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CHAPTER 3

Base Platform 
Security Hardware 
Building Blocks

Every distraction is a possibility, Every downfall is an 
opportunity.

—Ria Cheruvu

Historically, the attacks on platforms have been transitioning from 

application-level software (SW) to user mode SW to kernel mode SW to 

firmware (FW) and now hardware (HW). The frequency of HW- and FW-

level vulnerabilities increased substantially from 2003 to 2019 and therefore 

reinforces a concrete need for HW-based security to harden the platform. 

This is evident from the data cataloged in the National Vulnerability 

Database (NVD) organized as CVEs; more information about NVD can 

be found at https://nvd.nist.gov/. The Common Vulnerabilities and 

Exposures (CVE) is a list of entries with the information that identifies a 

unique vulnerability or an exposure and is used in many cybersecurity 

products and services including the NVD; more information about CVE 

can be found at https://cve.mitre.org/. The NVD has been mined to 

derive the statistics and visualizations with pertinent search terms such 

https://doi.org/10.1007/978-1-4842-2896-8_3
https://nvd.nist.gov/
https://cve.mitre.org/
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as Firmware and Hardware. It is evident from Figure 3-1 (a) that the 

firmware-related CVEs have increased significantly and 2017–2018 saw the 

biggest jump when the hacker community started attacking the FW on the 

platforms. Similarly Figure 3-1 (b) shows that during the same time period, 

the HW-related CVEs also hit a peak. Please note that all these CVEs need 

to be investigated carefully for the impacted areas within a platform. But the 

trends are clearly pointing toward the HW as the last line of defense.
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Figure 3-1.  (a) Firmware vulnerability trend chart1

1�https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced& 
results_type=statistics&query=Firmware&search_type=all
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This chapter describes the technologies involved in securing an IoT 

device anchored to a Hardware Root of Trust (HWRoT) and ultimately 

booting into a Trusted Execution Environment (TEE). Security in an IoT 

environment generally involves four areas of focus:

•	 Protecting the device

•	 Protecting user identity
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Figure 3-1.  (b) Hardware vulnerability trend chart2

2�https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced& 
results_type=statistics&query=Hardware&search_type=all
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•	 Protecting the data

•	 Managing the security at runtime

Each of these areas are worthy of detailed explanation in itself. This 

chapter delves into the rich set of security and privacy technologies 

Intel has available in their product lines and how they may be used to 

implement secure IoT systems. Intel’s discrete CPU-PCH or System-on-

Chip (SoC) products have two classes of security features; one class of 

features are implemented in the CPU as New Instructions (NI) with some 

examples being AES-NI, SHA-NI, and so on. The second class of security 

features are implemented in the isolated security engines with examples 

including Converged Security and Manageability Engine (CSME).

Note P lease note that by the time this book is published, some 
new security features may be released by Intel, and therefore please 
refer to Intel web site or contact the relevant OEM/ODMs for latest 
information.

�Background and Terminology
Before the actual security capabilities can be described, it is important to 

understand the terminology, the threat pyramid, the relevance of end-

to-end security, and Intel Security Essentials for leveraging built-in HW 

security technologies.

�Assets, Threats, and Threat Pyramid
Security design begins with the process of identifying a set of assets 

that are to be protected and classifying these assets according to the 

different levels of protection based on strategic or other pertinent value 
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vectors. A real-life scenario of protecting assets in our home would be 

to protect our house keys (hang on wall), wallets (place in an enclosed 

cabinet), passports, and jewelry (in a safe in the master bedroom). For 

IoT deployments, security is also determined by the return on investment 

(ROI). Figure 3-2 depicts the relationship between them.

•	 Assets (A): Anything valuable to us that is worth 

protecting. What assets are we protecting? It is 

pertinent to classify the assets and prioritize. Example 

asset profile = {physical devices, internal fuses, keys, 

content, data at rest/in transit, etc.}

•	 Threats (T): What are we protecting against? Become 

aware of threat surfaces, the areas of exposure to 

threats.

•	 Vulnerabilities (V): What are the known weaknesses in 

the system that can be exploited?

•	 Mitigation: How are we going to protect?

•	 Robustness rules: Specific to assets/threats. 

Documented conditions/criteria for protecting specific 

assets against specific threats.

•	 Threat modeling: A process to evaluate the threat 

scenarios considering the vulnerabilities for specific 

assets. This process is iterative and is expected to be 

done whenever the bill of materials (BOM) list in a 

platform changes.
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�Inverted Threat Pyramid
The threat pyramid shown in Figure 3-3 depicts the surfaces/layers 

vulnerable to cyberattacks (both physical and remote) in an IoT device. 

The volume of attacks is high at the top and requires fewer resources, 

whereas the volume of attacks at the bottom is lower and requires a high 

amount of resources. In other words, the attack surfaces have varying 

degree of exposure and mandate a defense in depth approach at the 

platform levels.
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Figure 3-2.  Relationship between assets, vulnerabilities, and threats

Chapter 3  Base Platform Security Hardware Building Blocks



155

The rectangle outlines the IA value additions where the related 

security IP capabilities exemplify the assets that can be used to protect 

customer’s assets. The effort to create exploits at the top of the inverted 

pyramid is low, and the ROI on the compromised assets is also low. Due 

to this low effort, the number of exploits is also significantly higher. As we 

traverse down the inverted pyramid, the effort it takes to create exploits 

increases significantly along with the cost, and thereby the number of 

exploits is typically lower and targeted in nature. The bottom six layers 

could be qualified as HW, and side-channel attacks plus physical attacks 

are relevant. The discussion of such side-channel and physical attacks is 

outside the scope of this book.

�Sample IoT Device Lifecycle

The IoT device lifecycle pertaining to security is complicated with security 

involved in every phase of an IoT device lifecycle (Figure 3-4). During the 

build phase, the security SDK/API is critical for simplifying the device 
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Figure 3-3.  Attack pyramid
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build. The provisioning/configuring phases would require tools that 

scale across different CPU families and involve assigning a persona to the 

IoT device. The deployment phase should be flexible for seamless and 

potential anonymity. The connectivity should comply with the relevant 

security standards and specifications. The management of these devices 

must be secure and seamless. The retirement or decommissioning phase is 

equally critical for an IoT device due to the integration of different assets/

secrets from multiple vendors in the system. For a detailed supply chain 

interactions during the lifecycle, refer to the Secure Device Onboarding 

technology.3

IoT devices have different security needs as they go through their 

lifecycle (on average it is many years significantly more than traditional 

PCs). Security is pivotal to enable IoT devices and sustain those on the 

market. Each stage of the device lifecycle has its specific requirements, 

starting from providing what is needed for onboarding a device during 

the start of its life to security management functions that secure runtime 

operations. Intel has a critical role with enabling design-in the best 

practice HW security model with solutions and ecosystem relationships. 

Intel targets to enable security capabilities and solutions for each phase 

working with the ecosystem. Security is not one-off, it evolves along the 

lifecycle with each stage having unique needs. Best practices are required 

to secure the entire lifecycle.

3�www.intel.com/content/www/us/en/internet-of-things/secure-device-
onboard.html
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Figure 3-4.  IoT device lifecycle

�End-to-End (E2E) Security
While security pertaining to an IoT device is important, a practical IoT 

deployment warrants scaling security across an E2E spectrum starting with 

edge/Things connected to Network and then fog or Cloud. The typical E2E 

security involves edge/Things ➤ Gateway/Network ➤ Fog ➤ Cloud. Refer 

to Figure 3-5.
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Assets exist at different stages and often cross trust boundaries.

A typical flow (for a sensing application) is explained with 

confidentiality (encryption/decryption) and integrity (sign/verify) 

attributes:

	 1.	 The device securely identifies with the Gateway/

Cloud (could be one time or periodic depending 

upon the policy enforcement).

	 2.	 The device has/interfaces to sensors (smart/dumb) 

and actuators, collects the data, and controls the 

sensors and drives the actuators.

	 3.	 Device may run some local analytics and optionally 

store the data encrypted.

	 4.	 Device encrypts or signs (or both) (depending on 

the policy) the data and sends it to Gateway.

	 5.	 Gateway decrypts/authenticates the data.

	 6.	 Gateway may run some local analytics.
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Security Management
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Gateway Devices

Local Area Network Connectivity

Wide Area Network Connectivity

Data
Processing

API Libraries,
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API Libraries,
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Network
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Figure 3-5.  Typical E2E security components
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	 7.	 Gateway encrypts/signs and sends the data to fog/

Cloud.

	 8.	 The instances on fog/Cloud decrypt/authenticate 

the data.

