A6 HEXAGONAL SILICON CARBIDE (2H-, 4H-, and 6H-SIC)

A6.1 GENERAL REMARKS

Of all the polytypes, 6 H is by far the most commonly occurring modification in commercial SiC. The next most common polytypes are 15 R and 4 H , respectively. SiC also crystallizes in the wurtzite structure ($2 \mathrm{H}-\mathrm{SiC}$). Assuming that the 3 C and 2 H structures are extremes in the parameter describing the percentage of hexagonal close packing (often called hexagonality) with 0 and 100%, respectively, we get the hexagonal nature of 33% for 6 H structure, 40% for 15 R structure, and 50% for 4 H structure. The hexagonal and rhombohedral polytypes have a sixhold symmetry axis along the stacking direction (c axis), and thus these crystals present an anisotropic (uniaxial) behavior of physical properties.

A6.2 ELECTRONIC ENERGY-BAND STRUCTURE

Figure A6-1 shows the electronic energy-band structures of (a) $2 \mathrm{H}-\mathrm{SiC}$, (b) $4 \mathrm{H}-\mathrm{SiC}$, and (c) $6 \mathrm{H}-\mathrm{SiC}$ as obtained within the DFT-LDA calculations by Käckell et al. [1]. The polytypes, $2 \mathrm{H}-6 \mathrm{H}$, consist of identical layers, whose stacking sequences differ, and can be regarded as natural superlattices $(4 \mathrm{H}-$ and $6 \mathrm{H}-\mathrm{SiC})$. The artificial semiconductor superlattices, like $\mathrm{Si} / \mathrm{Ge}$ and $\mathrm{GaAs} / \mathrm{AlGaAs}$ suprelattices, are characterized by band folding, band offset, and carrier confinement. We note, however, that the band offset is absent in $4 \mathrm{H}-$ and $6 \mathrm{H}-\mathrm{SiC}$. This is because there is no interface effect on the charge density and thus the stacking layer cannot be actually distinguished. As a result, no carrier-confinement effect is expected in $4 \mathrm{H}-$ and $6 \mathrm{H}-\mathrm{SiC}$. Only the band-folding effect is, therefore, important in this type of superlattices.

The hexagonal SiC polytypes are all indirect-band-gap semiconductors. The va-lence-band maximum at the Γ point is split into a twofold and a onefold state by hexagonal crystal field. The conduction-band minimum located at the X point in 3CSiC changes to the $\mathrm{L}-\mathrm{M}$ line in 6 H or at the M point in 4 H , and then to the K point in $2 \mathrm{H}-\mathrm{SiC}$. However, in the $6 \mathrm{H}-\mathrm{SiC}$ its exact position on the $\mathrm{L}-\mathrm{M}$ line is under discussion (see Refs. [2,3]). We summarize in Table A6-1 the lowest-indirect-exciton gaps obtained experimentally for some hexagonal and rhombohedral SiC polytypes [4], together with their corresponding hexagonalities. It can be seen from this table that the lowest indirect gap increases with increasing hexagonality. This famous relationship had been found in 1964 by Choyke, Hamilton, and Patrick [5,6].

Figure A6-1 Electronic energy-band structures of (a) $2 \mathrm{H}-\mathrm{SiC}$, (b) $4 \mathrm{H}-\mathrm{SiC}$, and (c) $6 \mathrm{H}-\mathrm{SiC}$ as obtained within the DFT-LDA calculations. (From Käckell et al. [1].)

TABLE A6-1 Lowest-indirect-exciton gap and hexagonality for some SiC polytypes.

Polytype	Exciton Gap (eV)	Hexagonality (\%)
3C	2.390	0
24R	2.728	25
8H	2.80	25
21R	2.853	29
6H	3.023	33
15R	2.986	40
4H	3.265	50
2H	3.330	100

Figure A6-2 shows the theoretical reflectivity spectra for $2 \mathrm{H}-, 4 \mathrm{H}-, 6 \mathrm{H}$-, and 3 C SiC polytypes as calculated by Lambrecht et al. [7]. The band structures were calculated by means of the scalar-relativistic LMTO method. The imaginary part of the dielectric function $\varepsilon_{2}(E)$ was derived at the random-phase approximation level using the muffin-tin-orbital basis set. The real part $\varepsilon_{1}(E)$ was then obtained from $\varepsilon_{2}(E)$ by means of the KK transformation. No lifetime broadening effect was taken into consideration in the calculation. The experimental data for $4 \mathrm{H}, 15 \mathrm{R}, 6 \mathrm{H}$, and 3 C polytypes measured by these authors are also shown in Fig. A6-2 by the solid lines.

In Fig. A6-2, the overall experimental features are broader than the theoretical

Figure A6-2 Reflectivity spectra for $2 \mathrm{H}-, 4 \mathrm{H}-$, 15 R -, 6 H -, and $3 \mathrm{C}-\mathrm{SiC}$ polytypes: dotted lines (theory), solid lines (experiment at 300 K). The data for $2 \mathrm{H}-, 4 \mathrm{H}-, 15 \mathrm{R}-$, and $6 \mathrm{H}-\mathrm{SiC}$ correspond to $E \perp c$. Note that no lifetime broadening effect was taken into consideration in the theory. (From Lambrecht et al. [7].)
ones. Nevertheless, a clear correspondence can be established between all main features in the experiment and calculation. The main peak of $3 \mathrm{C}-\mathrm{SiC}(B)$ is centered at 7.8 eV (see also Fig. A5-5). A peak near 8 eV exists in all polytypes considered. It is flattened out in 4 H and 6 H and shifted to slightly lower energy in 15 R . It is considered to mostly correspond to transitions from the upper two valence bands to the lowest conduction band (E_{0} or E_{1}) in the case of $3 \mathrm{C}-\mathrm{SiC}$ and to similar transitions of the appropriately folded bands in the smaller BZs of the hexagonal polytypes. A second peak (C) appears at higher energy in the calculated spectra of all polytypes. In $3 \mathrm{C}-\mathrm{SiC}$, this peak may correspond to transitions from the upper valence band to the second conduction band ($E_{0}{ }^{\prime}, E_{1}{ }^{\prime}$, or $E_{2}{ }^{\prime}$).

The main difference between the cubic and all other polytypes consists of the features (D, D^{\prime}) centered near 7 eV . This feature is strongest in 2 H , sharpest in 4 H , split into two peaks (D, D^{\prime}) in both 15 R and 6 H , and absent in 3C. The peak D in $2 \mathrm{H}-\mathrm{SiC}$ was found to correspond to an extended region of the nearly parallel band in
the $\Gamma-K-X$ plane near K [7]. Similar flat interband-transition curves also exist in 4 H and 6 H along the $\Gamma-\mathrm{K}$ line. This axis of the hexagonal BZ corresponds to the $\Sigma=\Gamma-$ K and $\mathrm{Q}=\mathrm{L}-\mathrm{W}$ lines of cubic SiC which are both folded onto the $\mathrm{T}=\Gamma-\mathrm{K}$ line of the hexagonal BZ .

A6.3 OPTICAL CONSTANTS

(a) 2 H -SiC -There are very few reports on the optical constants of 2 H - and $4 \mathrm{H}-\mathrm{SiC}$ polytypes [7-10]. Powell [8] reported the n data for $2 \mathrm{H}-\mathrm{SiC}$ measured by the method of minimum deviation over the wavelength range $435.8-650.9 \mathrm{~nm}$. The crystals used were grown by the reduction of methyltrichlorosilane $\left(\mathrm{CH}_{3} \mathrm{SiCl}_{3}\right)$ at $1375^{\circ} \mathrm{C}$. They were in the form of needles about 0.4 mm in diameter by 2 mm long, and their c axis was in the direction of the needle's length. A curve fit of the measured n data to the Cauchy dispersion equation

$$
\begin{equation*}
n=A+\frac{B}{\lambda^{2}}+\frac{C}{\lambda^{4}} \tag{A6.1}
\end{equation*}
$$

yielded $A=2.5513, B=2.585 \times 10^{4}$, and $C=8.928 \times 10^{8}$ for the ordinary ray $(E \perp c)$ and $A=2.6161, B=2.823 \times 10^{4}$, and $C=11.490 \times 10^{8}$ for the extraordinary ray ($E \| C$) when λ is expressed in nm . The n data for $2 \mathrm{H}-\mathrm{SiC}$, together with those for $3 \mathrm{C}-, 4 \mathrm{H}-, 6 \mathrm{H}-$, and $15 \mathrm{R}-\mathrm{SiC}$, are plotted in Fig. A6-3 [8].

