our cache-oblivious implementation. The

depth-first work and breadth-first stealing behavior of the TBB scheduler also means

that the blocks will execute in an order similar to the one shown in Figure 16-10.

Figure 16-11.  A cache-oblivious parallel implementation of matrix transposition
that uses a simple_partitioner, a blocked_range2d, and a grainsize (gs)

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

425

Figure 16-13 shows the performance of the serial cache-oblivious implementation in

Figure 16-9, the performance of an implementation using a 1D blocked_range, and the

performance of a blocked_range2d implementation similar to the one in Figure 16-11.

We implemented our parallel versions so that we could change the grainsize and

partitioner easily. The code for all of the versions is available in fig_16_11.cpp.

In Figure 16-13, we show the speedup of our implementations on an 8192×8192

matrix compared to the simple serial implementation from Figure 16-6.

r

r r

r r rr

split rows

split
columns

split
columns

Figure 16-12.  The recursive subdivision of the blocked2d_range provides
a division that matches the blocks we want for our cache-oblivious parallel
implementation

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

426

Matrix transposition is limited by the speed at which we can read and write data –

there is no compute whatsoever. We can see from Figure 16-13 that our 1D blocked_

range parallel implementations perform worse than our simple serial implementation,

regardless of the grainsize we use. The serial implementation is already limited by the

memory bandwidth – adding additional threads simply adds more pressure on the

already-stressed memory subsystem and does nothing to help matters.

Our serial cache-oblivious algorithm reorders memory accesses, reducing the

number of cache misses. It significantly outperforms the simple version. When we use

a blocked_range2d in our parallel implementation, we similarly get 2D subdivisions.

But as we see in Figure 16-13, only when we use a simple_partitioner does it fully

behave like a cache-oblivious algorithm. In fact, our cache-oblivious parallel algorithm

with a blocked_range2d and a simple_partitioner reduces pressure on the memory

hierarchy to such a degree that now using multiple threads can improve performance

over the serial cache-oblivious implementation!

Not all problems have cache-oblivious solutions, but many common problems do.

It is worth the time to research problems to see if a cache-oblivious solution is possible

and worthwhile. If so, the blocked range types and the simple_partitioner will make it

very easy to implement one with TBB algorithms.

Figure 16-13.  The speedup on our test machine for N=8192 with various
grainsizes and partitioners

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

427

�Cache Affinity

Cache-oblivious algorithms improve cache performance by breaking problems, which

have data locality but do not fit into the cache, down into smaller problems that do fit

into the cache. In contrast, cache affinity addresses the repeated execution of ranges

across data that already fit in the cache. Since the data fits in the cache, if the same

subranges are assigned to the same processors on subsequent executions, the cached

data can be accessed more quickly. We can use either an affinity_partitioner or a

static_partitioner to enable cache affinity for the TBB loop algorithms. Figure 16-14

shows a simple microbenchmark that adds a value to each element in a 1D array. The

function receives a reference to the Partitioner – we need to receive the Partitioner as a

reference to record history in the affinity_partitioner object.

To see the impact of cache affinity we can execute this function repeatedly, sending

in the same value for N and the same array a. When using an auto_partitioner, the

scheduling of the subranges to threads will vary from invocation to invocation. Even if

array a completely fits into the processors’ caches, the same region of a may not fall on

the same processor in subsequent executions:

If we use an affinity_partitioner however, the TBB library will record the task

scheduling and use affinity hints to recreate it on each execution (see Chapter 13 for

more information on affinity hints). Because the history is recorded in the Partitioner,

Figure 16-14.  A function that uses a TBB parallel_for to add a value to all of
the elements of a 1D array

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://doi.org/10.1007/978-1-4842-4398-5_13

428

we must pass the same Partitioner object on subsequent executions, and cannot simply

create a temporary object like we did with auto_partitioner:

Finally, we can also use a static_partitioner to create cache affinity. Because the

scheduling is deterministic when we use a static_partitioner, we do not need to pass

the same partitioner object for each execution:

We executed this microbenchmark on our test machine using N=100,000 and

M=10,000. Our array of doubles will be 100,000 × 8 = 800 K in size. Our test machine has

four 256 K L2 data caches, one per core. When using an affinity_partitioner, the

test completed 1.4 times faster than when using the auto_partitioner. When using a

static_partitioner, the test completed 2.4 times faster than when using the auto_

partitioner! Because the data was able to fit into the aggregate L2 cache size

(4 × 256 K = 1 MB), replaying the same scheduling had a significant impact on the

execution time. In the next section, we’ll discuss why the static_partitioner

outperformed the auto_partitioner in this case and why we shouldn’t be too surprised,

or excited about that. If we increase N to 1,000,000 elements, we no longer see a large

difference in the execution times since array a is now too large to fit in the caches of

our test system – in this case, re-thinking the algorithm to implement tiling/blocking to

exploit cache locality is necessary.

