
373
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_14

CHAPTER 14

Using Task Priorities
The Threading Building Blocks scheduler is not a real-time scheduler, and therefore it is

not suitable for use in hard real-time systems. In real-time systems, a task can be given a

deadline by which it must complete, and the usefulness of the task degrades if it misses

its deadline. In hard real-time systems, a missed deadline can lead to a total system

failure. In soft real-time systems, a missed deadline is not catastrophic but leads to a

decrease in quality of service. The TBB library has no support for assigning deadlines

to tasks, but it does have support for task priorities. These priorities might be of use in

applications that have soft real-time requirements. Whether or not they are sufficient

requires understanding both the soft real-time demands of the application and the

properties of TBB tasks and task priorities.

Beyond soft real-time use, task priorities can have other uses as well. For example,

we may want to prioritize some tasks over others because doing so will improve

performance or responsiveness. Perhaps we want to prioritize tasks that free memory

over tasks that allocate memory, so that we reduce the memory footprint of our

application. Or perhaps, we want to prioritize tasks that touch data already in our caches

over tasks that will load new data into our caches.

In this chapter, we describe task priorities as supported by TBB tasks and the TBB

task scheduler. Readers that are considering TBB for soft real-time applications can use

this information to determine if TBB is sufficient for their requirements. Other readers

might find this information useful if needed to implement performance optimizations

that benefit from task priorities.

https://doi.org/10.1007/978-1-4842-4398-5_14

374

�Support for Non-Preemptive Priorities in the TBB
Task Class
Just like with the support for task affinities described in Chapter 13, TBB’s support for

priorities is enabled by functions in the low-level task class. The TBB library defines

three priority levels: priority_normal, priority_low, and priority_high as shown in

Figure 14-1.

In general, TBB executes tasks that are higher priority before tasks that are lower

priority. But there are caveats.

The most important caveat is that TBB tasks are executed non-preemptively by

TBB threads. Once a task has started to execute, it will execute to completion – even if a

higher priority task has been spawned or enqueued. While this behavior may seem like

a weakness, since it may delay the application’s switch to higher priority tasks, it is also

a strength because it helps us avoid some dangerous situations. Imagine if, for example,

a task t0 holds a lock on a shared resource and then higher priority tasks are spawned.

If TBB doesn’t allow t0 to finish and release its lock, the higher priority tasks can deadlock

if they block on the acquisition of a lock on this same resource. A more complicated

but similar issue, priority inversion, was famously the cause of problems with the Mars

Pathfinder rover in the late 1990s. In “What Happened on Mars?”, Mike Jones suggests

priority inheritance as a way to address these situations. With priority inheritance, a task

Figure 14-1.  The types and functions in class task that support priorities

Chapter 14 Using Task Priorities

https://doi.org/10.1007/978-1-4842-4398-5_13

375

that blocks higher priority tasks inherits the priority of the highest task it blocks. The TBB

library does not implement priority inheritance or other complicated approaches since

it avoids many of these issues due to its use of non-preemptive priorities.

The TBB library does not provide any high-level abstraction for setting thread
priorities. Because there is no high-level support in TBB for thread priorities, if we want

to set thread priorities, we need to use OS-specific code to manage them – just as we

did for thread-to-core affinity in Chapter 13. And just as with thread-to-core affinity, we

can use task_scheduler_observer objects and invoke these OS-specific interfaces in

the callbacks as threads enter and exit the TBB task scheduler, or a specific task arena.

However, we warn developers to use extreme caution when using thread priorities.

If we introduce thread priorities, which are preemptive, we also invite back in all of the

known pathologies that come with preemptive priorities, such as priority inversion.

Critical Rule of Thumb  Do not set different priorities for threads operating in the
same arena. Weird things can and will happen because TBB treats threads within
an arena as equals.

Beyond the non-preemptive nature of TBB task execution, there are a few other

important limitations to mention about its support for task priorities. First, changes may

not come into effect immediately on all threads. It’s possible that some lower priority

tasks may start executing even if there are higher priority tasks present. Second, worker

threads may need to migrate to another arena to gain access to the highest priority

tasks, and as we’ve noted before in Chapter 12, this can take time. Once workers have

migrated, this may leave some arenas (that do not have high priority tasks) without

worker threads. But, because master threads cannot migrate, the master threads will

remain in those arenas, and they themselves are not stalled – they can continue to

execute tasks from their own task arena even if they are of a lower priority.