	 9.	 Cloud applications run analytics.

	 10.	 Cloud applications encrypt/sign and store the data 

in databases.

�Security Essentials
Security Essentials is an Intel brand initiative that defines a set of 

foundational security capabilities that Intel processors and Systems on 

Chips (SoCs) will support in order to establish a secure baseline upon 

which the ecosystem can build rich, secure usage models (see Figure 3-6). 

Security Essentials establishes a set of capabilities along with technology 

options for implementing each of the targeted capabilities. This allows 

us to project a common security posture across all supported platforms, 

establish a baseline for security that the industry can rely upon, and 

promote reuse and consistency in Intel-based security solutions. Intel 

provides training, collateral, technology summits, and Technology 

Alignment Programs with customers and ecosystem partners. In 

some cases, Intel partners with Independent BIOS Vendors (IBVs) and 

Independent boot loader vendors to enable the ecosystem with fast, 

secure, and functionally safe boot loader solutions.
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Security Essentials focuses on four buckets of capabilities: Device 

Identity, Protected Boot, Protected Storage, and trusted execution 

environment. These are later explained briefly.

�Device Identity

A hardware identity refers to an immutable, unique identity for a platform. 

The identity has to be somehow inseparable from the platform. A hardware 

embedded cryptographic key, also referred to as a Hardware Root of 

Trust, can be an effective device identifier. The Trusted Computing Group 

(TCG) defines hardware-roots-of-trust as part of the Trusted Platform 

Module (TPM) specification. All TPM vendors are required to implement a 

hardware root of trust for storage. Intel® Platform Trust Technology (PTT) 

implements TPM functionality using a security engine integrated in many 

of its SoC products.

The IEEE community defines a device identity specification, IEEE 

802.1AR, that has been adopted by the TCG. This means TPM-based device 

identity complies with interoperable and industry-accepted approach for 

secure device identity.

A software (SW) identity refers to a cryptographic fingerprint (SWFP) 

that describes important software that may execute on a platform. The 

SWFP can be reliably verified given a whitelist of SWFP values known to 
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be legitimate. SWFP is an important aspect of securely booting a platform 

where the goal of secure boot is to detect malicious changes to software 

images before they are loaded into memory.

The TCG defines methods for securely booting a platform where 

the SWFP of each software image loaded into memory is measured (aka 

cryptographically hashed) into a Platform Configuration Register (PCR), 

which is securely stored by a TPM. PCR measurements are available for 

comparison with whitelist values during the boot process and are available 

for attestation after the platform boots. Attestation is a protocol for 

proving to a peer platform that it booted a particular way. The attestation 

verifier might also use the whitelist to verify a peer platform node booted 

satisfactorily.

An IoT system that enforces a common and attested secure boot policy 

is a way to establish trust in a distributed set of IoT nodes. Distributed trust 

is an important component to establishing a secure IoT network.

�Protected Boot

This capability defends against sophisticated bootkits and rootkits which 

have been demonstrated that reside in very early boot code and are able 

to launch a variety of attacks on the system. These attacks materialize 

without the knowledge of OS and thereby are invincible to be detected by 

the anti-malware entities. The TCG defines an architectural requirement 

for secure platform boot by defining a root-of-trust-for-measurement 

(RTM) where the platform must provide a secure platform reset and initial 

boot executive that is implemented in hardware, but TCG stopped short of 

defining a particular implementation.

The Unified Extensible Firmware Interface (UEFI) forum defines an 

interface where the UEFI BIOS boot image can be integrity verified by the 

RTM before it can execute, thereby ensuring the remainder of the BIOS boot 

process can be performed according to TCG defined secure boot principles.
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Intel® TXT (Trusted Execution Technology) anticipates scenarios 

where a hard power reset, as a way to return to a trusted environment, is 

infeasible. Instead, Intel® TXT transitions the CPU to a secure operational 

mode using an IA instruction, then proceeds to boot a hypervisor or OS 

without invoking BIOS.

Intel Boot Guard is the hardware-based root of trust for system boot 

process. It provides an architectural enforcement of OEM boot policies and 

a protected initial measurement & verification of first OEM component. 

OEM boot policy is provided in FPF programmed by the OEM.

�Protected Storage

The Storage Networking Industry Association (SNIA) defines storage 

security as

Technical controls, which may include integrity, confidentiality 
and availability controls that protect storage resources and 
data from unauthorized users and uses.

Protected storage is a fundamental security capability required to 

support many other security capabilities. The Trusted Platform Module 

(TPM) implements secure storage primitives for several types of security 

objects including cryptographic keys, configuration registers, and whitelist 

values. Protected storage encompasses the following properties:

•	 Data confidentiality: Unauthorized entities cannot read 

the data.

•	 Data integrity: Unauthorized entities cannot modify 

the data or unauthorized data modification can be 

detected.

•	 Anti-replay protection: Unauthorized entities cannot 

replay/reuse stale data to storage.

Chapter 3  Base Platform Security Hardware Building Blocks



163

Intel® Platform Trust Technology (PTT) is an implementation of 

the TCG Trusted Platform Module specification in a SoC that relies on 

hardware isolation of flash and other memory to prevent access outside 

of the TCG defined interfaces. Intel® QuickAssist Technology (QAT) is a 

hardware data encryption accelerator that also implements key storage 

protections. A common approach for building secure storage for data that 

exceeds the capacity of hardened secure storage resources calls for bulk 

data encryptions that allow ciphertexts to be stored on traditional storage 

media, but where encryption keys are stored in hardware. It is common 

to build a hierarchy of data encryption keys so that different access and 

lifecycle controls can be applied to different data. In some cases the key 

hierarchy itself is too large to fit into hardware-protected storage; therefore 

intermediate keys may be used to encrypt data encryption keys and so on 

until the top most keys of the hierarchy can be stored in hardware.

�Trusted Execution Environment (TEE)

In general, a Trusted Execution Environment (TEE) refers to an execution 

environment that is isolated from the normal general-purpose execution 

environment. For example, the core CPU is a general-purpose execution 

environment, and a security coprocessor is an isolated environment. 

Trusted execution environments may include HW/SW/FW that establishes 

an isolated environment. By carefully controlling the infrastructure that 

produces the HW/FW/SW that implements it, the TEE can have strong 

guarantees regarding safe and reliable execution of TEE workloads. 

Typically workloads that involve the use of cryptographic keys to ensure 

confidentiality and integrity protection of data as it is transformed to and 

from ciphertext are performed using a TEE.

There are several TEE technologies available across a variety of 

architectures. ARM® TrustZone creates an isolated execution environment 

within the ARM core. Intel® Software Guard Extensions (SGX) takes a 

similar approach and allows multiple instances of trusted execution 

Chapter 3  Base Platform Security Hardware Building Blocks



164

environments for different applications and tenants. Intel® Converged 

Security and Manageability Engine (CSME) is a security coprocessor that 

is integrated into Intel chipsets. The CSME can be used to offload security-

sensitive operations to shield them from possible attacks from the normal 

CPU environment. Intel® TXT allows trusted execution using CPU cache 

lines as RAM to minimize dependencies on external resources. It can be 

used for general-purpose TEE operations when cache coherency isn’t 

needed. Intel® Virtualization Technology (VT) suite offers another form 

of TEE where a trusted hypervisor creates execution environments with 

distinct thread, memory, interrupt, and IO contexts. Virtualization allows 

full OS and application images to run which may be counterproductive 

to security due to increased attack surface of a large OS and application 

framework. Therefore, it may yet be appropriate to employ some other TEE 

capability in concert with virtualization.

�Built-In Security

Built-in security features are essential to protect, detect, and correct the 

security issues in a platform. These features depicted in Figure 3-7 enable 

to protect the identity and data assets on the platforms from attacks, 

detect when attacks are launched, and then aid in deploying the corrective 

measures to make the platforms resilient.
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The identity is based on HW and possesses immutable properties 

and simplified access. The data asset protection includes data at rest and 

in transit. The detection mechanisms constitute anti-malware FW/SW 

components to find the malware and then pipeline into deploying the 

corrective measures via FW and/or SW over the air updates. Intel’s value 

proposition includes three layers of ingredients as shown in Figure 3-8.

Build-in Silicon Security
Hardware Solutions for User Problems...

Protect

Identity

Simple access
with enhanced

security

Intel® Identity
Protection Technologies

Intel® Data Protection
Technologies

Intel® Platform or Device
Protection Technologies

Data safe from
theft or alteration

Malware finds
nowhere to run or

hide

Securely
updated, more

resilient systems

Data Protection Anti-Malware Resiliency

Detect Correct

Figure 3-7.  HW solution pillars for user problems
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and Security Workloads

Platforms

Architecture

Figure 3-8.  Security value propositions
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At the bottom layer, the Intel Architecture allows leveraging built-in 

security features to build the platforms at the middle layer and, at the top 

layer, create ecosystems enriched with deployment of best-in-class security 

software solutions. These solutions at the top layer enable the protection, 

detection, and corrections in both consumer and enterprise class solutions. 