�Using a static_partitioner
The static_partitioner is the lowest overhead partitioner, and it quickly provides

a uniform distribution of a blocked range across the threads in an arena. Since the

partitioning is deterministic, it also can improve cache behavior when a loop or a series

of loops are executed repeatedly on the same range. In the previous section, we saw

that it out-performed affinity_partitioner significantly for our microbenchmark.

However, because it creates just enough chunks to provide one to each thread in the

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

429

arena, there is no opportunity for work stealing to balance the load dynamically. In

effect, the static_partitioner disables the TBB library’s work-stealing scheduling

approach.

There is a good reason though for TBB to include static_partitioner. As the

number of cores increase, random work stealing becomes costlier; especially when

transitioning from a serial part of an application to a parallel part. When the master

thread first spawns new work into the arena, all of the worker threads wake up and

as a thundering herd try to find work to do. To make matters worse, they don’t know

where to look and start randomly peeking into not only the master thread’s deque, but

each other’s local deques too. Some worker thread will eventually find the work in the

master and subdivide it, and another worker will eventually find this subdivided piece,

subdivide it, and so on. And after a while, things will settle down and all of the workers

will find something to do and will happily work from their own local deques.

But, if we already know that the workload is well balanced, that the system is not

oversubscribed, and all our cores are equally powerful – do we really need all of this

work-stealing overhead to just get a uniform distribution across the workers? Not if we

use a static_partitioner! It is designed for just this case. It pushes tasks that uniformly

distribute the range to the worker threads so that they don’t have to steal tasks at all.

When it applies, static_partitioner is the most efficient way to partition a loop.

But don’t get too excited about static_partitioner! If the workload is not

uniform or any of the cores are oversubscribed with additional threads, then using a

static_partitioner can wreck performance. For example, Figure 16-15 shows the

same microbenchmark configuration we used in Figure 16-5(c) to examine the impact of

grainsize on performance. But Figure 16-15 shows what happens if we add a single extra

thread running on one of the cores. For all but the static_partitioner, there is a small

impact due to the extra thread. The static_partitioner however assumes that all of the

cores are equally capable and uniformly distributes the work among them. As a result, the

overloaded core becomes a bottleneck and the speedup takes a huge performance hit.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

430

Figure 16-16 shows a loop where the work increases with each iteration. If a static_

partitioner is used, the thread that gets the lowest set of iterations will have much less

work to do than the unlucky thread that gets the highest set of iterations.

Figure 16-16.  A loop where the work increases in each iteration

Figure 16-15.  Speedup for different Partitioner types and increasing grainsizes
when an additional thread executes a spin loop in the background. The time-
per-iteration is set to 1 us.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

431

If we run the loop in Figure 16-16 ten times using each partitioner type with N=1000,

we see the following results:

auto_partitioner = 0.629974 seconds

affinity_partitioner = 0.630518 seconds

static_partitioner = 1.18314 seconds

The auto_partitioner and affinity_partitioner are able to rebalance the load

across the threads, while the static_partitioner is stuck with its initial uniform, but

unfair distribution.

The static_partitioner is therefore almost exclusively useful in High Performance

Computing (HPC) applications. These applications run on systems with many cores and

often in batch mode, where a single application is run at a time. If the work load does

not need any dynamic load balancing, then static_partitioner will almost always

outperform the other partitioners. Unfortunately, well-balanced workloads and single-

user, batch-mode systems are the exception and not the rule.

�Restricting the Scheduler for Determinism
In Chapter 2, we discussed Associativity and floating-point types. We noted that any

implementation of floating-point numbers is an approximation, and so parallelism

can lead to different results when we depend on properties like associativity or

commutativity – those results aren’t necessarily wrong; they are just different. Still, in

the case of reduction, TBB provides a parallel_deterministic_reduce algorithm if we

want to ensure that we get the same results for each execution on the same input data

when executed on the same machine.