Task priorities are not hints like TBB’s support for task-to-thread affinity described in

Chapter 13. Still, there are enough caveats to make task priorities weaker in practice than

we may desire. In addition, the support for only three priority levels, low, normal, and

high, can be quite limiting in complex applications. Even so, we will continue in the next

section by describing the mechanics of using TBB task priorities.

Chapter 14 Using Task Priorities

https://doi.org/10.1007/978-1-4842-4398-5_13
https://doi.org/10.1007/978-1-4842-4398-5_12
https://doi.org/10.1007/978-1-4842-4398-5_13

376

�Setting Static and Dynamic Priorities
Static priorities can be assigned to individual tasks that are enqueued to the shared

queue (see enqueued tasks in Chapter 10). And dynamic priorities can be assigned

to groups of tasks, through either the set_group_priority function or through

a task_group_context object’s set_priority function (see the task_group_context

sidebar).

TASK_GROUP_CONTEXT: EVERY TASK BELONGS TO A GROUP

A task_group_context represents a group of tasks that can be canceled, or have their

priority level set, together. All tasks belong to some group, and a task can be a member of only

one of these groups at a time.

In Chapter 10, we allocated TBB tasks using special functions such as allocate_root().

There is an overload of this function that lets us assign a task_group_context to a newly

allocated root task:

A task_group_context is also an optional argument to TBB high-level algorithms and to

the TBB flow graph, for example:

We can assign groups at the task level during allocation but also through the higher-level

interfaces, such as TBB algorithms and flow graphs. There are other abstractions, such as

task_group, that let us group tasks for execution purposes. The purpose of task_group_

context groups is to support cancellation, exception handling, and priorities.

Chapter 14 Using Task Priorities

https://doi.org/10.1007/978-1-4842-4398-5_10
https://doi.org/10.1007/978-1-4842-4398-5_10

377

When we use the task::enqueue function to provide a priority, the priority affects

only that single task and cannot be changed afterward. When we assign a priority to a

group of tasks, the priority affects all of the tasks in the group and the priority can be

changed at any time by subsequent calls to task::set_group_priority or task_group_

context::set_priority.

The TBB scheduler tracks the highest priority of ready tasks, including both

enqueued and spawned tasks, and postpones (the earlier caveats aside) execution of

lower priority tasks until all higher priority tasks are executed. By default, all tasks and

groups of tasks are created with priority_normal.

�Two Small Examples
Figure 14-2 shows an example that enqueues 25 tasks on a platform with P logical

cores. Each task actively spins for a given duration. The first task in the task_

priority function is enqueued with normal priority and is set to spin for roughly 500

milliseconds. The for-loop in the function then creates P low priority, P normal priority,

and P high priority tasks, each of which will actively spin for roughly 10 ms. When each

task executes, it records a message into a thread-local buffer. The high-priority task

ids are prefixed with H, the normal task ids with N and the low priority tasks ids with

L. At the end of the function, all of the thread local buffers are printed, providing an

accounting of the order in which tasks were executed by the participating threads. The

complete implementation of this example is available in the Github repository.

Chapter 14 Using Task Priorities

378

Figure 14-2.  Enqueuing tasks with different priorities

Chapter 14 Using Task Priorities

379

Executing this example on a system with eight logical cores, we see the following

output:

N:0 ← thread 1

H:7 H:5 N:3 L:7 ← thread 2

H:2 H:1 N:8 L:5 ← thread 3

H:6 N:1 L:3 L:2 ← thread 4

H:0 N:2 L:6 L:4 ← thread 5

H:3 N:4 N:5 L:0 ← thread 6

H:4 N:7 N:6 L:1 ← thread 8

In this output, each row represents a different TBB worker thread. For each thread,

the tasks it executes are ordered from left to right. The master thread never participates

in the execution of these tasks at all, since it doesn’t call wait_for_all, and so we only

see seven rows. The first thread executes only the first long, normal priority task that

executed for 500 milliseconds. Because TBB tasks are non-preemptive, this thread

cannot abandon this task once it starts, so it continues to execute this task even when

higher priority tasks become available. Otherwise though, we see that even though the

for-loop mixes together the high, normal, and low priority task enqueues, the high

priority tasks are executed first by the set of worker threads, then the normal tasks and

finally the low priority tasks.

Figure 14-3 shows code that executes two parallel_for algorithms in parallel

using two native threads, t0 and t1. Each parallel_for has 16 iterations and uses a

simple_partitioner. As described in more detail in Chapter 16, a simple_partitioner

divides the iteration space until a fixed grainsize is reached, the default being a grainsize

of 1. In our example, each parallel_for will result in 16 tasks, each of which will spin

for 10 milliseconds. The loop executed by thread t0 first creates a task_group_context

and sets its priority to priority_high. The loop executed by the other thread, t1, uses a

default task_group_context that has a priority_normal.

