
149© The Author(s) 2020
S. Cheruvu et al., Demystifying Internet of Things Security,
https://doi.org/10.1007/978-1-4842-2896-8_3

CHAPTER 3

Base Platform
Security Hardware
Building Blocks

Every distraction is a possibility, Every downfall is an
opportunity.

—Ria Cheruvu

Historically, the attacks on platforms have been transitioning from

application-level software (SW) to user mode SW to kernel mode SW to

firmware (FW) and now hardware (HW). The frequency of HW- and FW-

level vulnerabilities increased substantially from 2003 to 2019 and therefore

reinforces a concrete need for HW-based security to harden the platform.

This is evident from the data cataloged in the National Vulnerability

Database (NVD) organized as CVEs; more information about NVD can

be found at https://nvd.nist.gov/. The Common Vulnerabilities and

Exposures (CVE) is a list of entries with the information that identifies a

unique vulnerability or an exposure and is used in many cybersecurity

products and services including the NVD; more information about CVE

can be found at https://cve.mitre.org/. The NVD has been mined to

derive the statistics and visualizations with pertinent search terms such

https://doi.org/10.1007/978-1-4842-2896-8_3
https://nvd.nist.gov/
https://cve.mitre.org/

150

as Firmware and Hardware. It is evident from Figure 3-1 (a) that the

firmware-related CVEs have increased significantly and 2017–2018 saw the

biggest jump when the hacker community started attacking the FW on the

platforms. Similarly Figure 3-1 (b) shows that during the same time period,

the HW-related CVEs also hit a peak. Please note that all these CVEs need

to be investigated carefully for the impacted areas within a platform. But the

trends are clearly pointing toward the HW as the last line of defense.

1999
0

100

200

300

400

500

Results Type: Statistics

Search Parameters:

Total Matches By Year (Snapshot from April 2019)

2000 2002 2004 2006 2008 2010

Year

2012 2014 2016 2018

2005 2007 2009 2011 2013 2015 2017 20192001 2003

Keyword (text search): Firmware

Search Type: Search All

of

 V
ul

ne
ra

bi
lit

ie
s

M
ee

tin
g

Sp
ec

ifi
ed

 L
im

ita
tio

ns

Figure 3-1.  (a) Firmware vulnerability trend chart1

1�https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&
results_type=statistics&query=Firmware&search_type=all

Chapter 3 Base Platform Security Hardware Building Blocks

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Firmware&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Firmware&search_type=all

151

This chapter describes the technologies involved in securing an IoT

device anchored to a Hardware Root of Trust (HWRoT) and ultimately

booting into a Trusted Execution Environment (TEE). Security in an IoT

environment generally involves four areas of focus:

•	 Protecting the device

•	 Protecting user identity

2001
0

10

20

30

40

50

Results Type: Statistics

Search Parameters:

Total Matches By Year (Snapshot from April 2019)

2002 2004 2006 2008 2010 2012

Year

2014 2016 2018

2007 2009 2011 2013 2015 2017 20192003 2005

Keyword (text search): Hardware

Search Type: Search All

of

 V
ul

ne
ra

bi
lit

ie
s

M
ee

tin
g

Sp
ec

ifi
ed

 L
im

ita
tio

ns

Figure 3-1.  (b) Hardware vulnerability trend chart2

2�https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&
results_type=statistics&query=Hardware&search_type=all

Chapter 3 Base Platform Security Hardware Building Blocks

https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Hardware&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Hardware&search_type=all

152

•	 Protecting the data

•	 Managing the security at runtime

Each of these areas are worthy of detailed explanation in itself. This

chapter delves into the rich set of security and privacy technologies

Intel has available in their product lines and how they may be used to

implement secure IoT systems. Intel’s discrete CPU-PCH or System-on-

Chip (SoC) products have two classes of security features; one class of

features are implemented in the CPU as New Instructions (NI) with some

examples being AES-NI, SHA-NI, and so on. The second class of security

features are implemented in the isolated security engines with examples

including Converged Security and Manageability Engine (CSME).

Note P lease note that by the time this book is published, some
new security features may be released by Intel, and therefore please
refer to Intel web site or contact the relevant OEM/ODMs for latest
information.

�Background and Terminology
Before the actual security capabilities can be described, it is important to

understand the terminology, the threat pyramid, the relevance of end-

to-end security, and Intel Security Essentials for leveraging built-in HW

security technologies.

�Assets, Threats, and Threat Pyramid
Security design begins with the process of identifying a set of assets

that are to be protected and classifying these assets according to the

different levels of protection based on strategic or other pertinent value

Chapter 3 Base Platform Security Hardware Building Blocks

153

vectors. A real-life scenario of protecting assets in our home would be

to protect our house keys (hang on wall), wallets (place in an enclosed

cabinet), passports, and jewelry (in a safe in the master bedroom). For

IoT deployments, security is also determined by the return on investment

(ROI). Figure 3-2 depicts the relationship between them.

•	 Assets (A): Anything valuable to us that is worth

protecting. What assets are we protecting? It is

pertinent to classify the assets and prioritize. Example

asset profile = {physical devices, internal fuses, keys,

content, data at rest/in transit, etc.}

•	 Threats (T): What are we protecting against? Become

aware of threat surfaces, the areas of exposure to

threats.

•	 Vulnerabilities (V): What are the known weaknesses in

the system that can be exploited?

•	 Mitigation: How are we going to protect?

•	 Robustness rules: Specific to assets/threats.

Documented conditions/criteria for protecting specific

assets against specific threats.

•	 Threat modeling: A process to evaluate the threat

scenarios considering the vulnerabilities for specific

assets. This process is iterative and is expected to be

done whenever the bill of materials (BOM) list in a

platform changes.

Chapter 3 Base Platform Security Hardware Building Blocks

154

�Inverted Threat Pyramid
The threat pyramid shown in Figure 3-3 depicts the surfaces/layers

vulnerable to cyberattacks (both physical and remote) in an IoT device.

The volume of attacks is high at the top and requires fewer resources,

whereas the volume of attacks at the bottom is lower and requires a high

amount of resources. In other words, the attack surfaces have varying

degree of exposure and mandate a defense in depth approach at the

platform levels.

V2A2

A1

A3

Threat Surface

Threat Surface

Threat Surface

V3

V1

V2

V4

Threats

Figure 3-2.  Relationship between assets, vulnerabilities, and threats

Chapter 3 Base Platform Security Hardware Building Blocks

155

The rectangle outlines the IA value additions where the related

security IP capabilities exemplify the assets that can be used to protect

customer’s assets. The effort to create exploits at the top of the inverted

pyramid is low, and the ROI on the compromised assets is also low. Due

to this low effort, the number of exploits is also significantly higher. As we

traverse down the inverted pyramid, the effort it takes to create exploits

increases significantly along with the cost, and thereby the number of

exploits is typically lower and targeted in nature. The bottom six layers

could be qualified as HW, and side-channel attacks plus physical attacks

are relevant. The discussion of such side-channel and physical attacks is

outside the scope of this book.

�Sample IoT Device Lifecycle

The IoT device lifecycle pertaining to security is complicated with security

involved in every phase of an IoT device lifecycle (Figure 3-4). During the

build phase, the security SDK/API is critical for simplifying the device

Apps/Framework

Middleware

User mode

Kernel

OS loader

Hypervisor

BIOS/Boot Loader

Mutable Flash parts

Security/P-unit FW

Volume of attacks
is high with low
complexity

Volume of attacks
is low with high
complexity

Prevalent
Attack
Pyramid

Fuses (under/over voltage, etc.)

Physical ports (PCIe DMA bus master, DDR
analyzer, etc.)

Chip top layer scraping, Differential Power
analysis, etc.)

Figure 3-3.  Attack pyramid

Chapter 3 Base Platform Security Hardware Building Blocks

156

build. The provisioning/configuring phases would require tools that

scale across different CPU families and involve assigning a persona to the

IoT device. The deployment phase should be flexible for seamless and

potential anonymity. The connectivity should comply with the relevant

security standards and specifications. The management of these devices

must be secure and seamless. The retirement or decommissioning phase is

equally critical for an IoT device due to the integration of different assets/

secrets from multiple vendors in the system. For a detailed supply chain

interactions during the lifecycle, refer to the Secure Device Onboarding

technology.3

IoT devices have different security needs as they go through their

lifecycle (on average it is many years significantly more than traditional

PCs). Security is pivotal to enable IoT devices and sustain those on the

market. Each stage of the device lifecycle has its specific requirements,

starting from providing what is needed for onboarding a device during

the start of its life to security management functions that secure runtime

operations. Intel has a critical role with enabling design-in the best

practice HW security model with solutions and ecosystem relationships.

Intel targets to enable security capabilities and solutions for each phase

working with the ecosystem. Security is not one-off, it evolves along the

lifecycle with each stage having unique needs. Best practices are required

to secure the entire lifecycle.

3�www.intel.com/content/www/us/en/internet-of-things/secure-device-
onboard.html

Chapter 3 Base Platform Security Hardware Building Blocks

http://www.intel.com/content/www/us/en/internet-of-things/secure-device-onboard.html
http://www.intel.com/content/www/us/en/internet-of-things/secure-device-onboard.html

157

Develop

• Simplicity
 (SDK/API)

Retire

• Salvage the
 sensitive data upon
 Decommission

Configure

• Tools that scale
 across CPU/SoC and
 OSs

Build

• Tools that scale
• OxM customization

Manage

• FW updates, recovery
• Device Management

Connect

• Multiple PHY/MAC

Deploy

• Seamless/Anonymous

Figure 3-4.  IoT device lifecycle

�End-to-End (E2E) Security
While security pertaining to an IoT device is important, a practical IoT

deployment warrants scaling security across an E2E spectrum starting with

edge/Things connected to Network and then fog or Cloud. The typical E2E

security involves edge/Things ➤ Gateway/Network ➤ Fog ➤ Cloud. Refer

to Figure 3-5.

Chapter 3 Base Platform Security Hardware Building Blocks

158

Assets exist at different stages and often cross trust boundaries.

A typical flow (for a sensing application) is explained with

confidentiality (encryption/decryption) and integrity (sign/verify)

attributes:

	 1.	 The device securely identifies with the Gateway/

Cloud (could be one time or periodic depending

upon the policy enforcement).

	 2.	 The device has/interfaces to sensors (smart/dumb)

and actuators, collects the data, and controls the

sensors and drives the actuators.

	 3.	 Device may run some local analytics and optionally

store the data encrypted.

	 4.	 Device encrypts or signs (or both) (depending on

the policy) the data and sends it to Gateway.

	 5.	 Gateway decrypts/authenticates the data.

	 6.	 Gateway may run some local analytics.

Network Cloud
Fog

Onsitecloud

3rd Party
Cloud

Things

Security Management

Security Management

Gateway Devices

Local Area Network Connectivity

Wide Area Network Connectivity

Data
Processing

API Libraries,
APIs, SDK

Data
Processing

Data
Management

Batch & Stream
Analytics

Storage

API Libraries,
APIs, SDK

Security Management API Libraries,
APIs, SDK

Network
Infrastructure

Figure 3-5.  Typical E2E security components

Chapter 3 Base Platform Security Hardware Building Blocks

159

	 7.	 Gateway encrypts/signs and sends the data to fog/

Cloud.

	 8.	 The instances on fog/Cloud decrypt/authenticate

the data.

	 9.	 Cloud applications run analytics.

	 10.	 Cloud applications encrypt/sign and store the data

in databases.

�Security Essentials
Security Essentials is an Intel brand initiative that defines a set of

foundational security capabilities that Intel processors and Systems on

Chips (SoCs) will support in order to establish a secure baseline upon

which the ecosystem can build rich, secure usage models (see Figure 3-6).

Security Essentials establishes a set of capabilities along with technology

options for implementing each of the targeted capabilities. This allows

us to project a common security posture across all supported platforms,

establish a baseline for security that the industry can rely upon, and

promote reuse and consistency in Intel-based security solutions. Intel

provides training, collateral, technology summits, and Technology

Alignment Programs with customers and ecosystem partners. In

some cases, Intel partners with Independent BIOS Vendors (IBVs) and

Independent boot loader vendors to enable the ecosystem with fast,

secure, and functionally safe boot loader solutions.

Chapter 3 Base Platform Security Hardware Building Blocks

160

Security Essentials focuses on four buckets of capabilities: Device

Identity, Protected Boot, Protected Storage, and trusted execution

environment. These are later explained briefly.

�Device Identity

A hardware identity refers to an immutable, unique identity for a platform.

The identity has to be somehow inseparable from the platform. A hardware

embedded cryptographic key, also referred to as a Hardware Root of

Trust, can be an effective device identifier. The Trusted Computing Group

(TCG) defines hardware-roots-of-trust as part of the Trusted Platform

Module (TPM) specification. All TPM vendors are required to implement a

hardware root of trust for storage. Intel® Platform Trust Technology (PTT)

implements TPM functionality using a security engine integrated in many

of its SoC products.

The IEEE community defines a device identity specification, IEEE

802.1AR, that has been adopted by the TCG. This means TPM-based device

identity complies with interoperable and industry-accepted approach for

secure device identity.

A software (SW) identity refers to a cryptographic fingerprint (SWFP)

that describes important software that may execute on a platform. The

SWFP can be reliably verified given a whitelist of SWFP values known to

Device Attack Surfaces “Baseline Trust Capabilities”

THINGS NETWORK CLOUD

Applications
High Volume,
Low Complexity

Low Volume,
High Complexity

Operating System

Hardware

Security technologies should be rooted in HW to harden the platform

Virtual Machine
(Optional)

Trusted Execution

Tr
an

si
tiv

e
Tr

us
t C

ha
in

Th
re

at
s

Protected Data, Keys, Identity

“Ingredients”
used for a variety
of security usage
models

Consistent
implementation
platforms

Crypto Protected Boot

Figure 3-6.  Trusted secure foundation

Chapter 3 Base Platform Security Hardware Building Blocks

161

be legitimate. SWFP is an important aspect of securely booting a platform

where the goal of secure boot is to detect malicious changes to software

images before they are loaded into memory.

The TCG defines methods for securely booting a platform where

the SWFP of each software image loaded into memory is measured (aka

cryptographically hashed) into a Platform Configuration Register (PCR),

which is securely stored by a TPM. PCR measurements are available for

comparison with whitelist values during the boot process and are available

for attestation after the platform boots. Attestation is a protocol for

proving to a peer platform that it booted a particular way. The attestation

verifier might also use the whitelist to verify a peer platform node booted

satisfactorily.

An IoT system that enforces a common and attested secure boot policy

is a way to establish trust in a distributed set of IoT nodes. Distributed trust

is an important component to establishing a secure IoT network.

�Protected Boot

This capability defends against sophisticated bootkits and rootkits which

have been demonstrated that reside in very early boot code and are able

to launch a variety of attacks on the system. These attacks materialize

without the knowledge of OS and thereby are invincible to be detected by

the anti-malware entities. The TCG defines an architectural requirement

for secure platform boot by defining a root-of-trust-for-measurement

(RTM) where the platform must provide a secure platform reset and initial

boot executive that is implemented in hardware, but TCG stopped short of

defining a particular implementation.

The Unified Extensible Firmware Interface (UEFI) forum defines an

interface where the UEFI BIOS boot image can be integrity verified by the

RTM before it can execute, thereby ensuring the remainder of the BIOS boot

process can be performed according to TCG defined secure boot principles.

Chapter 3 Base Platform Security Hardware Building Blocks

162

Intel® TXT (Trusted Execution Technology) anticipates scenarios

where a hard power reset, as a way to return to a trusted environment, is

infeasible. Instead, Intel® TXT transitions the CPU to a secure operational

mode using an IA instruction, then proceeds to boot a hypervisor or OS

without invoking BIOS.

Intel Boot Guard is the hardware-based root of trust for system boot

process. It provides an architectural enforcement of OEM boot policies and

a protected initial measurement & verification of first OEM component.

OEM boot policy is provided in FPF programmed by the OEM.

�Protected Storage

The Storage Networking Industry Association (SNIA) defines storage

security as

Technical controls, which may include integrity, confidentiality
and availability controls that protect storage resources and
data from unauthorized users and uses.

Protected storage is a fundamental security capability required to

support many other security capabilities. The Trusted Platform Module

(TPM) implements secure storage primitives for several types of security

objects including cryptographic keys, configuration registers, and whitelist

values. Protected storage encompasses the following properties:

•	 Data confidentiality: Unauthorized entities cannot read

the data.

•	 Data integrity: Unauthorized entities cannot modify

the data or unauthorized data modification can be

detected.

•	 Anti-replay protection: Unauthorized entities cannot

replay/reuse stale data to storage.

Chapter 3 Base Platform Security Hardware Building Blocks

163

Intel® Platform Trust Technology (PTT) is an implementation of

the TCG Trusted Platform Module specification in a SoC that relies on

hardware isolation of flash and other memory to prevent access outside

of the TCG defined interfaces. Intel® QuickAssist Technology (QAT) is a

hardware data encryption accelerator that also implements key storage

protections. A common approach for building secure storage for data that

exceeds the capacity of hardened secure storage resources calls for bulk

data encryptions that allow ciphertexts to be stored on traditional storage

media, but where encryption keys are stored in hardware. It is common

to build a hierarchy of data encryption keys so that different access and

lifecycle controls can be applied to different data. In some cases the key

hierarchy itself is too large to fit into hardware-protected storage; therefore

intermediate keys may be used to encrypt data encryption keys and so on

until the top most keys of the hierarchy can be stored in hardware.

�Trusted Execution Environment (TEE)

In general, a Trusted Execution Environment (TEE) refers to an execution

environment that is isolated from the normal general-purpose execution

environment. For example, the core CPU is a general-purpose execution

environment, and a security coprocessor is an isolated environment.

Trusted execution environments may include HW/SW/FW that establishes

an isolated environment. By carefully controlling the infrastructure that

produces the HW/FW/SW that implements it, the TEE can have strong

guarantees regarding safe and reliable execution of TEE workloads.

Typically workloads that involve the use of cryptographic keys to ensure

confidentiality and integrity protection of data as it is transformed to and

from ciphertext are performed using a TEE.

There are several TEE technologies available across a variety of

architectures. ARM® TrustZone creates an isolated execution environment

within the ARM core. Intel® Software Guard Extensions (SGX) takes a

similar approach and allows multiple instances of trusted execution

Chapter 3 Base Platform Security Hardware Building Blocks

164

environments for different applications and tenants. Intel® Converged

Security and Manageability Engine (CSME) is a security coprocessor that

is integrated into Intel chipsets. The CSME can be used to offload security-

sensitive operations to shield them from possible attacks from the normal

CPU environment. Intel® TXT allows trusted execution using CPU cache

lines as RAM to minimize dependencies on external resources. It can be

used for general-purpose TEE operations when cache coherency isn’t

needed. Intel® Virtualization Technology (VT) suite offers another form

of TEE where a trusted hypervisor creates execution environments with

distinct thread, memory, interrupt, and IO contexts. Virtualization allows

full OS and application images to run which may be counterproductive

to security due to increased attack surface of a large OS and application

framework. Therefore, it may yet be appropriate to employ some other TEE

capability in concert with virtualization.

�Built-In Security

Built-in security features are essential to protect, detect, and correct the

security issues in a platform. These features depicted in Figure 3-7 enable

to protect the identity and data assets on the platforms from attacks,

detect when attacks are launched, and then aid in deploying the corrective

measures to make the platforms resilient.

Chapter 3 Base Platform Security Hardware Building Blocks

165

The identity is based on HW and possesses immutable properties

and simplified access. The data asset protection includes data at rest and

in transit. The detection mechanisms constitute anti-malware FW/SW

components to find the malware and then pipeline into deploying the

corrective measures via FW and/or SW over the air updates. Intel’s value

proposition includes three layers of ingredients as shown in Figure 3-8.

Build-in Silicon Security
Hardware Solutions for User Problems...

Protect

Identity

Simple access
with enhanced

security

Intel® Identity
Protection Technologies

Intel® Data Protection
Technologies

Intel® Platform or Device
Protection Technologies

Data safe from
theft or alteration

Malware finds
nowhere to run or

hide

Securely
updated, more

resilient systems

Data Protection Anti-Malware Resiliency

Detect Correct

Figure 3-7.  HW solution pillars for user problems

Intel’s Security Value Propositions

Solutions
Protect, Detect, and Correct
solutions for Consumer and

Enterprise

Deliver Best-in-class Security
Software Solutions & Services

Create New Security
Platforms and Ecosystems

Drive Built-In Security
into Silicon Architecture

For OEMs, ISV’s, SI’s, Security
Practitioners

Architecture for Secure Experiences
and Security Workloads

Platforms

Architecture

Figure 3-8.  Security value propositions

Chapter 3 Base Platform Security Hardware Building Blocks

166

At the bottom layer, the Intel Architecture allows leveraging built-in

security features to build the platforms at the middle layer and, at the top

layer, create ecosystems enriched with deployment of best-in-class security

software solutions. These solutions at the top layer enable the protection,

detection, and corrections in both consumer and enterprise class solutions.

Intel security assets and solutions enable building and deploying an end-to-

end system of systems as depicted later. The end-to-end system starts with

edge devices or things on the left possessing minimal compute capacity and

less robust security features; these edge devices are connected to Gateways/

Network, to fog, and then connected to the cloud back ends.

The scalable strategy as shown in Figure 3-9 is to provide a minimally

viable set of security capabilities that scale from low compute MCUs to

atom class to Core and to Xeon server, microserver class products. Across

the product lines, the four groups of security technologies are available in

different capacities for implementing security features. The device identity

based on HW is key for an IoT device, and protected boot ensures that only

well-known FW/SW is being executed and protected storage ensures the

storage of secrets and/or data securely. The trusted execution environment

allows execution of code at runtime in an isolated and protected

environment immune from SW and HW attacks.

t h i n g s

Consistent HW security “capabilities” implemented across products

n e t w o r k

Fog

Software
Identification

ATOM
PROTECTED BOOT

PROTECTED STORAGE
TRUSTED EXECUTION

HW & SW IDENTIFICATION

CORE XEON

Device
Identification

Protected
Boot

Protected
Storage

Trusted
Execution

C l o u d

Figure 3-9.  Consistent HW security capabilities

Chapter 3 Base Platform Security Hardware Building Blocks

167

�Base Platform Security Features Overview
Let’s review the security features present in the base platform profiles

of IA CPU/SOC at a very high level. As alluded to in previous sections,

the security features are implemented in CPU and on dedicated security

engines as shown in Figure 3-10.

CPU

Dedicated Security Engine:
• ME for Core products
• TXE for Atom products
• SPS for Xeon products

Figure 3-10.  CPU and dedicated security engines

Intel CPUs come standard with a suite of cryptographic operations

that can be performed on the main CPU. Secure, protected encryption

starts with a random number seed, typically provided by a pseudorandom

number generator within the client. Intel® Secure Key provides a clean

source of random numbers through generation in hardware, out of sight

of malware. Intel® SGX provides TEE with smallest TCB within the CPU

boundaries for application to utilize.

�CPU Hosted Crypto Implementations

These features include CPU new instructions for encryption/decryption,

sign/verify, and random number generation: AES-NI, SHA-NI, SHA1 and

SHA256, RDRAND, RDSEED, ECC. This section describes the Security

features/primitives New Instructions (NI) as supported in the Intel CPUs

Chapter 3 Base Platform Security Hardware Building Blocks

168

(as opposed to in an isolated security engine IP block). CPU crypto

capabilities are supported by the CPU and the fabric. In the following

sections, we will learn how the hardware-enhanced security strengthens

Anti-Malware Defenses via the OS Guard (SMAP, SMEP), performing

encryption/decryption, sign/verify, and random number generation.

CPU security features and accelerators are available to trusted execution

environments implemented by the CPU as well including Intel® SGX,

Intel® VT, and Intel® TXT.

�Malware Protection (OS Guard)

Intel CPU/SoCs expose HW features for OS to defend the platform against

malware attacks. The particular and effective features include CPU new

instructions to enable Supervisor Mode Execution Prevention (SMEP) and

Supervisor Mode Access Prevention (SMAP). The SMEP feature prevents

the code executing in privileged mode (ring 0) from executing code in

application mode (ring 3). SMAP is a CPU-based mechanism for user-

mode address-space protection and prevents supervisor accesses to data

on user pages.

�OS Guard (SMEP)

SMEP when enabled prevents a specific (important) privilege escalation

attack vector which is supervisor mode execution from user pages. The

OS can set CR4.SMEP to enable this feature, and no changes are required

to applications or other OS software. However, there might be some

compatibility issues with third-party ring 0 software. The changes in VMM

are limited to supporting/virtualizing CR4.SMEP bit and corresponding

CPUID bit. It is important to note the non-objectives so that platform-level

protections can be deployed appropriately. SMEP doesn’t prevent “all”

privilege escalation attack vectors, nor does it prevent a specific class of

vulnerability (e.g., buffer overflow).

Chapter 3 Base Platform Security Hardware Building Blocks

169

�OS Guard (SMAP)

SMAP extends the protection that previously was provided by SMEP and

was developed with the Linux community, supported on kernel 3.12+

and KVM version 3.15+. The support depends on OS or VMM being used,

and the CR4.SMAP has to be set to enable the feature. SMAP is analogous

to SMEP (supervisor mode execution prevention) for data. There are

legitimate instances where the OS needs to access user pages, and SMAP

does provide support for those situations. Code executing in ring 0

(supervisor mode) is prevented from accessing the data in ring 3 (user

mode). When/if CR4.SMAP = 1, CPU generates Page Fault (#PF) for the

following accesses: accesses to data (not instruction fetch), data is on user-

accessible page (U/S bit is 1 in all relevant paging structure entries), access

is made with supervisor privilege which normally means CPU Privilege

Level (CPL) < 3, applies also to supervisor accesses made with CPL = 3

(e.g., loads from GDT on segment loads). The resulting #PF establishes

error code in the normal way.

�Encryption/Decryption Using AES-NI

AES is a symmetric encryption standard that’s widely used in the following

use cases: full disk encryption, data in transit encryption, and enterprise

application–specific security. All the modern compilers support the AES

HW accelerators, and developers can also use via C/C++ intrinsics. Intel®

Advanced Encryption Standard New Instructions (Intel® AES-NI) is a set

of seven new instructions in the Intel® processor series. Four instructions

accelerate encryption and decryption. Two instructions improve key

generation and matrix manipulation. The seventh aids in carry-less

multiplication. By implementing some complex and costly substeps of the

AES algorithm in hardware, Intel AES-NI and PCLMULQDQ accelerate

Chapter 3 Base Platform Security Hardware Building Blocks

170

execution of the AES-based encryption. The result is faster, more secure

encryption, which makes the use of encryption feasible in new use-cases.

Some of the properties are outlined here:

•	 Improve the compute efficiency of cryptographic

algorithms.

•	 Vector AES is a promotion of AES-NI to vector form,

enables two (256-bit) or four (512-bit) lanes, and

increases AES throughput of cores.

•	 FIPS197 compliant.

•	 Compilers, libraries, and emulator platforms are all

available now.

•	 AESENC, AESENCLAST, AESDEC, AESDECLAST.

•	 AES Encrypt Round, AES Encrypt Last Round, AES

Decrypt Round, AES Decrypt Last Round.

•	 Instructions have both register-register and register-

memory variants.

•	 AESIMC and AESKEYGENASSIST: Assist with AES Key

Expansion, AES Inverse Mix Columns, and AES Key

Generation Assist.

The platform support for AES can be determined by inspecting cpuinfo

output and openssl commands as shown in the following:

$ grep -o aes /proc/cpuinfo

To verify the proper cipher order, use the following command:

"openssl ciphers -v"

Chapter 3 Base Platform Security Hardware Building Blocks

171

See the following list that shows AES at the top of the list:

Openssl speed aes-256-cbc

Openssl speed –engine aesni –evp aes-256-cbc

http://ask.xmodulo.com/check-aes-ni-enabled-openssl.html

openssl speed –elapsed aes-128-cbc

openssl speed –elapsed –evp aes-128-cbc

https://software.intel.com/en-us/articles/improving-openssl-

performance

�Sign/Verify Using Intel® SHA Extensions

The Intel® SHA Extensions are a family of seven Streaming SIMD

Extensions (SSE)–based instructions that are used together to accelerate

the performance of processing SHA-1 and SHA-256 on Intel® Architecture

processors (Figure 3-11). Given the growing importance of SHA in our

everyday computing devices, the new instructions are designed to provide

a needed boost of performance to hashing a single buffer of data. Using the

SHA Extensions, the Intel® SHA Extensions can be implemented using direct

assembly or through C/C++ intrinsics. The 16-byte aligned 128-bit memory

location form of the second source operand for each instruction is defined to

make the decoding of the instructions easier. The memory form is not really

intended to be used in the implementation of SHA using the extensions

since unnecessary overhead may be incurred. Availability of the Intel® SHA

Extensions on a particular processor can be determined by checking the

SHA CPUID bit in CPUID (EAX=07H, ECX=0):EBX.SHA [bit 29].

•	 New instructions in CPU to encrypt/decrypt data.

•	 The Intel® SHA Extensions are comprised of four SHA-1

and three SHA-256 instructions.

Chapter 3 Base Platform Security Hardware Building Blocks

http://ask.xmodulo.com/check-aes-ni-enabled-openssl.html
https://software.intel.com/en-us/articles/improving-openssl-performance
https://software.intel.com/en-us/articles/improving-openssl-performance

172

•	 There are two message schedule helper instructions

each, a rounds instruction each, and an extra rounds-

related helper for SHA-1.

•	 FIPS Pub 180-2 compliant.

Instruction Op 1

SHA1 New Instructions

SHA256 New Instructions

SHA1RNDS4 xmm (rw) xmm/m128 (r) imm8 OF 3A CC /r ib

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r)

xmm (rw) xmm/m128 (r)

NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

<xmm0>
(implicit)

OF 38 C8 /r

OF 38 C9 /r

OF 38 CB /r

OF 38 CC /r

OF 38 CD /r

OF 38 CA /r

SHA1NEXTE

SHA1MSG1

SHA1MSG2

SHA256RNDS2

SHA256MSG1

SHA256MSG2

Op 2 Op 3 Opcode

Figure 3-11.  SHA instruction family

The availability of the SHA Extensions in a platform can be detected

using the code in Listing 3-1. It is always a good idea to check the available

HW crypto capabilities before leveraging them.

Listing 3-1.  Detecting the SHA Extensions

int CheckForIntelShaExtensions() {

 int a, b, c, d;

 // Look for CPUID.7.0.EBX[29]

 // EAX = 7, ECX = 0

 a = 7;

 c = 0;

Chapter 3 Base Platform Security Hardware Building Blocks

173

 asm volatile ("cpuid"

 Intel® SHA Extensions: New Instructions Supporting the

 Secure Hash Algorithm on Intel® Architecture Processors

 14

 :"=a"(a), "=b"(b), "=c"(c), "=d"(d)

 :"a"(a), "c"(c)

);

 // Intel® SHA Extensions feature bit is EBX[29]

 return ((b >> 29) & 1);

}

�Intel® Data Protection Technology with Secure Key
(DRNG)

This section explains about the usage of Digital Random Number

Generator (DRNG) with the new instructions supported in IA CPUs. For

any IoT device, the ability to generate high-quality cryptographic keys

is crucial. Two such instructions RDRAND and RDSEED are explained

along with the method to determine the support and the associated

programming usage. Intel® Secure Key constitutes the Intel® 64 and IA-32

Architectures instructions RDRAND and RDSEED and the underlying

Digital Random Number Generator (DRNG) hardware implementation.

