Skip to main content

Prospects and Perspectives in Mutation Breeding

  • Chapter
Genetic Diversity in Plants

Part of the book series: Basic Life Sciences ((BLSC,volume 8))

Abstract

Induction of mutations, primarily a method of generating genetic variation, can contribute to plant improvement when combined with selection, or recombination and selection, or with other methods of manipulating genetic variation. As a source of variability, induced mutations supplement naturally occurring variation. When specific mutants are selected following mutagenic treatments it is highly likely that a number of mutational changes will have occurred in the selected genotype. Hence, although most of the mutant varieties released so far have resulted from mutation and direct selection, the future trend will be for increasing use of mutants in association with recombination. Whereas induced mutations are generally regarded as random events, there are suggestions of some mutational specificity in response to different mutagenic agents and treatments. The best immediate prospects for increasing specificity lie in the manipulation of the selection environment. Biochemical selection applied to large numbers of plant cells in culture to locate mutations in specific biosynthetic pathways and the subsequent regeneration of whole plants offers great prospect for reducing the cost of breeding programs and altering the amount or composition of a desired end or intermediate product. Mutations in combination with other techniques of genetic engineering will constitute the tools of the plant breeders of the future. Their present role in plant breeding has been established. They have advantages in certain situations, disadvantages in others. Greater understanding will lead to their more widespread use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta, A. (1961). The transfer of stem rust resistance from rye to wheat. Ph.D. thesis, Univ. of Missouri, 56 pp.

    Google Scholar 

  • Auerbach, C. (1967). The chemical production of mutations. Science 158: 1141–1147.

    Article  PubMed  CAS  Google Scholar 

  • Avery, O. T., Macleod, C. M., and McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a deoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79: 137–157.

    Article  PubMed  CAS  Google Scholar 

  • Brock, R. D. (1971). The role of induced mutations in plant improvement. Radial. Bot. 11: 181–196.

    Article  CAS  Google Scholar 

  • Brock, R. D., Friederich, E. A., and Langridge, J. (1973). The modification of amino acid composition of higher plants by mutation and selection. Nuclear Techniques for Seed Protein Improvement (Proc. Symp. Neuherberg, 1972), pp. 329–338. IAEA, Vienna.

    Google Scholar 

  • Carlson, P. S. (1973a). Methionine sulfoximine-resistant mutants of tobacco. Science 180: 1366–1368.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, P. S. (1973b). The use protoplasts for genetic research. Proc. Natl. Acad. Sci. USA 70: 598–602.

    Article  PubMed  CAS  Google Scholar 

  • Chaleff, R. S. and Carlson, P. S. (1974). Higher plant cells as experimental organisms. Modification of the Information Content of Plant Cells, pp. 197–214. North-Holland Amsterdam.

    Google Scholar 

  • Dobzhansky, T. (1951). Genetics and the Origin of Species, p. 364. Columbia Univ. Press, New York.

    Google Scholar 

  • Doy, C. H. (1975). The transfer and expression (transgenosis) of foreign genes in plant cells, reality and potential. The Eukaryote Chromosome, pp. 447–458. ANU Press

    Google Scholar 

  • Canberra. Doy, C. H., Gresshoff, P. M., and Rolfe, B. G. (1972). Transfer and expression (transgenosis) of bacterial genes in plant cells. Search 3: 447–448.

    Google Scholar 

  • Doy, C. H., Gresshoff, P. M., and Rolfe, B. G. (1973). Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc. Natl. Acad. Sci. USA 70: 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Driscoll, C. J. and Jensen, N. F. (1963). A genetic method for detecting intergeneric translocations. Genetics 48: 459–468.

    PubMed  CAS  Google Scholar 

  • Fox, A. S., Yoon, S. B., Duggleby, W. F., and Gelbart, W. M. (1971). Genetic transformation in Drosophila. Informative Molecules in Biological Systems, pp. 313–332. North-Holland, Amsterdam.