Intel security assets and solutions enable building and deploying an end-to-

end system of systems as depicted later. The end-to-end system starts with 

edge devices or things on the left possessing minimal compute capacity and 

less robust security features; these edge devices are connected to Gateways/

Network, to fog, and then connected to the cloud back ends.

The scalable strategy as shown in Figure 3-9 is to provide a minimally 

viable set of security capabilities that scale from low compute MCUs to 

atom class to Core and to Xeon server, microserver class products. Across 

the product lines, the four groups of security technologies are available in 

different capacities for implementing security features. The device identity 

based on HW is key for an IoT device, and protected boot ensures that only 

well-known FW/SW is being executed and protected storage ensures the 

storage of secrets and/or data securely. The trusted execution environment 

allows execution of code at runtime in an isolated and protected 

environment immune from SW and HW attacks.

t h i n g s

Consistent HW security “capabilities” implemented across products
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Figure 3-9.  Consistent HW security capabilities
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�Base Platform Security Features Overview
Let’s review the security features present in the base platform profiles 

of IA CPU/SOC at a very high level. As alluded to in previous sections, 

the security features are implemented in CPU and on dedicated security 

engines as shown in Figure 3-10.

CPU

Dedicated Security Engine:
•     ME for Core products
•     TXE for Atom products
•     SPS for Xeon products

Figure 3-10.  CPU and dedicated security engines

Intel CPUs come standard with a suite of cryptographic operations 

that can be performed on the main CPU. Secure, protected encryption 

starts with a random number seed, typically provided by a pseudorandom 

number generator within the client. Intel® Secure Key provides a clean 

source of random numbers through generation in hardware, out of sight 

of malware. Intel® SGX provides TEE with smallest TCB within the CPU 

boundaries for application to utilize.

�CPU Hosted Crypto Implementations

These features include CPU new instructions for encryption/decryption, 

sign/verify, and random number generation: AES-NI, SHA-NI, SHA1 and 

SHA256, RDRAND, RDSEED, ECC. This section describes the Security 

features/primitives New Instructions (NI) as supported in the Intel CPUs 
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(as opposed to in an isolated security engine IP block). CPU crypto 

capabilities are supported by the CPU and the fabric. In the following 

sections, we will learn how the hardware-enhanced security strengthens 

Anti-Malware Defenses via the OS Guard (SMAP, SMEP), performing 

encryption/decryption, sign/verify, and random number generation. 

CPU security features and accelerators are available to trusted execution 

environments implemented by the CPU as well including Intel® SGX, 

Intel® VT, and Intel® TXT.

�Malware Protection (OS Guard)

Intel CPU/SoCs expose HW features for OS to defend the platform against 

malware attacks. The particular and effective features include CPU new 

instructions to enable Supervisor Mode Execution Prevention (SMEP) and 

Supervisor Mode Access Prevention (SMAP). The SMEP feature prevents 

the code executing in privileged mode (ring 0) from executing code in 

application mode (ring 3). SMAP is a CPU-based mechanism for user-

mode address-space protection and prevents supervisor accesses to data 

on user pages.

�OS Guard (SMEP)

SMEP when enabled prevents a specific (important) privilege escalation 

attack vector which is supervisor mode execution from user pages. The 

OS can set CR4.SMEP to enable this feature, and no changes are required 

to applications or other OS software. However, there might be some 

compatibility issues with third-party ring 0 software. The changes in VMM 

are limited to supporting/virtualizing CR4.SMEP bit and corresponding 

CPUID bit. It is important to note the non-objectives so that platform-level 

protections can be deployed appropriately. SMEP doesn’t prevent “all” 

privilege escalation attack vectors, nor does it prevent a specific class of 

vulnerability (e.g., buffer overflow).
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�OS Guard (SMAP)

SMAP extends the protection that previously was provided by SMEP and 

was developed with the Linux community, supported on kernel 3.12+ 

and KVM version 3.15+. The support depends on OS or VMM being used, 

and the CR4.SMAP has to be set to enable the feature. SMAP is analogous 

to SMEP (supervisor mode execution prevention) for data. There are 

legitimate instances where the OS needs to access user pages, and SMAP 

does provide support for those situations. Code executing in ring 0 

(supervisor mode) is prevented from accessing the data in ring 3 (user 

mode). When/if CR4.SMAP = 1, CPU generates Page Fault (#PF) for the 

following accesses: accesses to data (not instruction fetch), data is on user-

accessible page (U/S bit is 1 in all relevant paging structure entries), access 

is made with supervisor privilege which normally means CPU Privilege 

Level (CPL) < 3, applies also to supervisor accesses made with CPL = 3 

(e.g., loads from GDT on segment loads). The resulting #PF establishes 

error code in the normal way.

�Encryption/Decryption Using AES-NI

AES is a symmetric encryption standard that’s widely used in the following 

use cases: full disk encryption, data in transit encryption, and enterprise 

application–specific security. All the modern compilers support the AES 

HW accelerators, and developers can also use via C/C++ intrinsics. Intel® 

Advanced Encryption Standard New Instructions (Intel® AES-NI) is a set 

of seven new instructions in the Intel® processor series. Four instructions 

accelerate encryption and decryption. Two instructions improve key 

generation and matrix manipulation. The seventh aids in carry-less 

multiplication. By implementing some complex and costly substeps of the 

AES algorithm in hardware, Intel AES-NI and PCLMULQDQ accelerate 
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execution of the AES-based encryption. The result is faster, more secure 

encryption, which makes the use of encryption feasible in new use-cases. 

Some of the properties are outlined here:

•	 Improve the compute efficiency of cryptographic 

algorithms.

•	 Vector AES is a promotion of AES-NI to vector form, 

enables two (256-bit) or four (512-bit) lanes, and 

increases AES throughput of cores.

•	 FIPS197 compliant.

•	 Compilers, libraries, and emulator platforms are all 

available now.

•	 AESENC, AESENCLAST, AESDEC, AESDECLAST.

•	 AES Encrypt Round, AES Encrypt Last Round, AES 

Decrypt Round, AES Decrypt Last Round.

•	 Instructions have both register-register and register-

memory variants.

•	 AESIMC and AESKEYGENASSIST: Assist with AES Key 

Expansion, AES Inverse Mix Columns, and AES Key 

Generation Assist.

The platform support for AES can be determined by inspecting cpuinfo 

output and openssl commands as shown in the following:

$ grep -o aes /proc/cpuinfo

To verify the proper cipher order, use the following command:

"openssl ciphers -v"
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See the following list that shows AES at the top of the list:

Openssl speed aes-256-cbc

Openssl speed –engine aesni –evp aes-256-cbc

http://ask.xmodulo.com/check-aes-ni-enabled-openssl.html

openssl  speed –elapsed aes-128-cbc

openssl  speed –elapsed –evp aes-128-cbc

https://software.intel.com/en-us/articles/improving-openssl-

performance

�Sign/Verify Using Intel® SHA Extensions

The Intel® SHA Extensions are a family of seven Streaming SIMD 

Extensions (SSE)–based instructions that are used together to accelerate 

the performance of processing SHA-1 and SHA-256 on Intel® Architecture 

processors (Figure 3-11). Given the growing importance of SHA in our 

everyday computing devices, the new instructions are designed to provide 

a needed boost of performance to hashing a single buffer of data. Using the 

SHA Extensions, the Intel® SHA Extensions can be implemented using direct 

assembly or through C/C++ intrinsics. The 16-byte aligned 128-bit memory 

location form of the second source operand for each instruction is defined to 

make the decoding of the instructions easier. The memory form is not really 

intended to be used in the implementation of SHA using the extensions 

since unnecessary overhead may be incurred. Availability of the Intel® SHA 

Extensions on a particular processor can be determined by checking the 

SHA CPUID bit in CPUID (EAX=07H, ECX=0):EBX.SHA [bit 29].

•	 New instructions in CPU to encrypt/decrypt data.

•	 The Intel® SHA Extensions are comprised of four SHA-1 

and three SHA-256 instructions.
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•	 There are two message schedule helper instructions 

each, a rounds instruction each, and an extra rounds-

related helper for SHA-1.

•	 FIPS Pub 180-2 compliant.

Instruction Op 1

SHA1 New Instructions

SHA256 New Instructions

SHA1RNDS4 xmm (rw) xmm/m128 (r) imm8 OF 3A CC /r ib

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r)

xmm (rw) xmm/m128 (r)

NA

xmm (rw) xmm/m128 (r) NA

xmm (rw) xmm/m128 (r) NA

<xmm0>
(implicit)

OF 38 C8 /r

OF 38 C9 /r

OF 38 CB /r

OF 38 CC /r

OF 38 CD /r

OF 38 CA /r

SHA1NEXTE

SHA1MSG1

SHA1MSG2

SHA256RNDS2

SHA256MSG1

SHA256MSG2

Op 2 Op 3 Opcode

Figure 3-11.  SHA instruction family

The availability of the SHA Extensions in a platform can be detected 

using the code in Listing 3-1. It is always a good idea to check the available 

HW crypto capabilities before leveraging them.

Listing 3-1.  Detecting the SHA Extensions

int CheckForIntelShaExtensions() {

    int a, b, c, d;

    // Look for CPUID.7.0.EBX[29]

    // EAX = 7, ECX = 0

    a = 7;

    c = 0;
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    asm volatile ("cpuid"

    Intel® SHA Extensions: New Instructions Supporting the

    Secure Hash Algorithm on Intel® Architecture Processors

    14

    :"=a"(a), "=b"(b), "=c"(c), "=d"(d)

    :"a"(a), "c"(c)

    );

    // Intel® SHA Extensions feature bit is EBX[29]

    return ((b >> 29) & 1);

}

�Intel® Data Protection Technology with Secure Key 
(DRNG)

This section explains about the usage of Digital Random Number 

Generator (DRNG) with the new instructions supported in IA CPUs. For 

any IoT device, the ability to generate high-quality cryptographic keys 

is crucial. Two such instructions RDRAND and RDSEED are explained 

along with the method to determine the support and the associated 

programming usage. Intel® Secure Key constitutes the Intel® 64 and IA-32  

Architectures instructions RDRAND and RDSEED and the underlying 

Digital Random Number Generator (DRNG) hardware implementation. 

High-quality keys for cryptographic protocols can be generated using 

the RDRAND instruction, and the RDSEED instruction is provided for 

seeding software-based pseudorandom number generators (PRNGs). 

RDRAND retrieves a hardware-generated random value from the NIST 

SP800-90A compliant Digital Random Bit Generator (DRGB) and stores 

it in the destination register given as an argument to the instruction. The 

size of the random value (16-, 32-, or 64-bits) is determined by the size 

of the register given. The carry flag (CF) must be checked to determine 

whether a random value was available at the time of instruction execution. 
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RDRAND is available to both OS modes: system (ring 0) or application 

(ring 3) software running on the platform. There are no hardware ring 

requirements that restrict access based on process privilege level. As such, 

RDRAND may be invoked as part of an operating system or hypervisor 

system library, a shared software library, or directly by an application. 

Before using the RDRAND or RDSEED instructions, an application or 

library should first determine whether the underlying platform supports 

the instruction and hence includes the underlying DRNG feature. This 

can be done using the CPUID instruction. In general, CPUID is used to 

return processor identification and feature information stored in the 

EAX, EBX, ECX, and EDX registers. For detailed information on CPUID, 

refer to References CPUID A and B. To be specific, support for RDRAND 

can be determined by examining bit 30 of the ECX register returned by 

CPUID, and support for RDSEED can be determined by examining bit 

31 of the EBX register. A bit value of 1 indicates processor support for 

the instruction, while a value of 0 indicates no processor support. The 

Intel Digital Random Number Generator (DRNG) is a high-quality, high-

performance, HW-based random number generator.

•	 It supports NIST SP 800-90 A, B, and C compliant 

functionality and is FIPS 140-2 Level 2 certifiable.

•	 It generates random numbers at a rate of 1 byte per 

clock.

•	 It is available early in the system boot/OS load process.

Both RDRAND and RDSEED return random numbers that are 

compliant to the US National Institute of Standards and Technology (NIST) 

standards on random number generators (Figure 3-12).
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As depicted in Figure 3-13, the RDRAND instruction is handled 

by microcode on each core. This includes an RNG microcode module 

that handles interactions with the DRNG hardware module on the 

processor chip. The entropy source (ES) produces random bits from a 

nondeterministic hardware process. HW AES in CBC-MAC mode distills 

the entropy into high-quality nondeterministic random numbers. The 

deterministic random bit generator (DRBG) is seeded from the conditioner.

Instruction

RDRAND SP 800-90A

SP 800-90B & C (drafts)

Cryptographically secure pseudorandom number
generator

Non-deterministic random bit generatorRDSEED

Source NIST Compliance

Figure 3-12.  NIST compliance for RDRAND and RDSEED

Processor Chip

Random Number Generator

Hardware
Entropy
Source

Hardware
AES-CBC-

MAC Based
Conditioner

Hardware
SP800-90
AES CTR

Based
DRBG

RDRAND
Instruction

RDRAND
Instruction

Ra
w

Se
ed

Core 0

Core N-1

Figure 3-13.  Random number generator inside the chip
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The availability of RDRAND and RDSEED can be detected using the 

following register bit decoding (Table 3-1).

More information can be found at: https://software.intel.com/

en-us/articles/intel-digital-random-number-generator-drng-

software-implementation-guide

Table 3-1.  Feature Information Returned in the ECX Register

Leaf Register Bit Mnemonic Description

1 ECX 30 RDRAND A value of 1 indicates that processor 

supports the RDRAND instruction

7 EBX 18 RDSEED A value of 1 indicates that processor 

supports the RDSEED instruction

With the information from Table 3-1 and by leveraging the code in 

Listing 3-2, the availability of RDRAND and RDSEED can be detected in a 

platform.

Listing 3-2.  Detecting DRNG Support

/* These are bits that are OR'd together */

#define DRNG_NO_SUPPORT 0x0 /* For clarity */

#define DRNG_HAS_RDRAND 0x1

#define DRNG_HAS_RDSEED 0x2

int get_drng_support ()

{

    static int drng_features= -1;

    /* So we don't call cpuid multiple times for

     * the same information */

    if ( drng_features == -1 ) {

        drng_features= DRNG_NO_SUPPORT;
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        if ( _is_intel_cpu() ) {

            cpuid_t info;

            cpuid(&info, 1, 0);

            if ( (info.ecx & 0x40000000) == 0x40000000 ) {

                drng_features|= DRNG_HAS_RDRAND;

            }

            cpuid(&info, 7, 0);

            if ( (info.ebx & 0x40000) == 0x40000 ) {

                drng_features|= DRNG_HAS_RDSEED;

            }

        }

    }

    return drng_features;

}

One of the advantages of security hardening and acceleration 

capabilities applied to the core architecture is that performance 

enhancements derived from core silicon manufacturing process 

improvements also apply to security features. In many cases, this approach 

ensures security features’ manufacturing costs scale with the other core 

features.

�Converged Security and Manageability Engine 
(CSME)
This describes the Converged Security Engine capabilities including the 

silicon, FW, and SW ingredients. This is similar to a security coprocessor 

which has its own ROM, RAM, instruction set, and an isolated execution 

environment. Refer to a simplified architecture diagram in Figure 3-14. An 

excellent deep dive can be found in the book Platform Embedded Security 

Technology Revealed (www.apress.com/9781430265719).
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Features are implemented in the isolated security execution engine 

or equivalent to a security coprocessor. CSME is an embedded subsystem 

in Platform Controller Hub (PCH). It is a mini SoC within the PCH and 

contains a small processor, SRAM, crypto blocks, and I/O’s. CSME serves 

three main platform roles: chipset (secure initialization/survivability), 

security (boot/runtime protection and enable trusted execution of 

platform applications), and manageability (optional extensions for out-of-

band network management).

CSME supports the following:

•	 Crypto operations, boot, DAL, manageability (AMT, in 

above atom).

•	 The CSME supports crypto operations, HW Root of 

Trust–based secure boot (verified and measured), 

Active Manageability Technology, and other features.

CPU

PCH

CSME
Flash

Figure 3-14.  CSME block diagram
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•	 Content Protection: PAVP, Digital Rights Management 

(DRM)-Widevine, PlayReady, and Adobe Access. The 

CSME supports multiple DRMs for protecting the 

premium audio/video content by encrypting and/or 

digital watermarking.

•	 Secure Debug: DFX, JTAG lock. The CSME supports 

secure debug and manages access to DFX register 

space by allowing locking and unlocking of JTAG 

interface through which ICE emulators could be 

plugged in for debugging during pre/postproduction 

and to debug the field return parts.

•	 Identity Protection Technology: The CSME also 

supports protecting user’s identity via multifactor 

authentication, biometrics, iris, and others.