As we might guess, parallel_deterministic_reduce only accepts simple_

partitioner or static_partitioner, since the number of subranges is deterministic

for both of these partitioner types. The parallel_deterministic_reduce also always

executes the same set of split and join operations on a given machine no matter

how many threads dynamically participate in execution and how tasks are mapped

to threads – the parallel_reduce algorithm may not. The result is that parallel_

deterministic_reduce will always return the same result when run on the same

machine – but sacrifices some flexibility to do so.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://doi.org/10.1007/978-1-4842-4398-5_2

432

Figure 16-17 shows the speedup for the pi calculation example from Chapter 2 when

implemented using parallel_reduce (r-auto, r-simple, and r-static) and parallel_

deterministic_reduce (d-simple and d-static). The maximum speedup is similar

for both; however, the auto_partitioner performs very well for parallel_reduce,

and that is simply not an option with parallel_deterministic_reduce. If needed, we

can implement a deterministic version of our benchmark but then must deal with the

complications of choosing a good grainsize.

While parallel_deterministic_reduce will have some additional overhead

because it must perform all of the splits and joins, this overhead is typically small. The

bigger limitation is that we cannot use any of the partitioners that automatically find a

chunk size for us.

Figure 16-17.  Speedup for the pi example from Chapter 2 using parallel_reduce
with an auto_partitioner (r-auto), a simple_partitioner (r-simple), and a
static_partitioner (r-static); and parallel_deterministic_reduce with a
simple_partitioner (d-simple) and a static_partitioner (d-static).
We show results for grainsizes ranging from 1 to N.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://doi.org/10.1007/978-1-4842-4398-5_2
https://doi.org/10.1007/978-1-4842-4398-5_2

433

�Tuning TBB Pipelines: Number of Filters, Modes,
and Tokens
Just as with the loop algorithms, the performance of TBB pipelines is impacted by

granularity, locality, and available parallelism. Unlike the loop algorithms, TBB pipelines

do not support Ranges and Partitioners. Instead, the controls used to tune pipelines

include the number of filters, the filter execution modes, and the number of tokens

passed to the pipeline when it is run.

TBB pipeline filters are spawned as tasks and scheduled by the TBB library, and

therefore, just as with the subranges created by the loop algorithms, we want the

filter bodies to execute long enough to mitigate overheads but we also want ample

parallelism. We balance these concerns by how we break our work into filters. The filters

should also be well balanced in execution time since the slowest serial stage will be a

bottleneck.

As described in Chapter 2, pipeline filters are also created with an execution mode:

serial_in_order, serial_out_of_order, or parallel. When using serial_in_order

mode, a filter can process at most one item at a time, and it must process them in the

same order that the first filter generated them in. A serial_out_of_order filter is

allowed to execute the items in any order. A parallel filter is allowed to execute on

different items in parallel. We will look at how these different modes limit performance

later in this section.

When run, we need to provide a max_number_of_live_tokens argument to a TBB

pipeline, which constrains the number of items that are allowed to flow through the

pipeline at any given time.

Figure 16-18 shows the structure of the microbenchmarks we will use to explore

these different controls. In the figure, both pipelines are shown with eight filters – but

we will vary this number in our experiments. The top pipeline has filters that use the

same execution mode, and all have the same spin_time – so this represents a very well-

balanced pipeline. The bottom pipeline has one filter than spins for imbalance * spin_

time – we will vary this imbalance factor to see the impact of imbalance on speedup.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://doi.org/10.1007/978-1-4842-4398-5_2

434

�Understanding a Balanced Pipeline
Let’s first consider how well our rule of thumb for task sizes applies to pipelines. Is a filter

body of 1 microsecond sufficient to mitigate overheads? Figure 16-19 shows the speedup

of our balanced pipeline microbenchmark when fed 8000 items while using only a single

token. The results are shown for various filter execution times. Since there is only a single

token, only a single item will be allowed to flow through the pipeline at a time. The result

is a serialized execution of the pipeline (even when the filter execution mode is set to

parallel).