    Google Scholar 

  • Grierson, D., McKee, R. A., Attridge, T. H., and Smith, H. (1974). Studies on uptake and expression of foreign genetic material by higher plant cells. Modification of the Informa-don Content of Plant Cells pp. 91–99. North-Holland, Amsterdam.

    Google Scholar 

  • Gustafsson, A. (1977). Mutations in plant breeding-A glance back and a look forward. Proc. 5th Int. Congr. Radial. Res.,in press.

    Google Scholar 

  • Heimer, Y. M. and Filner, P. (1970). Regulation of the nitrate assimilation pathway of cultured tobacco cells. II. Properties of a variant cell line. Biochim. Biophys. Acta 215: 152–165.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, S. A. (1970). The time and place of meiotic crossing-over. Annu. Rev. Genet. 4: 295–324.

    Article  PubMed  CAS  Google Scholar 

  • Hess, D. (1969a). Versuche zur Transformation an höheren Pflanzen: Induktion und konstante Weitergabe der Anthocyansythese bei Petunia hybrida. Z. Pflanzenphysiol. 60: 348–358.

    CAS  Google Scholar 

  • Hess, D. (1969b). Versuche zur Transformation an höheren Pflanzen: Wilderholung der Anthocyan-Induktion bei Petunia und erste Charakterisierung des transformierenden Prinzips. Z. Pflanzenphysiol. 61: 286–298.

    CAS  Google Scholar 

  • Hess, D. (1970). Versuche zur Transformation an höheren Pflanzen: Mögliche Transplantation eines Gens für Blattform bei Petunia hybrida. Z. Pflanzenphysiol. 63: 461–467.

    CAS  Google Scholar 

  • Hess, D. (1972). Transformationen an höheren Organismen. Naturwissenschaften 59: 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Hess, D. (1973). Transformationsversuche an höheren Pflanzen: Untersuchungen zur Realisation des Exosomen-Modells der Transformation bei Petunia hybrida. Z. Pflanzenphysiol 68: 432–440.

    Article  Google Scholar 

  • Hotta, Y. and Stern, H. (1971). Uptake and distribution of heterologous DNA in living cells. Informative Molecules in Biological Systems, pp. 176–184. North-Holland, Amsterdam.

    Google Scholar 

  • Kihlman, B. A. (1966). Action of Chemicals on Dividing Cells. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Kleinhoffs, A., Eden, F. C., Chilton, M-D., and Bendich, A. J. (1975). On the question of the integration of exogenous bacterial DNA into plant DNA. Proc. Natl. Acad. Sci. USA 72: 2748–2752.

    Article  Google Scholar 

  • Knott, D. R. (1961). The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. Plant Sci. 41: 109–123.

    Article  Google Scholar 

  • Ledoux, L. and Huart, R. (1961). Sur la possibilité d’un transfer d’acides ribo-et desoxyribonucleiques et de proteins dans les embryons d’orge en croissance. Arch. Intern. Physiol Biochim. 69: 598.

    CAS  Google Scholar 

  • Ledoux, L. and Huart, R. (1972). Fate of exogenous DNA in plants. Uptake of Informative Molecules by Living Cells, pp. 254–276. North-Holland, Amsterdam.

    Google Scholar 

  • Ledoux, L., Huart, R., and Jacobs, M. (1971a). Fate of exogenous DNA in Arabidopsis thaliana. I. Translocation and integration. Eur. J. Biochem. 23: 96–108.

    Article  PubMed  CAS  Google Scholar 

  • Ledoux, L., Huart, R., and Jacobs, M. (1971b). Fate of exogenous DNA in Aradibopsis thaliana. II. Evidence for replication and preliminary results at the biological level. Informative Molecules in Biological Systems, pp. 159–172. North-Holland, Amsterdam.

    Google Scholar 

  • Ledoux, L., Huart, R., and Jacobs, M. (1974a). DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. Nature 249: 17–21.

    CAS  Google Scholar 

  • Ledoux, L., Huart, R., Mergeay, M., Charles, P., and Jacobs, M. (1974b). DNA-mediated genetic correction of thiamineless Arabidopsis thaliana. Modification of the Information Content of Plant Cells, pp. 67–89. North-Holland, Amsterdam.

    Google Scholar 

  • Lundqvist, U., von Wettstein-Knowles, P., and von Wettstein, D. (1968). Induction of eceriferum mutants in barley by ionizing radiations and chemicals. II. Hereditas 59: 473–504.

    Article  CAS  Google Scholar 

  • Lurquin, P. F. and Hotta, Y. (1975). Reutilization of bacterial DNA by Arabidopsis thaliana cells in tissue culture. Plant Sci. Lett. 5: 103–112.

    Article  CAS  Google Scholar 

  • Nakayama, K., Tanaka, H., Hagino, H., and Kinoshita, S. (1966). Studies on lysine fermentation. Part V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation in Micrococcus glutamicus. Agric. Biol. Chem. 30: 611–616.

    Article  CAS  Google Scholar 

  • Nilan, R. A. (1972). Mutagenic specificity in flowering plants: Facts and Prospects. Induced Mutations and Plant Improvement, pp. 141–151. IAEA, Vienna.

    Google Scholar 

  • Palmer, J. E. and Widholm, J. (1975). Characterization of carrot and tobacco cell cultures resistant to p-fluorophenylalamine. Plant Physiol. 56: 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Persson, G. and Hagberg, A. (1969). Induced variation in a quantitative character in barley. Morphology and cytogenetics of erectoides mutants. Hereditas 61: 115–178.

    Article  Google Scholar 

  • Rédei, G. P. (1974). Economy in mutation experiments. Z. Pflanzenziiecht. 73: 87–96.

    Google Scholar 

  • Riley, R., Chapman, V., and Johnson, R. (1968). Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217: 383–384.

    Article  Google Scholar 

  • Scarascia-Mugnozza, G. T., Bagnara, D., and Bozzini, A. (1972). Mutagenesis applied to dumm wheat. Results and perspectives. Induced Mutations and Plant Improvement, pp. 183–197. IAEA, Vienna.

    Google Scholar 

  • Sharma, D. and Knott, D. R. (1966). The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8: 137–143.

    Google Scholar 

  • Sears, E. R. (1956). The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. BioL 9: 1–22.

    Google Scholar 

  • Sigurbjornsson, B. and Micke, A. (1974). Philosophy and accomplishments of mutation breeding. Polyploidy and Induced Mutations in Plant Breeding, pp. 303–343. IAEA, Vienna.

    Google Scholar 

  • Singh, C. B., Brock, R. D., and Oram, R. N. (1974). Increased meiotic recombination by incorporated tritium. Radiat. Bot. 14: 139–145.

    Article  CAS  Google Scholar 

  • Weinhues, A. (1966). Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. Proc. 2nd Int. Wheat Genet. Symp. Hereditas [Suppl.] 2: 370–381.

    Google Scholar 

  • Widholm, J. M. (1972a). Cultured Nicotiana tabacum cells with an altered anthranilate synthetase which is less sensitive to feedback inhibition. Biochim. Biophys. Acta 261: 52–58.

    Article  PubMed  CAS  Google Scholar 

  • Widholm, J. M. (1972b) Anthranilate synthetase from 5-methytryptophan-susceptible and -resistant cultured Daucus carota cells. Biochim. Biophys. Acta 279: 48–57.

    Article  PubMed  CAS  Google Scholar 

  • Widholm, J. M. (1974). Selection and characteristics of biochemical mutants of cultured plant cells. Tissue Culture and Plant Science, pp. 287–299. Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Brock, R.D. (1977). Prospects and Perspectives in Mutation Breeding. In: Muhammed, A., Aksel, R., von Borstel, R.C. (eds) Genetic Diversity in Plants. Basic Life Sciences, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2886-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2886-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2888-9

  • Online ISBN: 978-1-4684-2886-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics