
3
© Intel Corporation 2019
M. Voss, R. Asenjo, J. Reinders, Pro TBB, https://doi.org/10.1007/978-1-4842-4398-5_1

CHAPTER 1

Jumping Right In:
“Hello, TBB!”
Over 10 years after its first release, the Threading Building Blocks (TBB) library has

become one of the most widely used C++ libraries for parallel programming. While it

has retained its core philosophy and features, it continues to expand to address new

opportunities and challenges as they arise.

In this chapter, we discuss the motivations for TBB, provide a brief overview of its

main components, describe how to get the library, and then jump right into a few simple

examples.

�Why Threading Building Blocks?
Parallel programming has a long history, stretching back to the 1950s and beyond.

For decades, scientists have been developing large-scale parallel simulations for

supercomputers, and businesses have been developing enterprise applications for large

multiprocessor mainframes. But a little over 10 years ago, the first multicore chips intended

for desktops and laptops started to enter the marketplace. This was a game changer.

The number of processors in these first multicore desktop and laptop systems was

small – only two cores – but the number of developers that had to become parallel

programmers was huge. If multicore processors were to become mainstream, parallel

programming had to become mainstream too, especially for developers who care about

performance.

The TBB library was first released in September of 2006 to address the unique

challenges of mainstream parallel programming. Its goal now, and when it was first

introduced over 10 years ago, is to provide an easy and powerful way for developers to

https://doi.org/10.1007/978-1-4842-4398-5_1

4

build applications that continue to scale as new platforms, with different architectures

and more cores, are introduced. This “future-proofing” has paid off as the number of

cores in mainstream processors has grown from two in 2006 to more than 64 in 2018!

To achieve this goal of future-proofing parallel applications against changes in

the number and capabilities of processing cores, the key philosophy behind TBB is

to make it easy for developers to express the parallelism in their applications, while

limiting the control they have over the mapping of this parallelism to the underlying

hardware. This philosophy can seem counterintuitive to some experienced parallel

programmers. If we believe parallel programming must get maximum performance at

all costs by programming to the bare metal of a system, and hand-tuning and optimizing

applications to squeeze out every last bit of performance, then TBB may not be for us.

Instead, the TBB library is for developers that want to write applications that get great

performance on today’s platforms but are willing to give up a little performance to

ensure that their applications continue to perform well on future systems.

To achieve this end, the interfaces in TBB let us express the parallelism in our

applications but provide flexibility to the library so it can effectively map this parallelism

to current and future platforms, and to adapt it to dynamic changes in system resources

at runtime.

�Performance: Small Overhead, Big Benefits for C++
We do not mean to make too big a deal about performance loss, nor do we wish to

deny it. For simple C++ code written in a “Fortran” style, with a single layer of well-

balanced parallel loops, the dynamic nature of TBB may not be needed at all. However,

the limitations of such a coding style are an important factor in why TBB exists. TBB

was designed to efficiently support nested, concurrent, and sequential composition

of parallelism and to dynamically map this parallelism on to a target platform. Using

a composable library like TBB, developers can build applications by combining

components and libraries that contain parallelism without worrying that they will

negatively interfere with each other. Importantly, TBB does not require us to restrict

the parallelism we express to avoid performance problems. For large, complicated

applications using C++, TBB is therefore easy to recommend without disclaimers.

The TBB library has evolved over the years to not only adjust to new platforms but

also to demands from developers that want a bit more control over the choices the

library makes in mapping parallelism to the hardware. While TBB 1.0 had very few

performance controls for users, TBB 2019 has quite a few more – such as affinity controls,

Chapter 1 Jumping Right In: “Hello, TBB!”

5

constructs for work isolation, hooks that can be used to pin threads to cores, and so on.

The developers of TBB worked hard to design these controls to provide just the right

level of control without sacrificing composability.

The interfaces provided by the library are nicely layered – TBB provides high-level

templates that suit the needs of most programmers, focusing on common cases. But it

also provides low-level interfaces so we can drill down and create tailored solutions for

our specific applications if needed. TBB has the best of both worlds. We typically rely on

the default choices of the library to get great performance but can delve into the details if

we need to.

�Evolving Support for Parallelism in TBB and C++
Both the TBB library and the C++ language have evolved significantly since the

introduction of the original TBB. In 2006, C++ had no language support for parallel

programming, and many libraries, including the Standard Template Library (STL), were

not easily used in parallel programs because they were not thread-safe.

The C++ language committee has been busy adding features for threading directly to

the language and its accompanying Standard Template Library (STL). Figure 1-1 shows

new and planned C++ features that address parallelism.

Figure 1-1.  The features in the C++ standard as well as some proposed features

Even though we are big fans of TBB, we would in fact prefer if all of the fundamental

support needed for parallelism is in the C++ language itself. That would allow TBB to

utilize a consistent foundation on which to build higher-level parallelism abstractions.