Chapter 14 Using Task Priorities

https://doi.org/10.1007/978-1-4842-4398-5_16

380

An example output from the sample when executed on a platform with eight logical

cores follows:

Normal

High

High

High

High

High

High

Figure 14-3.  Executing algorithms with different priorities

Chapter 14 Using Task Priorities

381

Normal

High

High

High

High

High

High

High

High

Normal

High

High

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Normal

Initially, there are seven “High” tasks executed for every one “Normal” task. This is

because thread t1, which started the parallel_for with normal priority, cannot migrate

away from its implicit task arena. It can only execute the “Normal” tasks. The other seven

threads however, execute only the “High” tasks until they are all completed. Once the

high priority tasks are completed, the worker threads can migrate to thread t1’s arena

and help out.

Chapter 14 Using Task Priorities

382

�Implementing Priorities Without Using TBB Task
Support
What if low, normal, and high are not enough? One workaround is to spawn generic

wrapper tasks that look to a priority queue, or other data structure, to find the work they

should do. With this approach, we rely on the TBB scheduler to distribute these generic

wrapper tasks across the cores, but the tasks themselves enforce priorities through a

shared data structure.

Figure 14-4 shows an example that uses a task_group and a concurrent_priority_

queue. When a piece of work needs to be done, two actions are taken: (1) a description

of the work is pushed into the shared queue and (2) a wrapper task is spawned in the

task_group that will pop and execute an item from the shared queue. The result is that

there is exactly one task spawned per work item – but the specific work item that a task

will process is not determined until the task executes.

Chapter 14 Using Task Priorities

383

A concurrent_priority_queue by default relies on operator< to determine ordering

and so when we define work_item::operator< as shown in Figure 14-4, we will see an

output that shows the items executing in decreasing order, from 15 down to 0:

WorkItem: 15

WorkItem: 14

WorkItem: 13

WorkItem: 12

Figure 14-4.  Using a concurrent priority queue to feed work to wrapper tasks

Chapter 14 Using Task Priorities

384

WorkItem: 11

WorkItem: 10

WorkItem: 9

WorkItem: 8

WorkItem: 7

WorkItem: 6

WorkItem: 5

WorkItem: 4

WorkItem: 3

WorkItem: 2

WorkItem: 1

WorkItem: 0

If we change the operator to return true if (priority > b.priority), then we will

see the tasks execute in increasing order from 0 to 15.

Using the generic-wrapper-task approach provides increased flexibility because

we have complete control over how priorities are defined. But, at least in Figure 14-4,

it introduces a potential bottleneck – the shared data structure accessed concurrently

by the threads. Even so, when TBB task priorities are insufficient we might use this

approach as a backup plan.

�Summary
In this chapter, we provided an overview of task priority support in TBB. Using

mechanisms provided by class task, we can assign low, normal, and high priorities

to tasks. We showed that we can assign static priorities to tasks that are enqueued and

dynamic priorities to groups of tasks using task_group_context objects. Since TBB tasks

are executed non-preemptively by the TBB worker threads, the priorities in TBB are also

non-preemptive. We briefly discussed the benefits and drawbacks of non-preemptive

priorities, and also highlighted some of the other caveats we need to be aware of when

using this support. We then provided a few simple examples that demonstrated how task

priorities can be applied to TBB tasks and to algorithms.

Since there are many limitations to the task priority support in the library, we

concluded our discussion with an alternative that used wrapper tasks and a priority

queue.

Chapter 14 Using Task Priorities

385

The TBB scheduler is not a hard real-time scheduler. We see in this chapter though

that there is some limited support for prioritizing tasks and algorithms. Whether these

features are useful or not for soft real-time applications, or to apply performance

optimizations, needs to be considered by developers on a case-by-case basis.

�For More Information
Mike Jones, “What Happened on Mars?” a note sent on December 5, 1997. www.cs.cmu.

edu/afs/cs/user/raj/www/mars.html.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach

to Real-Time Synchronization. In IEEE Transactions on Computers, vol. 39, pp. 1175-1185,

Sep. 1990.

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 14 Using Task Priorities

http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html
http://www.cs.cmu.edu/afs/cs/user/raj/www/mars.html
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 14: Using Task Priorities
	Support for Non-Preemptive Priorities in the TBB Task Class
	Setting Static and Dynamic Priorities
	Two Small Examples
	Implementing Priorities Without Using TBB Task Support
	Summary
	For More Information