�Secure/Verified, Measured Boot and Boot Guard
Protecting the boot flow is critical to ensure that the device is not running 

compromised code whether it is the FW on the flash components or SW 

running from the mass storage device. Secure/verified boot is a process 

where a device authenticates the different FW/SW ingredients in the 

boot chain and establishes a chain of trust. Measured boot is a process 

where the device authenticates to a network for admission. To implement 

measured boot, the device stores the hash values of the boot chain 

ingredients, and SW entities collect these values and transmit them to a 

server for attestation.
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�Trusted Execution Technology (TXT)
The TXT is prominent in the server and microserver domain where a 

comprehensive security strategy is employed including a Measured 

Launch Environment (MLE) and instrumented OS. More about this will be 

discussed in the “Runtime Protection – Ever Vigilant” section.

�Platform Trust Technology (PTT)
PTT is a FW implementation of the Trusted Computing Group (TCG) 

Trusted Platform Module (TPM) and complies with the TPM 2.0 

specification. This FW is executed on the CSME or CSE on atom platforms. 

This feature is the most important for an IoT device which has board-level 

constraints imposed by BOM cost and real estate. PTT is essential for 

measured boot and attestation mechanisms.

�Enhanced Privacy ID (EPID)
The EPID allows a device to possess an immutable “privacy preserving 

platform identifier” – in many use cases, it isn’t required that the particular 

instance of the CPU be known, only that the platform is of a particular class 

or origin. In these situations, trust can be established without sacrificing 

privacy. Through this immutable identity, more secrets can be provisioned 

in the field during the course of the IoT device lifecycle including 

anonymous identification for provisioning of secrets, premium content, 

DRMs, and operation.

�Memory Encryption Technologies
In future processors, Intel plans to introduce two new in-memory data 

protection capabilities including Total Memory Encryption (TME) and 

Multi-Key TME, or MKTME. TME technology encrypts the platform’s 

entire memory with a single key.
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�TME

When enabled via BIOS configuration, this will help ensure that all 

memory accessed from the Intel CPU is encrypted, including customer 

credentials, encryption keys, and other IP or personal information on the 

external memory bus.

�MKTME

The second new technology extends TME to support multiple encryption 

keys (Multi-Key TME, or MKTME) and provides the ability to specify 

the use of a specific key for a page of memory. This architecture allows 

either CPU-generated keys or tenant-provided keys, giving full flexibility 

to customers. This means virtual machines (VMs) and containers can 

be cryptographically isolated from each other in memory with separate 

encryption keys, a big plus in multitenant cloud environments. VMs and 

containers can also be pooled to share an individual key, further extending 

scale and flexibility. This includes support for both standard DRAM and 

NVRAM. Refer to the following for more information.[4, 5]

�Dynamic Application Loader (DAL)
DAL technology allows building, deploying, and managing the lifecycle 

of a small trusted applet (Java-based applets) using the DAL SDK and 

Runtime environment.

4�https://software.intel.com/en-us/blogs/2017/12/22/intel-releases- 
new-technology-specification-for-memory-encryption

5�https://software.intel.com/sites/default/files/managed/a5/16/Multi-
Key-Total-Memory-Encryption-Spec.pdf
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�Software Guard Extensions (SGX) – IA CPU 
Instructions
SGX constitutes a new set of CPU instructions, kernel/user mode drivers 

and Runtime environment, and API/SDK. This framework allows 

developers to build the trusted parts of the application code into enclaves. 

The inherent assumption is that the partition of the application into 

trusted and untrusted domains is already done prior to implementing 

SGX. SGX can be used to seal legitimate software inside an enclave to 

protect from attacks by the malware, irrespective of the privilege levels 

whether it is ring 0 or ring 3.

�Identity Crisis
With the projected 50 billion IoT devices on the network, wouldn’t it be 

ultracritical to ensure that a device is talking to the right device at the other 

end? A masqueraded device can do lot of damage. A method to prevent this 

is to implement a device identity that’s immutable and use this identity to 

attest and provision initial secrets and additional secrets in the field during 

the course of the device’s life. The same phenomenon applies to human 

identity as well. It is vital to realize that a masqueraded device is substantially 

hard to detect and quarantine. Intel Identity Protection Technology (IPT) 

uses Dynamic Application Loader (DAL) to implement mechanisms to 

protect the user identity via multifactor authentication and others.

The device identity (ID) decision tree can be used to select the right 

ID for a particular implementation. As shown in Figure 3-15, a security 

architect/engineer can decide the right identity based on the platform 

requirements and use cases. If an identity is required but mutable 

(changeable), a SW identity may suffice, but immutable identity requires 

identity to be in HW. If this identity now has to be anonymous, select EPID, 

else the identity as supported in PTT/TPM may be adequate. The EPID’s 

cryptographic properties are briefly explained in the following section.
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�Enhanced Privacy Identifier (EPID)
The EPID is a novel technology that addresses all aspects of the active 

anonymity problem: authentication, anonymity, and revocation. Intel® 

Enhanced Privacy ID (Intel® EPID) provides an immutable hardware 

root of trust, enabling IoT networks to confidently identify devices and to 

secure their communications.

�Anonymity

Intel EPID also offers sophisticated privacy capabilities that enable 

anonymous communication to safeguard networks and customers’ 

data. EPID is an anonymous digital signature scheme with the following 

attributes (Figure 3-16): a private key for signing and a single group public 

key for verifying signature of multiple keys. EPID is an open standard: ISO/

IEC 20008/20009 and TCG Mature Technology, shipping since 2008, 2.4B 

keys since 2008.

Is identity required? Immutability 
required?

YES Anonymous?YES YES
Select 
EPID

Select
PTT/TPM

NO

Select
SW based ID

NO

NA

NO

Figure 3-15.  Device identity decision tree
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As depicted in the figure, the PKI is a system with a public-private key 

pair, whereas the EPID is a system with one public key associated with 

many private keys formed into a group. In both cases, the private keys are 

provisioned into the devices, and the public keys are available to the back-

end servers for authentication/admission.

�PTT/TPM
The Endorsement Key (EK) supported in the Intel® PTT or discrete Trusted 

Platform Module (TPM) serves as a direct identity for IoT devices. An 

Endorsement Key is a special purpose TPM-resident RSA key that is never 

visible outside of the TPM. An EK certificate is used to bind an identity, in 

PKI Public Key

PKI Private Keys

EPID Public Key

pvt-
key 1

pvt-
key n

pvt-
key 2

…

Millions of Private Keys

Figure 3-16.  PKI system vs. EPID
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terms of specific security attributes, to a TPM. The primary use of an EK 

certificate is to authenticate device identity during Attestation Identity Key 

(AIK) certificate issuance.

�Device Boot Integrity – Trust But Verify
Imagine the IoT device booting an image that’s not the original from boot 

storage. In this circumstance, any protections that you deploy at higher 

layers wouldn’t be adequate to protect the device. Once the immutable 

identity is ensured as explained in the previous section, it becomes vital to 

follow through by booting securely. The boot loaders such as BIOS, UEFI, 

coreboot, and FSP can be classified into pre-OS boot loaders and will be 

referred as such. Let’s unravel the ∗boot chaos with many terms employed 

in the industry today:

•	 Trusted Boot: Definition varies according to industry. 

Used to characterize a trusted system with a chain of 

trust.

•	 Secure Boot: HWRoT based. Authenticates starting with 

the first instruction executed on host (Core/Xeon/Atom).

•	 UEFI Secure Boot: UEFI Boot manager ensures device 

boots only signed FW and OS loaders. UEFI Driver 

signing and protocol extensions. This is also known as 

BIOS as Root of Trust.

•	 Windows Secure Boot: Leverages UEFI Secure Boot to 

continue into Windows OS, a Windows certification 

requirement.

•	 Direct Boot: An OS image such as Linux bzImage is 

loaded from stage 2 of the pre-OS boot loader.
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•	 Verified Boot: Cryptographically verifies the Initial Boot 

Block of the pre-OS boot loader or UEFI or BIOS using 

boot policy key. A verified boot using Intel Boot Guard 

is shown in Figure 3-17.

•	 Immutable Root-of-Trust exists in the hardware.

•	 Root-of-Trust protects the initial boot process.

•	 It uses cryptographic keys to authenticate and validate 

the integrity of the Initial Boot Block (IBB).

•	 IBB maintains a secure boot chain by passing control 

to the next stage boot image after authentication and 

integrity verification.

•	 The final stage boot image passes control to the OS 

after authentication.

•	 Measured Boot: Measures the Initial Boot Block (IBB) 

and subsequent stages into platform storage such as 

Trusted Platform Module (TPM) or firmware-based 

TPM or secure storage.

