Skip to main content

Calmodulin Modulation of the Calcium Signal in Synaptic Transmission

  • Chapter
Neurotransmitter Interaction and Compartmentation

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 48))

Abstract

Ca2+ plays a major role in the function of nervous tissue1,2. One of the most widely recognized roles of Ca2+ in synaptic function is its action in neurotransmission. Early studies showed that the release of neurotransmitter substances by vertebrate neuromuscular junctions was dependent upon the Ca2+ ion concentration in the media1-3. Elegant studies at the synaptic level most convincingly demonstrated that the effects of Ca2+ on neurotransmission were not secondary to effects of Ca2+ on the presynaptic action potential, but were directly dependent upon the entry of Ca2+ into the nerve terminal4-7. The role of Ca2+ in stimulus-secretion coupling has also been demonstrated in a variety of secretory processes in several tissues8. Thus, the role of Ca2+ in synaptic function is well established. One of the major questions in neuroscience research at the present time is what is the molecular mechanism mediating the effects of Ca2+ on synaptic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Rubin, The role of calcium in the release of neurotransmitter substances and hormones, Pharm. Rev. 22: 389–428 (1972).

    Google Scholar 

  2. H. Rasmussen and D.B.P. Goodman, Relationships between calcium and cyclic nucleotides in cell activation, Physiol. Rev. 57: 421–509 (1977).

    PubMed  CAS  Google Scholar 

  3. J. Del Castillo and L. Stark, The effects of calcium ions on the motor, end-plate potentials, J. Physiol. 124: 553–559 (1952).

    Google Scholar 

  4. B. Katz and R. Miledi, Spontaneous and evoked activity of motor nerve endings in calcium Ringer, J. Physiol. 203: 689–706 (1969).

    PubMed  CAS  Google Scholar 

  5. B. Katz and K. Miledi, Further study of the role of calcium in synaptic transmission, J. Physiol. 207: 789–801 (1970).

    PubMed  CAS  Google Scholar 

  6. R. Miledi and CR. Slater, The action of calcium on neuronal synapses in the squid, J. Physiol. 184: 473–478 (1966).

    PubMed  CAS  Google Scholar 

  7. R. Miledi, Transmitter release induced by injection of calcium ions into nerve terminals, Proc. Roy. Soc, Lond. 183: 421–425 (1973).

    Article  CAS  Google Scholar 

  8. W.W. Douglas, Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, Brit. Pharmacol. 34: 451–474 (1968).

    Article  CAS  Google Scholar 

  9. R.J. DeLorenzo, Role of calmodulin in neurotransmitter release and synaptic function, Ann. N.Y. Acad. Sci. 356: 93–109 (1980).

    Google Scholar 

  10. R.J. DeLorenzo and S.D. Freedman, Calcium-dependent neurotransmitter release and protein phosphorylation in synaptic vesicles, Biochem. Biophys. Res. Commun. 80: 183–192 (1978).

    Article  Google Scholar 

  11. R.J. DeLorenzo, S.D. Freedman, W.B. Yohe, and S.C. Maurer, Stimulation of Ca2+-dependent neurotransmitter release and presynaptic nerve terminal protein phosphorylation by calmodulin and a calmodulin-like protein isolated from synaptic vesicles, Proc. Natl. Acad. Sci. U.S.A. 76: 1838–1842 (1979).

    Article  Google Scholar 

  12. R.J. DeLorenzo, Phenytoin: Calcium and calmodulin-dependent protein phosphorylation and neurotransmitter release, in “Antiepileptic Drugs: Mechanisms of Action”, G.H. Glaser, D. Woodbury, and K. Penry eds. pp. 399–414, Raven Press, New York (1980).

    Google Scholar 

  13. R.J. DeLorenzo, Calcium-dependent phosphorylation of specific synaptosomal fraction proteins: Possible role of phosphorylation in mediating neurotransmitter release, Biochem. Biophys. Res. Commun. 71: 590–597 (1976).