The original versions of TBB had to address a lack of C++ language support, and this is

an area where the C++ standard has grown significantly to fill the foundational voids

Chapter 1 Jumping Right In: “Hello, TBB!”

6

that TBB originally had no choice but to fill with features such as portable locks and

atomics. Unfortunately, for C++ developers, the standard still lacks features needed for

full support of parallel programming. Fortunately, for readers of this book, this means

that TBB is still relevant and essential for effective threading in C++ and will likely stay

relevant for many years to come.

It is very important to understand that we are not complaining about the C++

standard process. Adding features to a language standard is best done very carefully,

with careful review. The C++11 standard committee, for instance, spent huge energy on

a memory model. The significance of this for parallel programming is critical for every

library that builds upon the standard. There are also limits to what a language standard

should include, and what it should support. We believe that the tasking system and the

flow graph system in TBB is not something that will directly become part of a language

standard. Even if we are wrong, it is not something that will happen anytime soon.

�Recent C++ Additions for Parallelism
As shown in Figure 1-1, the C++11 standard introduced some low-level, basic building

blocks for threading, including std::async, std::future, and std::thread. It also

introduced atomic variables, mutual exclusion objects, and condition variables.

These extensions require programmers to do a lot of coding to build up higher-level

abstractions – but they do allow us to express basic parallelism directly in C++. The

C++11 standard was a clear improvement when it comes to threading, but it doesn’t

provide us with the high-level features that make it easy to write portable, efficient

parallel code. It also does not provide us with tasks or an underlying work-stealing task

scheduler.

The C++17 standard introduced features that raise the level of abstraction above

these low-level building blocks, making it easier for us to express parallelism without

having to worry about every low-level detail. As we discuss later in this book, there are

still some significant limitations, and so these features are not yet sufficiently expressive

or performant – there’s still a lot of work to do in the C++ standard.

The most pertinent of these C++17 additions are the execution policies that can be

used with the Standard Template Library (STL) algorithms. These policies let us choose

whether an algorithm can be safely parallelized, vectorized, parallelized and vectorized,

or if it needs to retain its original sequenced semantics. We call an STL implementation

that supports these policies a Parallel STL.

Chapter 1 Jumping Right In: “Hello, TBB!”

7

Looking into the future, there are proposals that might be included in a future C++

standard with even more parallelism features, such as resumable functions, executors,

task blocks, parallel for loops, SIMD vector types, and additional execution policies for

the STL algorithms.

�The Threading Building Blocks (TBB) Library
The Threading Building Blocks (TBB) library is a C++ library that serves two key roles:

(1) it fills foundational voids in support for parallelism where the C++ standard has not

sufficiently evolved, or where new features are not fully supported by all compilers, and

(2) it provides higher-level abstractions for parallelism that are beyond the scope of what

the C++ language standard will likely ever include. TBB contains a number of features, as

shown in Figure 1-2.

Figure 1-2.  The features of the TBB library

These features can be categorized into two large groups: interfaces for expressing

parallel computations and interfaces that are independent of the execution model.

Chapter 1 Jumping Right In: “Hello, TBB!”

8

�Parallel Execution Interfaces
When we use TBB to create parallel programs, we express the parallelism in the

application using one of the high-level interfaces or directly with tasks. We discuss tasks

in more detail later in this book, but for now we can think of a TBB task as a lightweight

object that defines a small computation and its associated data. As TBB developers, we

express our application using tasks, either directly or indirectly through the prepackaged

TBB algorithms, and the library schedules these tasks on to the platform’s hardware

resources for us.

It’s important to note that as developers, we may want to express different kinds of

parallelism. The three most common layers of parallelism that are expressed in parallel

applications are shown in Figure 1-3. We should note that some applications may

contain all three layers and others may contain only one or two of them. One of the most

powerful aspects of TBB is that it provides high-level interfaces for each of these different

parallelism layers, allowing us to exploit all of the layers using the same library.

The message-driven layer shown in Figure 1-3 captures parallelism that is structured

as relatively large computations that communicate to each other through explicit

messages. Common patterns in this layer include streaming graphs, data flow graphs,

and dependency graphs. In TBB, these patterns are supported through the Flow Graph

interfaces (described in Chapter 3).

The fork-join layer shown in Figure 1-3 supports patterns in which a serial

computation branches out into a set of parallel tasks and then continues only when

the parallel subcomputations are complete. Examples of fork-join patterns include

functional parallelism (task parallelism), parallel loops, parallel reductions, and

pipelines. TBB supports these with its Generic Parallel Algorithms (described in

Chapter 2).

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_3
https://doi.org/10.1007/978-1-4842-4398-5_2

9

Finally, the Single Instruction, Multiple Data (SIMD) layer is where data parallelism

is exploited by applying the same operation to multiple data elements simultaneously.

This type of parallelism is often implemented using vector extensions such as AVX,

AVX2, and AVX-512 that use the vector units available in each processor core. There is

a Parallel STL implementation (described in Chapter 4) included with all of the TBB

distributions that provides vector implementations, among others, that take advantage

of these extensions.