High-quality keys for cryptographic protocols can be generated using

the RDRAND instruction, and the RDSEED instruction is provided for

seeding software-based pseudorandom number generators (PRNGs).

RDRAND retrieves a hardware-generated random value from the NIST

SP800-90A compliant Digital Random Bit Generator (DRGB) and stores

it in the destination register given as an argument to the instruction. The

size of the random value (16-, 32-, or 64-bits) is determined by the size

of the register given. The carry flag (CF) must be checked to determine

whether a random value was available at the time of instruction execution.

Chapter 3 Base Platform Security Hardware Building Blocks

174

RDRAND is available to both OS modes: system (ring 0) or application

(ring 3) software running on the platform. There are no hardware ring

requirements that restrict access based on process privilege level. As such,

RDRAND may be invoked as part of an operating system or hypervisor

system library, a shared software library, or directly by an application.

Before using the RDRAND or RDSEED instructions, an application or

library should first determine whether the underlying platform supports

the instruction and hence includes the underlying DRNG feature. This

can be done using the CPUID instruction. In general, CPUID is used to

return processor identification and feature information stored in the

EAX, EBX, ECX, and EDX registers. For detailed information on CPUID,

refer to References CPUID A and B. To be specific, support for RDRAND

can be determined by examining bit 30 of the ECX register returned by

CPUID, and support for RDSEED can be determined by examining bit

31 of the EBX register. A bit value of 1 indicates processor support for

the instruction, while a value of 0 indicates no processor support. The

Intel Digital Random Number Generator (DRNG) is a high-quality, high-

performance, HW-based random number generator.

•	 It supports NIST SP 800-90 A, B, and C compliant

functionality and is FIPS 140-2 Level 2 certifiable.

•	 It generates random numbers at a rate of 1 byte per

clock.

•	 It is available early in the system boot/OS load process.

Both RDRAND and RDSEED return random numbers that are

compliant to the US National Institute of Standards and Technology (NIST)

standards on random number generators (Figure 3-12).

Chapter 3 Base Platform Security Hardware Building Blocks

175

As depicted in Figure 3-13, the RDRAND instruction is handled

by microcode on each core. This includes an RNG microcode module

that handles interactions with the DRNG hardware module on the

processor chip. The entropy source (ES) produces random bits from a

nondeterministic hardware process. HW AES in CBC-MAC mode distills

the entropy into high-quality nondeterministic random numbers. The

deterministic random bit generator (DRBG) is seeded from the conditioner.

Instruction

RDRAND SP 800-90A

SP 800-90B & C (drafts)

Cryptographically secure pseudorandom number
generator

Non-deterministic random bit generatorRDSEED

Source NIST Compliance

Figure 3-12.  NIST compliance for RDRAND and RDSEED

Processor Chip

Random Number Generator

Hardware
Entropy
Source

Hardware
AES-CBC-

MAC Based
Conditioner

Hardware
SP800-90
AES CTR

Based
DRBG

RDRAND
Instruction

RDRAND
Instruction

Ra
w

Se
ed

Core 0

Core N-1

Figure 3-13.  Random number generator inside the chip

Chapter 3 Base Platform Security Hardware Building Blocks

176

The availability of RDRAND and RDSEED can be detected using the

following register bit decoding (Table 3-1).

More information can be found at: https://software.intel.com/

en-us/articles/intel-digital-random-number-generator-drng-

software-implementation-guide

Table 3-1.  Feature Information Returned in the ECX Register

Leaf Register Bit Mnemonic Description

1 ECX 30 RDRAND A value of 1 indicates that processor

supports the RDRAND instruction

7 EBX 18 RDSEED A value of 1 indicates that processor

supports the RDSEED instruction

With the information from Table 3-1 and by leveraging the code in

Listing 3-2, the availability of RDRAND and RDSEED can be detected in a

platform.

Listing 3-2.  Detecting DRNG Support

/* These are bits that are OR'd together */

#define DRNG_NO_SUPPORT 0x0 /* For clarity */

#define DRNG_HAS_RDRAND 0x1

#define DRNG_HAS_RDSEED 0x2

int get_drng_support ()

{

 static int drng_features= -1;

 /* So we don't call cpuid multiple times for

 * the same information */

 if (drng_features == -1) {

 drng_features= DRNG_NO_SUPPORT;

Chapter 3 Base Platform Security Hardware Building Blocks

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide

177

 if (_is_intel_cpu()) {

 cpuid_t info;

 cpuid(&info, 1, 0);

 if ((info.ecx & 0x40000000) == 0x40000000) {

 drng_features|= DRNG_HAS_RDRAND;

 }

 cpuid(&info, 7, 0);

 if ((info.ebx & 0x40000) == 0x40000) {

 drng_features|= DRNG_HAS_RDSEED;

 }

 }

 }

 return drng_features;

}

One of the advantages of security hardening and acceleration

capabilities applied to the core architecture is that performance

enhancements derived from core silicon manufacturing process

improvements also apply to security features. In many cases, this approach

ensures security features’ manufacturing costs scale with the other core

features.

�Converged Security and Manageability Engine
(CSME)
This describes the Converged Security Engine capabilities including the

silicon, FW, and SW ingredients. This is similar to a security coprocessor

which has its own ROM, RAM, instruction set, and an isolated execution

environment. Refer to a simplified architecture diagram in Figure 3-14. An

excellent deep dive can be found in the book Platform Embedded Security

Technology Revealed (www.apress.com/9781430265719).

Chapter 3 Base Platform Security Hardware Building Blocks

https://www.apress.com/9781430265719

178

Features are implemented in the isolated security execution engine

or equivalent to a security coprocessor. CSME is an embedded subsystem

in Platform Controller Hub (PCH). It is a mini SoC within the PCH and

contains a small processor, SRAM, crypto blocks, and I/O’s. CSME serves

three main platform roles: chipset (secure initialization/survivability),

security (boot/runtime protection and enable trusted execution of

platform applications), and manageability (optional extensions for out-of-

band network management).

CSME supports the following:

•	 Crypto operations, boot, DAL, manageability (AMT, in

above atom).

•	 The CSME supports crypto operations, HW Root of

Trust–based secure boot (verified and measured),

Active Manageability Technology, and other features.

CPU

PCH

CSME
Flash

Figure 3-14.  CSME block diagram

Chapter 3 Base Platform Security Hardware Building Blocks

179

•	 Content Protection: PAVP, Digital Rights Management

(DRM)-Widevine, PlayReady, and Adobe Access. The

CSME supports multiple DRMs for protecting the

premium audio/video content by encrypting and/or

digital watermarking.

•	 Secure Debug: DFX, JTAG lock. The CSME supports

secure debug and manages access to DFX register

space by allowing locking and unlocking of JTAG

interface through which ICE emulators could be

plugged in for debugging during pre/postproduction

and to debug the field return parts.

•	 Identity Protection Technology: The CSME also

supports protecting user’s identity via multifactor

authentication, biometrics, iris, and others.

�Secure/Verified, Measured Boot and Boot Guard
Protecting the boot flow is critical to ensure that the device is not running

compromised code whether it is the FW on the flash components or SW

running from the mass storage device. Secure/verified boot is a process

where a device authenticates the different FW/SW ingredients in the

boot chain and establishes a chain of trust. Measured boot is a process

where the device authenticates to a network for admission. To implement

measured boot, the device stores the hash values of the boot chain

ingredients, and SW entities collect these values and transmit them to a

server for attestation.

Chapter 3 Base Platform Security Hardware Building Blocks

180

�Trusted Execution Technology (TXT)
The TXT is prominent in the server and microserver domain where a

comprehensive security strategy is employed including a Measured

Launch Environment (MLE) and instrumented OS. More about this will be

discussed in the “Runtime Protection – Ever Vigilant” section.

�Platform Trust Technology (PTT)
PTT is a FW implementation of the Trusted Computing Group (TCG)

Trusted Platform Module (TPM) and complies with the TPM 2.0

specification. This FW is executed on the CSME or CSE on atom platforms.

This feature is the most important for an IoT device which has board-level

constraints imposed by BOM cost and real estate. PTT is essential for

measured boot and attestation mechanisms.

�Enhanced Privacy ID (EPID)
The EPID allows a device to possess an immutable “privacy preserving

platform identifier” – in many use cases, it isn’t required that the particular

instance of the CPU be known, only that the platform is of a particular class

or origin. In these situations, trust can be established without sacrificing

privacy. Through this immutable identity, more secrets can be provisioned

in the field during the course of the IoT device lifecycle including

anonymous identification for provisioning of secrets, premium content,

DRMs, and operation.

�Memory Encryption Technologies
In future processors, Intel plans to introduce two new in-memory data

protection capabilities including Total Memory Encryption (TME) and

Multi-Key TME, or MKTME. TME technology encrypts the platform’s

entire memory with a single key.

Chapter 3 Base Platform Security Hardware Building Blocks

181

�TME

When enabled via BIOS configuration, this will help ensure that all

memory accessed from the Intel CPU is encrypted, including customer

credentials, encryption keys, and other IP or personal information on the

external memory bus.

�MKTME

The second new technology extends TME to support multiple encryption

keys (Multi-Key TME, or MKTME) and provides the ability to specify

the use of a specific key for a page of memory. This architecture allows

either CPU-generated keys or tenant-provided keys, giving full flexibility

to customers. This means virtual machines (VMs) and containers can

be cryptographically isolated from each other in memory with separate

encryption keys, a big plus in multitenant cloud environments. VMs and

containers can also be pooled to share an individual key, further extending

scale and flexibility. This includes support for both standard DRAM and

NVRAM. Refer to the following for more information.[4, 5]

�Dynamic Application Loader (DAL)
DAL technology allows building, deploying, and managing the lifecycle

of a small trusted applet (Java-based applets) using the DAL SDK and

Runtime environment.