Figure 16-19.  The overhead seen by different filter execution modes when
executing a balanced pipeline with eight filters, a single token, and 8000 items on
our test machine

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
imbalance * spin_time

mode
spin_time

mode
spin_time

mode
spin_time

mode
spin_time

Figure 16-18.  A balanced pipeline microbenchmark and an imbalanced pipeline
microbenchmark

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

435

When compared to a true serial execution, where we execute the proper number

of spins in a for-loop, we see the impact of managing the work as a TBB pipeline. In

Figure 16-19, we see that when the spin_time approaches 1 microsecond, the overhead

is fairly low, and we get very close to the execution time of the true serial execution. It

seems that our rule of thumb applies to a TBB pipeline too!

Now, let’s look at how the number of filters affects performance. In a serial pipeline,

the parallelism comes only from overlapping different filters. In a pipeline with parallel

filters, parallelism is also obtained by executing the parallel filters simultaneously on

different items. Our target platform supports eight threads, so we should expect at most a

speedup of 8 for a parallel execution.

Figure 16-20 shows the speedup of our balanced pipeline microbenchmark when

setting the number of tokens to 8. For both serial modes, the speedup increases with the

number of filters. This is important to remember, since the speedup of a serial pipeline

does not scale with the data set size like the TBB loop algorithms do. The balanced

pipeline that contains all parallel filters however has a speedup of 8 even with only a

single filter. This is because the 8000 input items can be processed in parallel in that

single filter – there is no serial filter to become a bottleneck.

In Figure 16-21, we see the speedup for our balanced pipeline when using eight

filters but with varying numbers of tokens. Because our platform has eight threads,

if we have fewer than eight tokens, there are not enough items in flight to keep all of

Figure 16-20.  The speedup achieved by the different filter execution modes when
executing a balanced pipeline with eight tokens, 8000 items, and an increasing
number of filters. The filters spin for 100 microseconds.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

436

the threads busy. Once we have at least eight items in the pipeline, all threads can

participate. Increasing the number of tokens past eight has little impact on performance.

�Understanding an Imbalanced Pipeline
Now, let’s look at the performance of the imbalanced pipeline from Figure 16-18. In this

microbenchmark, all of the filters spin for spin_time seconds except for one of the filters

that spins for spin_time * imbalance seconds. The work required to process N items as

they pass through our imbalanced pipeline with eight filters is therefore

	 T N spin time spin time imbalance1 7= * * + *()_ _ 	

In the steady state, a serial pipeline is limited by the slowest serial stage. The critical

path length of this same pipeline when the imbalanced filter executes with serial mode is

equal to

	 T N spin time spin time imbalance¥ = * *()max _ _, 	

Figure 16-22 shows the results of our imbalanced pipeline when executed on our

test platform with different imbalance factors. We also include the theoretical maximum

speedup, labeled as “work/critical path,” calculated as

Figure 16-21.  The speedup achieved by the different filter execution modes when
executing a balanced pipeline with eight filters, 8000 items, and an increasing
number of tokens. The filters spin for 100 microseconds.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

437

	
Speedupmax

_ _

max _
=

* + *7 spin time spin time imbalance

spin time, spinn time imbalance_ *() 	

Not unexpectedly, Figure 16-22 shows that serial pipelines are limited by their

slowest filters – and the measured results are close to what our work/critical path length

calculation predicts.

In contrast, the parallel pipeline in Figure 16-22 is shown to not be limited by the

slowest stage because the TBB scheduler can overlap the execution of the slowest

filter with other invocations of that same filter. You may be wondering if increasing the

number of tokens beyond eight will help, but in this case, no. Our test system has only

eight threads, so we can at most overlap eight instances of the slowest filter. While there

may be cases where a temporary load imbalance can be smoothed out by having more

tokens than the number of threads, in our microbenchmark where the imbalance is

a constant factor, we are in fact limited by the critical path length and the number of

threads – and any number of additional tokens will not change that.

However, there are algorithms in which an insufficient number of tokens will hamper

the automatic load balancing feature of the work-stealing TBB scheduler. This is the

case when the stages are not well balanced and there are serial stages stalling the pipe.

