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ABSTRACT 

80 

To study factors involved in regulation of transcription of coronaviruses, we con
structed defective interfering (DI) RNAs containing sg RNA promoters at multiple positions. 
Analysis of the amounts of sg DI RNA produced by these DIs resulted in the following 
observations: (i) a downstream promoter downregulates an upstream promoter; (ii) an 
upstream promoter has little or no effect on the activity of a downstream promoter. Our data 
suggest that attenuation of upstream promoter activities by downstream promoter sequences 
plays an important role in regulating the amounts of sg RNAs produced by coronaviruses. 
Our observations are in accordance with the models proposed by Konings et al. (8) and 
Sawicki and Sawicki (16). 

Coronaviruses produce a 3' -coterminal nested set of subgenomic (sg) mRNAs. All 
sg mRNAs contain a common leader sequence derived from the 5' end of the genome. For 
mouse hepatitis virus MHV this leader sequence is 72 nucleotides (nt) in length (20). The 
joining of the 5' leader RNA to the mRNA is believed to be a discontinuous transcription 
process (10,19), since the results of UV transcription mapping argue against RNA splicing 
(5,23). On the genome the transcription units for the mRNAs are preceded by the intergenic 
sequence (IS) (10,19). For MHV every IS contains a sequence element related to the 
consensus 5' AAUCUAAAC 3' (2,8,18). These IS elements function, on the negative 
stranded RNA template, as promoters for sg mRNA synthesis (14,22). On the negative strand 
the IS promoter elements are called intergenic promoter sequence (IPS). 

The mechanism of coronavirus sg mRNA synthesis is a subject of considerable 
debate. In earlier experiments only genome length negative strands were found (11) and it 
was believed that genomic negative strands were the exclusive templates for the synthesis 
ofsg mRNAs. To explain the synthesis ofleader containing sg mRNAs, it has been proposed 
that short leader RNA species act as primers (9,20). According to this leader-primed 
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transcription model, the leader RNAs are transcribed from the 3' end of the genome, 
translocated to the several IPSs on the negative stranded template and then extended to form 
leader containing sg RNAs. The key observation that supports the priming of the leader 
during transcription initiation is the fact that the leader RNA includes an IS that allows base 
pairing between the 3' end of the leader and the IPS (2). 

The discovery in recent years of sg negative strands (4,6,16,17) has had consequences 
for the leader primed transcription model. The sg negative strands seem to be involved 
actively in the synthesis ofsgmRNAs (3,16), although it has been argued that they are merely 
dead-end products synthesized from the sg mRNAs (6). Additional models have now been 
proposed for coronavirus transcription, in which the sg mRNAs are transcribed from sg 
negative stranded templates. 

Sethna et al. (17) speculated that sg mRNAs produced in the classic leader-primed 
fashion, are amplified from negative stranded counterparts as replicons. However, to date 
all attempts to obtain direct evidence for mRNA replication have failed. Transfecting 
synthetic mRNAs into coronavirus infected cells did not result in replication of the sg RNA 
(1,12,14). However, it could well be that transfected sg RNAs are not suitable templates for 
replication. 

Sawicki and Sawicki (16) proposed an alternative model. They suggested that sg 
negative strands are synthesized first to serve as templates for the synthesis of the corres
ponding mRNA and not vice versa. In this model transcription should be regulated on the 
level of negative strand synthesis. 

Many of the basic features of coronavirus transcription are unclear because of the 
lack of an appropriate experimental system. Recently, it has been shown that full length 
cDNA clones of defective interfering (DI) RNAs can be used to study MHV mRNA 
transcription (7,13-16,22). Inserting an IS into the genome ofa synthetic MHV DI-RNAand 
transfecting this DI-RNA into MHV infected cells gives rise to a DI derived sg RNA. To 
study transcription, we use a DI RNA vector based on a full length cDNA clone of a natural 
occuring 5.5 kb DI RNA ofMHV-A59, pMIDIC (21,22). 

Coronavirus mRNAs are, in general, synthesized in amounts that are inversely related 
to their size. Previously, we have proposed that the generation of this gradient of sg mRNA 
arizes because larger RNA molecules are more prone to premature transcription termination 
and therefore produced less abundantly than smaller RNAs (8). There are two stages in which 
transcription termination can occur. In one case transcription initiation events on downstream 
promoters on the negative strands are attenuating factors for positive strand synthesis (8). 
Alternatively, premature termination could occur during negative strand synthesis (16). This 
is based on the model in which a nested set of sg negative strands is synthesized first. In this 
case larger negative strands are produced in lower quantities because they encounter more 
transcription attenuating antipromoters on the positive strand during their synthesis then 
smaller ones. 

To test the hypothesis of attenuation we inserted wildtype (wt) as well as mutant sg 
RNA3 promoters at different positions of our DI-RNA vector (Fig. I). The mutant RNA3 
promoter is inactive due to a single point mutation. DI-RNAs containing the wt and the 
mutant promoters replicated efficiently and produced sg DI-RNAs of the expected length. 
The DI -RN A constructs containing a wt RNA3 promoter at position A or C (Fig. I), produced 
equal amounts ofsg DI-RNA. However, analysis of the sg RNA synthesis of the DI-RNA 
containing wt promoters at positions A and C showed a difference in promoter activities. 
The activity of the promoter at position A was reduced by the presence of the wt promoter 
at position C, while the activity of the promoter at position C remained the same. The 
presence of an additional wt promoter at position B, downstream of A (Fig. I), reduced the 
activity of the wt promoter at position A to an almost undetectable level. The activity of the 
promoter at position C was not affected by the presence of an additional upstream promoter. 



Regulation of Transcription of Coronaviruses 509 

pMIDSal lA IB N 

sllJ )~ 
Mlul BooRI Sail 

A B C 

Construct [] 12kb 

2 3 4 5 6 7 8 [] 075kb 
Posltton 

A + + + + rn-- 04kb 

B + + + + 

C + + + + 

Figure 1. Schematlc representatIOn of the constructs contaInIng RNA3 promoters the MluI, EcoRI and Sail 
site ofpMIDSal (postltlons A, Band C on the DI RNA) The black bars represent the subgenomlc DI RNAs 
produced by the DIs The table shows which constructs contaIn which combInatIOns of wlldtype and mutant 
RNA3 promoters (+ = wIldtype (UAAUCUAAAC), - = mutant (UAAUGUAAAC)) 

From these data we concluded that a downstream promoter attenuates the amounts of sg 
RNA generated by upstream promoter and not VIce versa Our observations are m agreement 
WIth the models of Komngs et al (8) and SawIckI and SawIckI (16) However, our data can 
not dIscnmmate between attenuation dunng pOSItive or negative strand synthesIs We also 
observed that a wt RNA3 promoter at pOSItIOn B gave nse to more sg DI-RNA then at 
pOSItions A and C Even m the presence of wt promoters at pOSItions A and C, the sg DI -RNA 
produced by the promoter at pOSItion B IS the most abundant ThIS suggests that there are 
addItional factors that regulate the accumulatIOn of sg RNAs It could be pOSSIble that the 
polymerase mitiates or termmates (dependmg on the model one prefers) transcnption more 
effiCIently at the promoter at pOSItion B Protem bmdmg domams or the RNA secondary 
structure could playa role m thIS preference for the promoter at pOSItion B ThIS could explam 
why for the coronaviruses TGEV and FIPV the smallest sg mRNA IS not the most abundant 
as the gradIent would predIct Nevertheless, our data suggest that attenuatIOn of promoter 
actIvIties by promoter sequences IS Important m regulatmg the amounts of sg mRNAs of 
coronaVIruses 
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