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Chapter 7

Building Firmware for Quark 
Processors

“Three things cannot be long hidden: the sun, the moon, and the truth.”

—The Buddha

The Intel Quark SoC X1000 is Intel’s lowest-power SoC, designed to provide performance 
and reduce development costs for securely managed Internet of Things endpoint devices. 
It is initially offered as a single-core, single-threaded microprocessor, making it an ideal 
solution for low-cost, small form factor, fan less and headless designs.

This chapter will discuss the EDK II infrastructure, Quark, and building a minimal 
Quark tree with the EDK II. The purpose of this review is to touch upon the salient aspects 
of the EDK II source construction technology and how it relates to the UEFI PI and UEFI 
standards, respectively.

This Intel implementation of EDK II at TianoCore demonstrates the possibilities 
available using the scalable architecture of both the code base and the associated underlying 
industry standards (see www.uefi.org). The UEFI firmware size for this Intel Galileo EDK 
II implementation (http://uefidk.intel.com/projects/quark) is 64KB, and given its 
diminutive size relative to the full Quark EDK II build, it is referred to as “TinyQuark” 
throughout the rest of this document. TinyQuark boots Yocto Linux (www.yoctoproject.org)  
on the Intel Galileo board using the onboard flash. You can build this solution from the source 
code available to download using the following URL. Specifically, the TinyQuark code is at 
http://uefidk.intel.com/content/get-started-intel-galileo-development-board.

This chapter presents the internal design of TinyQuark, which can be generalized by 
developers to make their own small-footprint UEFI firmware.

Overview of UEFI and PI
Before getting into TinyQuark, however, the next sections will describe some of the 
design intent of the EDK II software infrastructure and the association to the UEFI and PI 
specifications. These specifications describe interoperability between binary and/or source 
components. Books like Beyond BIOS by Vincent Zimmer, Michael Rothman, and Suresh 
Marisetty (Intel Press, 2011) describe the specifications, but there hasn’t been a single place 
to describe the implementation. The next section is intended to help with that gap.

http://www.uefi.org/
http://uefidk.intel.com/projects/quark
http://www.yoctoproject.org/
http://uefidk.intel.com/content/get-started-intel-galileo-development-board
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History of Implementations and Specifications
Starting with the Extensible Firmware Interface (EFI) 0.92 specification in 1998, there has 
always been a reference EFI implementation. The sample implementations are intended 
to help clarify some of the design intent of the specification. As shown in the diagram in 
Figure 7-1, every corresponding specification has had an associated implementation. 
Historically, these implementations were of the core components that are portable 
across a broad set of hardware platforms, but the implementations did not include a full 
platform source tree.

Figure 7-1.  Specification and implementation time line

The time line shows the original sample implementation, pre-2006. The original EFI 
Developer Kit (EDK) had challenges in construction since it was a monolithic tree, and 
the addition of third-party sources or data was ad hoc, as was library support since EDK 
didn’t codify the set of libraries that were usable by the different phases of execution. The 
introduction of the packaging concept in EDK II, along with PCDs and the base libraries, 
provided a way to compose source modules from different entities, have reusable sources 
across many different architectures, and host development environments. Specifically, 
EDK only supported the Microsoft tool chain, whereas EDK II supports building under 
Apple OS X, Microsoft Windows, and various Linux distributions. The clean ANSI-C 
source files and the Python-based build tools of EDK II help contribute to this portability.
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Introduction to EDK II Building Blocks
The EFI Development Kit II (EDK II) is an implementation of the UEFI and PI standards. 
The EDK II is hosted at www.tianocore.org and features many technologies, including 
an OS-portable build system, ANSI-C code, and GCC/NASM/MASM–based assembly 
language sources.

In addition, the source technology is decomposed via “packages.” The package 
concept is covered by the UEFI PI packaging specification and is a means by which to 
segregate binary and sources. The package boundaries are typically driven by business 
considerations. The packing concept has many interrelated elements for construction, 
including the DEC, DSC, FDF, and INF files, along with the Platform Configuration 
Database. The relationship of these elements, details, and some examples of the same are 
shown next.

Regarding packages, the most prominent packages are listed next, with brief notes 
about functionality.

PKG: Packaging
Packaging describes the units of decomposition for various technologies. The packaging 
boundaries may appear somewhat arbitrary at first but are usually motivated by both 
technology and business criteria.  The former includes aggregating a given type of 
component in one place, such as the generic bus drivers and core elements in the MDE 
Module Package. The latter includes things like licensing, wherein the package may 
contain closed-source binaries and sources for a proprietary technology.

MdePkg
The Module Development Environment (MDE) Package (MdePkg) includes files and 
libraries for Industry Standard Specifications (i.e., UEFI, PI, PCI, USB, SMBIOS, ACPI, 
SMBIOS, etc.). You can think of the MdePkg, along with the build tools, as the minimum 
components to build a PEI Module (PEIM), a DXE driver, or a UEFI driver.