Root of Trust

Intel BootGuard UEFI Secure Boot Or Other Mechanism

IBB OBB OS/Apps

verifyverifyverify

Figure 3-17.  Verified boot flow with Boot Guard

The following terms will be useful to understand the following 

sequence that describes the process of Measured Boot using Boot Guard as 

shown in Figure 3-18:

•	 Hashing algorithms typically employed include Hash_

alg = SHA1, SHA256, SHA384, SM3.

•	 Extending: It is a process of updating a PCR with a hash.
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•	 PCR: Platform Configuration Register hosted 

inside PTT/TPM. The PCR 0–7 are used for pre-OS 

environment, and PCR 8–15 are used for OS and 

beyond. Refer to the TCG TPM specification for 

recommended PCR allocations.

•	 The new PCR value can be computed with PCR_new = 

Hash_alg(PCR_old || Hash_alg(data_new)).

•	 Logging: Keeps a log of all measurements in an ACPI table.

•	 ACM: Intel Authenticated Code Module, integrated 

in the BIOS/UEFI/boot loader for authenticating and 

measuring the IBB.

	 1.	 Upon power ON, CSME starts by computing the hash 

of ACM, and the hash of the ACM is stored in PCR 0.

	 2.	 The ACM computes the hash of IBB and extends it 

into PCR 0.

	 3.	 The IBB computes the hash of OEM Boot Block 

(OBB) aka the second stage pre-OS boot loader and 

extends the hash into PCR 0 and stores the hash of 

Platform Config Data into PCR 1.

	 4.	 The OBB computes the hash of OS loader and stores 

the corresponding hash into PCR 4. It stores the 

hash of Firmware Boot Policy in PCR 7.

	 5.	 The OS loader computes the hash of OS kernel and 

stores the hash into PCR 8.

	 6.	 The OS kernel can compute the hash of the user 

mode drivers/libraries and applications and extend 

the respective hashes into PCR 8-15 to meet the 

platform chain of trust requirements.
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�Secure Boot Mechanisms
The stack below describes the lowest layer to be the HW layer, and above 

that is the firmware layer which includes the modules required to handle 

the HW IP blocks and Digital Rights Management. Above that is the 

boot loader/UEFI used to initialize the CPU and chipset. The optional 

hypervisor supports the Virtual Machine Manager (VMM) functionality. 

The upper layers include the OS ingredients for kernel and User mode. 

CSM
E

Power
ON

PCR 0 : BtGuard Policy, ACM, IBB

PCR 0 : CSME, OBB
PCR 1 : Platform Config Data

PCR 4 : OS Loader
PCR 7 : Firmware Secure BP

PCR [0-7] : Separator bet’n Firmware/OS

PCR 8 : OS Kernel

PCR 8-15 : OS Dependent

ACM
IBB

OBB
OS

Kernel
OS

Loader

Figure 3-18.  Measured Boot sequence
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Above that layer are the middleware/frameworks and applications. This 

diagram (Figure 3-19) also illustrates the security goal that trust begins 

at the lowest layers and must be extended into the layers above – and 

that doing so requires conscious techniques to get it right. If/when those 

techniques fail, the stack recovers by falling back to lower layers.

The stack includes booting into application TEEs and the need to 

distinguish security-sensitive function and workloads that should be 

separated from “traditional” function and workloads. We can refer to 

the TEE and lower layers as the trusted computing base upon which the 

rest of the stack depends. The stack also supports networking and the 

idea that lower layers implementing the TCB can be linked (in an IoT 

use case) so that a Distributed TCB (DTCB) can be formed that supports 

distributed trusted workloads such as key management/migration, device 

management, SW/FW update of an IoT fog/network, and so on.

App Trusted Execution
Environment (TEE)

Applications

User Mode

Kernel Mode

OS Loader

Optional Hypervisor

Stage2 Boot Loader

Stage1 Boot Loader

Secure Boot FW

HW Rot

Chain of Trust

Authenticate

OS

Pre-OS

HW

Figure 3-19.  Describes the boot flow on a core along with the chain 
of trust and signing implications
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�Secure Boot Terminology Overview

Secure Boot Types: With the Field Programmable Fuse (One Time 

Programmable) profile options within the SoC, you can configure the 

device in an unsecured boot where the boot ingredients in stages are 

assumed to be trusted and no authentication is performed, referred to in 

Figure 3-20.

•	 Verified Boot: Boot policies are enforced during 

the boot process. Starting with the Root of Trust for 

verification, the currently executing module verifies 

the next module against a policy. The boot process 

is stopped if secure boot guarantee is violated. It is 

important to note that this only provides assurance that 

the boot policy was enforced.

•	 Measured Boot: Integrity measurement is placed 

into the TPM. Starting with the Root of Trust for 

measurement, the currently executing module places 

the integrity measurement of the next module into 

the TPM. Computer is not stopped if secure boot 

guarantee is violated and provable to remote systems 

via attestation.

•	 Secure Boot: A boot process which implements either 

Verified Boot, Measured Boot, or both. Verified Boot 

is often referred to as Secure Boot; Measured Boot is 

often referred to as Trusted Boot (also refers to TBoot 

sometimes).
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IOT devices are inherently vulnerable to physical attacks primarily due 

to their ability to connect to billions of devices. A first step in building a 

robust device is to ensure that the very first component of the boot loader 

is authenticated. This is implemented by a method known as secure boot 

which is based on a hardware root of trust in a platform. The immutable 

code running on on-die ROM in an isolated environment on a security 

engine forms an anchor. This ROM code loads the stage 1 of the boot 

loader into security engine’s SRAM and cryptographically authenticates 

the image before executing it on the host CPU. The secure boot method 

on Intel Architecture is explained in detail including the HW and 

cryptographic blocks. Refer to Figure 3-21.
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Figure 3-20.  Types of boot
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�Overview of BIOS/UEFI Secure Boot Using Boot 
Guard Version 1.0 (BtG)
The verified boot flow using FSP+coreboot leveraging the Intel Boot Guard 

version 1.0 on Skylake platform is shown in Figure 3-21. The terms are 

explained followed by the sequence.

IPF: Infield Programmable Fuses also known as Field Programmable 

Fuses (FPF) represent storage inside the CPU/SoC for policy configuration 

and are One Time Programmable (OTP). The provisioning tools are 

provided by Intel for programming these fuses in the manufacturing flow.

Platform Power Sequence: Includes starting boot sequence for power 

rail stabilization.

Authenticated Code Module (ACM): Intel provided FW module loaded 

from flash, authenticated and executed in CPU’s cache as RAM (CAR).
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Figure 3-21.  FSP/coreboot-based verified boot on Skylake using Boot 
Guard 1.0
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The sequence is outlined here:

•	 ACM authenticates Core Boot Stage-1.

•	 Core Boot Stage-1: Authenticates Core Boot Stage-2 

using the BPM.

•	 Core Boot Stage-2: Authenticates Core Boot Stage-3 

using the OEM Manifest.

•	 Core Boot Stage-3: Authenticates OS Loader (Windows 

or Grub/ELILO or others).

•	 OS Loader (Linux or Windows or RTOS): Authenticates 

kernel image.

•	 Kernel: Authenticates the user mode and applications.

Refer to this link for starting with coreboot: www.coreboot.org/Lesson1

Firmware Support Package (FSP) is provided by Intel for initializing 

Intel silicon, designed for integration into a boot loader of the developer's 

choice. FSP source code can be leveraged for ideas and references for 

implementing verified and measured boot using Intel Boot Guard and 

PTT/TPM; more information can be found at: https://firmware.intel.

com/learn/fsp/about-intel-fsp

�Data Protection – Securing Keys, Data at 
Rest and in Transit
At rest: Storing data/secrets/content securely on the storage and whole 

disk encryption is the most popular example. This also is a very important 

problem. If a malware or even a legitimate application can access the 

secrets that it’s not authorized, it causes an unstable device. Certain 

regulations such as General Data Protection Regulation (GDPR) mandate 

protecting the privacy of the data both at rest and in transit. For more 

information on encryption-related protection of data, refer to  
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https://ec.europa.eu/commission/sites/beta-political/files/

data-protection-factsheet-sme-obligations_en.pdf. Section (83) calls 

for encryption for confidentiality in: https://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

Article 6, 4 (e) also calls for encryption or pseudonymization 

of personal data which ensures reidentifying only with additional 

information. This is in contrast to anonymity where the anonymized data 

can no longer be reidentified.

Runtime protection problem: How do we protect the data and the 

code from each other in the system during Runtime? TEEs are an excellent 

method for this. Examples include SGX.

It is useful to think about theft threats and the idea that attackers 

are able to perform brute force crypto hacking as they have access to all 

the encrypted data and wrapped keys and so on. Encrypting using AES 

before storing the data on a disk makes it harder for attackers to reverse 

engineer and steal the secrets. An example use case for this is the Windows 

BitLocker technology which implements the whole disk encryption with 

strong passwords. There are increased threats due to persistent memory 

technologies supported by Optane and 3D Xpoint. These are persistent 

storage technologies making them subject to theft threats. Memory 

encryption is a mitigation where any/all data that goes out of the CPU/SOC 

on bus is encrypted whether it’s destined for DRAM or SSD. The encryption 

technologies such as AES XTS 265 and secure boot existing in Optane + 3D 

Xpoint can be utilized to protect assets concerning flash-based memory.

�Intel Platform Trust Technology (PTT)
Intel® PTT is a implementation of the Trusted Platform Module (TPM) 

2.0 specification in firmware. CSME/TXE Engine is used as cryptographic 

processor for TPM implementation. SPI flash (TXE/CSME filesystem) is 

used as secure storage. PTT currently implements only mandatory and 

recommended TPM 2.0 commands mentioned in MSFT “signal and profile 

document.”
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As shown in Figure 3-22, the PTT includes random number generator, 

encryption/decryption, sign/verify, secure key generation, secure key/data 

storage, device identity both unique and anonymous, and device attestation.
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Figure 3-22.  PTT components

�Windows PTT Architecture
On Windows as shown in Figure 3-23, the host SW components include the 

Trusted Base Services (TBS), the TPM.sys kernel mode driver, and ACPI 

which interact with PTT FW through Memory Mapped IO (MMIO)–based 
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PTT interface. The PTT interface in turn calls into the TXE or CSME. The 

SPI storage is used as the secure storage where the keys and other secrets 

are stored encrypted and signed to ensure confidentiality and integrity. 

The CSME contains internal crypto engines and SRAM and uses SPI flash 

to store the keys in an encrypted format.

Pre-OS environment (BIOS/UEFI/coreboot) implements the following:

•	 Selects between available PTT/TPMs

•	 Enables/disables PTT/TPM

•	 Issues TPM clear (PPI)

•	 Logs measurements in TPM and ACPI for OS

Host SW BIOS

TBS

TPM.sys
ACPI

BIOS

PTT EFI
Driver

PTT Interface

PTT FW

Crypto Engines SRAM

Secure
Storage

SPI

System
Memory
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Figure 3-23.  Windows PTT stack
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�Linux PTT Software Stack
As shown in Figure 3-24, in Linux OS stack, a PTT-based application 

has multiple mechanisms to interact with PTT including PKCS #11 and 

Feature API, and an expert application developer can directly interact with 

System API.

•	 TPM Device Driver (TDD) handles physical data 

transmission in ring 0/kernel mode.

•	 TPM Command Transmission Interface (TCTI) handles 

marshalling and unmarshalling of full TPM commands.

•	 System API (SAPI) enables creation and handling of 

TPM objects, sessions, and policies.

•	 Enhanced SAPI (ESAPI) enables management of the 

created objects, sessions, and policies.

•	 Feature API (FAPI) designed to capture 80% of 

common use cases combining operations with profile 

definitions.

•	 TAB controls access to the TPM in multiple application 

scenarios.

•	 RM manages the limited TPM resident memory.

•	 PKCS #11 – WIP on TPM 2.0.

TPM through SAPI specifications and implementations are mature, 

while ESAPI and FAPI implementations are still developing.
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�Runtime Protection – Ever Vigilant
Most of the IoT devices spend their life in this phase where the device is 

functional and performing its intended persona. This phase is critical for 

devices that are “always on.” The assets to be protected include data, code, 

and identity. Once the chain of trust is stable (secure booted), to maintain 

the stable chain of trust, every bit and byte must be authenticated before 

admitting into the system on every supported interface (USB, serial, BT/

Wi-Fi). This objective can be achieved with high robustness level using 

a Trusted Execution Environment (TEE). The technologies available for 

implementing Runtime protections include Intel VT, SGX, CSME, and TXT.

�Intel Virtualization Technology (Intel VT)
Virtualization abstracts hardware that allows multiple workloads to share 

a common set of resources. On shared virtualized hardware, a variety of 

workloads can colocate while maintaining full isolation from each other, 

freely migrate across infrastructures, and scale as needed.
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Figure 3-24.  Linux PTT stack
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CPU virtualization features enable abstraction of the full prowess 

of Intel® CPU to a virtual machine (VM). All software in the VM can run 

without any performance or compatibility hit, as if it was running natively 

on a dedicated CPU. Live migration from one Intel® CPU generation to 

another, as well as nested virtualization, is possible.

Memory virtualization features allow abstraction, isolation, and 

monitoring of memory on a per virtual machine (VM) basis. These features 

may also make live migration of VMs possible, add to fault tolerance, and 

enhance security. Example features include direct memory access (DMA) 

remapping and extended page tables (EPT), including their extensions: 

accessed and dirty bits and fast switching of EPT contexts.

I/O virtualization features facilitate offloading of multicore packet 

processing to network adapters as well as direct assignment of virtual 

machines to virtual functions, including disk I/O. Examples include 

Virtual Machine Device Queues (VMDQ), Single Root I/O Virtualization 

(SR-IOV, also a PCI-SIG standard), and Intel® Data Direct I/O Technology 

enhancements (Intel® DDIO).

Graphics Virtualization Technology (Intel® GVT) allows VMs to have 

full and/or shared assignment of the graphics processing units (GPU) 

as well as the video transcode accelerator engines integrated in Intel 

System-on-Chip products. It enables usages such as workstation remoting, 

desktop-as-a-service, media streaming, and online gaming.

Virtualization of security and network functions enables 

transformation of traditional network and security workloads into 

compute. Virtual functions can be deployed on standard high-volume 

servers anywhere in the data center, network nodes, or Cloud and smartly 

colocated with business workloads. Examples of Intel® technologies 

making it happen include Data Plane Development Kit (DPDK), Intel® 

QuickAssist Technology, and Hyperscan.

Intel® Virtualization Technology for Connectivity (Intel® VT-c) is a key 

feature of many Intel® Ethernet Controllers. With I/O virtualization and 

Quality of Service (QoS) features designed directly into the controller’s 
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silicon, Intel VT-c enables I/O virtualization that transitions the traditional 

physical network models used in data centers to more efficient virtualized 

models by providing port partitioning, multiple Rx/Tx queues, and on-

controller QoS functionality that can be used in both virtual and nonvirtual 

server deployments.

As shown in Figure 3-25, the isolation capability enabled by VT 

technology is being utilized to create an architecture with a Trusted 

Execution Environment (TEE). The TEE is implemented as a secure VM 

with privileged execution and access to resources; examples include 

Microsoft VSM and Trusty (https://source.android.com/security/

trusty/).

Virtualization and VM Isolation components include Intel® VTx (CPU), 

Intel® VTd (I/O), VmFunc (Hypervisor).

App
TEE
App

TEE OSRich OS

VMM

VTd

1

I2CUSB

Device Device

Figure 3-25.  TEE using virtualization environment
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TEE OS: Thin OS running alongside rich OS. Examples are Microsoft 

VSM, Android Trusty, and so on.

Rich OS: Regular OS that executes non-security-sensitive workloads. 

Examples are Microsoft Windows, Linux, Android, and so on.

Trusted computing base (TCB): VMM + TEE OS + TEE App.

Isolated execution: VMs are isolated from each other by the VMM.

Trusted Input/Output: Can be implemented by assigning I/O 

Controllers to different VMs.

�Software Guard Extensions (SGX)
This section explains the usage of Software Guard Extensions (SGX) for 

implementing a Trusted Execution Environment (TEE) with the new 

instructions supported in IA CPUs. For any IoT device, the ability to 

execute code that handles secrets/assets in a protected environment is 

crucial. SGX leverages the partitioning of code into trusted and untrusted 

domains which interact with each other via well-defined SGX instructions.

How does SGX work as shown in Figure 3-26? The following model 

describes the interactions between the application and the SGX enclave.

	 1.	 Application is built with trusted and untrusted parts.

	 2.	 Application runs and creates enclave which is 

placed in trusted memory.

	 3.	 Trusted function is called; code running inside 

enclave sees data in clear; external access to data is 

denied.

	 4.	 Trusted function returns; enclave data remains in 

trusted memory.
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It is important to understand the software development model for the 

benefit of the developers (Figure 3-27):

•	 Sensitive code and data are partitioned into an 

“enclave” module which is a shared object (.so).