TBB provides high-level interfaces for many common parallel patterns, but there

may still be cases where none of the high-level interfaces matches a problem. If that’s the

case, we can use TBB tasks directly to build our own algorithms.

The true power of the TBB parallel execution interfaces comes from the ability to

mix them together, something usually called “composability.” We can create applications

that have a Flow Graph at the top level with nodes that use nested Generic Parallel

Algorithms. These nested Generic Parallel Algorithms can, in turn, use Parallel STL

Figure 1-3.  The three layers of parallelism commonly found in applications and
how they map to the high-level TBB parallel execution interfaces

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_4

10

algorithms in their bodies. Since the parallelism expressed by all of these layers is

exposed to the TBB library, this one library can schedule the corresponding tasks in an

efficient and composable way, making best use of the platform’s resources.

One of the key properties of TBB that makes it composable is that it supports relaxed

sequential semantics. Relaxed sequential semantics means that the parallelism we

express using TBB tasks is in fact only a hint to the library; there is no guarantee that any

of the tasks actually execute in parallel with each other. This gives tremendous flexibility

to the TBB library to schedule tasks as necessary to improve performance. This flexibility

lets the library provide scalable performance on systems, whether they have one core,

eight cores, or 80 cores. It also allows the library to adapt to the dynamic load on the

platform; for example, if one core is oversubscribed with work, TBB can schedule more

work on the other cores or even choose to execute a parallel algorithm using only a

single core. We describe in more detail why TBB is considered a composable library in

Chapter 9.

�Interfaces That Are Independent of the Execution Model
Unlike the parallel execution interfaces, the second large group of features in Figure 1-2

are completely independent of the execution model and of TBB tasks. These features are

as useful in applications that use native threads, such as pthreads or WinThreads, as they

are in applications that use TBB tasks.

These features include concurrent containers that provide thread-friendly interfaces

to common data structures like hash tables, queues, and vectors. They also include

features for memory allocation like the TBB scalable memory allocator and the cache

aligned allocator (both described in Chapter 7). They also include lower-level features

such as synchronization primitives and thread-local storage.

�Using the Building Blocks in TBB
As developers, we can pick and choose the parts of TBB that are useful for our applications.

We can, for example, use just the scalable memory allocator (described in Chapter 7)

and nothing else. Or, we can use concurrent containers (described in Chapter 6) and a

few Generic Parallel Algorithms (Chapter 2). And of course, we can also choose to go all

in and build an application that combines all three high-level execution interfaces and

makes use of the TBB scalable memory allocator and concurrent containers, as well as

the many other features in the library.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_9
https://doi.org/10.1007/978-1-4842-4398-5_7
https://doi.org/10.1007/978-1-4842-4398-5_7
https://doi.org/10.1007/978-1-4842-4398-5_6
https://doi.org/10.1007/978-1-4842-4398-5_2

11

�Let’s Get Started Already!
�Getting the Threading Building Blocks (TBB) Library
Before we can start using TBB, we need to get a copy of the library. There are a few ways

to do this. At the time of the writing of this book, these ways include

•	 Follow links at www.threadingbuildingblocks.org or https://

software.intel.com/intel-tbb to get a free version of the TBB

library directly from Intel. There are precompiled versions available

for Windows, Linux, and macOS. The latest packages include both

the TBB library and an implementation of the Parallel STL algorithms

that uses TBB for threading.

•	 Visit https://github.com/intel/tbb to get the free, open-source

version of the TBB library. The open-source version of TBB is in no

way a lite version of the library; it contains all of the features of the

commercially supported version. You can choose to checkout and

build from source, or you can click “releases” to download a version

that has been built and tested by Intel. At GitHub, pre-built and tested

versions are available for Windows, Linux, macOS, and Android.

Again, the latest packages for the pre-built versions of TBB include

both the TBB library and an implementation of Parallel STL that uses

TBB for threading. If you want the source code for Parallel STL, you

will need to download that separately from https://github.com/

intel/parallelstl.

•	 You can download a copy of the Intel Parallel Studio XE tool suite

https://software.intel.com/intel-parallel-studio-xe. TBB

and a Parallel STL that uses TBB is currently included in all editions

of this tool suite, including the smallest Composer Edition. If you

have a recent version of the Intel C++ compiler installed, you likely

already have TBB installed on your system.

We leave it to readers to select the most appropriate route for getting TBB

and to follow the directions for installing the package that are provided at the

corresponding site.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://www.threadingbuildingblocks.org
https://software.intel.com/intel-tbb
https://software.intel.com/intel-tbb
https://github.com/intel/tbb
https://github.com/intel/parallelstl
https://github.com/intel/parallelstl
https://software.intel.com/intel-parallel-studio-xe

12

�Getting a Copy of the Examples
All of the code examples used in this book are available at

https://github.com/Apress/pro-TBB. In this repository, there are directories for

each chapter. Many of the source files are named after the figure they appear in, for

example ch01/fig_1_04.cpp contains code that matches Figure 1-4 in this chapter.

�Writing a First “Hello, TBB!” Example
Figure 1-4 provides a small example that uses a tbb::parallel_invoke to evaluate two

functions, one that prints Hello and the other that prints TBB! in parallel. This example

is trivial and will not benefit from parallelization, but we can use it to be sure that we

have set up our environment properly to use TBB. In Figure 1-4, we include the tbb.h

header to get access to the TBB functions and classes, all of which are in namespace tbb.

The call to parallel_invoke asserts to the TBB library that the two functions passed to

it are independent of each other and are safe to execute in parallel on different cores

or threads and in any order. Under these constraints, the resulting output may contain

either Hello or TBB! first. We might even see that there is no newline character between

the two strings and two consecutive newlines at the end of the output, since the printing

of each string and its std::endl do not happen atomically.

Figure 1-4.  A Hello TBB example

Figure 1-5 provides an example that uses a Parallel STL std::for_each to apply a

function in parallel to two items in a std::vector. Passing a pstl::execution::par

policy to the std::for_each asserts that it is safe to apply the provided function in

parallel on different cores or threads to the result of dereferencing every iterator in the

range [v.begin(), v.end()). Just like with Figure 1-4, the output that results from

running this example might have either string printed first.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://github.com/Apress/pro-TBB

13

In both Figures 1-4 and 1-5, we use C++ lambda expressions to specify the functions.

Lambda expressions are very useful when using libraries like TBB to specify the user

code to execute as a task. To help review C++ lambda expressions, we offer a callout box

“A Primer on C++ Lambda Expressions” with an overview of this important modern C++

feature.

A PRIMER ON C++ LAMBDA EXPRESSIONS

Support for lambda expressions was introduced in C++11. They are used to create

anonymous function objects (although you can assign them to named variables) that can

capture variables from the enclosing scope. The basic syntax for a C++ lambda expression is

[capture-list] (params) -> ret { body }

where

•	 capture-list is a comma-separated list of captures. We capture a variable by

value by listing the variable name in the capture-list. We capture a variable by

reference by prefixing it with an ampersand, for example, &v. And we can use

this to capture the current object by reference. There are also defaults: [=] is

used to capture all automatic variables used in the body by value and the current

object by reference, [&] is used to capture all automatic variables used in the

body as well as the current object by reference, and [] captures nothing.

Figure 1-5.  A Hello Parallel STL example

Chapter 1 Jumping Right In: “Hello, TBB!”

14

•	 params is the list of function parameters, just like for a named function.

•	 ret is the return type. If ->ret is not specified, it is inferred from the return

statements.

•	 body is the function body.

This next example shows a C++ lambda expression that captures one variable, i, by value

and another, j, by reference. It also has a parameter k0 and another parameter l0 that is

received by reference:

Running the example will result in the following output:

i == 1

j == 10

k == 100

l == 1000

First call returned 2221

i == 1

j == 20

k == 100

l == 2000

Second call returned 4241

i == 1

j == 40

k == 100

l == 4000

Chapter 1 Jumping Right In: “Hello, TBB!”

15

We can think of a lambda expression as an instance of a function object, but the compiler

creates the class definition for us. For example, the lambda expression we used in the

preceding example is analogous to an instance of a class:

Wherever we use a C++ lambda expression, we can substitute it with an instance of a

function object like the preceding one. In fact, the TBB library predates the C++11 standard

and all of its interfaces used to require passing in instances of objects of user-defined classes.

C++ lambda expressions simplify the use of TBB by eliminating the extra step of defining a

class for each use of a TBB algorithm.

�Building the Simple Examples
Once we have written the examples in Figures 1-4 and 1-5, we need to build executable

files from them. The instructions for building an application that uses TBB are OS and

compiler dependent. However, in general, there are two necessary steps to properly

configure an environment.

�Steps to Set Up an Environment

	 1.	 We must inform the compiler about the location of the TBB

headers and libraries. If we use Parallel STL interfaces, we must

also inform the compiler about the location of the Parallel STL

headers.

Chapter 1 Jumping Right In: “Hello, TBB!”

16

	 2.	 We must configure our environment so that the application

can locate the TBB libraries when it is run. TBB is shipped as a

dynamically linked library, which means that it is not directly

embedded into our application; instead, the application locates and

loads it at runtime. The Parallel STL interfaces do not require their

own dynamically linked library but do depend on the TBB library.

We will now briefly discuss some of the most common ways to accomplish these

steps on Windows and Linux. The instructions for macOS are similar to those for Linux.

There are additional cases and more detailed directions in the documentation that ships

with the TBB library.

�Building on Windows Using Microsoft Visual Studio
If we download either the commercially supported version of TBB or a version of Intel

Parallel Studio XE, we can integrate the TBB library with Microsoft Visual Studio when

we install it, and then it is very simple to use TBB from Visual Studio.