The EDK II code is managed on www.sourceforge.net, but there is also a  
mirror on GitHub. As such, the source code for this package can be found at  
https://github.com/tianocore/edk2/tree/master/MdePkg.

The important components are the include and library directories. Within the include 
directory there are industry standard definitions, protocol and PPIs corresponding to 
the UEFI and UEFI PI specifications, and architecture-specific files. These files need a 
corresponding white cover industry standard, a public document, or a published UEFI 
specification in order to reside in the MdePkg.

The library directory, on the other hand, contains a series of library classes. The 
directories prefixed by “Base” should be use able in the PEI, DXE, UEFI runtime, and 
UEFI boot services phases. These are the most generic, portable libraries that do not 
depend upon underlying interfaces. The other libraries are alternately prefixed by the 
phase of execution, such as “PEI”, “SMM”, “DXE”, “SEC”, or “UEFI.” These latter terms 
designate the phase of execution wherein these libraries apply.

Figure 7-2 describes the various phases of UEFI PI execution.

http://www.tianocore.org/
http://www.sourceforge.net/
https://github.com/tianocore/edk2/tree/master/MdePkg
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MdeModulePkg
Building upon the MdePkg are implementations of modules, namely the Module 
Development Environment Modules (MdeModulePkg). These components can be found 
at https://github.com/tianocore/edk2/tree/master/MdeModulePkg. The PEIMs, DXE 
drivers, UEFI drivers, and UEFI applications-only definitions from the Industry Standard 
Specifications are defined in the MdePkg. These components should be portable across 
a broad class of platforms and CPU bindings, including 32-bit and 64-bit ARM, Intel 
Itanium, IA32, and X64.

IntelFrameworkPkg
The IntelFrameworkPkg (https://github.com/tianocore/edk2/tree/master/
IntelFrameworkPkg) includes files and libraries for those parts of the Intel Platform 
Innovation Framework for EFI specifications (a.k.a. “Framework”) that were not adopted 
“as is” by the UEFI or PI specifications. These packages provide a bridge between code 
written against the Framework Specifications (http://www.intel.com/content/www/us/
en/architecture-and-technology/unified-extensible-firmware-interface/efi-
specifications-general-technology.html) and the subsequent UEFI PI specifications. 
Some of the interfaces changed between Framework and PI, such as the SMM-CIS; 
whereas other interfaces only exist in the Framework corpus, such as the Compatibility 
Support Module (CSM).

Figure 7-2.  UEFI PI boot flow

https://github.com/tianocore/edk2/tree/master/MdeModulePkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkPkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkPkg
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
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IntelFrameworkModulePkg
The IntelFrameworkModulePkg (https://github.com/tianocore/edk2/tree/master/
IntelFrameworkModulePkg) contains modules (PEIMs + DXE drivers+ UEFI drivers) that 
make reference to one or more definitions in the IntelFrameworkPkg. A diagram of these 
packages is shown in Figure 7-3.

Figure 7-3.  Important packages for EDK II

Packages
Packages in the EDK II are groups of modules. A package may support one or more 
drivers, libraries, or combinations thereof. Example packages, in addition to the ones 
listed earlier, include drivers and applications related to specific hardware, or drivers 
and applications related to software components, such as the UEFI specification. The 
MdeModulePkg is an example of the latter, and the former will be discussed in the 
context of TinyQuark.

Packages can also leverage definitions and elements of other packages. A hardware 
package should reference the core UEFI packages, such as the MdePkg, for the definitions 
of standard UEFI protocols and structure.

Packages have related files, such as XML manifest, DSC, and INF files, in addition to 
the C and/or assembly-language source files. Figure 7-4 shows the packages’ relationship 
with supporting files.

https://github.com/tianocore/edk2/tree/master/IntelFrameworkModulePkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkModulePkg
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So the package provides the partitioning of the sources and binaries, but it does not 
provide for fine-grain control of build options in the actual code artifacts. For that, the 
PCD comes into play.

PCD: Platform Configuration Database
So what is the platform configuration database goal? First, PCD entries are used for 
module parameterization; examples include define statements and variables. Among 
other things, the benefit of PCDs includes reducing the need to edit the source code. Also, 
there is no need to search for a magic #define statement, like base address registers, for 
example. These can all be PCD values.

PCDs allow for reusing values across many modules. These fixed-at-build PCDs are 
very much akin to #defines, but herein they are tied into the build system.

Beyond PCDs, the PCD concept can also be used dynamically, namely to store 
platform information, like the vital product data serial number. You can use dynamic 
PCDs for setup options and so forth.

PCDs are related to other build files, such as INF, DEC, and DSC, as shown  
in Figure 7-5.

Figure 7-4.  Packages and supporting files
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There are various types of PCDs, including FeatureFlag, FixedAtBuild, 
PatchableInModule, and Dynamic.

•	 FeatureFlag: Replaces a switch MACRO to enable/disable a 
feature (TRUE or FALSE).

•	 FixedAtBuild: Replaces a macro that produced a customizable 
value. The value of this PCD type is determined at build time and 
is stored in the code section of a module’s PE image.

•	 PatchableInModule: The value is stored in the data section, rather 
than the code section, of the module’s PE image.

•	 Dynamic/DyanmicEx/DynamicHii/DynamicVpd: The value is 
assigned by one module and is accessed by other modules in 
execution time.

The PCDs are related to the build process, as follows in Figure 7-6. Specifically, the 
PCDs are ascertained from the DEC, INF, DSC, and FDF file and included in the autogen. 
The autogen source files are in turn compiled with the other sources for the resultant 
driver or PEI module.

Figure 7-5.  PCD relationship to INF, DEC, and DSC
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In addition to extracting the PCDs from metadata files like INF/DEC/DSC, the PCDs 
can also be used directly in source files. In this case, the relationship of the source and 
the build is shown in Figure 7-7.

Figure 7-7.  PCDs via build and source construction

Figure 7-6.  PCDs and build flow

Syntax
Given the background on the PCDs, the following is an example of the declaration of 
PCDs for a given module.
 
[PcdsFeatureFlag.common] [PcdsFixedAtBuild.IA32] [PcdsFixedAtBuild.X64]    
[PcdsFixedAtBuild.IPF] [PcdsFixedAtBuild.EBC]   [PcdsDynamic.IA32] 
[PcdsDynamicEx.X64]
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Example of a PCD during DXE
Defined in ICH X Package DEC
  [PcdsDynamic.common]
  gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs|0|UINT8|0x40000016
The Module INF lists which PCDs get accessed
  [Pcd]
  gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs
The Value to use in New Project Package DSC
  [PcdsDynamicDefault.common.DEFAULT]
  gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs|0
 

Here is an example used in the CODE:
 
DXE - Referenced in the DXE code in NewProjectPkg\ SetupDxe\Platform.c
 
IchSataPataConfigs.Uint8 = PcdGet8(PcdIchSataPataConfigs);
  . . .
  PcdSet8(PcdIchSataPataConfigs, IchSataPataConfigs.Uint8);
 

Finally, the PCDs can show up in the resultant flash image in many ways, including 
as a Firmware File System file in the flash image. Figure 7-8 shows one possible layout of 
the PCDs, along with other binary content, such as the UEFI variable data and the vital 
product data.

Figure 7-8.  PCDs in a flash image

Beyond PCDs for parameterizing the build and source files, there is the Platform 
Declaration File that describes the collection of modules in a build.

DEC: Platform Declaration File
The DEC is the Platform Declaration File (the “D” in DEC is for declaration). There is just 
one DEC file per package. A DEC file is required for EDK II modules using extended INF and 
extended DSC format files. If you make a new package you must have a DEC file for it.
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Syntax
The DEC has a defines section that states what the package is. It gives it a GUID and a 
name. Every other section described here is optional.

The DEC file may have an includes section stating, “The include directories for this 
package are as follows:”. For example, you might be able to say, “This is my IA64 include 
and this is my X64 include,” and so forth.

In addition, the DEC file also has an optional library class section. It exposes the 
library classes that are defined in the package.

If you declare any GUIDs in the system, the DEC file has a GUID section. Certain 
structures have GUIDs defined for them; if that structure is defined in this package,  
it would be listed here.

The DEC file has a protocol GUID listed for every protocol header file that is in your 
package. You list the GUID of that protocol in the protocol section. The same is true for 
PPIs; they are also identified by GUID.

If any module contained in your package defines a new PCD, this is where you look 
it up.It is possible to reference a PCD from another package, but do not list it here. This 
location is for new PCDs.

Coincidentally, as soon as you make a new PCD, you must make a new token space 
GUID, because all the PCDs are defined by a token space GUID, followed by the PCD 
name. A new token space means you must have a GUID for the token space. So, any new 
PCDs are also going to have a GUID.

Finally, user extensions are rarely used, but are optionally present. The following is 
an example DEC file.
 