Figure A6-3 Refractiveindex dispersion for SiC polytypes. Data included for 2 H and 6 H curves only. The $3 \mathrm{C}(\beta), 4 \mathrm{H}$, and 15 R curves are from Shaffer [9]. Diamonds, Thibault (see Ref. [8]); squares, Shaffer [9]; circles, Powell [8]. (From Powell [8].)

Figure A6-4 Birefringence vs. hexagonality for SiC polytypes at $\lambda=584 \mathrm{~nm}$. (From Powell [8].)

Figure A6-4 plots the birefringence, $\Delta n \equiv n_{\mathrm{e}}(\boldsymbol{E} \| c)-n_{\mathrm{o}}(\boldsymbol{E} \perp c)$, vs. hexagonal fraction (hexagonality) for some SiC polytypes at 584 nm [8]. There have been attempts to relate the birefringence of SiC to the crystal structure [8,9,11]. In the structurally analogous system of ZnS polytypes, the birefringence is a linear function of the hexagonal fraction h [12]. The situation for SiC is not so simple. As seen in Fig. A64, the birefringence is a linear function of h for values of h between 0.25 and 0.50 . However, the values for 3C-SiC ($h=0$) and $2 \mathrm{H}-\mathrm{SiC}(h=1.0)$ are considerably below this line.

We list in Table A6-2 the ε_{1}, n, and $R\left[=(n-1)^{2} /(n+1)^{2}\right]$ values for $2 \mathrm{H}-\mathrm{SiC}$. They were calculated from Eq. (A6.1) [8]. Limiting $\lambda \rightarrow \infty$ in Eq. (A6.1), we obtain the high-frequency dielectric constant $\varepsilon_{\infty}=6.51$ for $\boldsymbol{E} \perp c$ and 6.84 for $\boldsymbol{E} \| c$.

Table A6-2 Optical constants of $2 \mathrm{H}-\mathrm{SiC}$ at 300 K .

	$\boldsymbol{E} \perp \boldsymbol{C}$					$\boldsymbol{E} \\| \boldsymbol{C}$		
eV	$\boldsymbol{\varepsilon}_{1}$	n	\boldsymbol{R}		$\boldsymbol{\varepsilon}_{1}$	n	\boldsymbol{n}	
1.904	6.8503	2.6173	0.200		7.2318	2.6892	0.210	
2.061	6.9143	2.6295	0.202		7.3057	2.7029	0.211	
2.249	7.0018	2.6461	0.204		7.4066	2.7215	0.214	
2.270	7.0119	2.6480	0.204		7.4185	2.7237	0.214	
2.476	7.1214	2.6686	0.207		7.5460	2.7470	0.217	
2.753	7.2927	2.7005	0.211		7.7468	2.7833	0.222	
2.844	7.3555	2.7121	0.213		7.8210	2.7966	0.224	

(b) 4H-SiC-The n dispersion data for 4H-SiC were reported by Shaffer [9] (see Figs. A6-3 and A6-4). The crystals were grown by the sublimation method. The experimental n data were fitted to the Cauchy dispersion formula of Eq. (A6.1) with $C=0$. The fit-determined dispersion parameters were: $A=2.5610$ and $B=3.40 \times 10^{4}$ for $\boldsymbol{E} \perp c ; A=2.6041$ and $B=3.75 \times 10^{4}$ for $E \| c$.

Biedermann [10] studied the optical absorption properties of some SiC polytypes, including $4 \mathrm{H}-\mathrm{SiC}$, in the wavelength range 0.35 to $2.5 \mu \mathrm{~m}$ with light polarization perpendicular and parallel to the c axis. He observed in N -doped n-type samples ($n \sim 5 \times 10^{18} \mathrm{~cm}^{-3}$) the main absorption bands in the $0.6-3-\mathrm{eV}$ region that were strongly dependent upon the polytype and light polarization. These bands were assumed to be due to electron excitation from the conduction-band minimum to other sites of increased DOS in the higher, empty band (namely, due to the intracondution-band absorption). No comparable absorption bands were observed in Al-doped, p-type samples. The absorption coefficients in the p-type samples increased continually from the minimum near the band edge towards longer wavelengths, the dependence being given approximately by $k \sim \lambda^{1.5}$ for the ordinary ray and $k \sim \lambda^{0.9}$ for the extraordinary ray.

Sridhara et al. [13] have also reported the absorption coefficients of $4 \mathrm{H}-\mathrm{SiC}$ measured at 300 K , with light propagating along the c axis, from 3900 to $3350 \AA$. The sample was n type with an impurity concentration in the high $10^{14} \mathrm{~cm}^{-3}$. It was carefully polished to a thickness of $64 \mu \mathrm{~m}$. By using the known shift of the band gap with temperature, they have also given the absorption values at 2 K .

The fundamental reflectivity spectrum in the interband transition region of $4 \mathrm{H}-$ SiC was reported by Lambrecht et al. [7] (see Fig. A6-2). We note, however, that the reflectivity peak value at $\sim 7 \mathrm{eV}$ for $3 \mathrm{C}-\mathrm{SiC}$ obtained by these authors is considerably smaller than the recent SE result (cf. Fig. A5-5).

More recently, Zollner and Hilifker [14] have reported the $\mathrm{SE} \varepsilon(E)$ spectra of 4 H SiC from 0.72 to 6.6 eV . The sample studied was obtained commercially from Cree Research. It was not intentionally doped and single-side polished (Si-terminated). The sample was measured as received without surface preparation. The SE data revealed CP near 5.53 eV .

Table A6-3 lists the optical-constant data for $4 \mathrm{H}-\mathrm{SiC}$. They were obtained for $E \leq 2.654 \mathrm{eV}$ from Shaffer [9] and for $E \geq 3 \mathrm{eV}$ from Zollner and Hilifker [14]. These data yield the high-frequency dielectric constants $\varepsilon_{\infty}=6.56$ for $E \perp c$ and 6.78 for $\boldsymbol{E} \|$ $c[\lambda \rightarrow \infty$ in Eq. (A6.1)].

Table A6-3 Optical constants of 4H-SiC at 300 K .

	$\boldsymbol{E} \perp c$						$\boldsymbol{E} \\|_{c}$		
eV	ε_{1}	ε_{2}	n	k	R		ε_{1}	n	R
1.794	6.9353		2.6335		0.202		7.2006	2.6834	0.209
2.012	7.0267		2.6508		0.204		7.3078	2.7033	0.212
2.104	7.0692		2.6588		0.206		7.3544	2.7119	0.213
2.182	7.1049	2.6655		0.206		7.3940	2.7192	0.214	

Table A6-3 Continued (4H-SiC).

eV	$\boldsymbol{E} \perp c$					$\boldsymbol{E} \\| c$		
	ε_{1}	ε_{2}	n	k	R	ε_{1}	n	R
2.407	7.2259		2.6881		0.210	7.5350	2.7450	0.217
2.489	7.2792		2.6980		0.211	7.5889	2.7548	0.218
2.654	7.3908		2.7186		0.214	7.7123	2.7771	0.221
3	7.59		2.75					
3.1	7.68		2.77					
3.2	7.70		2.77					
3.3	7.87		2.81					
3.4	7.98		2.82					
3.5	8.10	0.01	2.85	0.0018	0.996			
3.6	8.22	0.02	2.87	0.0035	0.991			
3.7	8.36	0.03	2.89	0.0052	0.987			
3.8	8.50	0.04	2.92	0.0069	0.983			
3.9	8.65	0.05	2.94	0.0085	0.979			
4	8.81	0.08	2.97	0.013	0.968			
4.1	8.99	0.09	3.00	0.015	0.965			
4.2	9.18	0.12	3.03	0.020	0.954			
4.3	9.40	0.14	3.07	0.023	0.948			
4.4	9.62	0.19	3.10	0.031	0.931			
4.5	9.87	0.23	3.14	0.037	0.919			
4.6	10.1	0.31	3.18	0.049	0.895			
4.7	10.4	0.35	3.23	0.054	0.885			
4.8	10.7	0.45	3.27	0.069	0.859			
4.9	11.1	0.54	3.33	0.081	0.840			
5	11.4	0.68	3.38	0.101	0.809			
5.1	11.8	0.80	3.44	0.116	0.787			
5.2	12.3	0.96	3.51	0.137	0.762			
5.3	12.8	1.19	3.58	0.166	0.730			
5.4	13.4	1.53	3.67	0.209	0.692			
5.5	13.9	2.08	3.74	0.278	0.645			
5.6	14.4	2.73	3.81	0.358	0.616			
5.7	14.7	3.24	3.86	0.420	0.606			
5.8	15.2	3.78	3.93	0.481	0.605			
5.9	15.6	4.41	3.99	0.553	0.610			
6	16.1	5.10	4.06	0.628	0.620			
6.1	16.6	5.92	4.14	0.716	0.636			
6.2	17.3	6.87	4.24	0.811	0.656			
6.3	17.8	8.25	4.33	0.954	0.684			
6.4	18.3	9.69	4.42	1.10	0.710			
6.5	18.6	11.3	4.49	1.26	0.736			

(c) $6 \mathrm{H}-\mathrm{SiC}$-The reported ε_{∞} data for $6 \mathrm{H}-\mathrm{SiC}$ have yielded widely different values ranging from 6.17 to 6.7 for $E \perp c$ and from 6.49 to 6.72 for $E \| c$ [15]. Pikhtin et al. [16] measured the n data in the $0.4-50-\mu \mathrm{m}$ wavelength region at 297 and 105 K and estimated from their data the static and high-frequency dielectric constants to be $\varepsilon_{s}=9.66$ (9.64) and $\varepsilon_{\infty}=6.520$ (6.509) for $E \perp c$ and $\varepsilon_{s}=10.09$ (10.01) and $\varepsilon_{\infty}=6.742$ (6.692) for $E \| c$ at $297 \mathrm{~K}(105 \mathrm{~K})$.

IR optical properties of $6 \mathrm{H}-\mathrm{SiC}$ have been studied by Spitzer et al. [17] and more
recently by Engerlbrecht and Helbig [18]. The samples used by Engerlbrecht and Helbig [18] were cut from boules grown by a modified Lely method ($n=0.5-$ $1.0 \times 10^{17} \mathrm{~cm}^{-3}$). The measured spectra were fitted to the classical Lorentz oscillator model. The number of the Lorentz oscillators required for this fit was one for $E \perp c$ and five for $E \| c$: four extra oscillators for $E \| c$ correspond to two weak one-phonon absorption lines in the reststrahlen band and two weak absorption lines at longer wavelengths. Spitzer et al. [17] reported additional, but only one weak absorption line in the reststrahlen band for $E \| c$. The reststrahlen data of Engerlbrecht and Helbig [18] yielded the ε_{∞} values of 6.17 and 6.49 for $E \perp c$ and $E \| c$, respectively, while Spitzer et al. [17] obtained the ε_{∞} value of 6.7 both for $E \perp c$ and $E \| c$.

The n dispersion in $6 \mathrm{H}-\mathrm{SiC}$ has been studied by many authors $[8,9,16,19,20$]. Like $2 \mathrm{H}-$ and $4 \mathrm{H}-\mathrm{SiC}$, the ordinary values $n_{\mathrm{o}}(\boldsymbol{E} \perp c)$ are usually smaller than the extraordinary ones $n_{e}(E \| c)$ at the same wavelengths (i.e., $\Delta n=n_{\mathrm{e}}-n_{\mathrm{o}}>0$, see Fig. A6-3).

Optical absorption at the fundamental absorption edge of $6 \mathrm{H}-\mathrm{SiC}$ has been studied by a number of authors [21-5]. The data revealed fine structures caused by phonons involved in the indirect-transition process [23].

Optical absorption in the region well below the fundamental absorption edge has been studied by Biederman [10] and Ellis and Moss [26]. These authors observed the relatively strong absorption peaks at $E \sim 1.6 \mathrm{eV}$ in the n-type samples for $E \| c$. Their peak strengths were found to increase with increasing carrier concentration [26]. They were considered to arise from the interconduction-band absorption [10]. It was also found [26] that the absorption edge for $E \perp c$ occurs at slightly longer wavelength than that for $E \| c$, in agreement with the data of Choyke and Patrick [23]. The free-carrier absorption, however, showed no evidence of anisotropy in the scattering mechanism [26].

Fundamental reflectivity study in the interband transition region of $6 \mathrm{H}-\mathrm{SiC}$ was performed by Lambrecht et al. [7] in the 4-9.5-eV region (see Fig. A6-2), by Philipp and Taft [27] in the $1-11.5-\mathrm{eV}$ region, and by Wheeler [28] in the 3-13-eV region. Unfortunately, the Refs. [7] and [28] authors did not performed KK analysis. Philipp and Taft [27] performed KK analysis, but they did not state whether the data were measured for $E \perp c$, or $E \| c$, or a mixture.

The SE data for $6 \mathrm{H}-\mathrm{SiC}$ have been reported by Adachi and coworker [15] in the $1.2-5.4-\mathrm{eV}$ region for both $E \perp c$ and $E \| c$ and more recently by Logothetidis and $\mathrm{Pe}-$ talas [29] in the $1.5-9.5-\mathrm{eV}$ region for $E \perp c$. The measured SE data showed CP features at energies ~ 6.7 and 9.2 eV for $E \perp c$ [29] and at $\sim 5.4 \mathrm{eV}$ for $E l c$ [15]. Logothetidis and Petalas [29] also found that the n dispersion for $E \perp c$ below the lowest-direct-band gap (1.5-5.5 eV) can be fitted by the Sellmeier equation:

$$
\begin{equation*}
\varepsilon_{1}(\lambda)=n(\lambda)^{2}=1.0+\sum_{i} \frac{A_{i} \lambda^{2}}{\lambda^{2}-\lambda_{0 i}{ }^{2}} \tag{A6.2}
\end{equation*}
$$

with $A_{1}=1.481, \lambda_{01}=0.1817 \mu \mathrm{~m}, A_{2}=4.142$, and $\lambda_{02}=0.1597 \mu \mathrm{~m}$. Adachi and coworker [15] also reported the fitted results of their measured n data for $E \perp c$ and $E \| c$ using the first-order Sellmeier equation.

More recently, Zollner and Hilifker [14] have measured the $\varepsilon(E)$ spectra of 6 H SiC from 0.72 to 6.6 eV using rotating-analyzer ellipsometer. The sample was obtained commercially from Cree Research. It was not intentionally doped and singleside polished (Si-terminated). The sample was measured as received without surface preparation. The accuracy for ε_{2} was reported to be 0.01 .

The optical constants in the UV-soft X-ray region ($10.2-525 \mathrm{eV}$) of SiC were reported by Windt et al. [30]. The samples used by them were grown by CVD. The Si L absorption edge was visible in the extinction coefficient near 100 eV . The dip in the n dispersion near 21 eV was also found.

Tables A6-4 and A6-5 list the room-temperature values of $\varepsilon=\varepsilon_{1}+\mathrm{i} \varepsilon_{2}, n^{*}=n+\mathrm{i} k, \alpha$, and R for $6 \mathrm{H}-\mathrm{SiC}$ for $E \perp c$ and $E \| c$, respectively. A set of the optical constants for $E \leq 0.12 \mathrm{eV}$ for $E \perp c(E \leq 0.22 \mathrm{eV}$ for $E \| c$) were calculated using the reststrahlen parameters in Ref. [18]. [Note that in Table III of Ref. [18], the values of Γ_{i} / ω_{i} (not $\left.\Gamma_{i}\right)$ were listed.] The $k(\alpha)$ values in the region $0.14 \leq E \leq 2.3 \mathrm{eV}(0.24 \leq E \leq 2.4 \mathrm{eV})$ for $\boldsymbol{E} \perp c(E \| c)$ were taken from Ellis and Moss [26] $\left(n=1.11 \times 10^{17} \mathrm{~cm}^{-3}\right)$. Some optical constants for $0.14 \leq E \leq 2.3 \mathrm{eV}$ for $E \perp c$ were taken from Refs. [18] and [29], while those for $0.24 \leq E \leq 2.4 \mathrm{eV}$ for $E \| c$ were taken from Refs. [15] and [18]. A complete set of the optical constants in the region $2.5 \leq E \leq 9.5 \mathrm{eV}$ for $E \perp c$ were taken from Logothetidis and Petalas [29], and those above 2.5 eV for $E \| c$ were taken from Ref. [15]. The optical constants above 10.2 eV for $E \perp c$ were taken from Windt et al. [30].

The $\left(\varepsilon_{1}, \varepsilon_{2}\right),(n, k), \alpha$, and R values in Tables A6-4 and A6-5 are graphed in Figs. A6-5-A6-8, respectively. The solid and dashed lines represent the data for $E \perp c$ and Ellc, respectively.

REFERENCES

1. P. Käckell, B. Wenzien, and F. Bechstedt, Phys. Rev. B 50, 10761 (1994).
2. C. H. Park, B.-H. Cheng, K.-H. Lee, and K. J. Chang, Phys. Rev. B 49, 4485 (1994).
3. B. Wenzien, P. Käckell, F. Bechstedt, and G. Gappellini, Phys. Rev. B 52, 10897 (1995).
4. Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a (Springer, Berlin, 1982).
5. W. J. Choyke, D. R. Hamilton, and L. Patrick, Phys. Rev. 133, A1163 (1964).
6. L. Patrick, D. R. Hamilton, and W. J. Choyke, Phys. Rev. 143, 526 (1966).
7. W. R. L. Lambrecht, B. Segall, M. Yoganathan, W. Suttrop, R. P. Devaty, W. J. Choyke, J. A. Edmond, J. A. Powell, and M. Alouani, Phys. Rev. B 50, 10722 (1994).
8. J. A. Powell, J. Opt. Soc. Am. 62, 341 (1972).
9. P. T. B. Shaffer, Appl. Opt. 10, 1034 (1971).
10. E. Biedermann, Solid State Commun. 3, 343 (1965).
11. Yu. A. Makhalov and E. N. Mokhov, Sov. Phys. Solid State 18, 1451 (1976).
12. O. Brafman and I. T. Steinberger, Phys. Rev. 143, 501 (1966).
13. S. G. Sridhara, R. P. Devaty, and W. J. Choyke, J. Appl. Phys. 84, 2963 (1988).
14. S. Zollner and J. N. Hilifker, Phys. Status Solidi A 166, R9 (1998).
15. S. Ninomiya and S. Adachi, Jpn. J. Appl. Phys. 33, 2479 (1994).
16. A. N. Pikhtin, V. T. Prokopenko, V. S. Rondarev, and A. D. Yas'kov, Opt. Spectrosc. 43, 420 (1977).
17. W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).
18. F. Engelbrecht and R. Helbig, Phys. Rev. B 48, 15698 (1993).
19. W. J. Choyke and L. Patrick, J. Opt. Soc. Am. 58, 377 (1968).
20. V. B. Bogdanov, A. N. Pikhtin, V. F. Tsvetkov, and A. D. Yas'kov, Opt. Spectrosc. 52, 644 (1982).
21. H. R. Philipp, Phys. Rev. 111, 440 (1958).
22. R. Groth and E. Kauer, Phys. Status Solidi 1, 445 (1961).
23. W. J. Choyke and L. Patrick, Phys. Rev. 127, 1868 (1962).
24. W. J. Choyke and L. Patrick, Phys. Rev. 172, 769 (1968).
25. V. V. Makarov, Sov. Phys.-Semicond. 6, 1556 (1973).
26. B. Ellis and T. S. Moss, Proc. Roy. Soc. A 299, 393 (1967).
27. H. R. Philipp and E. A. Taft, in Silicon Carbide-A High Temperature Semiconductor, edited by J. R. O'Connor and J. Smiltens (Pergamon, Oxford, 1960), p. 366.
28. B. E. Wheeler, Solid State Commun. 4, 173 (1966).
29. S. Logothetidis and J. Petalas, J. Appl. Phys. 80, 1768 (1996).
30. D. L. Windt, W. C. Cash, Jr., M. Scott, P. Arendt, B. Newnam, R. F. Fisher, A. B. Swartzlander, P. Z. Takacs, and J. M. Pinneo, Appl. Opt. 27, 279 (1988).

Figure A6-5 $\varepsilon_{1}(E)$ and $\varepsilon_{2}(E)$ spectra for $6 \mathrm{H}-\mathrm{SiC}$ at 300 K .

Figure A6-6 $n(E)$ and $k(E)$ spectra for $6 \mathrm{H}-\mathrm{SiC}$ at 300 K .

Figure A6-7 $\alpha(E)$ spectra for $6 \mathrm{H}-\mathrm{SiC}$ at 300 K .

Figure A6-8 $R(E)$ spectra for $6 \mathrm{H}-\mathrm{SiC}$ at 300 K .

Table A6-4 Optical constants of 6H-SiC for $\boldsymbol{E} \perp \mathrm{c}$ at 300 K .

eV	ε_{1}	ε_{2}	n	k	$\alpha\left(\mathrm{~cm}^{-1}\right)$	R
0.01	9.164	0.0021	3.027	0.00034	$3.49 \mathrm{E}-01$	0.253
0.02	9.260	0.0044	3.043	0.00073	$1.48 \mathrm{E}+00$	0.255
0.03	9.435	0.0074	3.072	0.0012	$3.68 \mathrm{E}+00$	0.259
0.04	9.715	0.012	3.117	0.0019	$7.59 \mathrm{E}+00$	0.264
0.05	10.15	0.018	3.187	0.0029	$1.47 \mathrm{E}+01$	0.273
0.06	10.87	0.031	3.296	0.0047	$2.84 \mathrm{E}+01$	0.286
0.07	12.12	0.058	3.482	0.0083	$5.87 \mathrm{E}+01$	0.307
0.08	14.78	0.138	3.844	0.018	$1.45 \mathrm{E}+02$	0.345
0.09	23.58	0.634	4.856	0.065	$5.96 \mathrm{E}+02$	0.434
0.092	28.45	1.063	5.335	0.100	$9.29 \mathrm{E}+02$	0.468
0.094	37.36	2.133	6.114	0.174	$1.66 \mathrm{E}+03$	0.517
0.096	58.68	6.236	7.671	0.406	$3.96 \mathrm{E}+03$	0.593
0.098	164.2	67.07	13.07	2.566	$2.55 \mathrm{E}+04$	0.744
0.0982	194.7	107.3	14.44	3.717	$3.70 \mathrm{E}+04$	0.771
0.0984	222.6	186.9	16.02	5.834	$5.82 \mathrm{E}+04$	0.802
0.09844	224.7	210.5	16.32	6.449	$6.44 \mathrm{E}+04$	0.809
0.09848	224.0	237.0	16.58	7.146	$7.13 \mathrm{E}+04$	0.816
0.09852	219.3	266.6	16.80	7.935	$7.93 \mathrm{E}+04$	0.823
0.09556	209.3	298.7	16.94	8.816	$8.81 \mathrm{E}+04$	0.830
0.0986	192.4	332.2	16.98	9.785	$9.78 \mathrm{E}+04$	0.838
0.09864	167.4	365.3	16.87	10.83	$1.08 \mathrm{E}+05$	0.845
0.09868	133.5	395.3	16.59	11.91	$1.19 \mathrm{E}+05$	0.853
0.09872	91.19	418.9	16.12	12.99	$1.30 \mathrm{E}+05$	0.860
0.09876	42.47	432.9	15.45	14.01	$1.40 \mathrm{E}+05$	0.868
0.0988	-9.181	435.2	14.60	14.91	$1.49 \mathrm{E}+05$	0.875
0.09884	-59.50	425.5	13.60	15.64	$1.57 \mathrm{E}+05$	0.881
0.09888	-104.6	405.2	12.53	16.17	$1.62 \mathrm{E}+05$	0.887

Table A6-4 Continued ($6 \mathrm{H}-\mathrm{SiC}, \mathrm{E} \perp \mathrm{c}$).

eV	ε_{1}	ε_{2}	n	k	$\alpha\left(\mathrm{cm}^{-1}\right)$	R
0.09892	-141.8	377.2	11.43	16.50	$1.66 \mathrm{E}+05$	0.893
0.09896	-170.2	344.9	10.36	16.66	$1.67 \mathrm{E}+05$	0.898
0.099	-190.0	311.3	9.347	16.65	$1.67 \mathrm{E}+05$	0.903
0.09904	-202.4	278.5	8.423	16.53	$1.66 \mathrm{E}+05$	0.907
0.09908	-208.9	247.9	7.592	16.33	$1.64 \mathrm{E}+05$	0.911
0.0992	-206.5	173.8	5.631	15.43	$1.55 \mathrm{E}+05$	0.920
0.0994	-176.9	100.8	3.654	13.79	$1.39 \mathrm{E}+05$	0.931
0.0996	-147.0	63.62	2.567	12.39	$1.25 \mathrm{E}+05$	0.938
0.0998	-123.3	43.21	1.917	11.27	$1.14 \mathrm{E}+05$	0.943
0.1	-105.2	31.06	1.498	10.37	$1.05 \mathrm{E}+05$	0.947
0.101	-57.77	9.818	0.644	7.628	$7.81 \mathrm{E}+04$	0.958
0.105	-16.61	1.269	0.156	4.078	$4.34 \mathrm{E}+04$	0.965
0.11	-6.173	0.390	0.078	2.486	$2.77 \mathrm{E}+04$	0.957
0.12	-0.060	0.108	0.178	0.303	$3.69 \mathrm{E}+03$	0.518
0.14	3.231	0.177	1.798	0.049	$7.00 \mathrm{E}+02$	0.082
0.16	4.344	0.098	2.084	0.023	$3.80 \mathrm{E}+02$	0.124
0.18	4.893	0.058	2.212	0.013	$2.40 \mathrm{E}+02$	0.142
0.2	5.214	0.036	2.283	0.0079	$1.60 \mathrm{E}+02$	0.153
0.22	5.422	0.023	2.328	0.0049	$1.10 \mathrm{E}+02$	0.159
0.24	5.565	0.016	2.359	0.0035	$8.40 \mathrm{E}+01$	0.164
0.26	5.670	0.013	2.381	0.0027	$7.10 \mathrm{E}+01$	0.167
0.28	5.749	0.011	2.398	0.0022	$6.30 \mathrm{E}+01$	0.169
0.3	5.810	0.0092	2.410	0.0019	$5.80 \mathrm{E}+01$	0.171
0.32	5.858	0.0076	2.420	0.0016	$5.10 \mathrm{E}+01$	0.172
0.34	5.897	0.0065	2.428	0.0013	$4.64 \mathrm{E}+01$	0.174
0.36	5.929	0.0056	2.435	0.0012	$4.20 \mathrm{E}+01$	0.175
0.38	5.955	0.0048	2.440	0.0010	$3.75 \mathrm{E}+01$	0.175
0.4	5.977	0.0041	2.445	$8.43 \mathrm{E}-04$	$3.42 \mathrm{E}+01$	0.176
0.42	5.996	0.0036	2.449	$7.28 \mathrm{E}-04$	$3.10 \mathrm{E}+01$	0.176
0.44	6.013	0.0031	2.452	$6.28 \mathrm{E}-04$	$2.80 \mathrm{E}+01$	0.177
0.46	6.027	0.0027	2.455	$5.40 \mathrm{E}-04$	$2.52 \mathrm{E}+01$	0.177
0.48	6.039	0.0023	2.457	$4.69 \mathrm{E}-04$	$2.28 \mathrm{E}+01$	0.178
0.5	6.050	0.0019	2.460	$3.95 \mathrm{E}-04$	$2.00 \mathrm{E}+01$	0.178
0.7	6.673	0.00049	2.583	$9.44 \mathrm{E}-05$	$6.70 \mathrm{E}+00$	0.195
0.9	6.706	0.00016	2.590	$3.11 \mathrm{E}-05$	$2.84 \mathrm{E}+00$	0.196
1.1	6.747	$7.45 \mathrm{E}-05$	2.598	$1.43 \mathrm{E}-05$	$1.60 \mathrm{E}+00$	0.197
1.3	6.798	$5.58 \mathrm{E}-05$	2.607	$1.07 \mathrm{E}-05$	$1.41 \mathrm{E}+00$	0.199
1.5	6.859	$5.99 \mathrm{E}-05$	2.619	$1.14 \mathrm{E}-05$	$1.74 \mathrm{E}+00$	0.200
1.7	6.930	$6.96 \mathrm{E}-05$	2.632	$1.32 \mathrm{E}-05$	$2.28 \mathrm{E}+00$	0.202
1.9	7.012	$7.34 \mathrm{E}-05$	2.648	$1.39 \mathrm{E}-05$	$2.67 \mathrm{E}+00$	0.204
2.1	7.105	$7.39 \mathrm{E}-05$	2.666	$1.39 \mathrm{E}-05$	$2.95 \mathrm{E}+00$	0.206
2.3	7.212	$7.28 \mathrm{E}-05$	2.685	$1.36 \mathrm{E}-05$	$3.16 \mathrm{E}+00$	0.209
2.5	7.332		2.708			0.212
2.7	7.468		2.733			0.215
2.9	7.622	$6.20 \mathrm{E}-05$	2.761	$1.12 \mathrm{E}-05$	$3.30 \mathrm{E}+00$	0.219
3	7.706	$2.65 \mathrm{E}-04$	2.776	$4.77 \mathrm{E}-05$	$1.45 \mathrm{E}+01$	0.221
3.1	7.795	0.0015	2.792	$2.74 \mathrm{E}-04$	$8.60 \mathrm{E}+01$	0.223
3.2	7.889	0.0045	2.809	$8.01 \mathrm{E}-04$	$2.60 \mathrm{E}+02$	0.226
3.3	7.989	0.0090	2.827	0.0016	$5.30 \mathrm{E}+02$	0.228
3.4	8.096	0.014	2.845	0.0024	$8.40 \mathrm{E}+02$	0.230

Table A6-4 Continued ($6 \mathrm{H}-\mathrm{SiC}, \mathrm{E} \perp \mathrm{c}$).

eV	ε_{1}	ε_{2}	n	k	$\alpha\left(\mathrm{cm}^{-1}\right)$	R
3.5	8.209	0.019	2.865	0.0034	$1.20 \mathrm{E}+03$	0.233
3.6	8.330	0.025	2.886	0.0044	$1.60 \mathrm{E}+03$	0.236
3.7	8.458	0.032	2.908	0.0055	$2.07 \mathrm{E}+03$	0.238
3.8	8.595	0.041	2.932	0.0070	$2.70 \mathrm{E}+03$	0.241
3.9	8.730	0.052	2.955	0.0089	$3.50 \mathrm{E}+03$	0.244
4	8.897	0.068	2.983	0.011	$4.60 \mathrm{E}+03$	0.248
4.1	9.064	0.088	3.011	0.015	$6.10 \mathrm{E}+03$	0.251
4.2	9.242	0.120	3.040	0.020	$8.40 \mathrm{E}+03$	0.255
4.3	9.433	0.155	3.071	0.025	$1.10 \mathrm{E}+04$	0.259
4.4	9.639	0.195	3.105	0.031	$1.40 \mathrm{E}+04$	0.263
4.5	9.925	0.535	3.140	0.085	$3.87 \mathrm{E}+04$	0.268
4.6	10.16	0.599	3.189	0.094	$4.38 \mathrm{E}+04$	0.273
4.7	10.31	0.727	3.213	0.113	$5.39 \mathrm{E}+04$	0.276
4.8	10.62	0.941	3.262	0.144	$7.02 \mathrm{E}+04$	0.283
4.9	10.91	1.070	3.307	0.162	$8.03 \mathrm{E}+04$	0.288
5	11.18	1.305	3.349	0.195	$9.88 \mathrm{E}+04$	0.293
5.1	11.49	1.540	3.397	0.227	$1.17 \mathrm{E}+05$	0.299
5.2	11.81	1.882	3.447	0.273	$1.44 \mathrm{E}+05$	0.305
5.3	12.21	2.310	3.510	0.329	$1.77 \mathrm{E}+05$	0.313
5.4	12.64	2.781	3.577	0.389	$2.13 \mathrm{E}+05$	0.322
5.5	12.94	3.422	3.628	0.472	$2.63 \mathrm{E}+05$	0.329
5.6	13.24	4.278	3.685	0.581	$3.30 \mathrm{E}+05$	0.339
5.7	13.60	5.134	3.751	0.684	$3.95 \mathrm{E}+05$	0.349
5.8	13.88	6.203	3.814	0.813	$4.78 \mathrm{E}+05$	0.360
5.9	14.11	7.412	3.876	0.956	$5.72 \mathrm{E}+05$	0.372
6	14.12	8.770	3.920	1.119	$6.80 \mathrm{E}+05$	0.384
6.1	13.93	10.16	3.947	1.287	$7.96 \mathrm{E}+05$	0.396
6.2	13.52	11.98	3.974	1.507	$9.47 \mathrm{E}+05$	0.412
6.3	13.10	13.80	4.008	1.721	$1.10 \mathrm{E}+06$	0.428
6.4	12.09	15.38	3.978	1.933	$1.25 \mathrm{E}+06$	0.442
6.5	10.70	, 16.86	3.915	2.153	$1.42 \mathrm{E}+06$	0.456
6.6	8.834	17.97	3.798	2.365	$1.58 \mathrm{E}+06$	0.469
6.7	6.759	18.18	3.616	2.514	$1.71 \mathrm{E}+06$	0.476
6.8	5.155	17.86	3.446	2.592	$1.79 \mathrm{E}+06$	0.480
6.9	3.850	18.02	3.338	2.700	$1.89 \mathrm{E}+06$	0.489
7	2.567	18.07	3.227	2.801	$1.99 \mathrm{E}+06$	0.498
7.1	0.802	17.56	3.032	2.896	$2.08 \mathrm{E}+06$	0.508
7.2	-0.684	16.86	2.845	2.963	$2.16 \mathrm{E}+06$	0.517
7.3	-1.765	16.17	2.693	3.003	$2.22 \mathrm{E}+06$	0.525
7.4	-2.727	15.36	2.537	3.027	$2.27 \mathrm{E}+06$	0.532
7.5	-3.551	14.33	2.368	3.026	$2.30 \mathrm{E}+06$	0.538
7.6	-4.225	13.05	2.178	2.995	$2.31 \mathrm{E}+06$	0.543
7.7	-4.706	11.82	2.002	2.952	$2.30 \mathrm{E}+06$	0.548
7.8	-4.888	10.93	1.882	2.904	$2.30 \mathrm{E}+06$	0.550
7.9	-5.155	10.12	1.761	2.873	$2.30 \mathrm{E}+06$	0.556
8	-5.091	9.176	1.644	2.792	$2.26 \mathrm{E}+06$	0.555
8.1	-4.813	8.321	1.549	2.686	$2.21 \mathrm{E}+06$	0.548
8.2	-4.599	7.540	1.455	2.591	$2.15 \mathrm{E}+06$	0.543
8.3	-4.278	7.102	1.416	2.507	$2.11 \mathrm{E}+06$	0.533
8.4	-3.850	6.781	1.405	2.413	$2.06 \mathrm{E}+06$	0.516

Table A6-4 Continued ($6 \mathrm{H}-\mathrm{SiC}, \mathrm{E} \perp \mathrm{c}$).

eV	ε_{1}	ε_{2}	n	k	$\alpha\left(\mathrm{cm}^{-1}\right)$	R
8.5	-3.561	6.578	1.400	2.350	$2.02 \mathrm{E}+06$	0.504
8.6	-3.262	6.417	1.403	2.287	$1.99 \mathrm{E}+06$	0.490
8.7	-3.187	6.225	1.379	2.256	$1.99 \mathrm{E}+06$	0.487
8.8	-2.995	6.053	1.371	2.208	$1.97 \mathrm{E}+06$	0.478
8.9	-2.941	5.989	1.366	2.192	$1.98 \mathrm{E}+06$	0.475
9	-2.888	5.936	1.363	2.178	$1.99 \mathrm{E}+06$	0.472
9.1	-2.781	5.882	1.365	2.155	$1.99 \mathrm{E}+06$	0.467
9.2	-2.888	5.979	1.370	2.183	$2.04 \mathrm{E}+06$	0.472
9.3	-2.995	6.011	1.364	2.203	$2.08 \mathrm{E}+06$	0.478
9.4	-3.027	6.043	1.366	2.212	$2.11 \mathrm{E}+06$	0.479
9.5	-3.316	6.171	1.358	2.272	$2.19 \mathrm{E}+06$	0.493
10.2	-2.822	5.292	1.26	2.10	$2.17 \mathrm{E}+06$	0.470
10.3	-2.673	4.978	1.22	2.04	$2.14 \mathrm{E}+06$	0.463
10.8	-2.180	3.372	0.958	1.76	$1.92 \mathrm{E}+06$	0.447
11.4	-1.907	3.292	0.974	1.69	$1.96 \mathrm{E}+06$	0.423
11.6	-1.890	2.777	0.857	1.62	$1.91 \mathrm{E}+06$	0.436
11.8	-1.867	2.898	0.889	1.63	$1.95 \mathrm{E}+06$	0.429
12.1	-1.723	3.300	1.00	1.65	$2.02 \mathrm{E}+06$	0.405
12.5	-1.418	2.534	0.862	1.47	$1.87 \mathrm{E}+06$	0.387
13.3	-1.200	2.006	0.754	1.33	$1.79 \mathrm{E}+06$	0.378
13.5	-1.254	2.162	0.789	1.37	$1.87 \mathrm{E}+06$	0.378
14.1	-1.219	2.222	0.811	1.37	$1.96 \mathrm{E}+06$	0.371
14.9	-1.096	1.826	0.719	1.27	$1.91 \mathrm{E}+06$	0.370
16.7	-0.779	1.244	0.587	1.06	$1.79 \mathrm{E}+06$	0.355
16.8	-0.793	1.269	0.593	1.07	$1.83 \mathrm{E}+06$	0.356
17.3	-0.872	1.225	0.562	1.09	$1.91 \mathrm{E}+06$	0.380
18.5	-0.593	0.935	0.507	0.922	$1.73 \mathrm{E}+06$	0.350
20.1	-0.264	0.576	0.430	0.670	$1.37 \mathrm{E}+06$	0.310
21.2	-0.110	0.417	0.401	0.520	$1.12 \mathrm{E}+06$	0.282
23	0.159	0.279	0.490	0.285	$6.64 \mathrm{E}+05$	0.148
25.3	0.330	0.234	0.606	0.193	$4.95 \mathrm{E}+05$	0.074
26.9	0.424	0.173	0.664	0.130	$3.55 \mathrm{E}+05$	0.047
27.7	0.458	0.171	0.688	0.124	$3.48 \mathrm{E}+05$	0.039
30.5	0.556	0.166	0.754	0.110	$3.41 \mathrm{E}+05$	0.024
32.7	0.588	0.182	0.776	0.117	$3.88 \mathrm{E}+05$	0.020
34.7	0.627	0.145	0.797	0.0909	$3.20 \mathrm{E}+05$	0.015
37.9	0.673	0.110	0.823	0.0668	$2.57 \mathrm{E}+05$	0.011
40.8	0.727	0.087	0.854	0.0511	$2.11 \mathrm{E}+05$	6.96E-03
48.4	0.786	0.060	0.887	0.0339	$1.66 \mathrm{E}+05$	$3.91 \mathrm{E}-03$
51	0.796	0.056	0.893	0.0315	$1.63 \mathrm{E}+05$	$3.47 \mathrm{E}-03$
72.3	0.911	0.021	0.9547	0.0110	$8.06 \mathrm{E}+04$	$5.69 \mathrm{E}-04$
91.5	0.959	0.008	0.9791	0.0043	$4.02 \mathrm{E}+04$	$1.16 \mathrm{E}-04$
108.7	0.973	0.036	0.9866	0.0181	$2.00 \mathrm{E}+05$	$1.28 \mathrm{E}-04$
183.4	0.970	0.022	0.9851	0.0114	$2.12 \mathrm{E}+05$	$8.93 \mathrm{E}-05$
277.3	0.988	0.0069	0.99387	$3.46 \mathrm{E}-03$	$9.73 \mathrm{E}+04$	$1.25 \mathrm{E}-05$
392.2	0.992	0.0035	0.99579	$1.74 \mathrm{E}-03$	$6.92 \mathrm{E}+04$	5.21E-06
525.2	0.995	0.0013	0.99733	$6.58 \mathrm{E}-04$	$3.50 \mathrm{E}+04$	$1.90 \mathrm{E}-06$

Table A6-5 Optical constants of 6H-SiC for $\boldsymbol{E} \| \mathrm{c}$ at 300 K .

eV	ε_{1}	ε_{2}	n	k	$\alpha\left(\mathrm{cm}^{-1}\right)$	R
0.01	9.755	$2.30 \mathrm{E}-03$	3.123	3.68E-04	$3.73 \mathrm{E}-01$	0.265
0.02	9.863	$4.90 \mathrm{E}-03$	3.140	$7.80 \mathrm{E}-04$	$1.58 \mathrm{E}+00$	0.267
0.03	10.06	$8.23 \mathrm{E}-03$	3.171	$1.30 \mathrm{E}-03$	$3.95 \mathrm{E}+00$	0.271
0.04	10.37	0.013	3.221	$2.02 \mathrm{E}-03$	$8.18 \mathrm{E}+00$	0.277
0.05	10.87	0.021	3.297	$3.13 \mathrm{E}-03$	$1.59 \mathrm{E}+01$	0.286
0.06	11.68	0.035	3.418	5.15E-03	$3.13 \mathrm{E}+01$	0.300
0.062	11.91	0.046	3.451	$6.71 \mathrm{E}-03$	$4.22 \mathrm{E}+01$	0.303
0.0622	11.94	0.052	3.455	$7.59 \mathrm{E}-03$	$4.78 \mathrm{E}+01$	0.304
0.0624	11.95	0.060	3.457	8.75E-03	$5.53 \mathrm{E}+01$	0.304
0.0626	11.97	0.060	3.459	$8.69 \mathrm{E}-03$	$5.51 \mathrm{E}+01$	0.304
0.0628	11.99	0.055	3.462	7.93E-03	$5.05 \mathrm{E}+01$	0.305
0.063	12.01	0.052	3.466	$7.49 \mathrm{E}-03$	$4.78 \mathrm{E}+01$	0.305
0.0632	12.04	0.049	3.469	$7.01 \mathrm{E}-03$	$4.49 \mathrm{E}+01$	0.305
0.0634	12.06	0.047	3.473	$6.71 \mathrm{E}-03$	$4.31 \mathrm{E}+01$	0.306
0.07	13.13	0.067	3.624	$9.19 \mathrm{E}-03$	$6.52 \mathrm{E}+01$	0.322
0.08	16.30	0.166	4.037	0.021	$1.67 \mathrm{E}+02$	0.364
0.09	27.85	0.886	5.278	0.084	$7.66 \mathrm{E}+02$	0.464
0.092	35.03	1.620	5.920	0.137	$1.28 \mathrm{E}+03$	0.506
0.094	49.90	3.849	7.069	0.272	$2.59 \mathrm{E}+03$	0.566
0.096	98.01	18.01	9.941	0.906	$8.82 \mathrm{E}+03$	0.670
0.0964	123.3	30.28	11.187	1.353	$1.32 \mathrm{E}+04$	0.702
0.0968	165.2	60.11	13.056	2.302	$2.26 \mathrm{E}+04$	0.743
0.097	195.8	93.15	14.364	3.242	$3.19 \mathrm{E}+04$	0.767
0.0972	230.7	157.1	15.965	4.921	$4.85 \mathrm{E}+04$	0.795
0.0974	240.0	284.0	17.490	8.120	$8.02 \mathrm{E}+04$	0.828
0.0975	201.2	374.2	17.692	10.58	$1.05 \mathrm{E}+05$	0.847
0.0976	105.6	453.3	16.898	13.41	$1.33 \mathrm{E}+05$	0.865
0.0977	-32.37	471.3	14.833	15.89	$1.57 \mathrm{E}+05$	0.882
0.0978	-151.9	413.3	12.008	17.21	$1.71 \mathrm{E}+05$	0.897
0.098	-230.0	240.3	7.163	16.77	$1.67 \mathrm{E}+05$	0.918
0.0982	-206.6	134.5	4.469	15.05	$1.50 \mathrm{E}+05$	0.930
0.0984	-171.9	81.76	3.037	13.46	$1.34 \mathrm{E}+05$	0.938
0.0988	-121.3	37.86	1.699	11.14	$1.12 \mathrm{E}+05$	0.948
0.0992	-91.19	21.41	1.113	9.614	$9.67 \mathrm{E}+04$	0.954
0.0996	-72.09	13.68	0.802	8.528	$8.61 \mathrm{E}+04$	0.958
0.1	-59.05	9.465	0.614	7.709	$7.82 \mathrm{E}+04$	0.960
0.102	-28.90	2.778	0.258	5.382	$5.57 \mathrm{E}+04$	0.966
0.104	-17.53	1.304	0.156	4.190	$4.42 \mathrm{E}+04$	0.967
0.106	-11.58	0.757	0.111	3.405	$3.66 \mathrm{E}+04$	0.965
0.108	-7.880	0.510	0.091	2.809	$3.08 \mathrm{E}+04$	0.960
0.1086	-6.996	0.487	0.092	2.647	$2.91 \mathrm{E}+04$	0.955
0.1088	-6.710	0.494	0.095	2.592	$2.86 \mathrm{E}+04$	0.952
0.109	-6.427	0.522	0.103	2.537	$2.80 \mathrm{E}+04$	0.946
0.1092	-6.155	0.591	0.119	2.484	$2.75 \mathrm{E}+04$	0.936
0.1094	-5.954	0.725	0.148	2.445	$2.71 \mathrm{E}+04$	0.919
0.1095	-5.918	0.787	0.161	2.438	$2.71 \mathrm{E}+04$	0.912
0.1096	-5.913	0.798	0.164	2.437	$2.71 \mathrm{E}+04$	0.910
0.1097	-5.888	0.755	0.155	2.432	$2.70 \mathrm{E}+04$	0.914
0.1098	-5.821	0.699	0.145	2.417	$2.69 \mathrm{E}+04$	0.919
0.11	-5.636	0.645	0.136	2.378	$2.65 \mathrm{E}+04$	0.922

Table A6-5 Continued (6 H -SiC, $\mathrm{E} / / \mathrm{c}$).

eV	ε_{1}	ε_{2}	n	k	$\alpha\left(\mathrm{cm}^{-1}\right)$	R
0.1102	-5.507	0.607	0.129	2.350	$2.63 \mathrm{E}+04$	0.924
0.1104	-5.353	0.501	0.108	2.316	$2.59 \mathrm{E}+04$	0.934
0.1106	-5.142	0.418	0.092	2.270	$2.54 \mathrm{E}+04$	0.942
0.1108	-4.928	0.369	0.083	2.221	$2.50 \mathrm{E}+04$	0.946
0.111	-4.724	0.339	0.078	2.175	$2.45 \mathrm{E}+04$	0.947
0.1112	-4.530	0.318	0.075	2.130	$2.40 \mathrm{E}+04$	0.948
0.112	-3.838	0.267	0.068	1.960	$2.23 \mathrm{E}+04$	0.945
0.114	-2.459	0.199	0.063	1.569	$1.81 \mathrm{E}+04$	0.930
0.116	-1.399	0.156	0.066	1.185	$1.39 \mathrm{E}+04$	0.896
0.118	-0.553	0.126	0.084	0.749	$8.96 \mathrm{E}+03$	0.805
0.12	0.138	0.104	0.395	0.132	$1.61 \mathrm{E}+03$	0.195
0.14	3.424	$2.84 \mathrm{E}-03$	1.850	7.66E-04	$1.09 \mathrm{E}+01$	0.089
0.16	4.570	$1.27 \mathrm{E}-03$	2.138	$2.97 \mathrm{E}-04$	$4.82 \mathrm{E}+00$	0.131
0.18	5.141	$7.06 \mathrm{E}-03$	2.267	$1.56 \mathrm{E}-03$	$2.84 \mathrm{E}+01$	0.150
0.2	5.478	$4.42 \mathrm{E}-03$	2.340	$9.43 \mathrm{E}-04$	$1.91 \mathrm{E}+01$	0.161
0.22	5.697	$3.95 \mathrm{E}-03$	2.387	$8.27 \mathrm{E}-04$	$1.85 \mathrm{E}+01$	0.168
0.24	5.847	$3.48 \mathrm{E}-03$	2.418	$7.19 \mathrm{E}-04$	$1.75 \mathrm{E}+01$	0.172
0.26	5.959	$2.61 \mathrm{E}-03$	2.441	5.35E-04	$1.41 \mathrm{E}+01$	0.175
0.28	6.042	$1.44 \mathrm{E}-03$	2.458	$2.92 \mathrm{E}-04$	$8.30 \mathrm{E}+00$	0.178
0.282	6.055	$2.58 \mathrm{E}-03$	2.461	5.25E-04	$1.50 \mathrm{E}+01$	0.178
0.3	6.107	$1.48 \mathrm{E}-03$	2.471	$2.99 \mathrm{E}-04$	$9.10 \mathrm{E}+00$	0.180
0.32	6.158	$8.72 \mathrm{E}-04$	2.482	$1.76 \mathrm{E}-04$	$5.70 \mathrm{E}+00$	0.181
0.34	6.199	$6.93 \mathrm{E}-04$	2.490	$1.39 \mathrm{E}-04$	$4.80 \mathrm{E}+00$	0.182
0.36	6.233	$5.47 \mathrm{E}-04$	2.497	$1.10 \mathrm{E}-04$	$4.00 \mathrm{E}+00$	0.183
0.38	6.261	$4.42 \mathrm{E}-04$	2.502	$8.83 \mathrm{E}-05$	$3.40 \mathrm{E}+00$	0.184
0.4	6.285	$3.46 \mathrm{E}-04$	2.507	$6.90 \mathrm{E}-05$	$2.80 \mathrm{E}+00$	0.185
0.42	6.305	$2.89 \mathrm{E}-04$	2.511	$5.75 \mathrm{E}-05$	$2.45 \mathrm{E}+00$	0.185
0.44	6.322	$2.40 \mathrm{E}-04$	2.514	$4.77 \mathrm{E}-05$	$2.13 \mathrm{E}+00$	0.186
0.46	6.337	$1.98 \mathrm{E}-04$	2.517	$3.92 \mathrm{E}-05$	$1.83 \mathrm{E}+00$	0.186
0.48	6.350	$1.64 \mathrm{E}-04$	2.520	$3.25 \mathrm{E}-05$	$1.58 \mathrm{E}+00$	0.186
0.5	6.362	$1.39 \mathrm{E}-04$	2.522	$2.76 \mathrm{E}-05$	$1.40 \mathrm{E}+00$	0.187
0.7	6.530	$6.48 \mathrm{E}-05$	2.555	$1.27 \mathrm{E}-05$	$9.00 \mathrm{E}-01$	0.191
0.9	6.670	$7.87 \mathrm{E}-05$	2.583	$1.52 \mathrm{E}-05$	$1.39 \mathrm{E}+00$	0.195
1.1	6.790	$1.08 \mathrm{E}-04$	2.606	$2.07 \mathrm{E}-05$	$2.31 \mathrm{E}+00$	0.198
1.3	6.89	$1.95 \mathrm{E}-03$	2.625	$3.72 \mathrm{E}-04$	$4.90 \mathrm{E}+01$	0.201
1.5	6.98	$7.68 \mathrm{E}-04$	2.643	$1.45 \mathrm{E}-04$	$2.21 \mathrm{E}+01$	0.203
1.7	7.11	$2.60 \mathrm{E}-04$	2.666	$4.87 \mathrm{E}-05$	$8.40 \mathrm{E}+00$	0.207
1.8	7.14	$1.67 \mathrm{E}-04$	2.672	$3.12 \mathrm{E}-05$	$5.70 \mathrm{E}+00$	0.207
1.9	7.21	$1.37 \mathrm{E}-04$	2.686	$2.54 \mathrm{E}-05$	$4.90 \mathrm{E}+00$	0.209
2	7.20	$1.16 \mathrm{E}-04$	2.684	$2.17 \mathrm{E}-05$	$4.40 \mathrm{E}+00$	0.209
2.1	7.27	$9.88 \mathrm{E}-05$	2.697	$1.83 \mathrm{E}-05$	$3.90 \mathrm{E}+00$	0.211
2.2	7.34	$8.82 \mathrm{E}-05$	2.710	$1.63 \mathrm{E}-05$	$3.63 \mathrm{E}+00$	0.212
2.3	7.41	$8.17 \mathrm{E}-05$	2.723	$1.50 \mathrm{E}-05$	$3.50 \mathrm{E}+00$	0.214
2.4	7.47	$8.16 \mathrm{E}-05$	2.734	$1.49 \mathrm{E}-05$	$3.63 \mathrm{E}+00$	0.216
2.5	7.54		2.747			0.217
2.6	7.64		2.763			0.220
2.7	7.74		2.782			0.222
2.8	7.83		2.798			0.224
2.9	7.94		2.817			0.227
3	8.06		2.840			0.230

Table A6-5 Continued ($6 \mathrm{H}-\mathrm{SiC}, \mathrm{E} \| \mathrm{c}$).

eV	ε_{1}	ε_{2}	n	k	$\alpha\left(\mathrm{~cm}^{-1}\right)$	R
3.1	8.18		2.860			0.232
3.2	8.32	0.3	2.884	0.052	$1.69 \mathrm{E}+04$	0.235
3.3	8.46	0.4	2.909	0.069	$2.30 \mathrm{E}+04$	0.239
3.4	8.61	0.52	2.936	0.089	$3.05 \mathrm{E}+04$	0.242
3.5	8.76	0.66	2.962	0.111	$3.95 \mathrm{E}+04$	0.246
3.6	8.92	0.79	2.990	0.132	$4.82 \mathrm{E}+04$	0.250
3.7	9.09	0.95	3.019	0.157	$5.90 \mathrm{E}+04$	0.253
3.8	9.31	1.09	3.056	0.178	$6.87 \mathrm{E}+04$	0.258
3.9	9.50	1.23	3.888	0.199	$7.87 \mathrm{E}+04$	0.263
4	9.74	1.41	3.130	0.225	$9.14 \mathrm{E}+04$	0.268
4.1	10.00	1.60	3.172	0.252	$1.05 \mathrm{E}+05$	0.274
4.2	10.23	1.79	3.210	0.279	$1.19 \mathrm{E}+05$	0.279
4.3	10.49	2.10	3.255	0.323	$1.41 \mathrm{E}+05$	0.285
4.4	10.74	2.36	3.296	0.358	$1.60 \mathrm{E}+05$	0.291
4.5	10.99	2.57	3.337	0.385	$1.76 \mathrm{E}+05$	0.296
4.6	11.11	3.00	3.362	0.446	$2.08 \mathrm{E}+05$	0.301
4.7	11.17	3.38	3.380	0.500	$2.38 \mathrm{E}+05$	0.304
4.8	1.08	3.81	3.376	0.564	$2.75 \mathrm{E}+05$	0.306
4.9	11.15	4.26	3.397	0.627	$3.11 \mathrm{E}+05$	0.311
5	10.95	4.65	3.380	0.688	$3.49 \mathrm{E}+05$	0.312
5.1	11.09	5.10	3.413	0.747	$3.86 \mathrm{E}+05$	0.319
5.2	11.13	5.42	3.428	0.790	$4.17 \mathrm{E}+05$	0.322
5.3	10.91	5.76	3.409	0.845	$4.54 \mathrm{E}+05$	0.323