A. Navarro et al. demonstrated (see the “For More Information” section at the end of the

Figure 16-22.  The speedup achieved by the different filter execution modes when
executing an imbalanced pipeline with eight filters, 8000 items, and different
imbalance factors. Seven of the filters spin for 100 microseconds, and the other
spins for imbalance * 100 microseconds.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

438

chapter) that a pipeline algorithm implemented in TBB can yield optimal performance if

appropriately configured with the right number tokens. She devised an analytical model

based on queueing theory that helps in finding this key parameter. A major take-away

of the paper is that when the number of tokens is sufficiently large, the work stealing

in TBB emulates a global queue that is able to feed all the threads (in queueing theory,

a theoretical centralized system with a single global queue served by all the resources

is known to be the ideal case). However, in reality, a global single queue would exhibit

contention when it is served by a large number of threads. The fundamental advantage

of the TBB implementation is that it resorts to a distributed solution with one queue

per thread that behaves as a global queue thanks to the work-stealing scheduler. This is,

the decentralized TBB implementation performs like the ideal centralized system but

without the bottleneck of the centralized alternative.

�Pipelines and Data Locality and Thread Affinity
With the TBB loop algorithms, we used the blocked range types affinity_partitioner

and static_partitioner to tune cache performance. The TBB parallel_pipeline

function and the pipeline class have no similar options. But all is not lost! The execution

order built into TBB pipelines is designed to enhance temporal data locality without the

need to do anything special.

When a TBB master or worker thread completes the execution of a TBB filter, it

executes the next filter in the pipeline unless that filter cannot be executed due to

execution mode constraints. For example, if a filter f0 generates an item i and its output

is passed to the next filter f1, the same thread that ran f0 will move on to execute f1 –

unless that next filter is a serial_out_of_order filter and it is currently processing

something else, or if it is a serial_in_order filter and item i is not the next item in

line. In those cases, the item is buffered in the next filter and the thread will look for

other work to do. Otherwise to maximize locality, the thread will follow the data it just

generated and process that item by executing the next filter.

Internally, the processing of one item in the filter f0 is implemented as a task

executed by a thread/core. When the filter is done, the task recycles itself (see task

recycling in Chapter 10) to execute the next filter f1. Essentially, the dying task f0

reincarnates into the new f1 task, bypassing the scheduler – the same thread/core that

executed f0 will also execute f1. In terms of data locality and performance, this is way

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://doi.org/10.1007/978-1-4842-4398-5_10

439

better than what a regular/naive pipeline implementation would do: filter f0 (served by

one or several threads) enqueuing the item in filter f1’s queue (where f1 is also served

by one or several threads). This naive implementation wrecks locality because the item

processed by filter f0 on one core is likely to be processed on a different core by filter f1.

In TBB, if f0 and f1 fulfil the conditions mentioned previously, this will never happen. As

a result, the TBB pipeline is biased toward finishing items that are already in-flight before

injecting more items at the beginning of the pipeline; this behavior not only exploits data

locality but uses less memory by reducing the size of the queues that are necessary for

serial filters.

Unfortunately, TBB pipeline filters do not support affinity hints. There is no way

to hint that we want a particular filter to execute on a particular worker thread. But,

perhaps surprisingly, there is a hard affinity mechanism, thread_bound_filter. Using

thread_bound_filter however requires using the more error-prone, type-unsafe

tbb::pipeline interface, which we describe as part of the next section, “Deep in the

Weeds.”

�Deep in the Weeds
This section covers some features that are rarely used by TBB users, but when needed,

they can be extremely helpful. You might choose to skip this section and read it on

demand if you ever need to create your own Range type or use a thread_bound_filter

in a TBB pipeline. Or, if you really want to know as much as possible about TBB, read on!

�Making Your Own Range Type
As mentioned earlier in this chapter, the blocked range types capture most common

scenarios. Over our years of using TBB, we have personally only encountered a handful

of situations in which it made sense to implement our own Range type. But if we need

to, we can create our own range types by implementing classes that model the Range

Concept described in Figure 16-1.

As an example of a useful but atypical range type, we can revisit the quicksort

algorithm again, as shown in Figure 16-23.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

440

Here, we will parallelize quicksort not as a recursive algorithm at all, but instead

use a parallel_for and our own custom ShuffleRange. Our pforQuicksort

implementation is shown in Figure 16-24.

Figure 16-23.  The implementation of a serial quicksort

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

441

Figure 16-24.  Implementing a parallel quicksort using a parallel_for and a
custom ShuffleRange that implements a Range

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

442

In Figure 16-24, we can see that the parallel_for body lambda expression is

the base case, where we call a serialQuicksort. We also use a simple_partitioner,

which means that our range will be recursively divided until it returns false from its

is_divisible method. All of the shuffling magic of quicksort therefore needs to happen

in the ShuffleRange class as it splits itself into subranges. The class definition of

ShuffleRange is also shown in Figure 16-24.

The ShuffleRange models the Range concept, defining a copy constructor, a splitting

constructor, an empty method, an is_divisible method, and an is_splittable_in_

proportion member variable that is set to false. This class also holds begin and end

iterators that delineate the elements of the array and a cutoff value.

Let’s start with empty. The range is empty if its begin iterator is at or past its end

iterator.

We use our cutoff value to determine if the range should be further divided.

Remember, we are using a simple_partitioner, so the parallel_for will keep dividing

the ranges until is_divisible returns false. So, the ShuffleRange is_divisible

implementation is just a check against this cutoff value.

Ok, now we can look at the heart of our implementation, the ShuffleRange splitting

constructor shown in Figure 16-24. It receives a reference to the original ShuffleRange

r that needs to be split and a tbb::split object that is used to distinguish this

constructor from the copy constructor. The body of the constructor is the basic pivot and

shuffle algorithm. It updates the original range r to be the left partition and the newly

constructed ShuffleRange to be the right partition.

Executing our pforQuicksort on our test platform yields performance results

that are very similar to the parallel_invoke implementation from Chapter 2. But this

example shows just how flexible the Range Concept is. We may think of the recursive

division of the range as negligible in a parallel_for, but in our pforQuicksort

implementation it is not. We rely on the splitting of the ShuffleRange to do a substantial

portion of the work.

�The Pipeline Class and Thread-Bound Filters
As we noted in our earlier discussions in this chapter, affinity hints are not supported

by tbb::parallel_pipeline. We cannot express that we prefer that a particular filter

execute on a specific thread. However, there is support for thread-bound filters if we

use the older, thread-unsafe tbb::pipeline class! These thread-bound filters are not

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://doi.org/10.1007/978-1-4842-4398-5_2

443

processed at all by TBB worker threads; instead, we need to explicitly process items in

these filters by calling their process_item or try_process_item functions directly.

Typically, a thread_bound_filter is not used to improve data locality, but instead

it is used when a filter must be executed on a particular thread – perhaps because

only that thread has the rights to access the resources required to complete the action

implemented by the filter. Situations like this can arise in real applications when, for

example, a communication or offload library requires that all communication happen

from a particular thread.

Let’s consider a contrived example that mimics this situation, where only the main

thread has access to an opened file. To use a thread_bound_filter, we need to use the

type unsafe class interfaces of tbb::pipeline. We cannot create a thread_bound_filter

when using the tbb::parallel_pipeline function. We will soon see why it would

never make sense to use a thread_bound_filter with the parallel_pipeline interface

anyway.

In our example, we create three filters. Most of our filters will inherit from

tbb::filter, overriding the operator() function:

Our SourceFilter, shown in Figure 16-25, is a serial_in_order filter that inherits

from tbb::filter and generates a series of numbers. The type unsafe interfaces

implemented by tbb::pipeline require that we return the output of each filter as a void

*. NULL is used to indicate the end of the input stream. We can easily see why the newer

parallel_pipeline interface is preferred when it applies.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

444

The second filter type we create, MultiplyFilter, multiplies the incoming value by 2

and returns it. It too will be a serial_in_order filter and inherit from tbb::filter.

Finally, BadWriteFilter implements a filter that will write the output to a file. This

class also inherits from tbb::filter as shown in Figure 16-25.

The function fig_16_25 puts all of these classes together – while purposely

introducing an error. It creates a three-stage pipeline using our filter classes and the

tbb::pipeline interface. It creates a pipeline object and then adds each of the filters,

one after the other. To run the pipeline, it calls void pipeline::run(size_t max_

number_of_live_tokens) passing in eight tokens.

As we should expect when we run this example, the BadWriteFilter wf sometimes

executes on a thread other than the master, so we see the output

Error!

Done.

While this example may appear contrived, remember that we are trying to mimic

real situations when execution on a specific thread is required. In this spirit, let’s assume

that we cannot simply make the ofstream accessible to all of the threads, but instead we

must do the writes on the main thread.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

445

Figure 16-25.  A buggy example that fails if the BadWriteFilter tries to write to
output from a worker thread

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

446

Figure 16-26 shows how we can use a thread_bound_filter to work around this

limitation. To do so, we create a filter class, ThreadBoundWriteFilter, that inherits from

thread_bound_filter. In fact, other than changing what the class inherits from, the

implementation of the filter class is the same as BadWriteFilter.

While the classes implementations are similar, our use of the filter must change

significantly as shown in function fig_16_26. We now run the pipeline from a separate

thread – we need to do this, because we must keep the main thread available to service

the thread-bound filter. We also add a while-loop that repeatedly calls the process_item

function on our ThreadBoundWriteFilter object. It is here that the filter is executed.

The while-loop continues until a call to process_item returns tbb::thread_bound_

filter::end_of_stream indicating that there are no more items to process.

Running the example in Figure 16-26, we see that we have fixed our problem:

Done.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

447

Figure 16-26.  An example that writes to output only from the master thread

�Summary
In this chapter, we delved deeper into the features that can be used to tune TBB

algorithms. We formed our discussion around the three common concerns when tuning

TBB applications: task granularity, available parallelism, and data locality.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

448

For the loop algorithms, we focused on the blocked range types and the different

Partitioner types. We found that we can use 1 microsecond as a general guide for how

long tasks should execute to mitigate the overheads of task scheduling. This rough

guideline holds true for both loop algorithms, like parallel_for, and also for the filter

sizes in parallel_pipeline.

We discussed how the blocked range types can be used to control granularity

but also to optimize for the memory hierarchy. We used blocked_range2d and a

simple_partitioner to implement a cache-oblivious implementation of matrix

transposition. We then showed how affinity_partitioner or static_partitioner

can be used to replay the scheduling of range so that the same pieces of data are

accessed repeatedly by the same threads. We showed that while static_partitioner

is the best performing partitioner for well-balanced workloads when executing in batch

mode, as soon as the load is imbalanced or the system is oversubscribed, it suffers from

its inability to dynamically balance the load through work stealing. We then briefly

revisited determinism, describing how deterministic_parallel_reduce can provide

deterministic results, but only by forcing us to use a simple_partitioner and carefully

choose a grainsize, or use a static_partitioner and sacrifice dynamic load balancing.

We next turned our attention to parallel_pipeline and how the number of filters,

the execution modes, and the number of tokens impact performance. We discussed

how balanced and imbalanced pipelines behave. Finally, we also noted that while TBB

pipelines do not offer hooks for us to tune for cache affinity, it is designed to enable

temporal locality by having threads follow items as they flow through a pipeline.

We concluded the chapter with some advanced topics, including how to create our

own Range types and how to use a thread_bound_filter.

�For More Information
For more information on cache-oblivious algorithms:

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar

Ramachandran. 2012. Cache-Oblivious Algorithms. ACM Trans.

Algorithms 8, 1, Article 4 (January 2012), 22 pages.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

449

For a more in-depth discussion on pipeline parallelism:

Angeles Navarro et al. “Analytical Modeling of Pipeline

Parallelism,” ACM-IEEE International Conference on Parallel

Architectures and Compilation Techniques (PACT’09). 2009.

For more information on the thundering herd problem:

https://en.wikipedia.org/wiki/Thundering_herd_problem

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 16 Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism

https://en.wikipedia.org/wiki/Thundering_herd_problem
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 16: Tuning TBB Algorithms: Granularity, Locality, Parallelism, and Determinism
	Task Granularity: How Big Is Big Enough?
	Choosing Ranges and Partitioners for Loops
	An Overview of Partitioners
	Choosing a Grainsize (or Not) to Manage Task Granularity
	Ranges, Partitioners, and Data Cache Performance
	Cache-Oblivious Algorithms
	Cache Affinity

	Using a static_partitioner
	Restricting the Scheduler for Determinism

	Tuning TBB Pipelines: Number of Filters, Modes, and Tokens
	Understanding a Balanced Pipeline
	Understanding an Imbalanced Pipeline
	Pipelines and Data Locality and Thread Affinity

	Deep in the Weeds
	Making Your Own Range Type
	The Pipeline Class and Thread-Bound Filters

	Summary
	For More Information