•	 Define the enclave interface and use tools to generate 

stubs/proxies.

•	 SGX Libraries provide APIs (C/C++) to encapsulate 

heavy-lifting implementation.

•	 Use a familiar toolchain to build and debug.
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OS, VMM, BIOS, SMM, ...

Untrusted Part
of App

Trusted Part
of App

Create Enclave Execute

Return

Call Gate

CallTrusted Func.
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Figure 3-26.  SGX in action
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For further details, please refer to SGX web portal at: https://

software.intel.com/en-us/sgx

�Intel CSE/CSME – DAL
Intel Converged Security Engine in CSE/CSME is a dedicated engine 

for security and provides a HW root of trust for the platform. Dynamic 

Application Loader (DAL) exposes a general-purpose execution 
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SGX
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Figure 3-27.  SGX SW development model
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environment and is in production use since 2011 (Sandy Bridge) and 

exists in almost every Intel-based platform. It extends the CSE FW 

by dynamically loading signed CSE applications at Runtime. It allows 

faster deployment of FW applications by decoupling the application 

development from the platform development lifecycle. The FW 

applications are stored on host filesystem, thus avoiding flash size 

considerations. DAL enables binary-level portability for applications and 

is based on a virtual machine; DAL applications are written in the Java 

programming language. Refer to Figure 3-28.
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Figure 3-28.  DAL architecture
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�Isolation from Rich Execution Environment

All the trusted applications (TAs) run in an isolated environment as 

supported by DAL and with the following attributes:

•	 TAs run in separate Java-like VM environment.

•	 TA-to-TA snooping is prevented using sandboxing.

•	 DAL prevents TA direct access to resources of other TAs.

�Authenticity and Security

The DAL applications or TAs are subjected to the following robustness rules:

•	 DAL allows installation of signed and encrypted DAL 

TA in the CSE (security coprocessor).

•	 The TA can use the secure services, that is, secure 

storage to access SPI flash.

•	 Intel or OEM signed TAs can be installed.

�Portability

The TAs have the binary-level portability subjected to the following scope:

•	 DAL is based on a virtual machine; DAL applications 

are written in Java.

•	 DAL enables binary-level portability for FW 

applications across the OS and HW platform.
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Following are sample applications where DAL is deployed:

•	 Intel® Identity Protection Technology (Intel® IPT).

•	 Identity protection and e-payment: OTP (one-

time password), PTD (protected trusted display), 

PKI (public key infrastructure), NFC (near field 

communication).

•	 Intel® PKI (PEAT) for IT market: Symantec 

Managed PKI, Intel IT.

•	 McAfee (Intel Security): MFAb (Multifactor 

Authentication for Business), True Key – using IPT.

•	 Intel® Security Assist (ISA): A self-updater service 

which recommends security products to end users.

•	 China UnionPay (CUP): Implementing a Tap and Pay 

e-Commerce solution.

•	 Intel® Software Guard Extensions (Intel® SGX): The 

“Secure Enclaves” technology consumes CSME 

platform services using DAL.

•	 IOT Retail SmartPOS (Point Of Sale): Based on Atom 

platforms with Android.

�Intel Trusted Execution Technology (TXT)
Intel® Trusted Execution Technology (Intel® TXT) provides hardware-

based security technologies to help build a solid foundation for security. 

Built into Intel’s silicon, these technologies address the increasing and 

evolving security threats across physical and virtual infrastructures by 

complementing Runtime protections such as antivirus software. Intel 

TXT also can play a role in meeting government and industry regulations 

and data protection standards by providing a hardware-based method of 

verification useful in compliance efforts.
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As shown in Figure 3-29, Intel® TXT capable processors and 

chipsets allow establishing of the “root of trust” and “Measured Launch 

Environment” (MLE) to support trust decisions; within the computing 

platform, a MLE is needed. A “root-of-trust” is also needed which 

should be established first at the silicon level and then extended to the 

entire solution stack. The technology draws upon a rich set of security/

virtualization features embedded into the IA processors and also 

integrated into the BIOS as well as other platform ingredients.
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Figure 3-29.  TXT flow

Figure 3-30 depicts the critical enabling requirements for the 

technology in server implementations. Intel TXT is specifically designed 

to harden platforms from the emerging threats of hypervisor attacks, 

BIOS, or other firmware attacks, malicious rootkit installations, or other 

software-based attacks. It increases protection by allowing greater control 

of the launch stack through a Measured Launch Environment (MLE) and 
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enabling isolation in the boot process. More specifically, it extends the 

Virtual Machine Extensions (VMX) environment of Intel® Virtualization 

Technology (Intel® VT), permitting a verifiably secure installation, launch, 

and use of a hypervisor or operating system (OS).

A chain-of-trust built on top of Intel® TXT
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Figure 3-30.  TXT chain of trust

Intel TXT gives IT and security organizations important enhancements 

to help ensure more secure platforms; greater application, data, or virtual 

machine (VM) isolation; and improved security or compliance audit 

capabilities. Not only can it help reduce support and remediation costs, 

but it can also provide a foundation for more advanced solutions as 

security needs change to support increasingly virtualized or “multitenant” 

shared data center resources.

�Threats Mitigated
Intel assets as described earlier can be leveraged to improve the robustness 

and to defend against both zero-day and other attacks. Refer to Figure 3-31.
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�Zero-Day Attacks
Attacks that are designed to exploit a previously unknown vulnerability are 

referred to as zero-day attacks.6 These attacks are harder to detect in time 

to minimize the damaging impact.

IoT applications: The impact of a compromise due to zero-day  

attacks can be minimized by handling all the high-value assets/secrets in 

a protected Runtime environment such as a TEE. DAL, SGX, and Trusty 

provide such defenses. Examples include remote car control in the jeep 

scenario and Ukraine power grid.

•	 Mitigation: Intel® Security Essentials, Intel Stratix® 

FPGA, protected boot, and attested software 

measurements can be implemented to mitigate the 

risks resulting from the preceding zero-day attacks. 

These solutions also enable a simplified TEE-based IP 

protection for ecosystem.
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Figure 3-31.  Mitigation of IoT threats

6�https://csrc.nist.gov/glossary/term/zero-day-attack
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�Other Attacks
Other high impacting attacks include the distributed denial of service 

(DDOS), network attacks, and attacks on cloud infrastructures which hold 

rich troves of data.

Device Endpoint and Edge Management: The DDOS/key/password 

examples include CCTV Hijack and Mirai botnet.

•	 Mitigation: Intel® Secure Device Onboard can be 

deployed to mitigate the risks resulting from the 

preceding attacks. This is accomplished by not 

shipping devices with default credentials and 

instead use EPID identity designed-in for privacy 

preserving provisioning model to eliminate human 

misconfiguration with automated onboarding.

Network: Sniffers and man-in-the-middle examples include Tornado 

Siren Hijack, WPA CRACK, and Heart Bleed.

•	 Mitigation: Intel® Security Essentials API, Intel® 

Platform Trust Technology, Intel® Software Guard 

Extensions. Simplified HW secured key management 

and provisioning APIs. HW secured SSL transport APIs. 

PTT or TEE protected data and key storage.

Data Center and Cloud: Anonymity Proxy and ransomware examples 

include Infotainment VIN Online service app, Reaper, Thermostats, and 

WannaCry.

•	 Mitigation: Wind River Helix Device Cloud. Automated 

Over-the-Air (OTA) updates for firmware and software, 

provisioning, credential management, suspend, 

decommission, and firewall policy update to isolate/

quarantine.
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�Conclusion
Security is not a blanket and requires pragmatic approach. It needs 

understanding of the assets to be protected against a set of threats in a 

system consisting of a set of vulnerabilities. Intel has a lot of HW security 

assets which can be leveraged to boot an IoT device securely and continue 

building on the chain of trust tethered to a HWRoT. Intel has security 

features residing in the CPU and PCH. The device identity, boot integrity, 

data protection, and Runtime protection are the four fundamental buckets 

of capabilities for securely booting into a TEE with a relevant TCB and later 

into a distributed TCB.
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•	 http://spectrum.ieee.org/automaton/robotics/

robotics-hardware/video-friday-bacteria-

driving-robot-drone-with-gun-freaky-snakebot

•	 CPUID A: Intel® 64 and IA-32 Architectures Software 

Developer’s Manual, Volume 2: Instruction Set 

Reference, A-Z. [Online] http://www.intel.com/

content/www/us/en/processors/architectures-

software-developermanuals.html.

•	 CPUID B: Intel® Processor Identification and the CPUID 

Instruction. [Online] April 2012. http://www.intel.

com/content/www/us/en/processors/processor-

identification-cpuidinstruction-note.html.
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