
145

Chapter 7

Building Firmware for Quark
Processors

“Three things cannot be long hidden: the sun, the moon, and the truth.”

—The Buddha

The Intel Quark SoC X1000 is Intel’s lowest-power SoC, designed to provide performance
and reduce development costs for securely managed Internet of Things endpoint devices.
It is initially offered as a single-core, single-threaded microprocessor, making it an ideal
solution for low-cost, small form factor, fan less and headless designs.

This chapter will discuss the EDK II infrastructure, Quark, and building a minimal
Quark tree with the EDK II. The purpose of this review is to touch upon the salient aspects
of the EDK II source construction technology and how it relates to the UEFI PI and UEFI
standards, respectively.

This Intel implementation of EDK II at TianoCore demonstrates the possibilities
available using the scalable architecture of both the code base and the associated underlying
industry standards (see www.uefi.org). The UEFI firmware size for this Intel Galileo EDK
II implementation (http://uefidk.intel.com/projects/quark) is 64KB, and given its
diminutive size relative to the full Quark EDK II build, it is referred to as “TinyQuark”
throughout the rest of this document. TinyQuark boots Yocto Linux (www.yoctoproject.org)
on the Intel Galileo board using the onboard flash. You can build this solution from the source
code available to download using the following URL. Specifically, the TinyQuark code is at
http://uefidk.intel.com/content/get-started-intel-galileo-development-board.

This chapter presents the internal design of TinyQuark, which can be generalized by
developers to make their own small-footprint UEFI firmware.

Overview of UEFI and PI
Before getting into TinyQuark, however, the next sections will describe some of the
design intent of the EDK II software infrastructure and the association to the UEFI and PI
specifications. These specifications describe interoperability between binary and/or source
components. Books like Beyond BIOS by Vincent Zimmer, Michael Rothman, and Suresh
Marisetty (Intel Press, 2011) describe the specifications, but there hasn’t been a single place
to describe the implementation. The next section is intended to help with that gap.

http://www.uefi.org/
http://uefidk.intel.com/projects/quark
http://www.yoctoproject.org/
http://uefidk.intel.com/content/get-started-intel-galileo-development-board

Chapter 7 ■ Building Firmware for Quark Processors

146

History of Implementations and Specifications
Starting with the Extensible Firmware Interface (EFI) 0.92 specification in 1998, there has
always been a reference EFI implementation. The sample implementations are intended
to help clarify some of the design intent of the specification. As shown in the diagram in
Figure 7-1, every corresponding specification has had an associated implementation.
Historically, these implementations were of the core components that are portable
across a broad set of hardware platforms, but the implementations did not include a full
platform source tree.

Figure 7-1.  Specification and implementation time line

The time line shows the original sample implementation, pre-2006. The original EFI
Developer Kit (EDK) had challenges in construction since it was a monolithic tree, and
the addition of third-party sources or data was ad hoc, as was library support since EDK
didn’t codify the set of libraries that were usable by the different phases of execution. The
introduction of the packaging concept in EDK II, along with PCDs and the base libraries,
provided a way to compose source modules from different entities, have reusable sources
across many different architectures, and host development environments. Specifically,
EDK only supported the Microsoft tool chain, whereas EDK II supports building under
Apple OS X, Microsoft Windows, and various Linux distributions. The clean ANSI-C
source files and the Python-based build tools of EDK II help contribute to this portability.

Chapter 7 ■ Building Firmware for Quark Processors

147

Introduction to EDK II Building Blocks
The EFI Development Kit II (EDK II) is an implementation of the UEFI and PI standards.
The EDK II is hosted at www.tianocore.org and features many technologies, including
an OS-portable build system, ANSI-C code, and GCC/NASM/MASM–based assembly
language sources.

In addition, the source technology is decomposed via “packages.” The package
concept is covered by the UEFI PI packaging specification and is a means by which to
segregate binary and sources. The package boundaries are typically driven by business
considerations. The packing concept has many interrelated elements for construction,
including the DEC, DSC, FDF, and INF files, along with the Platform Configuration
Database. The relationship of these elements, details, and some examples of the same are
shown next.

Regarding packages, the most prominent packages are listed next, with brief notes
about functionality.

PKG: Packaging
Packaging describes the units of decomposition for various technologies. The packaging
boundaries may appear somewhat arbitrary at first but are usually motivated by both
technology and business criteria. The former includes aggregating a given type of
component in one place, such as the generic bus drivers and core elements in the MDE
Module Package. The latter includes things like licensing, wherein the package may
contain closed-source binaries and sources for a proprietary technology.

MdePkg
The Module Development Environment (MDE) Package (MdePkg) includes files and
libraries for Industry Standard Specifications (i.e., UEFI, PI, PCI, USB, SMBIOS, ACPI,
SMBIOS, etc.). You can think of the MdePkg, along with the build tools, as the minimum
components to build a PEI Module (PEIM), a DXE driver, or a UEFI driver.

The EDK II code is managed on www.sourceforge.net, but there is also a
mirror on GitHub. As such, the source code for this package can be found at
https://github.com/tianocore/edk2/tree/master/MdePkg.

The important components are the include and library directories. Within the include
directory there are industry standard definitions, protocol and PPIs corresponding to
the UEFI and UEFI PI specifications, and architecture-specific files. These files need a
corresponding white cover industry standard, a public document, or a published UEFI
specification in order to reside in the MdePkg.

The library directory, on the other hand, contains a series of library classes. The
directories prefixed by “Base” should be use able in the PEI, DXE, UEFI runtime, and
UEFI boot services phases. These are the most generic, portable libraries that do not
depend upon underlying interfaces. The other libraries are alternately prefixed by the
phase of execution, such as “PEI”, “SMM”, “DXE”, “SEC”, or “UEFI.” These latter terms
designate the phase of execution wherein these libraries apply.

Figure 7-2 describes the various phases of UEFI PI execution.

http://www.tianocore.org/
http://www.sourceforge.net/
https://github.com/tianocore/edk2/tree/master/MdePkg

Chapter 7 ■ Building Firmware for Quark Processors

148

MdeModulePkg
Building upon the MdePkg are implementations of modules, namely the Module
Development Environment Modules (MdeModulePkg). These components can be found
at https://github.com/tianocore/edk2/tree/master/MdeModulePkg. The PEIMs, DXE
drivers, UEFI drivers, and UEFI applications-only definitions from the Industry Standard
Specifications are defined in the MdePkg. These components should be portable across
a broad class of platforms and CPU bindings, including 32-bit and 64-bit ARM, Intel
Itanium, IA32, and X64.

IntelFrameworkPkg
The IntelFrameworkPkg (https://github.com/tianocore/edk2/tree/master/
IntelFrameworkPkg) includes files and libraries for those parts of the Intel Platform
Innovation Framework for EFI specifications (a.k.a. “Framework”) that were not adopted
“as is” by the UEFI or PI specifications. These packages provide a bridge between code
written against the Framework Specifications (http://www.intel.com/content/www/us/
en/architecture-and-technology/unified-extensible-firmware-interface/efi-
specifications-general-technology.html) and the subsequent UEFI PI specifications.
Some of the interfaces changed between Framework and PI, such as the SMM-CIS;
whereas other interfaces only exist in the Framework corpus, such as the Compatibility
Support Module (CSM).

Figure 7-2.  UEFI PI boot flow

https://github.com/tianocore/edk2/tree/master/MdeModulePkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkPkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkPkg
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/unified-extensible-firmware-interface/efi-specifications-general-technology.html

Chapter 7 ■ Building Firmware for Quark Processors

149

IntelFrameworkModulePkg
The IntelFrameworkModulePkg (https://github.com/tianocore/edk2/tree/master/
IntelFrameworkModulePkg) contains modules (PEIMs + DXE drivers+ UEFI drivers) that
make reference to one or more definitions in the IntelFrameworkPkg. A diagram of these
packages is shown in Figure 7-3.

Figure 7-3.  Important packages for EDK II

Packages
Packages in the EDK II are groups of modules. A package may support one or more
drivers, libraries, or combinations thereof. Example packages, in addition to the ones
listed earlier, include drivers and applications related to specific hardware, or drivers
and applications related to software components, such as the UEFI specification. The
MdeModulePkg is an example of the latter, and the former will be discussed in the
context of TinyQuark.

Packages can also leverage definitions and elements of other packages. A hardware
package should reference the core UEFI packages, such as the MdePkg, for the definitions
of standard UEFI protocols and structure.

Packages have related files, such as XML manifest, DSC, and INF files, in addition to
the C and/or assembly-language source files. Figure 7-4 shows the packages’ relationship
with supporting files.

https://github.com/tianocore/edk2/tree/master/IntelFrameworkModulePkg
https://github.com/tianocore/edk2/tree/master/IntelFrameworkModulePkg

Chapter 7 ■ Building Firmware for Quark Processors

150

So the package provides the partitioning of the sources and binaries, but it does not
provide for fine-grain control of build options in the actual code artifacts. For that, the
PCD comes into play.

PCD: Platform Configuration Database
So what is the platform configuration database goal? First, PCD entries are used for
module parameterization; examples include define statements and variables. Among
other things, the benefit of PCDs includes reducing the need to edit the source code. Also,
there is no need to search for a magic #define statement, like base address registers, for
example. These can all be PCD values.

PCDs allow for reusing values across many modules. These fixed-at-build PCDs are
very much akin to #defines, but herein they are tied into the build system.

Beyond PCDs, the PCD concept can also be used dynamically, namely to store
platform information, like the vital product data serial number. You can use dynamic
PCDs for setup options and so forth.

PCDs are related to other build files, such as INF, DEC, and DSC, as shown
in Figure 7-5.

Figure 7-4.  Packages and supporting files

Chapter 7 ■ Building Firmware for Quark Processors

151

There are various types of PCDs, including FeatureFlag, FixedAtBuild,
PatchableInModule, and Dynamic.

•	 FeatureFlag: Replaces a switch MACRO to enable/disable a
feature (TRUE or FALSE).

•	 FixedAtBuild: Replaces a macro that produced a customizable
value. The value of this PCD type is determined at build time and
is stored in the code section of a module’s PE image.

•	 PatchableInModule: The value is stored in the data section, rather
than the code section, of the module’s PE image.

•	 Dynamic/DyanmicEx/DynamicHii/DynamicVpd: The value is
assigned by one module and is accessed by other modules in
execution time.

The PCDs are related to the build process, as follows in Figure 7-6. Specifically, the
PCDs are ascertained from the DEC, INF, DSC, and FDF file and included in the autogen.
The autogen source files are in turn compiled with the other sources for the resultant
driver or PEI module.

Figure 7-5.  PCD relationship to INF, DEC, and DSC

Chapter 7 ■ Building Firmware for Quark Processors

152

In addition to extracting the PCDs from metadata files like INF/DEC/DSC, the PCDs
can also be used directly in source files. In this case, the relationship of the source and
the build is shown in Figure 7-7.

Figure 7-7.  PCDs via build and source construction

Figure 7-6.  PCDs and build flow

Syntax
Given the background on the PCDs, the following is an example of the declaration of
PCDs for a given module.
 
[PcdsFeatureFlag.common] [PcdsFixedAtBuild.IA32] [PcdsFixedAtBuild.X64]
[PcdsFixedAtBuild.IPF] [PcdsFixedAtBuild.EBC] [PcdsDynamic.IA32]
[PcdsDynamicEx.X64]
 

Chapter 7 ■ Building Firmware for Quark Processors

153

Example of a PCD during DXE
Defined in ICH X Package DEC
 [PcdsDynamic.common]
 gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs|0|UINT8|0x40000016
The Module INF lists which PCDs get accessed
 [Pcd]
 gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs
The Value to use in New Project Package DSC
 [PcdsDynamicDefault.common.DEFAULT]
 gEfiIchTokenSpaceGuid.PcdIchSataPataConfigs|0
 

Here is an example used in the CODE:
 
DXE - Referenced in the DXE code in NewProjectPkg\ SetupDxe\Platform.c
 
IchSataPataConfigs.Uint8 = PcdGet8(PcdIchSataPataConfigs);
 . . .
 PcdSet8(PcdIchSataPataConfigs, IchSataPataConfigs.Uint8);
 

Finally, the PCDs can show up in the resultant flash image in many ways, including
as a Firmware File System file in the flash image. Figure 7-8 shows one possible layout of
the PCDs, along with other binary content, such as the UEFI variable data and the vital
product data.

Figure 7-8.  PCDs in a flash image

Beyond PCDs for parameterizing the build and source files, there is the Platform
Declaration File that describes the collection of modules in a build.

DEC: Platform Declaration File
The DEC is the Platform Declaration File (the “D” in DEC is for declaration). There is just
one DEC file per package. A DEC file is required for EDK II modules using extended INF and
extended DSC format files. If you make a new package you must have a DEC file for it.

Chapter 7 ■ Building Firmware for Quark Processors

154

Syntax
The DEC has a defines section that states what the package is. It gives it a GUID and a
name. Every other section described here is optional.

The DEC file may have an includes section stating, “The include directories for this
package are as follows:”. For example, you might be able to say, “This is my IA64 include
and this is my X64 include,” and so forth.

In addition, the DEC file also has an optional library class section. It exposes the
library classes that are defined in the package.

If you declare any GUIDs in the system, the DEC file has a GUID section. Certain
structures have GUIDs defined for them; if that structure is defined in this package,
it would be listed here.

The DEC file has a protocol GUID listed for every protocol header file that is in your
package. You list the GUID of that protocol in the protocol section. The same is true for
PPIs; they are also identified by GUID.

If any module contained in your package defines a new PCD, this is where you look
it up.It is possible to reference a PCD from another package, but do not list it here. This
location is for new PCDs.

Coincidentally, as soon as you make a new PCD, you must make a new token space
GUID, because all the PCDs are defined by a token space GUID, followed by the PCD
name. A new token space means you must have a GUID for the token space. So, any new
PCDs are also going to have a GUID.

Finally, user extensions are rarely used, but are optionally present. The following is
an example DEC file.
 
Example dec
@file ShellPkg.dec
##
[Defines]
 DEC_SPECIFICATION = 0x00010005
 PACKAGE_NAME = ShellPkg
 PACKAGE_GUID = 9FB7587C-93F7-40a7-9...
 PACKAGE_VERSION = 0.40
[Includes.common]
 Include
[LibraryClasses.common]
 ## @libraryclass Provides most Shell APIs. Only available for Shell applications
 ShellLib|Include/Library/ShellLib.h
 ## @libraryclass Provides shell internal support Only available for
shell internal commands
 ShellCommandLib|Include/Library/ShellCommandLib.h
 ## @libraryclass provides EFI_FILE_HANDLE services used by Shell and ShellLib
 FileHandleLib|Include/Library/FileHandleLib.h
 ## @libraryclass Allows for a shell application to have a C style entry point
 ShellCEntryLib|Include/Library/ShellCEntryLib.h
 ## @libraryclass Provides sorting functions
 SortLib|Include/Library/SortLib.h

Chapter 7 ■ Building Firmware for Quark Processors

155

 ## @libraryclass Provides advanced parsing functions
 HandleParsingLib|Include/Library/HandleParsingLib.h
[Guids.common]
 gEfiShellEnvironment2ExtGuid = {0xd2c18636, 0x40e5, 0x4eb5, {0xa3, 0x1b,
0x36, 0x69, 0x5f, 0xd4, 0x2c, 0x87}}
 

This completes the description of the DEC file. Beyond the DEC file, there also needs
to be a DSC.

DSC: Platform Description File
A DSC file must define all libraries, components, and/or modules that will be used by one
package. DSC files are a list of the following:

EDK Component or EDK II Module INF files•	

EDK libraries (for EDK Components)•	

EDK II Library Class Instance Mappings (for EDK II Modules)•	

EDK II PCD Entry Settings•	

The following is an example of a DSC file for the UEFI Shell Package:
 
#/** @file
Shell Package
#**/
[Defines]
 PLATFORM_NAME = Shell
 PLATFORM_GUID = E1DC9BF8-7013-4c99-9437-...
 PLATFORM_VERSION = 0.4
 DSC_SPECIFICATION = 0x00010006
 OUTPUT_DIRECTORY = Build/Shell
 SUPPORTED_ARCHITECTURES = IA32|IPF|X64|EBC
 BUILD_TARGETS = DEBUG|RELEASE
 SKUID_IDENTIFIER = DEFAULT
[LibraryClasses.common]
 �UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/
UefiApplicationEntryPoint.inf

 �UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/
UefiBootServicesTableLib.inf

 DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf
 DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf
 PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

Chapter 7 ■ Building Firmware for Quark Processors

156

FDF: Flash Description File
The FDF file describes information about the flash part. It has rules for combining
binaries built from a DSC file. You can create firmware images and optional ROM images
for nearly anything you need.

It is possible to have PCD information used in the definition, as well as in some of the
PCDs. The patchable ones will be stored at specific places inside the FV file.

Syntax
The FDF file has a header and a FD section, as well as a number of FV sections. It might
have a capsule, a VTF, rules, and an optional ROM section if you are trying to build a
PCI option on some user extensions. The following is a Backus-Naur Form (BNF) style
notation of the FDF file.
 
FDFfile ::= [<Header>]
 [<Defines>]
 <FD>
 <FV>
 [<Capsule>]
 [<VTF>]
 [<Rules>]
 [<OptionRom>]
 [<UserExtensions>]
 

The FD section definitions for flash devices must be in the FDF file. The FV section
definitions for firmware volumes must be in the FDF file.

Build: The EDK II Build Command
The EDK II build system is based on Python. This is one way to achieve the cross-OS
build environment portability. The build tools directory in the EDK II tree root hosts
the source code for the tool. Schematically, the EDK II build process proceeds as
shown in Figure 7-9.

Chapter 7 ■ Building Firmware for Quark Processors

157

Usage of the command is as follows:
 
EDK2 build command
Usage: build.exe [options] [all|fds|genc|genmake|clean|cleanall|cleanlib|
modules|libraries|run]
Options:
 --version show program's version number and exit
 -h, --help show this help message and exit
 -a TARGETARCH, --arch=TARGETARCH
 ARCHS is one of list: IA32, X64, IPF, ARM or EBC,
 which overrides target.txt's TARGET_ARCH definition
 To specify more archs, please repeat this option.
 -p PLATFORMFILE, --platform=PLATFORMFILE
 Build the platform specified by the DSC file name
 argument, overriding target.txt's ACTIVE_PLATFORM
 definition.
 -m MODULEFILE, --module=MODULEFILE
 Build the module specified by the INF file name
argument.
 

To bring all of the metadata and build files together, Figure 7-10 shows the
relationship of the source with the FDF, INF, DEC, and DSC files.

Figure 7-9.  Build flow for binary creation

Chapter 7 ■ Building Firmware for Quark Processors

158

INF: INF File
The INF file is updated to define all sources (.c, .h, .uni), libraries, packages, GUIDs,
and PCDs used by the module. See the EDK II INF File Specification for more
information and examples.

An INF is like a local make-maker file or metadata to inform the build system about
which files to use and how to integrate them. The following is an example of an INF file
for a serial driver.
 
INF Example SerialDxe
C file
EFI_STATUS
EFIAPI
InitializeSerial (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 SerialPortInitialize ();
 return
 gBS->InstallMultipleProtocolInterfaces (
 &mSerialIoHandle,
 &gEfiDevicePathProtocolGuid,

Figure 7-10.  Relationship of all files to the complete build

Chapter 7 ■ Building Firmware for Quark Processors

159

 &mSerialIoDevicePath,
 &gEfiSerialIoProtocolGuid,
 &mSerialIo,
 NULL);
}
 
INF file
[Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = SerialDxe
 FILE_GUID = 7507 . . .
MODULE_TYPE = UEFI_DRIVER
 VERSION_STRING = 1.0
 ENTRY_POINT = InitializeSerial
[Sources.common]
 Serial.c
[Packages]
 MdePkg/MdePkg.dec
 MdeModulePkg/MdeModulePkg.dec
[LibraryClasses]
 PcdLib
 UefiBootServicesTableLib
 . . .
[Protocols]
 gEfiSerialIoProtocolGuid
 gEfiDevicePathProtocolGuid
 
INFfile ::=[<Header>]
<Defines>
 [<BuildOptions>]
 [<Sources>]
 [<Binaries>]
 [<Guids>]
 [<Protocols>]
 [<Ppis>]
 [<Packages>]
 [<LibraryClasses>]
 [<Pcds>]
 [<UserExtensions>]
 [<Depex>]
 

More Information
All of the preceding build specifications can be found at
http://tianocore.sourceforge.net/wiki/EDK_II_Specifications.

http://tianocore.sourceforge.net/wiki/EDK_II_Specifications

Chapter 7 ■ Building Firmware for Quark Processors

160

Introduction to the EDK II Subset
EDK II is open source implementation for UEFI firmware, which can boot multiple
UEFI-aware operating systems. Section 2.6 of the UEFI Specification [UEFI] defines the
minimum set of capabilities that UEFI-aware firmware, such as EDK II, must support.
We use EDK II BIOS for the Galileo board, which uses the Quark processor.

The Quark build for Galileo is the first fully open-source EDK II–based platform.
It leverages the UDK2010 packages, including MdePkg and MdeModulePkg, and adds
TinyBootPkg, Ia32FamilyCpuBasePkg, QuarkPlatformPkg, and QuarkSocPkg.

The standard build is 1MB and can be found at
https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197.

This full build includes features described in the UEFI 2.4 and PI1.3 specifications on
www.uefi.org, and include the capsule update, SMM, S3, PCI, recovery, FAT file system
support, and UEFI variables.

Now that the overview of the EDK II build system and associated elements have
been discussed, details on the internals of TinyQuark will be used to demonstrate this
infrastructure in practice. As such, this section provided an overview of Quark and EDK II.
Before we begin on the software, a description of the Quark platform itself is in order.

Introduction to Quark
The Intel Quark System-on-Chip (SoC) X1000 is the first product in a new road map
of innovative, small core products targeted at rapidly growing areas, ranging from
the industrial IoT to wearables. It brings low-power and Intel compute capabilities
for thermally constrained, fanless, and headless applications. With its security and
manageability features, this SoC is ideally suited for the Internet of Things and for the
next wave of cost-effective, intelligent connected devices. An overview of the Quark
hardware platform is shown in Figure 7-11.

Figure 7-11.  Quark hardware platform

https://downloadcenter.intel.com/Detail_Desc.aspx?DwnldID=23197
http://www.uefi.org/

Chapter 7 ■ Building Firmware for Quark Processors

161

ROM Flash Image Size Optimization
A set of UEFI/EDK II–related size reduction technologies to make TinyQuark are listed
in the following sections. “Write good C code” is not mentioned because it is a generic
advocacy to have robust, testable code. Instead, this section defines how to apply some
logic to provide the minimum feature to the EDK II Quark firmware and still maintain
basic UEFI conformance.

In the next several sections, we will discuss the size reduction techniques, one
by one. The various techniques used for the EDK II Quark image size reduction are
schematically shown in Figure 7-12.

Figure 7-12.  Technology summary for Quark image size reduction

Fixed Resource
To begin, the support of fixed system resources is important because it will lead to the
direct feature set of the platform.

DRAM/SMRAM

If a platform can have fixed DRAM resource, then we can remove the complicated
Memory-Type Range Register (MTRR) calculation algorithm in the CPU driver. The MTRR
settings can be a table-driven configuration for this design with a known physical
memory map. Refer to QuarkPlatformPkg\Library\QuarkSecLib\SecPlatform.c and
http://uefidk.intel.com/projects/quark for more information.

http://uefidk.intel.com/projects/quark

Chapter 7 ■ Building Firmware for Quark Processors

162

If a platform can have fixed SMRAM, then we can remove the SmmAccess driver
that supports the PI SMM interfaces, and just use library to get that value. Refer to
QuarkPlatformPkg\Library\SmmPlatformHookLib.

If a platform can have fixed-memory mapped I/O (MMIO) and PCI resources,
then we can remove PCI driver. The PCI resource setting can be done by a table-driven
configuration. Refer to QuarkPlatformPkg\Pci\PlatformFixedPciResource found in
https://uefidk.com/sites/default/files/Intel_Galileo_TinyQuark_64K.zip.

Remove Features

Not all UEFI features are needed in TinyQuark. Some features can be removed directly,
like S3 (ACPI), ATA bus (ATA), USB bus (USB), SCSI bus, network (UEFI), HII (UEFI),
UEFI secure boot (UEFI), TPM (TCG), or dynamic PCD(UEFI PI Specification).

Removing some features needs fixed resource support. Today, there are
complex resource managers in a full EDK II firmware, like the PCI Bus Driver
(https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Bus/Pci), which
discovers a set of PCI devices and balances the resources. This is an algorithmically
complex process that entails significant code logic. For deeply embedded platforms like
Quark, wherein the designer elides the ability to add arbitrary devices, a simple driver
that declares a fixed set of resources can be used. An example from TinyQuark includes
TinyQuark_EDK II\QuarkPlatformPkg\Pci\ PlatformFixedPciResource.

The biggest component removed in TinyQuark is the PEI core. TinyQuark has SEC
linked to the DecompressLib, and the code in SEC jumps directly into DxeIpl. DxeIpl
links into the memory reference code (MRC), finishes memory initialization, and then
jumps into the DxeCore. The DXE core provides the basic UEFI capabilities, such as the
boot services.

The detail flow of SEC ➤ DXE is shown in Figure 7-13.

Figure 7-13.  SEC ➤ DXE solution

https://uefidk.com/sites/default/files/Intel_Galileo_TinyQuark_64K.zip
https://github.com/tianocore/edk2/tree/master/MdeModulePkg/Bus/Pci

Chapter 7 ■ Building Firmware for Quark Processors

163

Please refer to QuarkPlatformPkg.dsc and QuarkPlatformPkg.fdf for more
information on how many of the features are removed:

For ResetVector module, refer to •	
QuarkPlatformPkg/Cpu/Sec/ResetVector.

For SecTrampoline module, refer to •	
QuarkPlatformPkg/Cpu/SecTrampoline.

For DxeIpl module, refer to QuarkPlatformPkg/Cpu/SecCore.•	

Reduce Features

Even if a component is still needed in TinyQuark, we can make a simplified version.
For example:

•	 CpuArch: No SetMemoryAttribute( ) support, because
MTRR is fixed and programmed in DxeIpl. Refer to
IA32FamilyCpuBasePkg/SimpleCpuArchDxe

•	 Variable: Just expose empty variable driver. Or later we can
have some fixed data integrated in this driver. So there is
no need to allocate specific Variable FV region. Refer to
TinyBootPkg/Universal/Variable/NullVariableRuntimeDxe/
NullVariableRuntimeDxe.inf

•	 ACPI: No generic ACPI_TABLE or ACPI_SDT driver. We created
AcpiLib to support SetAcpi() only in the AcpiPlatform driver.
Refer to TinyBootPkg/Library/AcpiTableLib

•	 Terminal: No driver model. Only supportsPcAnsi. Refer to
TinyBootPkg/Universal/Console/SimpleCombinedTerminalDxe

•	 Serial: No driver model. Link SerialPortLib directly. Refer to
TinyBootPkg/Universal/Console/SimpleCombinedTerminalDxe

•	 PE/COFF lib: Support PE32 only, no PE32+ or TE. Refer to
TinyBootPkg/Library/BasePeCoffLibPe32

•	 DXE core: No GUIDED_SECTION, no Decompression, no FVB,
no EBC, no HII, no DebugInfo table. Refer to TinyBootPkg/Core/
SimpleDxeCore

•	 SMM: SMM is redesigned. We removed SmmCore
(see next for more information).

The current EDK II has the SmmIpl, SmmCore, and SmmCpu drivers. SmmIpl will
load SmmCore into SMRAM. SmmCore will load all SMM drivers into SMRAM, including
the SmmCpu driver, the SmmPch driver, the SmmPlatform driver, and so forth.

Chapter 7 ■ Building Firmware for Quark Processors

164

Figure 7-14.  Full SMM core solution

After the SmmCpu driver is loaded, SMBASE rebase happens. Then, the next SMI
will trigger into the SmmCpu driver. Next, the SmmCpu driver passes control to the
SmmCore, and the SmmCore calls each Smm root handler driver, as registered by the
SmmPch driver, to dispatch the respective SMI handler. This full SMM topology can be
found in Figure 7-14, in which the upper portion of the figures is SMRAM, or memory
protected from ring 0 code by hardware, and the lower portion of the boxes designates
normal DRAM.

In this simplified version, we remove the SmmCore. We let the SmmIpl find the
SmmCpu driver and load it into SMRAM to do the SMBASE rebase operation. Another
activity entails the conversion of all SmmPlatform drivers into a library, and links this
library into the SmmCpu drive.

The next SMI will trigger a machine mode switch so that control is passed into the
SmmCpu driver, and the SmmCpu driver will call a SmmPlatform library to dispatch the
SMI handler. Figure 7-15 provides a diagram of the simplified SMM solution.

Chapter 7 ■ Building Firmware for Quark Processors

165

Please refer to QuarkPlatformPkg.dsc and QuarkPlatformPkg.fdf for more
information on a simplified version driver.

For the SmmIpl/SmmCpu module, refer to IA32FamilyCpuBasePkg/
SimplePiSmmCpuDxeSmm.

For SmmPlatform lib, refer to QuarkPlatformPkg/Library/SmmPlatformHookLib.

Compiler Options

In order to support a minimal image size, there are a couple of guiding rules:
do not use the /Zi compiler flag and do not use the /DEBUG link flag. These flags can
be added in the debug phase, but do not use them in final release, so that debug
information in PE image is removed.

Build Options

Use the NULL Debug lib: DebugLib|MdePkg/Library/BaseDebugLibNull/
BaseDebugLibNull.inf. Refer to QuarkPlatformPkg.dsc.

Do not use dynamic PCDs: PcdLib|MdePkg/Library/BasePcdLibNull/
BasePcdLibNull.inf. Refer to QuarkPlatformPkg.dsc.

Figure 7-15.  Simplified SMM solution

Chapter 7 ■ Building Firmware for Quark Processors

166

For the Execute-in-Place (XIP) images, use the TE image. Refer to QuarkPlatformPkg.fdf.
The following provides an example of the FRF file that provides the TE images.
 
[Rule.Common.SEC]
 FILE SEC = $(NAMED_GUID) RELOCS_STRIPPED {
 TE TE Align = 8 $(INF_OUTPUT)/$(MODULE_NAME).efi
 RAW BIN Align = 16 |.com
}
 

The TE Image format is not applicable for the DXE or UEFI drivers, but it does
provide a space savings for images that cannot be compressed by instead have to execute
directly from the memory mapping SPI NOR flash, such as SEC and PEI.

Do not use UI/VER section. Refer to QuarkPlatformPkg.fdf.
 
[Rule.Common.DXE_DRIVER]
 FILE DRIVER = $(NAMED_GUID) {
 DXE_DEPEX DXE_DEPEX Optional $(INF_OUTPUT)/$(MODULE_NAME).depex
 PE32 PE32 $(INF_OUTPUT)/$(MODULE_NAME).efi
UI STRING="$(MODULE_NAME)" Optional
VERSION STRING="$(INF_VERSION)" Optional BUILD_NUM=$(BUILD_NUMBER)
}
 

Although it doesn’t necessarily contribute to the image size reduction, the image
must be rebased in order to support Execute-in-Place (XIP). Sometimes the DXE volume
can be rebased to the location in the main memory where it will be decompressed.
This build-time rebasing omits the time-overhead of the PE/COFF loader to “fix-up”
the image during each machine restart. In general, this technique won’t work for open
platforms because we do not know at firmware build time the size of physical memory
or “where” the main DXE firmware volume will be decompressed and copied. Only for
deeply embedded platforms with integrated DRAM can such a build-time technique be
employed. Additional details from the FDF on how to configure this rebasing follow.
 
[FV.EDK II_BOOT_SLIM]
BlockSize = 0x1000
FvBaseAddress = 0x80010000
FvForceRebase = TRUE
...
 

In order to have compression support, the TinyQuark employs LZMA F86
compression. Refer to QuarkPlatformPkg.fdf.
 
FILE FV_IMAGE = 9E21FD93-9C72-4c15-8C4B-E77F1DB2D791 {
 SECTION GUIDED D42AE6BD-1352-4bfb-909A-CA72A6EAE889 PROCESSING_
REQUIRED = TRUE { # LzmaF86
 SECTION FV_IMAGE = EDK II_BOOT_SLIM
 }
 }
 

Chapter 7 ■ Building Firmware for Quark Processors

167

Table 7-1.  TinyQuark ROM Module Size

Although earlier we mentioned “No GUIDED_SECTION support in the DxeCore”,
this is a GUIDed section. The reason is that this Guided section will be only supported
by DxeIpl to decompress the whole DXE FV. As such, there is no need to have individual
drivers in the the DXE FV supported by compression or GUIDed section, thus allowing
the DxeCore to remove these support to reduce the size.

Results of the TinyQuark Optimization
After the application of the techniques covered earlier, the TinyQuark ROM demonstrates
significant code size savings in the ROM image. Table 7-1 lists some of the metrics.

In addition to the fine-grain metrics in Table 7-1, Figure 7-16 provides a print
message from the firmware itself, essentially showing that the entire firmware volume
in the flash part occupies less that 64KB, or the smallest region of today’s symmetrically
blocked SPI NOR flash parts.

Figure 7-16.  Message from the firmware on its size

Chapter 7 ■ Building Firmware for Quark Processors

168

This section described how to reduce ROM flash size, especially as larger flash
images lead to larger parts, with an impact to the bill of materials (BOM) and ultimate
cost of the platform. Beyond cost savings, the other reason to have a smaller image in
flash entails performance; copying a smaller binary from flash to DRAM consumes less
of the boot time. To reach the smaller binary, the PEI core was omitted and purpose-built
PCI Bus drivers and SMM infrastructure were employed. TinyQuark shows an extreme
end of the spectrum, but even a generic platform could benefit from a subset of the
techniques described.

RAM Footprint Optimization
In the preceding section, we reduced the amount of real estate consumed in the SPI NOR
flash, thus allowing more space for the operating system and other data. But the SPI NOR
isn’t the only factor to impact the BOM. The other factor that impacts a board cost is
volatile memory, or RAM usage. RAM is often noted as DRAM, too, for most systems.

As such, we did an analysis on RAM footprint on the 64K TinyQuark, and we realized
that the image in Quark firmware is copied four times during boot, which can be avoided
in practice.

1.	 DxeIpl, will prepare Decompressed FV to DxeCore. This is the
first copy.

2.	 Once DxeCore finds a FV, it will copy FV into RAM. The
reason is that DxeCore does not know if it is on flash or
DRAM. This flash vs. DRAM independence only makes sense
if other optimizations are in place, such as setting the MTRRs
to ensure that the firmware volume in flash is cached. If not,
there is a significant performance penalty in doing direct flash
access for each code fetch.

3.	 Then in the Driver Dispatch phase, the DxeCore constructs
a list for all FFS and SECTIONs there. The section stream for
FFS is the third copy for each PE/COFF image.

4.	 Finally, when DxeCore starts loading the UEFI image, it
allocates another memory and uses PeCoff library to load and
relocate PE image. This is the fourth copy.

The detailed memory layout before optimization is shown in Figure 7-17.

Chapter 7 ■ Building Firmware for Quark Processors

169

Figure 7-17.  Current DXE core

Optimization
In order to optimize memory usage, the design technique entails avoiding additional
buffer allocations. Instead, the optimization entails reuse of the old buffer as much as
possible.

To begin, the Decompressed Fv buffer is the base. This buffer is then reused as the
CachedFvcan be a pointer to the original Decompressed Fv buffer. Correspondingly, the
section stream for FFS can still point to the original buffer.

Then for the PE/COFF image, we relocate all PE/COFF images at build time.
A normal DXE driver or UEFI driver is rebased for its execution address in DRAM so that
it can be run directly, without the need for fix-ups. The Dxe Runtime driver is special
because it needs to reside in runtime memory (i.e., memory of type EFI_MEMORY_
RUNTIME [UEFI]). So the DxeCore just needs to allocate Runtime Paged memory and do
the relocation for the runtime driver.

The detailed memory layout after optimization of memory usage can be found in
Figure 7-18.

Chapter 7 ■ Building Firmware for Quark Processors

170

Figure 7-18.  Enhanced simplified DXE core

Table 7-2.  TinyQuark Component RAM Size

Result of Memory Usage Optimization
Before optimization, the memory size used is 760K (624K allocated during boot + 136K
decompressed FV). After optimization, the memory size used is 340K (204K allocated
during boot + 136K for the decompressed FV).

In addition to the overall metric, a finer-grain accounting of memory usage can be
found in Table 7-2.

Chapter 7 ■ Building Firmware for Quark Processors

171

This section describes the how to reduce the RAM footprint size. Historically,
memory usage in the pre-OS has been considered “free” since the operating system will
reclaim most of the resources, but for resource-constrained embedded systems, the
DRAM size can be strictly limited. As such, optimizing the boot-time drivers to reuse
buffers instead of allocating additional pages allows for an optimum memory footprint
during the early phase of execution.

Conclusion
This Intel implementation of the EDK II is a demonstration showing the possibilities
available using the scalable architecture of EDK II source code technology and the
flexibility of the UEFI Specification. The 64K “TinyQuark” demonstrates the scalability of
the EDK II architecture and how to create a UEFI-conformant firmware solution that has
a very small flash size and can minimize DRAM usage. This allows for a slim boot load
environment for a subsequent UEFI OS, or a slim execution environment for bare-metal
execution that can suffice just using UEFI services.

	Chapter 7: Building Firmware for Quark Processors
	Overview of UEFI and PI
	History of Implementations and Specifications

	Introduction to EDK II Building Blocks
	PKG: Packaging
	MdePkg
	MdeModulePkg
	IntelFrameworkPkg
	IntelFrameworkModulePkg

	Packages
	PCD: Platform Configuration Database
	Syntax

	DEC: Platform Declaration File
	Syntax

	DSC: Platform Description File
	FDF: Flash Description File
	Syntax

	Build: The EDK II Build Command
	INF: INF File
	More Information

	Introduction to the EDK II Subset
	Introduction to Quark
	ROM Flash Image Size Optimization
	Fixed Resource
	DRAM/SMRAM
	Remove Features
	Reduce Features
	Compiler Options
	Build Options

	Results of the TinyQuark Optimization

	RAM Footprint Optimization
	Optimization
	Result of Memory Usage Optimization

	Conclusion