    Article  Google Scholar 

  14. R.J. DeLorenzo, Antagonistic action of diphenylhydantoin and calcium on the level of phosphorylation of particular rat and human brain proteins, Brain Res. 134: 125–138 (1977).

    Article  Google Scholar 

  15. R.J. DeLorenzo and S.D. Freedman, Possible role of calcium-dependent protein phosphorylation in mediating neurotransmitter release and anticonvulsant action, Epilepsia 18: 357–365 (1977).

    Article  Google Scholar 

  16. R.J. DeLorenzo, G.P. Emple, and G.H. Glaser, Regulation of the level of endogenous phosphorylation of specific brain proteins by diphenylhydantoin, J. Neurochem. 28: 21–30 (1977).

    Article  Google Scholar 

  17. R.J. DeLorenzo and G.H. Glaser, Effect of diphenylhydantoin on the endogenous phosphorylation of brain protein, Brain Res. 105: 381–386 (1976).

    Article  Google Scholar 

  18. B. Burke and R.J. De Lorenzo, Calcium and calmodulin dependent phosphorylation of neurotubulin, Proc. Natl. Acad. Sci. U.S.A. 28: 991–995 (1981).

    Article  Google Scholar 

  19. R.J. DeLorenzo, Calmodulin in neurotransmitter release and synaptic function, Fed. Proc., in press.

    Google Scholar 

  20. R.J. DeLorenzo, Calcium, calmodulin, and synaptic function, in “Regulatory Mechanisms of Synaptic Transmission”, R. Tapia ed., in press, Plenum Press, New York.

    Google Scholar 

  21. R.J. DeLorenzo, The calmodulin hypothesis of neurotransmission, Cell Calcium, in press.

    Google Scholar 

  22. W.Y. Cheung, Calmodulin plays a pivotal role in cellular regulation, Sci.207: 19–27 (1980).

    Google Scholar 

  23. C.B. Klee, T.H. Crouch, and P.G. Richman, Calmodulin, Ann. Rev. Biochem. 49: 489–515 (1980).

    Article  CAS  Google Scholar 

  24. S.H. Barondes, Synaptic macromolecules: Identification and metabolism, Ann. Rev. Biochem. 43: 147–194 (1974).

    Article  PubMed  CAS  Google Scholar 

  25. J.G. Wood, R.W. Wallace, J.N. Whitaker, and W.Y. Cheung, Immuno-cytochemical localization of calmodulin in regions of rodent brain, Ann. N.Y. Acad. Sci. 356: 75–82.(1980).

    Article  PubMed  CAS  Google Scholar 

  26. D.J. Grab, R.K. Carlin, and P. Siekevitz, The presence and functions of calmodulin in the postsynaptic density, Ann. N.Y. Acad. Sci. 356: 55–72 (1980)

    Article  PubMed  CAS  Google Scholar 

  27. D.J. Grab, K. Berzins, R.S. Cohen, and P. Siekevitz, Presence of calmodulin in postsynaptic densities isolated from canine cerebral cortex, J. Biol. Chem. 254: 8690–8696 (1979).

    PubMed  CAS  Google Scholar 

  28. U.P. Whittaker, I.A. Michael, and R.J.A. Kirkland, The separation of synaptic vesicles from nerve ending particles (Synaptosomes), Biochem. J. 90: 293–305 (1964).

    PubMed  CAS  Google Scholar 

  29. K. Kodota and T. Kodota, Isolation of coated vesicles, plain synaptic vesicles, and floculent material from a crude synapto-some fraction of guinea pig whole brain, J. Cell Biol. 58: 135–151 (1973).

    Article  Google Scholar 

  30. Y.M. Lin, Y.P. Lin, and W.Y. Cheung, Cyclic 3′:5′-nucleotide phosphodiesterase: Purification, characterization and active forms of the protein activator from bovine, J. Biol. Chem. 249: 4943–4954 (1974).

    PubMed  CAS  Google Scholar 

  31. B. Weiss, W. Proxialeck, M. Cimino, M.S. Barnette, and T.L. Wallace, Pharmacological regulation of calmodulin, Ann. N.Y. Acad. Sci. 356: 319–345 (1980).