Example dec
##  @file  ShellPkg.dec
##
[Defines]
  DEC_SPECIFICATION     = 0x00010005
  PACKAGE_NAME          = ShellPkg
  PACKAGE_GUID          = 9FB7587C-93F7-40a7-9...
  PACKAGE_VERSION       = 0.40
[Includes.common]
  Include
[LibraryClasses.common]
  ##  @libraryclass  Provides most Shell APIs. Only available for Shell applications
  ShellLib|Include/Library/ShellLib.h
  ##  @libraryclass  Provides shell internal support Only available for 
shell internal commands
  ShellCommandLib|Include/Library/ShellCommandLib.h
  ##  @libraryclass  provides EFI_FILE_HANDLE services used by Shell and ShellLib
  FileHandleLib|Include/Library/FileHandleLib.h
  ## @libraryclass   Allows for a shell application to have a C style entry point
  ShellCEntryLib|Include/Library/ShellCEntryLib.h
  ## @libraryclass   Provides sorting functions
  SortLib|Include/Library/SortLib.h
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  ## @libraryclass   Provides advanced parsing functions
  HandleParsingLib|Include/Library/HandleParsingLib.h
[Guids.common]
  gEfiShellEnvironment2ExtGuid  = {0xd2c18636, 0x40e5, 0x4eb5, {0xa3, 0x1b, 
0x36, 0x69, 0x5f, 0xd4, 0x2c, 0x87}}
 

This completes the description of the DEC file. Beyond the DEC file, there also needs 
to be a DSC.

DSC: Platform Description File
A DSC file must define all libraries, components, and/or modules that will be used by one 
package. DSC files are a list of the following:

EDK Component or EDK II Module INF files•	

EDK libraries (for EDK Components)•	

EDK II Library Class Instance Mappings (for EDK II Modules)•	

EDK II PCD Entry Settings•	

The following is an example of a DSC file for the UEFI Shell Package:
 
#/** @file
# Shell Package
#**/
[Defines]
  PLATFORM_NAME           = Shell
  PLATFORM_GUID           = E1DC9BF8-7013-4c99-9437-...
  PLATFORM_VERSION        = 0.4
  DSC_SPECIFICATION       = 0x00010006
  OUTPUT_DIRECTORY        = Build/Shell
  SUPPORTED_ARCHITECTURES = IA32|IPF|X64|EBC
  BUILD_TARGETS           = DEBUG|RELEASE
  SKUID_IDENTIFIER        = DEFAULT
[LibraryClasses.common]
  �UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/ 
UefiApplicationEntryPoint.inf

  �UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/ 
UefiBootServicesTableLib.inf

  DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf
  DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf
  PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
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FDF: Flash Description File
The FDF file describes information about the flash part. It has rules for combining 
binaries built from a DSC file. You can create firmware images and optional ROM images 
for nearly anything you need.

It is possible to have PCD information used in the definition, as well as in some of the 
PCDs. The patchable ones will be stored at specific places inside the FV file.

Syntax
The FDF file has a header and a FD section, as well as a number of FV sections. It might 
have a capsule, a VTF, rules, and an optional ROM section if you are trying to build a 
PCI option on some user extensions. The following is a Backus-Naur Form (BNF) style 
notation of the FDF file.
 
FDFfile ::= [<Header>]
                [<Defines>]
        <FD>
        <FV>
       [<Capsule>]
                [<VTF>]
                [<Rules>]
                [<OptionRom>]
       [<UserExtensions>]
 

The FD section definitions for flash devices must be in the FDF file. The FV section 
definitions for firmware volumes must be in the FDF file.

Build: The EDK II Build Command
The EDK II build system is based on Python. This is one way to achieve the cross-OS 
build environment portability. The build tools directory in the EDK II tree root hosts 
the source code for the tool. Schematically, the EDK II build process proceeds as 
shown in Figure 7-9.



Chapter 7 ■ Building Firmware for Quark Processors

157

Usage of the command is as follows:
 
EDK2 build command
Usage: build.exe [options] [all|fds|genc|genmake|clean|cleanall|cleanlib| 
modules|libraries|run]
Options:
  --version         show program's version number and exit
  -h, --help        show this help message and exit
  -a TARGETARCH, --arch=TARGETARCH
                        ARCHS is one of list: IA32, X64, IPF, ARM or EBC,
                        which overrides target.txt's TARGET_ARCH definition
                        To specify more archs, please repeat this option.
  -p PLATFORMFILE, --platform=PLATFORMFILE
                        Build the platform specified by the DSC file name
                        argument, overriding target.txt's ACTIVE_PLATFORM
                        definition.
  -m MODULEFILE, --module=MODULEFILE
                        Build the module specified by the INF file name
argument.
 

To bring all of the metadata and build files together, Figure 7-10 shows the 
relationship of the source with the FDF, INF, DEC, and DSC files.

Figure 7-9.  Build flow for binary creation
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INF: INF File
The INF file is updated to define all sources (.c, .h, .uni), libraries, packages, GUIDs,  
and PCDs used by the module. See the EDK II INF File Specification for more 
information and examples.

An INF is like a local make-maker file or metadata to inform the build system about 
which files to use and how to integrate them. The following is an example of an INF file 
for a serial driver.
 
INF Example SerialDxe
C file
EFI_STATUS
EFIAPI
InitializeSerial (
  IN EFI_HANDLE         ImageHandle,
  IN EFI_SYSTEM_TABLE   *SystemTable
  )
{
  SerialPortInitialize ();
  return
   gBS->InstallMultipleProtocolInterfaces (
        &mSerialIoHandle,
        &gEfiDevicePathProtocolGuid,

Figure 7-10.  Relationship of all files to the complete build
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        &mSerialIoDevicePath,
        &gEfiSerialIoProtocolGuid,
        &mSerialIo,
        NULL  );
}
 
INF file
[Defines]
  INF_VERSION  = 0x00010005
  BASE_NAME    = SerialDxe
  FILE_GUID    = 7507 . . .
MODULE_TYPE  = UEFI_DRIVER
  VERSION_STRING  = 1.0
  ENTRY_POINT  = InitializeSerial
[Sources.common]
  Serial.c
[Packages]
  MdePkg/MdePkg.dec
  MdeModulePkg/MdeModulePkg.dec
[LibraryClasses]
  PcdLib
  UefiBootServicesTableLib
    . . .
[Protocols]
  gEfiSerialIoProtocolGuid
  gEfiDevicePathProtocolGuid
 
INFfile ::=[<Header>]
<Defines>
          [<BuildOptions>]
          [<Sources>]
          [<Binaries>]
          [<Guids>]
          [<Protocols>]
          [<Ppis>]
          [<Packages>]
          [<LibraryClasses>]
          [<Pcds>]
         [<UserExtensions>]
    [<Depex>]
 

More Information
All of the preceding build specifications can be found at  
http://tianocore.sourceforge.net/wiki/EDK_II_Specifications.

http://tianocore.sourceforge.net/wiki/EDK_II_Specifications
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Introduction to the EDK II Subset
EDK II is open source implementation for UEFI firmware, which can boot multiple 
UEFI-aware operating systems. Section 2.6 of the UEFI Specification [UEFI] defines the 
minimum set of capabilities that UEFI-aware firmware, such as EDK II, must support. 
We use EDK II BIOS for the Galileo board, which uses the Quark processor.

The Quark build for Galileo is the first fully open-source EDK II–based platform. 
It leverages the UDK2010 packages, including MdePkg and MdeModulePkg, and adds 
TinyBootPkg, Ia32FamilyCpuBasePkg, QuarkPlatformPkg, and QuarkSocPkg.

The standard build is 1MB and can be found at  
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197.

This full build includes features described in the UEFI 2.4 and PI1.3 specifications on 
www.uefi.org, and include the capsule update, SMM, S3, PCI, recovery, FAT file system 
support, and UEFI variables.

Now that the overview of the EDK II build system and associated elements have 
been discussed, details on the internals of TinyQuark will be used to demonstrate this 
infrastructure in practice. As such, this section provided an overview of Quark and EDK II. 
Before we begin on the software, a description of the Quark platform itself is in order.

Introduction to Quark
The Intel Quark System-on-Chip (SoC) X1000 is the first product in a new road map 
of innovative, small core products targeted at rapidly growing areas, ranging from 
the industrial IoT to wearables. It brings low-power and Intel compute capabilities 
for thermally constrained, fanless, and headless applications. With its security and 
manageability features, this SoC is ideally suited for the Internet of Things and for the 
next wave of cost-effective, intelligent connected devices. An overview of the Quark 
hardware platform is shown in Figure 7-11.

Figure 7-11.  Quark hardware platform

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197
http://www.uefi.org/
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ROM Flash Image Size Optimization
A set of UEFI/EDK II–related size reduction technologies to make TinyQuark are listed 
in the following sections. “Write good C code” is not mentioned because it is a generic 
advocacy to have robust, testable code. Instead, this section defines how to apply some 
logic to provide the minimum feature to the EDK II Quark firmware and still maintain 
basic UEFI conformance.

In the next several sections, we will discuss the size reduction techniques, one 
by one. The various techniques used for the EDK II Quark image size reduction are 
schematically shown in Figure 7-12.

Figure 7-12.  Technology summary for Quark image size reduction

Fixed Resource
To begin, the support of fixed system resources is important because it will lead to the 
direct feature set of the platform.

DRAM/SMRAM

If a platform can have fixed DRAM resource, then we can remove the complicated 
Memory-Type Range Register (MTRR) calculation algorithm in the CPU driver. The MTRR  
settings can be a table-driven configuration for this design with a known physical 
memory map. Refer to QuarkPlatformPkg\Library\QuarkSecLib\SecPlatform.c and 
http://uefidk.intel.com/projects/quark for more information.

http://uefidk.intel.com/projects/quark
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If a platform can have fixed SMRAM, then we can remove the SmmAccess driver 
that supports the PI SMM interfaces, and just use library to get that value. Refer to 
QuarkPlatformPkg\Library\SmmPlatformHookLib.

If a platform can have fixed-memory mapped I/O (MMIO) and PCI resources, 
then we can remove PCI driver. The PCI resource setting can be done by a table-driven 
configuration. Refer to QuarkPlatformPkg\Pci\PlatformFixedPciResource found in 
https://uefidk.com/sites/default/files/Intel_Galileo_TinyQuark_64K.zip.

Remove Features

Not all UEFI features are needed in TinyQuark. Some features can be removed directly, 
like S3 (ACPI), ATA bus (ATA), USB bus (USB), SCSI bus, network (UEFI), HII (UEFI), 
UEFI secure boot (UEFI), TPM (TCG), or dynamic PCD(UEFI PI Specification).

Removing some features needs fixed resource support. Today, there are  
complex resource managers in a full EDK II firmware, like the PCI Bus Driver  
(https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Bus/Pci), which 
discovers a set of PCI devices and balances the resources. This is an algorithmically 
complex process that entails significant code logic. For deeply embedded platforms like 
Quark, wherein the designer elides the ability to add arbitrary devices, a simple driver 
that declares a fixed set of resources can be used. An example from TinyQuark includes 
TinyQuark_EDK II\QuarkPlatformPkg\Pci\ PlatformFixedPciResource.

The biggest component removed in TinyQuark is the PEI core. TinyQuark has SEC 
linked to the DecompressLib, and the code in SEC jumps directly into DxeIpl. DxeIpl 
links into the memory reference code (MRC), finishes memory initialization, and then 
jumps into the DxeCore. The DXE core provides the basic UEFI capabilities, such as the 
boot services.

The detail flow of SEC ➤ DXE is shown in Figure 7-13.

Figure 7-13.  SEC ➤ DXE solution

https://uefidk.com/sites/default/files/Intel_Galileo_TinyQuark_64K.zip
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Bus/Pci
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Please refer to QuarkPlatformPkg.dsc and QuarkPlatformPkg.fdf for more 
information on how many of the features are removed:

For ResetVector module, refer to  •	
QuarkPlatformPkg/Cpu/Sec/ResetVector.

For SecTrampoline module, refer to  •	
QuarkPlatformPkg/Cpu/SecTrampoline.

For DxeIpl module, refer to QuarkPlatformPkg/Cpu/SecCore.•	

Reduce Features

Even if a component is still needed in TinyQuark, we can make a simplified version.  
For example:

•	 CpuArch: No SetMemoryAttribute( ) support, because 
MTRR is fixed and programmed in DxeIpl. Refer to 
IA32FamilyCpuBasePkg/SimpleCpuArchDxe

•	 Variable: Just expose empty variable driver. Or later we can 
have some fixed data integrated in this driver. So there is 
no need to allocate specific Variable FV region. Refer to 
TinyBootPkg/Universal/Variable/NullVariableRuntimeDxe/
NullVariableRuntimeDxe.inf

•	 ACPI: No generic ACPI_TABLE or ACPI_SDT driver. We created 
AcpiLib to support SetAcpi() only in the AcpiPlatform driver. 
Refer to TinyBootPkg/Library/AcpiTableLib

•	 Terminal: No driver model. Only supportsPcAnsi. Refer to 
TinyBootPkg/Universal/Console/SimpleCombinedTerminalDxe

•	 Serial: No driver model. Link SerialPortLib directly. Refer to 
TinyBootPkg/Universal/Console/SimpleCombinedTerminalDxe

•	 PE/COFF lib: Support PE32 only, no PE32+ or TE. Refer to 
TinyBootPkg/Library/BasePeCoffLibPe32

•	 DXE core: No GUIDED_SECTION, no Decompression, no FVB, 
no EBC, no HII, no DebugInfo table. Refer to TinyBootPkg/Core/
SimpleDxeCore

•	 SMM: SMM is redesigned. We removed SmmCore  
(see next for more information).

The current EDK II has the SmmIpl, SmmCore, and SmmCpu drivers. SmmIpl will 
load SmmCore into SMRAM. SmmCore will load all SMM drivers into SMRAM, including 
the SmmCpu driver, the SmmPch driver, the SmmPlatform driver, and so forth.
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Figure 7-14.  Full SMM core solution

After the SmmCpu driver is loaded, SMBASE rebase happens. Then, the next SMI 
will trigger into the SmmCpu driver. Next, the SmmCpu driver passes control to the 
SmmCore, and the SmmCore calls each Smm root handler driver, as registered by the 
SmmPch driver, to dispatch the respective SMI handler. This full SMM topology can be 
found in Figure 7-14, in which the upper portion of the figures is SMRAM, or memory 
protected from ring 0 code by hardware, and the lower portion of the boxes designates 
normal DRAM.

In this simplified version, we remove the SmmCore. We let the SmmIpl find the 
SmmCpu driver and load it into SMRAM to do the SMBASE rebase operation. Another 
activity entails the conversion of all SmmPlatform drivers into a library, and links this 
library into the SmmCpu drive.

The next SMI will trigger a machine mode switch so that control is passed into the 
SmmCpu driver, and the SmmCpu driver will call a SmmPlatform library to dispatch the 
SMI handler. Figure 7-15 provides a diagram of the simplified SMM solution.
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Please refer to QuarkPlatformPkg.dsc and QuarkPlatformPkg.fdf for more 
information on a simplified version driver.

For the SmmIpl/SmmCpu module, refer to IA32FamilyCpuBasePkg/
SimplePiSmmCpuDxeSmm.

For SmmPlatform lib, refer to QuarkPlatformPkg/Library/SmmPlatformHookLib.

Compiler Options

In order to support a minimal image size, there are a couple of guiding rules:  
do not use the /Zi compiler flag and do not use the /DEBUG link flag. These flags can 
be added in the debug phase, but do not use them in final release, so that debug 
information in PE image is removed.

Build Options

Use the NULL Debug lib: DebugLib|MdePkg/Library/BaseDebugLibNull/
BaseDebugLibNull.inf. Refer to QuarkPlatformPkg.dsc.

Do not use dynamic PCDs: PcdLib|MdePkg/Library/BasePcdLibNull/
BasePcdLibNull.inf. Refer to QuarkPlatformPkg.dsc.

Figure 7-15.  Simplified SMM solution
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For the Execute-in-Place (XIP) images, use the TE image. Refer to QuarkPlatformPkg.fdf. 
The following provides an example of the FRF file that provides the TE images.
 
[Rule.Common.SEC]
  FILE SEC = $(NAMED_GUID) RELOCS_STRIPPED {
        TE  TE    Align = 8       $(INF_OUTPUT)/$(MODULE_NAME).efi
        RAW BIN   Align = 16    |.com
}
 

The TE Image format is not applicable for the DXE or UEFI drivers, but it does 
provide a space savings for images that cannot be compressed by instead have to execute 
directly from the memory mapping SPI NOR flash, such as SEC and PEI.

Do not use UI/VER section. Refer to QuarkPlatformPkg.fdf.
 
[Rule.Common.DXE_DRIVER]
  FILE DRIVER = $(NAMED_GUID) {
        DXE_DEPEX DXE_DEPEX Optional       $(INF_OUTPUT)/$(MODULE_NAME).depex
        PE32    PE32                     $(INF_OUTPUT)/$(MODULE_NAME).efi
#   UI          STRING="$(MODULE_NAME)" Optional
#   VERSION   STRING="$(INF_VERSION)" Optional BUILD_NUM=$(BUILD_NUMBER)
}
 

Although it doesn’t necessarily contribute to the image size reduction, the image 
must be rebased in order to support Execute-in-Place (XIP).  Sometimes the DXE volume 
can be rebased to the location in the main memory where it will be decompressed. 
This build-time rebasing omits the time-overhead of the PE/COFF loader to “fix-up” 
the image during each machine restart. In general, this technique won’t work for open 
platforms because we do not know at firmware build time the size of physical memory 
or “where” the main DXE firmware volume will be decompressed and copied.  Only for 
deeply embedded platforms with integrated DRAM can such a build-time technique be 
employed.  Additional details from the FDF on how to configure this rebasing follow.
 
[FV.EDK II_BOOT_SLIM]
BlockSize       = 0x1000
FvBaseAddress   = 0x80010000
FvForceRebase   = TRUE
...
 

In order to have compression support, the TinyQuark employs LZMA F86 
compression. Refer to QuarkPlatformPkg.fdf.
 
FILE FV_IMAGE = 9E21FD93-9C72-4c15-8C4B-E77F1DB2D791 {
        SECTION GUIDED D42AE6BD-1352-4bfb-909A-CA72A6EAE889 PROCESSING_
REQUIRED = TRUE { # LzmaF86
        SECTION FV_IMAGE = EDK II_BOOT_SLIM
        }
        }
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Table 7-1.  TinyQuark ROM Module Size

Although earlier we mentioned “No GUIDED_SECTION support in the DxeCore”, 
this is a GUIDed section.  The reason is that this Guided section will be only supported 
by DxeIpl to decompress the whole DXE FV.  As such, there is no need to have individual 
drivers in the the DXE FV supported by compression or GUIDed section, thus allowing 
the DxeCore to remove these support to reduce the size.

Results of the TinyQuark Optimization
After the application of the techniques covered earlier, the TinyQuark ROM demonstrates 
significant code size savings in the ROM image. Table 7-1 lists some of the metrics.

In addition to the fine-grain metrics in Table 7-1, Figure 7-16 provides a print 
message from the firmware itself, essentially showing that the entire firmware volume 
in the flash part occupies less that 64KB, or the smallest region of today’s symmetrically 
blocked SPI NOR flash parts.

Figure 7-16.  Message from the firmware on its size



Chapter 7 ■ Building Firmware for Quark Processors

168

This section described how to reduce ROM flash size, especially as larger flash 
images lead to larger parts, with an impact to the bill of materials (BOM) and ultimate 
cost of the platform. Beyond cost savings, the other reason to have a smaller image in 
flash entails performance; copying a smaller binary from flash to DRAM consumes less 
of the boot time. To reach the smaller binary, the PEI core was omitted and purpose-built 
PCI Bus drivers and SMM infrastructure were employed. TinyQuark shows an extreme 
end of the spectrum, but even a generic platform could benefit from a subset of the 
techniques described.

RAM Footprint Optimization
In the preceding section, we reduced the amount of real estate consumed in the SPI NOR 
flash, thus allowing more space for the operating system and other data. But the SPI NOR 
isn’t the only factor to impact the BOM. The other factor that impacts a board cost is 
volatile memory, or RAM usage. RAM is often noted as DRAM, too, for most systems.

As such, we did an analysis on RAM footprint on the 64K TinyQuark, and we realized 
that the image in Quark firmware is copied four times during boot, which can be avoided 
in practice.

1.	 DxeIpl, will prepare Decompressed FV to DxeCore. This is the 
first copy.

2.	 Once DxeCore finds a FV, it will copy FV into RAM. The 
reason is that DxeCore does not know if it is on flash or 
DRAM.  This flash vs. DRAM independence only makes sense 
if other optimizations are in place, such as setting the MTRRs 
to ensure that the firmware volume in flash is cached.  If not, 
there is a significant performance penalty in doing direct flash 
access for each code fetch.

3.	 Then in the Driver Dispatch phase, the DxeCore constructs 
a list for all FFS and SECTIONs there. The section stream for 
FFS is the third copy for each PE/COFF image.

4.	 Finally, when DxeCore starts loading the UEFI image, it 
allocates another memory and uses PeCoff library to load and 
relocate PE image. This is the fourth copy.

The detailed memory layout before optimization is shown in Figure 7-17.
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Figure 7-17.  Current DXE core

Optimization
In order to optimize memory usage, the design technique entails avoiding additional 
buffer allocations. Instead, the optimization entails reuse of the old buffer as much as 
possible.

To begin, the Decompressed Fv buffer is the base. This buffer is then reused as the 
CachedFvcan be a pointer to the original Decompressed Fv buffer. Correspondingly, the 
section stream for FFS can still point to the original buffer.

Then for the PE/COFF image, we relocate all PE/COFF images at build time.  
A normal DXE driver or UEFI driver is rebased for its execution address in DRAM so that 
it can be run directly, without the need for fix-ups. The Dxe Runtime driver is special 
because it needs to reside in runtime memory (i.e., memory of type EFI_MEMORY_
RUNTIME [UEFI]). So the DxeCore just needs to allocate Runtime Paged memory and do 
the relocation for the runtime driver.

The detailed memory layout after optimization of memory usage can be found in 
Figure 7-18.
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Figure 7-18.  Enhanced simplified DXE core

Table 7-2.  TinyQuark Component RAM Size

Result of Memory Usage Optimization
Before optimization, the memory size used is 760K (624K allocated during boot + 136K 
decompressed FV). After optimization, the memory size used is 340K (204K allocated 
during boot + 136K for the decompressed FV).

In addition to the overall metric, a finer-grain accounting of memory usage can be 
found in Table 7-2.
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This section describes the how to reduce the RAM footprint size. Historically, 
memory usage in the pre-OS has been considered “free” since the operating system will 
reclaim most of the resources, but for resource-constrained embedded systems, the 
DRAM size can be strictly limited. As such, optimizing the boot-time drivers to reuse 
buffers instead of allocating additional pages allows for an optimum memory footprint 
during the early phase of execution.

Conclusion
This Intel implementation of the EDK II is a demonstration showing the possibilities 
available using the scalable architecture of EDK II source code technology and the 
flexibility of the UEFI Specification. The 64K “TinyQuark” demonstrates the scalability of 
the EDK II architecture and how to create a UEFI-conformant firmware solution that has 
a very small flash size and can minimize DRAM usage. This allows for a slim boot load 
environment for a subsequent UEFI OS, or a slim execution environment for bare-metal 
execution that can suffice just using UEFI services.
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