4�https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-
new-technology-specification-for-memory-encryption

5�https://software.intel.com/sites/default/files/managed/a5/16/Multi-
Key-Total-Memory-Encryption-Spec.pdf

Chapter 3 Base Platform Security Hardware Building Blocks

https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryption
https://software.intel.com/en-us/blogs/2017/12/22/intel-releases-new-technology-specification-for-memory-encryption
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

182

�Software Guard Extensions (SGX) – IA CPU
Instructions
SGX constitutes a new set of CPU instructions, kernel/user mode drivers

and Runtime environment, and API/SDK. This framework allows

developers to build the trusted parts of the application code into enclaves.

The inherent assumption is that the partition of the application into

trusted and untrusted domains is already done prior to implementing

SGX. SGX can be used to seal legitimate software inside an enclave to

protect from attacks by the malware, irrespective of the privilege levels

whether it is ring 0 or ring 3.

�Identity Crisis
With the projected 50 billion IoT devices on the network, wouldn’t it be

ultracritical to ensure that a device is talking to the right device at the other

end? A masqueraded device can do lot of damage. A method to prevent this

is to implement a device identity that’s immutable and use this identity to

attest and provision initial secrets and additional secrets in the field during

the course of the device’s life. The same phenomenon applies to human

identity as well. It is vital to realize that a masqueraded device is substantially

hard to detect and quarantine. Intel Identity Protection Technology (IPT)

uses Dynamic Application Loader (DAL) to implement mechanisms to

protect the user identity via multifactor authentication and others.

The device identity (ID) decision tree can be used to select the right

ID for a particular implementation. As shown in Figure 3-15, a security

architect/engineer can decide the right identity based on the platform

requirements and use cases. If an identity is required but mutable

(changeable), a SW identity may suffice, but immutable identity requires

identity to be in HW. If this identity now has to be anonymous, select EPID,

else the identity as supported in PTT/TPM may be adequate. The EPID’s

cryptographic properties are briefly explained in the following section.

Chapter 3 Base Platform Security Hardware Building Blocks

183

�Enhanced Privacy Identifier (EPID)
The EPID is a novel technology that addresses all aspects of the active

anonymity problem: authentication, anonymity, and revocation. Intel®

Enhanced Privacy ID (Intel® EPID) provides an immutable hardware

root of trust, enabling IoT networks to confidently identify devices and to

secure their communications.

�Anonymity

Intel EPID also offers sophisticated privacy capabilities that enable

anonymous communication to safeguard networks and customers’

data. EPID is an anonymous digital signature scheme with the following

attributes (Figure 3-16): a private key for signing and a single group public

key for verifying signature of multiple keys. EPID is an open standard: ISO/

IEC 20008/20009 and TCG Mature Technology, shipping since 2008, 2.4B

keys since 2008.

Is identity required? Immutability
required?

YES Anonymous?YES YES
Select
EPID

Select
PTT/TPM

NO

Select
SW based ID

NO

NA

NO

Figure 3-15.  Device identity decision tree

Chapter 3 Base Platform Security Hardware Building Blocks

184

As depicted in the figure, the PKI is a system with a public-private key

pair, whereas the EPID is a system with one public key associated with

many private keys formed into a group. In both cases, the private keys are

provisioned into the devices, and the public keys are available to the back-

end servers for authentication/admission.

�PTT/TPM
The Endorsement Key (EK) supported in the Intel® PTT or discrete Trusted

Platform Module (TPM) serves as a direct identity for IoT devices. An

Endorsement Key is a special purpose TPM-resident RSA key that is never

visible outside of the TPM. An EK certificate is used to bind an identity, in

PKI Public Key

PKI Private Keys

EPID Public Key

pvt-
key 1

pvt-
key n

pvt-
key 2

…

Millions of Private Keys

Figure 3-16.  PKI system vs. EPID

Chapter 3 Base Platform Security Hardware Building Blocks

185

terms of specific security attributes, to a TPM. The primary use of an EK

certificate is to authenticate device identity during Attestation Identity Key

(AIK) certificate issuance.

�Device Boot Integrity – Trust But Verify
Imagine the IoT device booting an image that’s not the original from boot

storage. In this circumstance, any protections that you deploy at higher

layers wouldn’t be adequate to protect the device. Once the immutable

identity is ensured as explained in the previous section, it becomes vital to

follow through by booting securely. The boot loaders such as BIOS, UEFI,

coreboot, and FSP can be classified into pre-OS boot loaders and will be

referred as such. Let’s unravel the ∗boot chaos with many terms employed

in the industry today:

•	 Trusted Boot: Definition varies according to industry.

Used to characterize a trusted system with a chain of

trust.

•	 Secure Boot: HWRoT based. Authenticates starting with

the first instruction executed on host (Core/Xeon/Atom).

•	 UEFI Secure Boot: UEFI Boot manager ensures device

boots only signed FW and OS loaders. UEFI Driver

signing and protocol extensions. This is also known as

BIOS as Root of Trust.

•	 Windows Secure Boot: Leverages UEFI Secure Boot to

continue into Windows OS, a Windows certification

requirement.

•	 Direct Boot: An OS image such as Linux bzImage is

loaded from stage 2 of the pre-OS boot loader.

Chapter 3 Base Platform Security Hardware Building Blocks

186

•	 Verified Boot: Cryptographically verifies the Initial Boot

Block of the pre-OS boot loader or UEFI or BIOS using

boot policy key. A verified boot using Intel Boot Guard

is shown in Figure 3-17.

•	 Immutable Root-of-Trust exists in the hardware.

•	 Root-of-Trust protects the initial boot process.

•	 It uses cryptographic keys to authenticate and validate

the integrity of the Initial Boot Block (IBB).

•	 IBB maintains a secure boot chain by passing control

to the next stage boot image after authentication and

integrity verification.

•	 The final stage boot image passes control to the OS

after authentication.

•	 Measured Boot: Measures the Initial Boot Block (IBB)

and subsequent stages into platform storage such as

Trusted Platform Module (TPM) or firmware-based

TPM or secure storage.

Root of Trust

Intel BootGuard UEFI Secure Boot Or Other Mechanism

IBB OBB OS/Apps

verifyverifyverify

Figure 3-17.  Verified boot flow with Boot Guard

The following terms will be useful to understand the following

sequence that describes the process of Measured Boot using Boot Guard as

shown in Figure 3-18:

•	 Hashing algorithms typically employed include Hash_

alg = SHA1, SHA256, SHA384, SM3.

•	 Extending: It is a process of updating a PCR with a hash.

Chapter 3 Base Platform Security Hardware Building Blocks

187

•	 PCR: Platform Configuration Register hosted

inside PTT/TPM. The PCR 0–7 are used for pre-OS

environment, and PCR 8–15 are used for OS and

beyond. Refer to the TCG TPM specification for

recommended PCR allocations.

•	 The new PCR value can be computed with PCR_new =

Hash_alg(PCR_old || Hash_alg(data_new)).

•	 Logging: Keeps a log of all measurements in an ACPI table.

•	 ACM: Intel Authenticated Code Module, integrated

in the BIOS/UEFI/boot loader for authenticating and

measuring the IBB.

	 1.	 Upon power ON, CSME starts by computing the hash

of ACM, and the hash of the ACM is stored in PCR 0.

	 2.	 The ACM computes the hash of IBB and extends it

into PCR 0.

	 3.	 The IBB computes the hash of OEM Boot Block

(OBB) aka the second stage pre-OS boot loader and

extends the hash into PCR 0 and stores the hash of

Platform Config Data into PCR 1.

	 4.	 The OBB computes the hash of OS loader and stores

the corresponding hash into PCR 4. It stores the

hash of Firmware Boot Policy in PCR 7.

	 5.	 The OS loader computes the hash of OS kernel and

stores the hash into PCR 8.

	 6.	 The OS kernel can compute the hash of the user

mode drivers/libraries and applications and extend

the respective hashes into PCR 8-15 to meet the

platform chain of trust requirements.

Chapter 3 Base Platform Security Hardware Building Blocks

188

�Secure Boot Mechanisms
The stack below describes the lowest layer to be the HW layer, and above

that is the firmware layer which includes the modules required to handle

the HW IP blocks and Digital Rights Management. Above that is the

boot loader/UEFI used to initialize the CPU and chipset. The optional

hypervisor supports the Virtual Machine Manager (VMM) functionality.

The upper layers include the OS ingredients for kernel and User mode.

CSM
E

Power
ON

PCR 0 : BtGuard Policy, ACM, IBB

PCR 0 : CSME, OBB
PCR 1 : Platform Config Data

PCR 4 : OS Loader
PCR 7 : Firmware Secure BP

PCR [0-7] : Separator bet’n Firmware/OS

PCR 8 : OS Kernel

PCR 8-15 : OS Dependent

ACM
IBB

OBB
OS

Kernel
OS

Loader

Figure 3-18.  Measured Boot sequence

Chapter 3 Base Platform Security Hardware Building Blocks

189

Above that layer are the middleware/frameworks and applications. This

diagram (Figure 3-19) also illustrates the security goal that trust begins

at the lowest layers and must be extended into the layers above – and

that doing so requires conscious techniques to get it right. If/when those

techniques fail, the stack recovers by falling back to lower layers.

The stack includes booting into application TEEs and the need to

distinguish security-sensitive function and workloads that should be

separated from “traditional” function and workloads. We can refer to

the TEE and lower layers as the trusted computing base upon which the

rest of the stack depends. The stack also supports networking and the

idea that lower layers implementing the TCB can be linked (in an IoT

use case) so that a Distributed TCB (DTCB) can be formed that supports

distributed trusted workloads such as key management/migration, device

management, SW/FW update of an IoT fog/network, and so on.

App Trusted Execution
Environment (TEE)

Applications

User Mode

Kernel Mode

OS Loader

Optional Hypervisor

Stage2 Boot Loader

Stage1 Boot Loader

Secure Boot FW

HW Rot

Chain of Trust

Authenticate

OS

Pre-OS

HW

Figure 3-19.  Describes the boot flow on a core along with the chain
of trust and signing implications

Chapter 3 Base Platform Security Hardware Building Blocks

190

�Secure Boot Terminology Overview

Secure Boot Types: With the Field Programmable Fuse (One Time

Programmable) profile options within the SoC, you can configure the

device in an unsecured boot where the boot ingredients in stages are

assumed to be trusted and no authentication is performed, referred to in

Figure 3-20.

•	 Verified Boot: Boot policies are enforced during

the boot process. Starting with the Root of Trust for

verification, the currently executing module verifies

the next module against a policy. The boot process

is stopped if secure boot guarantee is violated. It is

important to note that this only provides assurance that

the boot policy was enforced.

•	 Measured Boot: Integrity measurement is placed

into the TPM. Starting with the Root of Trust for

measurement, the currently executing module places

the integrity measurement of the next module into

the TPM. Computer is not stopped if secure boot

guarantee is violated and provable to remote systems

via attestation.

•	 Secure Boot: A boot process which implements either

Verified Boot, Measured Boot, or both. Verified Boot

is often referred to as Secure Boot; Measured Boot is

often referred to as Trusted Boot (also refers to TBoot

sometimes).

Chapter 3 Base Platform Security Hardware Building Blocks

191

IOT devices are inherently vulnerable to physical attacks primarily due

to their ability to connect to billions of devices. A first step in building a

robust device is to ensure that the very first component of the boot loader

is authenticated. This is implemented by a method known as secure boot

which is based on a hardware root of trust in a platform. The immutable

code running on on-die ROM in an isolated environment on a security

engine forms an anchor. This ROM code loads the stage 1 of the boot

loader into security engine’s SRAM and cryptographically authenticates

the image before executing it on the host CPU. The secure boot method

on Intel Architecture is explained in detail including the HW and

cryptographic blocks. Refer to Figure 3-21.

Unsecured Boot

Measured Boot

Verified Boot

Reset

Reset

Reset

Verifies against manifest
IT

Verifies against manifest

IT
Has no proof of

proper boot

OS/
Apps

OS/
Apps

OS/
Apps

Execute

Execute

Execute Verify Execute Verify

Measure Execute Measure

Assumption

Assumption

Verifies against Manifest during / after boot.
• Local Attestation: TPM Enforces Policy
• Remote Attestation: TPM Key signs
 measurements.

Policy applied
starting here

Execute Assumption

TPM

Figure 3-20.  Types of boot

Chapter 3 Base Platform Security Hardware Building Blocks

192

�Overview of BIOS/UEFI Secure Boot Using Boot
Guard Version 1.0 (BtG)
The verified boot flow using FSP+coreboot leveraging the Intel Boot Guard

version 1.0 on Skylake platform is shown in Figure 3-21. The terms are

explained followed by the sequence.

IPF: Infield Programmable Fuses also known as Field Programmable

Fuses (FPF) represent storage inside the CPU/SoC for policy configuration

and are One Time Programmable (OTP). The provisioning tools are

provided by Intel for programming these fuses in the manufacturing flow.

Platform Power Sequence: Includes starting boot sequence for power

rail stabilization.

Authenticated Code Module (ACM): Intel provided FW module loaded

from flash, authenticated and executed in CPU’s cache as RAM (CAR).

Sky Lake FSP/coreboot Verified Boot (BtG 1.0)

Platform
Power

Sequence
ACM

OEM
Manifest FSP

IBB

OEM
Public Key

Hash

IPF

OEM
BP Key Hash

PubK

PubK

PrvK

PrvK

Signed
By OEM
Private Key

Signed
By OEM BP
Private Key

ACM FW authenticates the public key
ACM FW authenticates the IBB
Core Boot Stage-1 authenticates the Core Boot Stage-2

Stage-2 authenticates the Stage-3
Stage-3 authenticates OS Loader via UEFI key store or Mok List
OS Loader authenticates the Kernel via UEFI key store or Mok List
Kernel authenticates the Apps via UEFI key store or Mok List

UEFI
Variable
Services

Key
Manifest

IBB
Hash

Boot Policy
Manifest

Components
Hash

OEM
Manifest

KEK
PK
DB

DBX

UEFI
Key Store

Hash

Option
ROMs

UEFI
Payload

Core Boot
Stage-1

(BootBlock)

Core Boot
Stage-2

(RomStage)

Core Boot
Stage-3

(RamStage)
Windows
Loader

Windows

Reference Flow: Core Boot + FSP + UEFI + Windows

Boot Policy

Figure 3-21.  FSP/coreboot-based verified boot on Skylake using Boot
Guard 1.0

Chapter 3 Base Platform Security Hardware Building Blocks

193

The sequence is outlined here:

•	 ACM authenticates Core Boot Stage-1.

•	 Core Boot Stage-1: Authenticates Core Boot Stage-2

using the BPM.

•	 Core Boot Stage-2: Authenticates Core Boot Stage-3

using the OEM Manifest.

•	 Core Boot Stage-3: Authenticates OS Loader (Windows

or Grub/ELILO or others).

•	 OS Loader (Linux or Windows or RTOS): Authenticates

kernel image.

•	 Kernel: Authenticates the user mode and applications.

Refer to this link for starting with coreboot: www.coreboot.org/Lesson1

Firmware Support Package (FSP) is provided by Intel for initializing

Intel silicon, designed for integration into a boot loader of the developer's

choice. FSP source code can be leveraged for ideas and references for

implementing verified and measured boot using Intel Boot Guard and

PTT/TPM; more information can be found at: https://firmware.intel.

com/learn/fsp/about-intel-fsp

�Data Protection – Securing Keys, Data at
Rest and in Transit
At rest: Storing data/secrets/content securely on the storage and whole

disk encryption is the most popular example. This also is a very important

problem. If a malware or even a legitimate application can access the

secrets that it’s not authorized, it causes an unstable device. Certain

regulations such as General Data Protection Regulation (GDPR) mandate

protecting the privacy of the data both at rest and in transit. For more

information on encryption-related protection of data, refer to

Chapter 3 Base Platform Security Hardware Building Blocks

http://www.coreboot.org/Lesson1
https://firmware.intel.com/learn/fsp/about-intel-fsp
https://firmware.intel.com/learn/fsp/about-intel-fsp

194

https://ec.europa.eu/commission/sites/beta-political/files/

data-protection-factsheet-sme-obligations_en.pdf. Section (83) calls

for encryption for confidentiality in: https://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

Article 6, 4 (e) also calls for encryption or pseudonymization

of personal data which ensures reidentifying only with additional

information. This is in contrast to anonymity where the anonymized data

can no longer be reidentified.

Runtime protection problem: How do we protect the data and the

code from each other in the system during Runtime? TEEs are an excellent

method for this. Examples include SGX.

It is useful to think about theft threats and the idea that attackers

are able to perform brute force crypto hacking as they have access to all

the encrypted data and wrapped keys and so on. Encrypting using AES

before storing the data on a disk makes it harder for attackers to reverse

engineer and steal the secrets. An example use case for this is the Windows

BitLocker technology which implements the whole disk encryption with

strong passwords. There are increased threats due to persistent memory

technologies supported by Optane and 3D Xpoint. These are persistent

storage technologies making them subject to theft threats. Memory

encryption is a mitigation where any/all data that goes out of the CPU/SOC

on bus is encrypted whether it’s destined for DRAM or SSD. The encryption

technologies such as AES XTS 265 and secure boot existing in Optane + 3D

Xpoint can be utilized to protect assets concerning flash-based memory.

�Intel Platform Trust Technology (PTT)
Intel® PTT is a implementation of the Trusted Platform Module (TPM)

2.0 specification in firmware. CSME/TXE Engine is used as cryptographic

processor for TPM implementation. SPI flash (TXE/CSME filesystem) is

used as secure storage. PTT currently implements only mandatory and

recommended TPM 2.0 commands mentioned in MSFT “signal and profile

document.”

Chapter 3 Base Platform Security Hardware Building Blocks

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-sme-obligations_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-sme-obligations_en.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

195

As shown in Figure 3-22, the PTT includes random number generator,

encryption/decryption, sign/verify, secure key generation, secure key/data

storage, device identity both unique and anonymous, and device attestation.

Random
Number

Generator

Intel
Platform

Trust
Technology

Encryption
(Signing)

Device
Attestation

Secure Key
Generation

Secure Key/
Data Storage

Device Identity

Unique/
Anonymous

Figure 3-22.  PTT components

�Windows PTT Architecture
On Windows as shown in Figure 3-23, the host SW components include the

Trusted Base Services (TBS), the TPM.sys kernel mode driver, and ACPI

which interact with PTT FW through Memory Mapped IO (MMIO)–based

Chapter 3 Base Platform Security Hardware Building Blocks

196

PTT interface. The PTT interface in turn calls into the TXE or CSME. The

SPI storage is used as the secure storage where the keys and other secrets

are stored encrypted and signed to ensure confidentiality and integrity.

The CSME contains internal crypto engines and SRAM and uses SPI flash

to store the keys in an encrypted format.

Pre-OS environment (BIOS/UEFI/coreboot) implements the following:

•	 Selects between available PTT/TPMs

•	 Enables/disables PTT/TPM

•	 Issues TPM clear (PPI)

•	 Logs measurements in TPM and ACPI for OS

Host SW BIOS

TBS

TPM.sys
ACPI

BIOS

PTT EFI
Driver

PTT Interface

PTT FW

Crypto Engines SRAM

Secure
Storage

SPI

System
Memory

CSME

Figure 3-23.  Windows PTT stack

Chapter 3 Base Platform Security Hardware Building Blocks

197

�Linux PTT Software Stack
As shown in Figure 3-24, in Linux OS stack, a PTT-based application

has multiple mechanisms to interact with PTT including PKCS #11 and

Feature API, and an expert application developer can directly interact with

System API.

•	 TPM Device Driver (TDD) handles physical data

transmission in ring 0/kernel mode.

•	 TPM Command Transmission Interface (TCTI) handles

marshalling and unmarshalling of full TPM commands.

•	 System API (SAPI) enables creation and handling of

TPM objects, sessions, and policies.

•	 Enhanced SAPI (ESAPI) enables management of the

created objects, sessions, and policies.

•	 Feature API (FAPI) designed to capture 80% of

common use cases combining operations with profile

definitions.

•	 TAB controls access to the TPM in multiple application

scenarios.

•	 RM manages the limited TPM resident memory.

•	 PKCS #11 – WIP on TPM 2.0.

TPM through SAPI specifications and implementations are mature,

while ESAPI and FAPI implementations are still developing.

Chapter 3 Base Platform Security Hardware Building Blocks

198

�Runtime Protection – Ever Vigilant
Most of the IoT devices spend their life in this phase where the device is

functional and performing its intended persona. This phase is critical for

devices that are “always on.” The assets to be protected include data, code,

and identity. Once the chain of trust is stable (secure booted), to maintain

the stable chain of trust, every bit and byte must be authenticated before

admitting into the system on every supported interface (USB, serial, BT/

Wi-Fi). This objective can be achieved with high robustness level using

a Trusted Execution Environment (TEE). The technologies available for

implementing Runtime protections include Intel VT, SGX, CSME, and TXT.

�Intel Virtualization Technology (Intel VT)
Virtualization abstracts hardware that allows multiple workloads to share

a common set of resources. On shared virtualized hardware, a variety of

workloads can colocate while maintaining full isolation from each other,

freely migrate across infrastructures, and scale as needed.

Application
PKCS #11

Feature API (FAPI)

System API (SAPI)
TPM Command Transmission Interface (TCTI)

TAB
User space

System
Memory

TXE Engine

Kernel space

Resource Manager

TPM Device Driver (TDD)

Enhanced SystemAPI (ESAPI)

Expert
TPM Application

BIOS
BIOS

PTT EFI
Driver

PTT Interface

PTT FW

Crypto Engines SRAM

Secure
Storage

SPI

Figure 3-24.  Linux PTT stack

Chapter 3 Base Platform Security Hardware Building Blocks

199

CPU virtualization features enable abstraction of the full prowess

of Intel® CPU to a virtual machine (VM). All software in the VM can run

without any performance or compatibility hit, as if it was running natively

on a dedicated CPU. Live migration from one Intel® CPU generation to

another, as well as nested virtualization, is possible.

Memory virtualization features allow abstraction, isolation, and

monitoring of memory on a per virtual machine (VM) basis. These features

may also make live migration of VMs possible, add to fault tolerance, and

enhance security. Example features include direct memory access (DMA)

remapping and extended page tables (EPT), including their extensions:

accessed and dirty bits and fast switching of EPT contexts.

I/O virtualization features facilitate offloading of multicore packet

processing to network adapters as well as direct assignment of virtual

machines to virtual functions, including disk I/O. Examples include

Virtual Machine Device Queues (VMDQ), Single Root I/O Virtualization

(SR-IOV, also a PCI-SIG standard), and Intel® Data Direct I/O Technology

enhancements (Intel® DDIO).

Graphics Virtualization Technology (Intel® GVT) allows VMs to have

full and/or shared assignment of the graphics processing units (GPU)

as well as the video transcode accelerator engines integrated in Intel

System-on-Chip products. It enables usages such as workstation remoting,

desktop-as-a-service, media streaming, and online gaming.

Virtualization of security and network functions enables

transformation of traditional network and security workloads into

compute. Virtual functions can be deployed on standard high-volume

servers anywhere in the data center, network nodes, or Cloud and smartly

colocated with business workloads. Examples of Intel® technologies

making it happen include Data Plane Development Kit (DPDK), Intel®

QuickAssist Technology, and Hyperscan.

Intel® Virtualization Technology for Connectivity (Intel® VT-c) is a key

feature of many Intel® Ethernet Controllers. With I/O virtualization and

Quality of Service (QoS) features designed directly into the controller’s

Chapter 3 Base Platform Security Hardware Building Blocks

200

silicon, Intel VT-c enables I/O virtualization that transitions the traditional

physical network models used in data centers to more efficient virtualized

models by providing port partitioning, multiple Rx/Tx queues, and on-

controller QoS functionality that can be used in both virtual and nonvirtual

server deployments.

As shown in Figure 3-25, the isolation capability enabled by VT

technology is being utilized to create an architecture with a Trusted

Execution Environment (TEE). The TEE is implemented as a secure VM

with privileged execution and access to resources; examples include

Microsoft VSM and Trusty (https://source.android.com/security/

trusty/).

Virtualization and VM Isolation components include Intel® VTx (CPU),

Intel® VTd (I/O), VmFunc (Hypervisor).

App
TEE
App

TEE OSRich OS

VMM

VTd

1

I2CUSB

Device Device

Figure 3-25.  TEE using virtualization environment

Chapter 3 Base Platform Security Hardware Building Blocks

https://source.android.com/security/trusty/
https://source.android.com/security/trusty/

201

TEE OS: Thin OS running alongside rich OS. Examples are Microsoft

VSM, Android Trusty, and so on.

Rich OS: Regular OS that executes non-security-sensitive workloads.

Examples are Microsoft Windows, Linux, Android, and so on.

Trusted computing base (TCB): VMM + TEE OS + TEE App.

Isolated execution: VMs are isolated from each other by the VMM.

Trusted Input/Output: Can be implemented by assigning I/O

Controllers to different VMs.

�Software Guard Extensions (SGX)
This section explains the usage of Software Guard Extensions (SGX) for

implementing a Trusted Execution Environment (TEE) with the new

instructions supported in IA CPUs. For any IoT device, the ability to

execute code that handles secrets/assets in a protected environment is

crucial. SGX leverages the partitioning of code into trusted and untrusted

domains which interact with each other via well-defined SGX instructions.

How does SGX work as shown in Figure 3-26? The following model

describes the interactions between the application and the SGX enclave.

	 1.	 Application is built with trusted and untrusted parts.

	 2.	 Application runs and creates enclave which is

placed in trusted memory.

	 3.	 Trusted function is called; code running inside

enclave sees data in clear; external access to data is

denied.

	 4.	 Trusted function returns; enclave data remains in

trusted memory.

Chapter 3 Base Platform Security Hardware Building Blocks

202

It is important to understand the software development model for the

benefit of the developers (Figure 3-27):

•	 Sensitive code and data are partitioned into an

“enclave” module which is a shared object (.so).

•	 Define the enclave interface and use tools to generate

stubs/proxies.

•	 SGX Libraries provide APIs (C/C++) to encapsulate

heavy-lifting implementation.

•	 Use a familiar toolchain to build and debug.

Application

Privileged System Code
OS, VMM, BIOS, SMM, ...

Untrusted Part
of App

Trusted Part
of App

Create Enclave Execute

Return

Call Gate

CallTrusted Func.

(etc.)

Figure 3-26.  SGX in action

Chapter 3 Base Platform Security Hardware Building Blocks

203

For further details, please refer to SGX web portal at: https://

software.intel.com/en-us/sgx

�Intel CSE/CSME – DAL
Intel Converged Security Engine in CSE/CSME is a dedicated engine

for security and provides a HW root of trust for the platform. Dynamic

Application Loader (DAL) exposes a general-purpose execution

Untrusted TrustedTools

App Code

Processing
Component

Processing
Component

SGX
Libraries

SGX
Libraries

ptrace

Kernel

Intel SGX enabled platform

uRTS Security Services

Enclave

SGX driver

Stub/
Proxy

Stub/
Proxy

Figure 3-27.  SGX SW development model

Chapter 3 Base Platform Security Hardware Building Blocks

https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

204

environment and is in production use since 2011 (Sandy Bridge) and

exists in almost every Intel-based platform. It extends the CSE FW

by dynamically loading signed CSE applications at Runtime. It allows

faster deployment of FW applications by decoupling the application

development from the platform development lifecycle. The FW

applications are stored on host filesystem, thus avoiding flash size

considerations. DAL enables binary-level portability for applications and

is based on a virtual machine; DAL applications are written in the Java

programming language. Refer to Figure 3-28.

Open to malware and
rooting/jailbreaking

Rich OS Secure OS

HW Secure Resources

Host Operating System (REE) CSE - TEE
Trusted

App
Payment

Trusted
App

Content
protection

Trusted
App

Identity
protection

Apps

TEE Client API

TEE Internal API

Hardware Platform

TSM
Proxy

TA Service
Manager

Micro Run Time
Environment

Trusted App
mgmt

API
IPC\HECI

Isolation of sensitive
assets

Figure 3-28.  DAL architecture

Chapter 3 Base Platform Security Hardware Building Blocks

205

�Isolation from Rich Execution Environment

All the trusted applications (TAs) run in an isolated environment as

supported by DAL and with the following attributes:

•	 TAs run in separate Java-like VM environment.

•	 TA-to-TA snooping is prevented using sandboxing.

•	 DAL prevents TA direct access to resources of other TAs.

�Authenticity and Security

The DAL applications or TAs are subjected to the following robustness rules:

•	 DAL allows installation of signed and encrypted DAL

TA in the CSE (security coprocessor).

•	 The TA can use the secure services, that is, secure

storage to access SPI flash.

•	 Intel or OEM signed TAs can be installed.

�Portability

The TAs have the binary-level portability subjected to the following scope:

•	 DAL is based on a virtual machine; DAL applications

are written in Java.

•	 DAL enables binary-level portability for FW

applications across the OS and HW platform.

Chapter 3 Base Platform Security Hardware Building Blocks

206

Following are sample applications where DAL is deployed:

•	 Intel® Identity Protection Technology (Intel® IPT).

•	 Identity protection and e-payment: OTP (one-

time password), PTD (protected trusted display),

PKI (public key infrastructure), NFC (near field

communication).

•	 Intel® PKI (PEAT) for IT market: Symantec

Managed PKI, Intel IT.

•	 McAfee (Intel Security): MFAb (Multifactor

Authentication for Business), True Key – using IPT.

•	 Intel® Security Assist (ISA): A self-updater service

which recommends security products to end users.

•	 China UnionPay (CUP): Implementing a Tap and Pay

e-Commerce solution.

•	 Intel® Software Guard Extensions (Intel® SGX): The

“Secure Enclaves” technology consumes CSME

platform services using DAL.

•	 IOT Retail SmartPOS (Point Of Sale): Based on Atom

platforms with Android.

�Intel Trusted Execution Technology (TXT)
Intel® Trusted Execution Technology (Intel® TXT) provides hardware-

based security technologies to help build a solid foundation for security.

Built into Intel’s silicon, these technologies address the increasing and

evolving security threats across physical and virtual infrastructures by

complementing Runtime protections such as antivirus software. Intel

TXT also can play a role in meeting government and industry regulations

and data protection standards by providing a hardware-based method of

verification useful in compliance efforts.

Chapter 3 Base Platform Security Hardware Building Blocks

207

As shown in Figure 3-29, Intel® TXT capable processors and

chipsets allow establishing of the “root of trust” and “Measured Launch

Environment” (MLE) to support trust decisions; within the computing

platform, a MLE is needed. A “root-of-trust” is also needed which

should be established first at the silicon level and then extended to the

entire solution stack. The technology draws upon a rich set of security/

virtualization features embedded into the IA processors and also

integrated into the BIOS as well as other platform ingredients.

HARDWARE

INTEL TXT

HARDWARE

SYSTEM

HYPERVISOR

HARDWARE
HYPERVISOR

NO MATCH
HARDWARE

HYPERVISOR

HARDWARE
HYPERVISOR

MATCH

OSI
APPS

OSI
APPS

1. SYSTEM POWERS ON AND INTEL TXT
VERIFIES SYSTEM BIOS, CRITICAL
FIRMWARE AND THEN HYPERVISOR

3. OS AND APPLICATIONS ARE
LAUNCHED, PLATFORM
TRUST STATUS ATTESTABLE

www.intel.com/txt3. POLICY ACTION ENFORCED, UNTRUSTED
STATUS ATTESTABLE

2. HYPERVISOR MEASURE
DOES NOT MATCH

2. HYPERVISOR MEASURE MATCHES

Figure 3-29.  TXT flow

Figure 3-30 depicts the critical enabling requirements for the

technology in server implementations. Intel TXT is specifically designed

to harden platforms from the emerging threats of hypervisor attacks,

BIOS, or other firmware attacks, malicious rootkit installations, or other

software-based attacks. It increases protection by allowing greater control

of the launch stack through a Measured Launch Environment (MLE) and

Chapter 3 Base Platform Security Hardware Building Blocks

208

enabling isolation in the boot process. More specifically, it extends the

Virtual Machine Extensions (VMX) environment of Intel® Virtualization

Technology (Intel® VT), permitting a verifiably secure installation, launch,

and use of a hypervisor or operating system (OS).

A chain-of-trust built on top of Intel® TXT

Intel Kernel
Guard Tech

Intel-generated project that is useful for extending integrity
verification solutions into runtime environments.

Intel contributes optimizations to these widely used libraries for
performing cryptographic processing.

Intel-maintained project that is widely used to OS or VMM
infrastructures capable of trusted boot.

Intel-maintained project (internally known as Intel CIT 2.0) which can
be used to remotely verify platform’s trust status & create trust pools

Intel-developed solution used to verify run time integrity of workload

Intel-developed tool that can be used to remotely activate and
configure Intel TXT on multi-vendor server platforms

Enabled in Intel Silicon, BIOS & Platform – to establish a chain-
of-trust 1st in Silicon, and then extend to the entire solution stack

Intel Trusted Execution
Technology [Intel TXT]

OpenSSLOpen
Source

Binary
Licensed

Platform
Integrated

Tboot

Open
Attestation

Cloud Integrity
Technology 3.0

Platform Trust
Enabler Tool

Figure 3-30.  TXT chain of trust

Intel TXT gives IT and security organizations important enhancements

to help ensure more secure platforms; greater application, data, or virtual

machine (VM) isolation; and improved security or compliance audit

capabilities. Not only can it help reduce support and remediation costs,

but it can also provide a foundation for more advanced solutions as

security needs change to support increasingly virtualized or “multitenant”

shared data center resources.

�Threats Mitigated
Intel assets as described earlier can be leveraged to improve the robustness

and to defend against both zero-day and other attacks. Refer to Figure 3-31.

Chapter 3 Base Platform Security Hardware Building Blocks

209

�Zero-Day Attacks
Attacks that are designed to exploit a previously unknown vulnerability are

referred to as zero-day attacks.6 These attacks are harder to detect in time

to minimize the damaging impact.

IoT applications: The impact of a compromise due to zero-day

attacks can be minimized by handling all the high-value assets/secrets in

a protected Runtime environment such as a TEE. DAL, SGX, and Trusty

provide such defenses. Examples include remote car control in the jeep

scenario and Ukraine power grid.

•	 Mitigation: Intel® Security Essentials, Intel Stratix®

FPGA, protected boot, and attested software

measurements can be implemented to mitigate the

risks resulting from the preceding zero-day attacks.

These solutions also enable a simplified TEE-based IP

protection for ecosystem.

IoT Threats-Edge to Cloud Portfolio Protections

IoT Applications

Security
Development

Zero Day
Exploits

Types of
Attacks

Recent
IoT

Attacks

The
Solution

Solutions Rooted In HW Security

Zero Day
App Exploit

Anonymity
Proxy

Ransomware
DDOS

Attacks
Key

Attacks
Password
Attacks

Sniffers
Attacks

Key
Attacks

Man in
Middle

Device
Endpoint

Things

Edge
Management

Gateways &
Fog Compare

Network

Secure
Communication

Data Center & Cloud

IT & OT Device
Management

Back-end

Data & Analytic
Service Providers

Figure 3-31.  Mitigation of IoT threats

6�https://csrc.nist.gov/glossary/term/zero-day-attack

Chapter 3 Base Platform Security Hardware Building Blocks

https://csrc.nist.gov/glossary/term/zero-day-attack

210

�Other Attacks
Other high impacting attacks include the distributed denial of service

(DDOS), network attacks, and attacks on cloud infrastructures which hold

rich troves of data.

Device Endpoint and Edge Management: The DDOS/key/password

examples include CCTV Hijack and Mirai botnet.

•	 Mitigation: Intel® Secure Device Onboard can be

deployed to mitigate the risks resulting from the

preceding attacks. This is accomplished by not

shipping devices with default credentials and

instead use EPID identity designed-in for privacy

preserving provisioning model to eliminate human

misconfiguration with automated onboarding.

Network: Sniffers and man-in-the-middle examples include Tornado

Siren Hijack, WPA CRACK, and Heart Bleed.

•	 Mitigation: Intel® Security Essentials API, Intel®

Platform Trust Technology, Intel® Software Guard

Extensions. Simplified HW secured key management

and provisioning APIs. HW secured SSL transport APIs.

PTT or TEE protected data and key storage.

Data Center and Cloud: Anonymity Proxy and ransomware examples

include Infotainment VIN Online service app, Reaper, Thermostats, and

WannaCry.

•	 Mitigation: Wind River Helix Device Cloud. Automated

Over-the-Air (OTA) updates for firmware and software,

provisioning, credential management, suspend,

decommission, and firewall policy update to isolate/

quarantine.

Chapter 3 Base Platform Security Hardware Building Blocks

211

�Conclusion
Security is not a blanket and requires pragmatic approach. It needs

understanding of the assets to be protected against a set of threats in a

system consisting of a set of vulnerabilities. Intel has a lot of HW security

assets which can be leveraged to boot an IoT device securely and continue

building on the chain of trust tethered to a HWRoT. Intel has security

features residing in the CPU and PCH. The device identity, boot integrity,

data protection, and Runtime protection are the four fundamental buckets

of capabilities for securely booting into a TEE with a relevant TCB and later

into a distributed TCB.

�References
•	 https://software.intel.com/en-us/articles/

intel-sha-extensions

•	 https://software.intel.com/en-us/articles/

intel-advanced-encryption-standard-

instructions-aes-ni

•	 www.intel.com/content/dam/doc/white-paper/

enterprise-security-aes-ni-white-paper.pdf

•	 https://software.intel.com/sites/default/

files/m/d/4/1/d/8/10TB24_Breakthrough_AES_

Performance_with_Intel_AES_New_Instructions.

final.secure.pdf

Chapter 3 Base Platform Security Hardware Building Blocks

https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
http://www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/enterprise-security-aes-ni-white-paper.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf

212

Security Hacks

•	 http://spectrum.ieee.org/cars-that-think/

transportation/self-driving/hackers-take-

control-of-a-moving-jeep

•	 http://spectrum.ieee.org/automaton/robotics/

robotics-hardware/video-friday-bacteria-

driving-robot-drone-with-gun-freaky-snakebot

•	 CPUID A: Intel® 64 and IA-32 Architectures Software

Developer’s Manual, Volume 2: Instruction Set

Reference, A-Z. [Online] http://www.intel.com/

content/www/us/en/processors/architectures-

software-developermanuals.html.

•	 CPUID B: Intel® Processor Identification and the CPUID

Instruction. [Online] April 2012. http://www.intel.

com/content/www/us/en/processors/processor-

identification-cpuidinstruction-note.html.

Open Access  This chapter is licensed under the terms

of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/), which permits

use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if

changes were made.

The images or other third party material in this chapter are included

in the chapter’s Creative Commons license, unless indicated otherwise

in a credit line to the material. If material is not included in the chapter’s

Creative Commons license and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder.

Chapter 3 Base Platform Security Hardware Building Blocks

http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/hackers-take-control-of-a-moving-jeep
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-bacteria-driving-robot-drone-with-gun-freaky-snakebot
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-bacteria-driving-robot-drone-with-gun-freaky-snakebot
http://spectrum.ieee.org/automaton/robotics/robotics-hardware/video-friday-bacteria-driving-robot-drone-with-gun-freaky-snakebot
http://www.intel.com/content/www/us/en/processors/architectures-software-developermanuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developermanuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developermanuals.html
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuidinstruction-note.html
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuidinstruction-note.html
http://www.intel.com/content/www/us/en/processors/processor-identification-cpuidinstruction-note.html
http://creativecommons.org/licenses/by/4.0/

	Chapter 3: Base Platform Security Hardware Building Blocks
	Background and Terminology
	Assets, Threats, and Threat Pyramid
	Inverted Threat Pyramid
	Sample IoT Device Lifecycle

	End-to-End (E2E) Security
	Security Essentials
	Device Identity
	Protected Boot
	Protected Storage
	Trusted Execution Environment (TEE)
	Built-In Security

	Base Platform Security Features Overview
	CPU Hosted Crypto Implementations
	Malware Protection (OS Guard)
	OS Guard (SMEP)
	OS Guard (SMAP)
	Encryption/Decryption Using AES-NI
	Sign/Verify Using Intel® SHA Extensions
	Intel® Data Protection Technology with Secure Key (DRNG)

	Converged Security and Manageability Engine (CSME)
	Secure/Verified, Measured Boot and Boot Guard
	Trusted Execution Technology (TXT)
	Platform Trust Technology (PTT)
	Enhanced Privacy ID (EPID)
	Memory Encryption Technologies
	TME
	MKTME

	Dynamic Application Loader (DAL)
	Software Guard Extensions (SGX) – IA CPU Instructions

	Identity Crisis
	Enhanced Privacy Identifier (EPID)
	Anonymity

	PTT/TPM

	Device Boot Integrity – Trust But Verify
	Secure Boot Mechanisms
	Secure Boot Terminology Overview

	Overview of BIOS/UEFI Secure Boot Using Boot Guard Version 1.0 (BtG)

	Data Protection – Securing Keys, Data at Rest and in Transit
	Intel Platform Trust Technology (PTT)
	Windows PTT Architecture
	Linux PTT Software Stack

	Runtime Protection – Ever Vigilant
	Intel Virtualization Technology (Intel VT)
	Software Guard Extensions (SGX)
	Intel CSE/CSME – DAL
	Isolation from Rich Execution Environment
	Authenticity and Security
	Portability

	Intel Trusted Execution Technology (TXT)

	Threats Mitigated
	Zero-Day Attacks
	Other Attacks

	Conclusion
	References