To create a “Hello, TBB!” project, we create a project as usual in Visual Studio, add

a “.cpp” file with the code contained in Figure 1-4 or Figure 1-5, and then go to the

project’s Property Pages, traverse to Configuration Properties ➤ Intel Performance
Libraries and change Use TBB to Yes, as shown in Figure 1-6. This accomplishes step 1.

Visual Studio will now link the TBB library into the project as it has the proper paths to

the header files and libraries. This also properly sets the paths to the Parallel STL headers.

Figure 1-6.  Setting Use TBB to Yes in the project Property Pages in Visual Studio

Chapter 1 Jumping Right In: “Hello, TBB!”

17

On Windows systems, the TBB libraries that are dynamically loaded by the

application executable at runtime are the “.dll” files. To complete step 2 in setting up our

environment, we need to add the location of these files to our PATH environment variable.

We can do this by adding the path to either our Users or System PATH variable. One place

to find these settings is in the Windows Control Panel by traversing System and Security
➤ System ➤ Advanced System Settings ➤ Environment Variables. We can refer to the

documentation for our installation of TBB for the exact locations of the “.dll” files.

Note  Changes to the PATH variable in an environment only take effect in
Microsoft Visual Studio after it is restarted.

Once we have the source code entered, have Use TBB set to Yes, and have the path to the

TBB “.dll”s in our PATH variable, we can build and execute the program by entering Ctrl-F5.

�Building on a Linux Platform from a Terminal
�Using the Intel Compiler

When using the Intel C++ Compiler, the compilation process is simplified because the TBB

library is included with the compiler and it supports a compiler flag –tbb that properly

sets the include and library paths during compilation for us. Therefore, to compile our

examples using the Intel C++ Compiler, we just add the –tbb flag to the compile line.

 icpc –std=c++11 -tbb –o fig_1_04 fig_1_04.cpp

 icpc –std=c++11 -tbb –o fig_1_05 fig_1_05.cpp

�tbbvars and pstlvars Scripts

If we are not using the Intel C++ Compiler, we can use scripts that are included with

the TBB and Parallel STL distributions to set up our environment. These scripts modify

the CPATH, LIBRARY_PATH and LD_LIBRARY_PATH environment variables to include the

directories needed to build and run TBB and Parallel STL applications. The CPATH

variable adds additional directories to the list of directories the compiler searches when

it looks for #include files. The LIBRARY_PATH adds additional directories to the list of

directories the compiler searches when it looks for libraries to link against at compile

time. And the LD_LIBRARY_PATH adds additional directories to the list of directories the

executable will search when it loads dynamic libraries at runtime.

Chapter 1 Jumping Right In: “Hello, TBB!”

18

Let us assume that the root directory of our TBB installation is TBB_ROOT. The

TBB library comes with a set of scripts in the ${TBB_ROOT}/bin directory that we can

execute to properly set up the environment. We need to pass our architecture type

[ia32|intel64|mic] to this script. We also need to add a flag at compile time to enable

the use of C++11 features, such as our use of lambda expressions.

Even though the Parallel STL headers are included with all of the recent TBB library

packages, we need to take an extra step to add them to our environment. Just like with

TBB, Parallel STL comes with a set of scripts in the ${PSTL_ROOT}/bin directory. The

PSTL_ROOT directory is typically a sibling of the TBB_ROOT directory. We also need to pass

in our architecture type and enable the use of C++11 features to use Parallel STL.

The steps to build and execute the example in Figure 1-4 on a Linux platform with

64-bit Intel processors look like

 source ${TBB_ROOT}/bin/tbbvars.sh intel64 linux auto_tbbroot

 g++ -std=c++11 -o fig_1_04 fig_1_04.cpp -ltbb

 ./fig_1_04

The steps to build and execute the example in Figure 1-5 on a Linux platform with

64-bit Intel processors look like

 source ${TBB_ROOT}/bin/tbbvars.sh intel64 linux auto_tbbroot

 source ${PSTL_ROOT}/bin/pstlvars.sh intel64 auto_pstlroot

 g++ -std=c++11 -o fig_1_05 fig_1_05.cpp -ltbb

 ./fig_1_05

Note I ncreasingly, Linux distributions include a copy of the TBB library. On these
platforms, the GCC compiler may link against the platform’s version of the TBB
library instead of the version of the TBB library that is added to the LIBRARY_PATH
by the tbbvars script. If we see linking problems when using TBB, this might be
the issue. If this is the case, we can add an explicit library path to the compiler’s
command line to choose a specific version of the TBB library. 

For example: 

 g++ -L${TBB_ROOT}/lib/intel64/gcc4.7 –ltbb ...

Chapter 1 Jumping Right In: “Hello, TBB!”

19

We can add –Wl,--verbose to the g++ command line to generate a report of all
of the libraries that are being linked against during compilation to help diagnose
this issue.

Although we show commands for g++, except for the compiler name used, the

command lines are the same for the Intel compiler (icpc) or LLVM (clang++).

�Setting Up Variables Manually Without Using the tbbvars Script
or the Intel Compiler

Sometimes we may not want to use the tbbvars scripts, either because we want to know

exactly what variables are being set or because we need to integrate with a build system.

If that’s not the case for you, skip over this section unless you really feel the urge to do

things manually.

Since you’re still reading this section, let’s look out how we can build and execute on

the command line without using the tbbvars script. When compiling with a non-Intel

compiler, we don’t have the –tbb flag available to us, so we need to specify the paths to

both the TBB headers and the shared libraries.

If the root directory of our TBB installation is TBB_ROOT, the headers are in

${TBB_ROOT}/include and the shared library files are stored in ${TBB_ROOT}/

lib/${ARCH}/${GCC_LIB_VERSION}, where ARCH is the system architecture

[ia32|intel64|mic] and the GCC_LIB_VERSION is the version of the TBB library that is

compatible with your GCC or clang installation.

The underlying difference between the TBB library versions is their dependencies on

features in the C++ runtime libraries (such as libstdc++ or libc++).

Typically to find an appropriate TBB version to use, we can execute the command

gcc –version in our terminal. We then select the closest GCC version available in

${TBB_ROOT}/lib/${ARCH} that is not newer than our GCC version (this usually works

even when we are using clang++). But because installations can vary from machine to

machine, and we can choose different combinations of compilers and C++ runtimes, this

simple approach may not always work. If it does not, refer to the TBB documentation for

additional guidance.

Chapter 1 Jumping Right In: “Hello, TBB!”

20

For example, on a system with GCC 5.4.0 installed, we compiled the example in

Figure 1-4 with

g++ -std=c++11 -o fig_1_04 fig_1_04.cpp \

 –I ${TBB_ROOT}/include \

 -L ${TBB_ROOT}/lib/intel64/gcc4.7 –ltbb

And when using clang++, we used the same TBB version:

clang++ -std=c++11 -o fig_1_04 fig_1_04.cpp \

 -I ${TBB_ROOT}/include \

 -L ${TBB_ROOT}/lib/intel64/gcc-4.7 –ltbb

To compile the example in Figure 1-5, we also need to add the path to the Parallel

STL include directory:

g++ -std=c++11 -o fig_1_05 fig_1_05.cpp \

 –I ${TBB_ROOT}/include \

 -I ${PSTL_ROOT}/include \

 -L ${TBB_ROOT}/lib/intel64/gcc4.7 –ltbb

Regardless of whether we have compiled with the Intel compiler, gcc, or clang++,

we need to add the TBB shared library location to our LD_LIBRARY_PATH so that it can

be found when the application runs. Again, assuming that the root directory of our TBB

installation is TBB_ROOT, we can set this, for example, with

export LD_LIBRARY_PATH=${TBB_ROOT}/lib/${ARCH}/${GCC_LIB_VERSION}:${LD_

LIBRARY_PATH}

Once we have compiled our application using the Intel compiler, gcc, or clang++ and

have set our LD_LIBRARY_PATH as required, we can then run the applications from the

command line:

./fig_1_04

This should result in an output similar to

 Hello

 Parallel STL!

Chapter 1 Jumping Right In: “Hello, TBB!”

21

�A More Complete Example
The previous sections provide the steps to write, build, and execute a simple TBB

application and a simple Parallel STL application that each print a couple of lines of

text. In this section, we write a bigger example that can benefit from parallel execution

using all three of the high-level execution interfaces shown in Figure 1-2. We do not

explain all of the details of the algorithms and features used to create this example,

but instead we use this example to see the different layers of parallelism that can be

expressed with TBB. This example is admittedly contrived. It is simple enough to explain

in a few paragraphs but complicated enough to exhibit all of the parallelism layers

described in Figure 1-3. The final multilevel parallel version we create here should be

viewed as a syntactic demonstration, not a how-to guide on how to write an optimal TBB

application. In subsequent chapters, we cover all of the features used in this section in

more detail and provide guidance on how to use them to get great performance in more

realistic applications.

�Starting with a Serial Implementation
Let’s start with the serial implementation shown in Figure 1-7. This example applies

a gamma correction and a tint to each image in a vector of images, writing each result

to a file. The highlighted function, fig_1_7, contains a for-loop that processes the

elements of a vector by executing applyGamma, applyTint, and writeImage functions on

each image. The serial implementations of each of these functions are also provided in

Figure 1-7. The definitions of the image representation and some of the helper functions

are contained in ch01.h. This header file is available, along with all of the source code for

the example, at https://github.com/Apress/threading-building-blocks.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://github.com/Apress/threading-building-blocks

22

Figure 1-7.  A serial implementation of an example that applies a gamma
correction and a tint to a vector of images

Chapter 1 Jumping Right In: “Hello, TBB!”

23

Both the applyGamma function and the applyTint function traverse across the rows

of the image in an outer for-loop and the elements of each row in an inner for-loop.

New pixel values are computed and assigned to the output image. The applyGamma

function applies a gamma correction. The applyTint function applies a blue tint to the

image. The functions receive and return std::shared_ptr objects to simplify memory

management; readers that are unfamiliar with std::shared_ptr can refer to the sidebar

discussion “A note on smart pointers.” Figure 1-8 shows example outputs for an image

fed through the example code.

Figure 1-7.  (continued)

Chapter 1 Jumping Right In: “Hello, TBB!”

24

A NOTE ON SMART POINTERS

One of the most challenging parts of programming in C/C++ can be dynamic memory

management. When we use new/delete or malloc/free, we have to be sure we that we

match them up correctly to avoid memory leaks and double frees. Smart pointers including

unique_ptr, shared_ptr, and weak_ptr were introduced in C++11 to provide automatic,

exception-safe memory management. For example, if we allocate an object by using

make_shared, we receive a smart pointer to the object. As we assign this shared pointer to

other shared pointers, the C++ library takes care of reference counting for us. When there

are no outstanding references to our object through any smart pointers, then the object is

Figure 1-8.  Outputs for the example: (a) the original image generated by ch01::
makeFractalImage(2000000), (b) the image after it has been gamma corrected,
and (c) the image after it has been gamma corrected and tinted

Chapter 1 Jumping Right In: “Hello, TBB!”

25

automatically freed. In most of the examples in this book, including in Figure 1-7, we use

smart pointers instead of raw pointers. Using smart pointers, we don’t have to worry about

finding all of the points where we need to insert a free or delete – we can just rely on the

smart pointers to do the right thing.

�Adding a Message-Driven Layer Using a Flow Graph
Using a top-down approach, we can replace the outer loop in function fig_1_07 in

Figure 1-7 with a TBB Flow Graph that streams images through a set of filters as shown

in Figure 1-9. We admit that this is the most contrived of our choices in this particular

example. We could have easily used an outer parallel loop in this case; or we could have

merged the Gamma and Tint loop nests together. But for demonstration purposes, we

choose to express this as a graph of separate nodes to show how TBB can be used to

express message-driven parallelism, the top level of the parallelism in Figure 1-3. In

Chapter 3, we will learn more about the TBB Flow Graph interfaces and discover more

natural applications for this high-level, message-driven execution interface.

Figure 1-9.  A data flow graph that has four nodes: (1) a node that gets or
generates images, (2) a node that applies the gamma correction, (3) a node that
applies the tint, and (4) a node that writes out the resulting image

By using the data flow graph in Figure 1-9, we can overlap the execution of different

stages of the pipeline as they are applied to different images. For example, when a first

image, img0, completes in the gamma node, the result is passed to the tint node, while

a new image img1 enters the gamma node. Likewise, when this next step is done, img0,

which has now passed through both the gamma and tint nodes, is sent to the write node.

Meanwhile, img1 is sent to the tint node, and a new image, img2, begins processing in

the gamma node. At each step, the execution of the filters is independent of each other,

and so these computations can be spread across different cores or threads. Figure 1-10

shows the loop from function fig_1_7 now expressed as a TBB Flow Graph.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_3

26

Figure 1-10.  Using a TBB Flow Graph in place of the outer for-loop

As we will see in Chapter 3, several steps are needed to build and execute a TBB

Flow Graph. First, a graph object, g, is constructed. Next, we construct the nodes that

represent the computations in our data flow graph. The node that streams the images to

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_3

27

the rest of the graph is a source_node named src. The computations are performed by

the function_node objects named gamma, tint, and write. We can think of a source_

node as a node that has no input and continues to send data until it runs out of data to

send. We can think of a function_node as a wrapper around a function that receives an

input and generates an output.

After the nodes are created, we connect them to each other using edges. Edges

represent the dependencies or communication channels between nodes. Since, in our

example in Figure 1-10, we want the src node to send the initial images to the gamma

node, we make an edge from the src node to the gamma node. We then make an edge

from the gamma node to the tint node. And likewise, we make an edge from the tint

node to the write node. Once we complete construction of the graph’s structure, we call

src.activate() to start the source_node and call g.wait_for_all() to wait until the

graph completes.

When the application in Figure 1-10 executes, each image generated by the src

node passes through the pipeline of nodes as described previously. When an image is

sent to the gamma node, the TBB library creates and schedules a task to apply the gamma

node’s body to the image. When that processing is done, the output is fed to the tint

node. Likewise, TBB will create and schedule a task to execute the tint node’s body on

that output of the gamma node. Finally, when that processing is done, the output of the

tint node is sent to the write node. Again, a task is created and scheduled to execute

the body of the node, in this case writing the image to a file. Each time an execution of

the src node finishes and returns true, a new task is spawned to execute the src node’s

body again. Only after the src node stops generating new images and all of the images it

has already generated have completed processing in the write node will the wait_for_

all call return.

�Adding a Fork-Join Layer Using a parallel_for
Now, let’s turn our attention to the implementation of the applyGamma and applyTint

functions. In Figure 1-11, we replace the outer i-loops in the serial implementations

with calls to tbb::parallel_for. We use a parallel_for Generic Parallel Algorithm to

execute across different rows in parallel. A parallel_for creates tasks that can be spread

across multiple processor cores on a platform. This pattern is an example of the fork-join

layer from Figure 1-3 and is described in more detail in Chapter 2.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_2

28

Figure 1-11.  Adding parallel_for to apply the gamma correction and tint across
rows in parallel

Chapter 1 Jumping Right In: “Hello, TBB!”

29

�Adding a SIMD Layer Using a Parallel STL Transform
We can further optimize our two computational kernels by replacing the inner j-loops

with calls to the Parallel STL function transform. The transform algorithm applies a

function to each element in an input range, storing the results into an output range. The

arguments to transform are (1) the execution policy, (2 and 3) the input range of elements,

(4) the beginning of the output range, and (5) the lambda expression that is applied to

each element in the input range and whose result is stored to the output elements.

In Figure 1-12, we use the unseq execution policy to tell the compiler to use the SIMD

version of the transform function. The Parallel STL functions are described in more

detail in Chapter 4.

Figure 1-12.  Using std::transform to add SIMD parallelism to the inner loops

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_4

30

In Figure 1-12, each Image::Pixel object contains an array with four single byte

elements, representing the blue, green, red, and alpha values for that pixel. By using the

unseq execution policy, a vectorized loop is used to apply the function across the row of

elements. This level of parallelization corresponds to the SIMD layer in Figure 1-3 and

takes advantage of the vector units in the CPU core that the code executes on but does

not spread the computation across different cores.

Note P assing an execution policy to a Parallel STL algorithm does not guarantee
parallel execution. It is legal for the library to choose a more restrictive execution
policy than the one requested. It is therefore important to check the impact of using
an execution policy – especially one that depends on compiler implementations!

Figure 1-12.  (continued)

Chapter 1 Jumping Right In: “Hello, TBB!”

31

While the examples we created in Figure 1-7 through Figure 1-12 are a bit contrived,

they demonstrate the breadth and power of the TBB library’s parallel execution

interfaces. Using a single library, we expressed message-driven, fork-join, and SIMD

parallelism, composing them together into a single application.

�Summary
In this chapter, we started by explaining why a library such as TBB is even more relevant

today than it was when it was first introduced over 10 years ago. We then briefly looked at

the major features in the library, including the parallel execution interfaces and the other

features that are independent of the execution interfaces. We saw that the high-level

execution interfaces map to the common message-driven, fork-join, and SIMD layers

that are found in many parallel applications. We then discussed how to get a copy of TBB

and verify that our environment is correctly set up by writing, compiling, and executing

very simple examples. We concluded the chapter by building a more complete example

that uses all three high-level execution interfaces.

We are now ready to walk through the key support for parallel programming in the

next few chapters: Generic Parallel Algorithms (Chapter 2), Flow Graphs (Chapter 3),

Parallel STL (Chapter 4), Synchronization (Chapter 5), Concurrent Containers

(Chapter 6), and Scalable Memory Allocation (Chapter 7).

Open Access  This chapter is licensed under the terms of the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International

License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license and indicate if you modified the licensed material.

You do not have permission under this license to share adapted material derived from

this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material.

If material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Chapter 1 Jumping Right In: “Hello, TBB!”

https://doi.org/10.1007/978-1-4842-4398-5_2
https://doi.org/10.1007/978-1-4842-4398-5_3
https://doi.org/10.1007/978-1-4842-4398-5_4
https://doi.org/10.1007/978-1-4842-4398-5_5
https://doi.org/10.1007/978-1-4842-4398-5_6
https://doi.org/10.1007/978-1-4842-4398-5_7
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 1: Jumping Right In: “Hello, TBB!”
	Why Threading Building Blocks?
	Performance: Small Overhead, Big Benefits for C++
	Evolving Support for Parallelism in TBB and C++
	Recent C++ Additions for Parallelism

	The Threading Building Blocks (TBB) Library
	Parallel Execution Interfaces
	Interfaces That Are Independent of the Execution Model
	Using the Building Blocks in TBB

	Let’s Get Started Already!
	Getting the Threading Building Blocks (TBB) Library
	Getting a Copy of the Examples
	Writing a First “Hello, TBB!” Example
	Building the Simple Examples
	Steps to Set Up an Environment

	Building on Windows Using Microsoft Visual Studio
	Building on a Linux Platform from a Terminal
	Using the Intel Compiler
	tbbvars and pstlvars Scripts
	Setting Up Variables Manually Without Using the tbbvars Script or the Intel Compiler

	A More Complete Example
	Starting with a Serial Implementation
	Adding a Message-Driven Layer Using a Flow Graph
	Adding a Fork-Join Layer Using a parallel_for
	Adding a SIMD Layer Using a Parallel STL Transform

	Summary

