Skip to main content

Next-Generation Sequencing for Cancer Genomics

  • Chapter
  • First Online:
Next Generation Sequencing in Cancer Research
  • 3665 Accesses

Abstract

In the last couple of decades, availability of high-throughput genomic technologies such as microarrays and next-generation sequencing (NGS) has provided unprecedented insights into the complexity of cancer genomics. In particular, NGS with its ability to provide an unbiased view of the genome is a very useful tool in studying the cancer genome which is characterized by de novo genetic aberrations. Using NGS, gene expression signatures, copy number variations, mutations, and epigenetic changes such as methylation as well as histone modifications can be identified which could point towards novel diagnostic and/or prognostic biomarkers. Comprehensive understanding of the cancer genomics could also provide mechanistic insights into cancer susceptibility, development, and progression. This chapter provides an overview of the studies that have applied NGS technologies to further our understanding of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham K, Ge X, de Las MA, Tripathi A, Rosenberg CL. Gene expression profiles of estrogen receptor-positive and estrogen receptor-negative breast cancers are detectable in histologically normal breast epithelium. Clin Cancer Res. 2011;17(2):236–46.

    Article  PubMed  CAS  Google Scholar 

  2. Uddin S, Ahmed M, Hussain A, Abubaker J, Al-Sanea N, AbdulJabbar A, et al. Genome-wide expression analysis of Middle Eastern colorectal cancer reveals FOXM1 as a novel target for cancer therapy. Am J Pathol. 2011;178(2):537–47.

    Article  PubMed  CAS  Google Scholar 

  3. Kim HK, Choi IJ, Kim CG, Kim HS, Oshima A, Michalowski A, et al. A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS One. 2011;6(2):e16694.

    Article  PubMed  CAS  Google Scholar 

  4. Kadota M, Yang HH, Gomez B, Sato M, Clifford RJ, Meerzaman D, et al. Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One. 2010;5(2):e9201.

    Article  PubMed  Google Scholar 

  5. Bessarabova M, Kirillov E, Shi W, Bugrim A, Nikolsky Y, Nikolskaya T. Bimodal gene expression patterns in breast cancer. BMC Genomics. 2010;11 Suppl 1:S8.

    Article  PubMed  Google Scholar 

  6. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;10:1135–45.

    Article  Google Scholar 

  7. Metzker ML. Sequencing technologies – the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  PubMed  CAS  Google Scholar 

  8. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–80.

    PubMed  CAS  Google Scholar 

  9. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309(5741):1728–32.

    Article  PubMed  CAS  Google Scholar 

  10. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456(7218):53–9.

    Article  PubMed  CAS  Google Scholar 

  11. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52.

    Article  PubMed  CAS  Google Scholar 

  12. Mardis ER. Next-generation DNA, sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387–402.

    Article  PubMed  CAS  Google Scholar 

  13. Tucker T, Marra M, Friedman JM. Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet. 2009;85(2):142–54.

    Article  PubMed  CAS  Google Scholar 

  14. Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413–35.

    Article  PubMed  CAS  Google Scholar 

  15. Desai AN, Jere A. Next generation sequencing: ready for the clinics? Clin Genet. 2012;81(6):503–10.

    Article  PubMed  CAS  Google Scholar 

  16. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  Google Scholar 

  17. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabé RR, et al; International Cancer Genome Consortium. International network of cancer genome projects. Nature. 2010; 464(7291):993–998

    Google Scholar 

  18. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A. 2012;109(10):3879–84.

    Article  PubMed  CAS  Google Scholar 

  19. Wu J, Jiao Y, Dal Molin M, Maitra A, de Wilde RF, Wood LD, et al. Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci U S A. 2011;108(52):21188–93.

    Article  PubMed  CAS  Google Scholar 

  20. Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukemia. Nature. 2011;475(7354):101–5.

    Article  PubMed  CAS  Google Scholar 

  21. Link DC, Schuettpelz LG, Shen D, Wang J, Walter MJ, Kulkarni S, et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA. 2011;305(15):1568–76.

    Article  PubMed  CAS  Google Scholar 

  22. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  PubMed  CAS  Google Scholar 

  23. Walsh T, Lee MK, Casadei S, Thornton AM, Stray SM, Pennil C, et al. Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci U S A. 2010;107(28):12629–33.

    Article  PubMed  CAS  Google Scholar 

  24. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001; 409(6822):860–921.

    Google Scholar 

  25. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  PubMed  CAS  Google Scholar 

  26. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5(10):e254.

    Article  PubMed  Google Scholar 

  27. Zogopoulos G, Ha KC, Naqib F, Moore S, Kim H, Montpetit A, et al. Germ-line DNA copy number variation frequencies in a large North American population. Hum Genet. 2007;122(3–4):345–53.

    Article  PubMed  CAS  Google Scholar 

  28. Cooper GM, Zerr T, Kidd JM, Eichler EE, Nickerson DA. Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nat Genet. 2008;40(10):1199–203.

    Article  PubMed  CAS  Google Scholar 

  29. Yim SH, Kim TM, Hu HJ, Kim JH, Kim BJ, Lee JY, et al. Copy number variations in East-Asian population and their evolutionary and functional implications. Hum Mol Genet. 2010;19(6):1001–8.

    Article  PubMed  CAS  Google Scholar 

  30. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239):719–24.

    Article  PubMed  CAS  Google Scholar 

  31. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, et al. The genetic landscape of the childhood cancer medulloblastoma. Science. 2011;331(6016):435–9.

    Article  PubMed  CAS  Google Scholar 

  32. Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, et al. The human L-type calcium channel Ca(v)1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia. 2013;56(2):340–9.

    Article  PubMed  CAS  Google Scholar 

  33. Landman GW, van Vliet-Ostaptchouk JV, Kleefstra N, van Hateren KJ, Drion I, Groenier KH, et al. Association between 9p21 genetic variants and mortality risk in a prospective cohort of patients with type 2 diabetes (ZODIAC-15). Cardiovasc Diabetol. 2012;11:138.

    Article  PubMed  CAS  Google Scholar 

  34. Janipalli CS, Kumar MV, Vinay DG, Sandeep MN, Bhaskar S, Kulkarni SR, et al. Analysis of 32 common susceptibility genetic variants and their combined effect in predicting risk of Type 2 diabetes and related traits in Indians. Diabet Med. 2012;29(1):121–7.

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Nie M, Li W, Ping F, Hu Y, Ma L, et al. Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLoS One. 2011;6(11):e26953.

    Article  PubMed  CAS  Google Scholar 

  36. Gong Y, McDonough CW, Wang Z, Hou W, Cooper-Dehoff RM, Langaee TY, et al. Hypertension susceptibility Loci and blood pressure response to antihypertensives: results from the pharmacogenomic evaluation of antihypertensive responses study. Circ Cardiovasc Genet. 2012;5(6):686–91.

    Article  PubMed  CAS  Google Scholar 

  37. Saade S, Cazier JB, Ghassibe-Sabbagh M, Youhanna S, Badro DA, Kamatani Y, et al. Large scale association analysis identifies three susceptibility loci for coronary artery disease. PLoS One. 2011;6(12):e29427.

    Article  PubMed  CAS  Google Scholar 

  38. Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet. 2011;43(10):1005–11.

    Article  PubMed  CAS  Google Scholar 

  39. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI. International Consortium for Blood Pressure Genome-Wide Association Studies Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9.

    Article  PubMed  CAS  Google Scholar 

  40. Steinberg KM, Ramachandran D, Patel VC, Shetty AC, Cutler DJ, Zwick ME. Identification of rare X-linked neuroligin variants by massively parallel sequencing in males with autism spectrum disorder. Mol Autism. 2012;3(1):8.

    Article  PubMed  CAS  Google Scholar 

  41. Prandini P, Pasquali A, Malerba G, Marostica A, Zusi C, Xumerle L, et al. The association of rs4307059 and rs35678 markers with autism spectrum disorders is replicated in Italian families. Psychiatr Genet. 2012;22(4):177–81.

    Article  PubMed  CAS  Google Scholar 

  42. Williams NM, Franke B, Mick E, Anney RJ, Freitag CM, Gill M, et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. Am J Psychiatry. 2012;169(2):195–204.

    Article  PubMed  Google Scholar 

  43. Chung RH, Ma D, Wang K, Hedges DJ, Jaworski JM, Gilbert JR, et al. An X chromosome-wide association study in autism families identifies TBL1X as a novel autism spectrum disorder candidate gene in males. Mol Autism. 2011;2(1):18.

    Article  PubMed  CAS  Google Scholar 

  44. Casey JP, Magalhaes T, Conroy JM, Regan R, Shah N, Anney R, et al. A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet. 2012;131(4):565–79.

    Article  PubMed  Google Scholar 

  45. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899–905.

    Article  PubMed  CAS  Google Scholar 

  46. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(44):18032–7.

    Article  PubMed  CAS  Google Scholar 

  47. Pritchard CC, Smith C, Salipante SJ, Lee MK, Thornton AM, Nord AS, et al. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. J Mol Diagn. 2012;14(4):357–66.

    Article  PubMed  CAS  Google Scholar 

  48. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, et al. The genomic complexity of primary human prostate cancer. Nature. 2011;470(7333):214–20.

    Article  PubMed  CAS  Google Scholar 

  49. Liang WS, Craig DW, Carpten J, Borad MJ, Demeure MJ, Weiss GJ, et al. Genome-wide characterization of pancreatic adenocarcinoma patients using next generation sequencing. PLoS One. 2012;7(10):e43192.

    Article  PubMed  CAS  Google Scholar 

  50. Teer JK, Bonnycastle LL, Chines PS, Hansen NF, Aoyama N, Swift AJ, et al. Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Res. 2010;20(10):1420–31.

    Article  PubMed  CAS  Google Scholar 

  51. Tewhey R, Nakano M, Wang X, Pabón-Peña C, Novak B, Giuffre A, et al. Enrichment of sequencing targets from the human genome by solution hybridization. Genome Biol. 2009;10(10):R116.

    Article  PubMed  Google Scholar 

  52. Heikkinen K, Rapakko K, Karppinen SM, Erkko H, Knuutila S, Lundán T. RAD50 and NBS1 are breast cancer susceptibility genes associated with genomic instability. Carcinogenesis. 2006;27(8):1593–9.

    Article  PubMed  CAS  Google Scholar 

  53. Ghimenti C, Sensi E, Presciuttini S, Brunetti IM, Conte P, Bevilacqua G, et al. Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer. 2002;33(3):235–42.

    Article  PubMed  CAS  Google Scholar 

  54. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    Article  PubMed  CAS  Google Scholar 

  55. Keller A, Harz C, Matzas M, Meder B, Katus HA, Ludwig N, et al. Identification of novel SNPs in glioblastoma using targeted resequencing. PLoS One. 2011;6(6):e18158.

    Article  PubMed  CAS  Google Scholar 

  56. Neverov AD, Artamonova II, Nurtdinov RN, Frishman D, Gelfand MS, Mironov AA. Alternative splicing and protein function. BMC Bioinformatics. 2005;6:266–74.

    Article  PubMed  CAS  Google Scholar 

  57. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347(25):1999–2009.

    Article  PubMed  Google Scholar 

  58. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Bernards R, et al. Expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6.

    Article  Google Scholar 

  59. Slodkowska EA, Ross JS. MammaPrint 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev Mol Diagn. 2009;9(5):417–22.

    Article  PubMed  Google Scholar 

  60. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22(11):2109–19.

    Article  PubMed  CAS  Google Scholar 

  61. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  PubMed  CAS  Google Scholar 

  62. Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68(13):4971–6.

    Article  PubMed  CAS  Google Scholar 

  63. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, Kim YT, Kim JI, Kang JH, Seo JS. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22:436–45.

    Article  PubMed  CAS  Google Scholar 

  64. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–7.

    Article  PubMed  CAS  Google Scholar 

  65. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203.

    Article  PubMed  CAS  Google Scholar 

  66. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.

    Article  PubMed  CAS  Google Scholar 

  67. Eswaran J, Cyanam D, Mudvari P, Reddy SD, Pakala SB, Nair SS, et al. Transcriptomic landscape of breast cancers through mRNA sequencing. Sci Rep. 2012;2:264.

    Article  PubMed  Google Scholar 

  68. Schmidt CS, Bultmann S, Meilinger D, Zacher B, Tresch A, Maier KC, et al. Global DNA hypomethylation prevents consolidation of differentiation programs and allows reversion to the embryonic stem cell state. PLoS One. 2012;7(12):e52629.

    Article  PubMed  CAS  Google Scholar 

  69. Fonseca MB, Nunes AF, Morgado AL, Solá S, Rodrigues CM. TAp63γ Demethylation Regulates Protein Stability and Cellular Distribution during Neural Stem Cell Differentiation. PLoS One. 2012;7(12):e52417.

    Article  PubMed  CAS  Google Scholar 

  70. Novak P, Stampfer MR, Munoz-Rodriguez JL, Garbe JC, Ehrich M, Futscher BW, et al. Cell-type specific DNA methylation patterns define human breast cellular identity. PLoS One. 2012;7(12):e52299.

    Article  PubMed  CAS  Google Scholar 

  71. Lee ST, Xiao Y, Muench MO, Xiao J, Fomin ME, Wiencke JK, et al. A global DNA methylation and gene expression analysis of early human B-cell development reveals a demethylation signature and transcription factor network. Nucleic Acids Res. 2012;40(22):11339–51.

    Article  PubMed  CAS  Google Scholar 

  72. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75.

    Article  PubMed  CAS  Google Scholar 

  73. Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, et al. Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res. 2011;21(4):515–24.

    Article  PubMed  CAS  Google Scholar 

  74. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 2011;6(1):e14524. Epub 2011/01/27.

    Article  PubMed  CAS  Google Scholar 

  75. Taylor BS, DeCarolis PL, Angeles CV, Brenet F, Schultz N, Antonescu CR. Frequent alterations and epigenetic silencing of differentiation pathway genes in structurally rearranged liposarcomas. Cancer Discov. 2011;1(7):587–97.

    Article  PubMed  CAS  Google Scholar 

  76. Tanaka T, Nakamura J, Kitajima Y, Kai K, Miyake S, Hiraki M, et al. Loss of trefoil factor 1 is regulated by DNA methylation and is an independent predictive factor for poor survival in advanced gastric cancer. Int J Oncol. 2013;42:894–902. doi:10.3892/ijo.2013.1759.

    PubMed  CAS  Google Scholar 

  77. Kim JH, Dhanasekaran SM, Prensner JR, Cao X, Robinson D, Kalyana-Sundaram S, et al. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Res. 2011;21(7):1028–41.

    Article  PubMed  CAS  Google Scholar 

  78. Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part I: covalent histone modifications. Trends Mol Med. 2007;13(9):363–72.

    Article  PubMed  CAS  Google Scholar 

  79. Füllgrabe J, Kavanagh E, Joseph B. Histone onco-modifications. Oncogene. 2011;30(31):3391–403.

    Article  PubMed  Google Scholar 

  80. Choe MK, Hong CP, Park J, Seo SH, Roh TY. Functional elements demarcated by histone modifications in breast cancer cells. Biochem Biophys Res Commun. 2012;418(3):475–82.

    Article  PubMed  CAS  Google Scholar 

  81. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article  PubMed  CAS  Google Scholar 

  82. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25.

    Article  PubMed  Google Scholar 

  83. Trapnell C, Patcher L, Salzberg SL. TopHat: discovering splice junctions with RNASeq. Bioinformatics. 2009;25(9):1105–11.

    Article  PubMed  CAS  Google Scholar 

  84. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.

    Article  PubMed  CAS  Google Scholar 

  85. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed  Google Scholar 

  86. Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92. doi:10.4161/fly.19695.

    Article  CAS  Google Scholar 

  87. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.

    Article  PubMed  CAS  Google Scholar 

  88. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

    Article  PubMed  CAS  Google Scholar 

  89. Katz Y, Wang ET, Airoldi EM. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods. 2010;7(12):1009–15.

    Article  PubMed  CAS  Google Scholar 

  90. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.

    Article  PubMed  CAS  Google Scholar 

  91. Liu Y, Siegmund KD, Laird PW, Berman BP. Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):R61.

    Article  PubMed  CAS  Google Scholar 

  92. Ingman M, Glyllensten U. SNP frequency estimation using massively parallel sequencing of pooled DNA. Eur J Hum Genet. 2009;17:383–6.

    Article  PubMed  CAS  Google Scholar 

  93. Out AA, van Minderhout IJ, Goeman JJ. Deep sequencing to reveal new variants in pooled DNA samples. Hum Mutat. 2009;30(12):1703–12.

    Article  PubMed  CAS  Google Scholar 

  94. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321(5891):956–60.

    Article  PubMed  CAS  Google Scholar 

  95. Costa V, Angelini C, D’Apice L. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS One. 2011;6(4):e18493.

    Article  PubMed  CAS  Google Scholar 

  96. Elsharawy A, Warner J, Olson J, Forster M, Schilhabel MB, Link DR, et al. Accurate variant detection across non-amplified and whole genome amplified DNA using targeted next generation sequencing. BMC Genomics. 2012;13:500.

    Article  PubMed  CAS  Google Scholar 

  97. Kerick M, Isau M, Timmermann B, Sültmann H, Herwig R, Krobitsch S, et al. Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics. 2011;4:68.

    Article  PubMed  CAS  Google Scholar 

  98. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338(6104):222–6.

    Article  PubMed  CAS  Google Scholar 

  99. Dudley DM, Chin EN, Bimber BN, Sanabani SS, Tarosso LF, Costa PR, et al. Low-cost ultra-wide genotyping using Roche/454 pyrosequencing for surveillance of HIV drug resistance. PLoS One. 2012;7(5):e36494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti N. Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Desai, A.N., Jere, A. (2013). Next-Generation Sequencing for Cancer Genomics. In: Wu, W., Choudhry, H. (eds) Next Generation Sequencing in Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7645-0_3

Download citation

Publish with us

Policies and ethics