    Article  PubMed  CAS  Google Scholar 

  32. S. Burdette and R.J. DeLorenzo, Benzodiazepine inhibition of calcium-dependent protein phosphorylation in synaptosome and synaptic vesicle preparations, Neurol. 30: 449 (1980).

    Google Scholar 

  33. R.J. DeLorenzo, S. Burdette, and J. Holderness, Benzodiazepine inhibition of the calcium-calmodulin protein kinase systems in brain membrane, Sci. 212: 1157–1159 (1981).

    Article  CAS  Google Scholar 

  34. R.J. DeLorenzo, Calcium-calmodulin protein phosphorylation in neuronal transmission, in “Status Epilepticus”, C. Waserlain and A.V. Delgado-Escueta eds., Raven Press, New York, in press.

    Google Scholar 

  35. M.P. Blaustein, E.M. Johnson, and P. Needleman, Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro, Proc. Natl. Acad. Sci. U.S.A. 69: 2237–2240 (1972).

    Article  PubMed  CAS  Google Scholar 

  36. R.J. DeLorenzo and S.D. Freedman, Calcium-dependent phosphorylation of synaptic vesicle proteins and its possible role in mediating neurotransmitter release and vesicle function, Biochem. Biophys. Res. Commun. 77: 1036–1043 (1977).

    Article  Google Scholar 

  37. R.S. Adelstein, M.A. Conti, and M.O. Pato, Regulation of myosin light chain kinase by reversible phosphorylation and calcium-calmodulin, Ann. N.Y. Acad. Sci. 356: 142–150 (1980).

    Article  PubMed  CAS  Google Scholar 

  38. P. Cohen, C.B. Klee, C. Picton, and S. Shenolikar, Calcium control of muscle Phosphorylase kinase through the combined action of calmodulin and troponin, Ann. N.Y. Acad. Sci. 356: 151–161 (1980).

    Article  PubMed  CAS  Google Scholar 

  39. H. Shulman and P. Greengard, Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein, Nature 271: 478–479 (1978).

    Article  Google Scholar 

  40. B. Krueger, J. Forn, and P. Greengard, Depolarization-induced phosphorylation of specific proteins mediated by calcium influx in rat brain synaptosomes, J. Biol. Chem. 252: 2764–2773 (1977).

    PubMed  CAS  Google Scholar 

  41. J.E. Heuser, T.S. Reese, M.J. Dennis, Y. Jan, and L. Evan, Syanptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol. 81: 275–300 (1979).

    Article  PubMed  CAS  Google Scholar 

  42. J.E. Heuser and T.S. Reese, Structural changes after transmitter release at frog neuromuscular junction, J. Cell Biol. 83: 564–580 (1981).

    Article  Google Scholar 

  43. H. Feit, G.R. Dutton, S.H. Barpndes, and M.L. Shelanski, Microtubule protein: Identification in and transport to nerve endings, J. Cell Biol. 51: 138–146 (1971).

    Article  PubMed  CAS  Google Scholar 

  44. N. Zisapel, M. Levi, and D. Gozes, Tubulin: An integral protein of mammalian synaptic vesicle membranes, Neurochem. 34: 26–32 (1980).

    Article  CAS  Google Scholar 

  45. Y. Gazitt, I. Ohen, A. Loyter, Phosphorylation and diphosphory-lation of membrane proteins as a possible mechanism for structural rearrangement of membrane components, Biochem. Biophys. Acta 436: 1–14 (1976).

    Article  PubMed  CAS  Google Scholar 

  46. M. Kuhn, and W.M. Lovenberg, Calmodulin: Neurotransmitter synthesis (tryptophane hydorxylase), Fed. Proc., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

DeLorenzo, R.J. (1982). Calmodulin Modulation of the Calcium Signal in Synaptic Transmission. In: Bradford, H.F. (eds) Neurotransmitter Interaction and Compartmentation. NATO Advanced Study Institutes Series, vol 48. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1140-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1140-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1142-3

  • Online ISBN: 978-1-4684-1140-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics