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           Introduction 

 Acute exacerbations of COPD (AECOPD) are defi ned by clinical criteria, outlined 
in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines 
[ 1 ]. These include an acute increase in one or more of the following cardinal symp-
toms, beyond day to day variability: dyspnea, increased frequency or severity of 
cough and increased volume or change in character of sputum, which represent an 
acute increase in airway infl ammation. The role of infection in the pathogenesis of 
COPD, acute exacerbation and disease progression has been a clinical and research 
question for many years, and the pendulum has swung from infection as a major 
cause of acute exacerbation and COPD (British Hypothesis) [ 2 ], to infection as an 
unrelated epiphomenon in acute exacerbation [ 3 – 5 ], and back again to infection as 
integral in the development of AECOPD and likely an important contributor to 
COPD progression [ 6 – 19 ]. Upwards of 80 % of AECOPD are driven by infectious 
stimuli, with 40–50 % associated with bacterial infection and 30–50 % associated 
with acute viral infection, with some exacerbations having dual bacterial and viral 
causation [ 20 ]. Much of the advancement in our understanding of the role of infec-
tion is AECOPD is due to the advancement of clinical and research tools that have 
allowed researchers to accurately characterize the microbial pathogens, and better 
understand the host-pathogen interactions (Table     1 ).
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   With the more recent scientifi c acceptance of infectious organisms, both viral 
and bacterial, as signifi cant players in AECOPD, the host response in patients with 
COPD must also be questioned. The airways of patients with COPD have signifi -
cant infi ltration of infl ammatory cells (polymorphonuclear cells and CD8+ T lym-
phocytes) and much higher numbers of alveolar macrophages than are seen in 
healthy persons [ 21 – 27 ]. The nature of the infl ammatory infi ltrate suggests and sup-
ports the fi ndings of both viral and bacterial infections, with recruitment of immune 
cells pertinent to both the innate and adaptive immune response. Despite the recruit-
ment of appropriate effector immune cells, in many patients with advanced stage 
COPD (GOLD III-IV), there is persistent presence of pathogens in the airway, 
rather than eradication [ 19 ,  28 ], suggesting an impaired host response to infection. 
Numerous studies have delineated impaired macrophage phagocytosis and cytokine 
secretion [ 29 – 31 ], impaired humoral immune response to infection [ 32 – 37 ] and 
impaired T-lymphocyte responses [ 38 ]. The mechanisms of this impaired respon-
siveness of both innate and adaptive immune cells to infection has not been clearly 
delineated, and remains a target of investigation.  

   Table 1    Microbial pathogens in COPD [ 139 ]   

 Microbe  Role in exacerbations  Role in stable disease 

  Bacteria  
  Haemophilus infl uenzae   20–30 % of exacerbations  Major pathogen 
  Streptococcus pneumoniae   10–15 % of exacerbations  Minor role 
  Moraxella catarrhalis   10–15 % of exacerbations  Minor role 
  Pseudomonas aeruginosa.   5–10 % of exacerbations, 

prevalent in advanced disease 
 Likely important 

in advanced disease 
  Enterobacteriaceae   Isolated in advanced disease, 

pathogenic signifi cance undefi ned 
 Undefi ned 

  Haemophilus haemolyticus   Isolated frequently, unlikely cause  Unlikely 
  Haemophilus parainfl uenzae   Isolated frequently, unlikely cause  Unlikely 
  Staphylococcus aureus   Isolated infrequently, unlikely cause  Unlikely 

  Viruses  
  Rhinovirus   20–25 % of exacerbations  Unlikely 
  Parainfl uenza   5–10 % of exacerbations  Unlikely 
  Infl uenza   5–10 % of exacerbations  Unlikely 
  Respiratory syncytial virus   5–10 % of exacerbations  Controversial 
  Coronavirus   5–10 % of exacerbations  Unlikely 
  Adenovirus   3–5 % of exacerbations  Latent infection seen, pathogenic 

signifi cance undefi ned 
  Human metapneumovirus   3–5 % of exacerbations  Unlikely 

  Atypical Bacteria  
  Chlamydophila pneumoniae   3–5 % of exacerbations  Commonly detected, pathogenic 

signifi cance undefi ned 
  Mycoplasma pneumoniae   1–2 %  Unlikely 

  Fungi  
  Pneumocystis jiroveci   Undefi ned  Commonly detected, pathogenic 

signifi cance undefi ned 
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    Bacterial Etiology of AECOPD 

 Although the temporal association of bacterial presence in the airway and COPD 
exacerbation was fi rst recognized in the early 1950s, there was divergence away from 
bacterial causation of AECOPD during the 1970s and 1980s related to several obser-
vations. There were no differences observed in sputum bacterial isolation rates (at a 
species level) in between stable state and exacerbations, and studies of immune 
response studies to bacterial pathogens and placebo controlled antibiotic trials 
showed inconsistent and contradictory results [ 4 ,  39 ]. Beginning in 1992, multiple 
investigators began to recognize an effect of bacterial infection and colonization in 
stable COPD [ 11 ,  17 ,  32 ,  40 – 45 ], but a direct association with AECOPD was not 
initially recognized. The bacterial isolation in these early studies was done predomi-
nantly by sputum culture, and as such, most pathogens isolated can be nasopharyn-
geal commensals in healthy adults, raising the issue of specimen contamination. In 
addition, the older studies could not differentiate among strains of a pathogenic spe-
cies, assuming that all strains isolated from sputum over time were identical. 
Advancing diagnostic techniques of bronchoscopy with protected specimen brushes 
and bronchoalveolar lavage, as well as molecular bacterial typing allowed identifi ca-
tion of bacteria ( Streptococcus pneumoniae ,  Haemophilus infl uenzae ,  Moraxella 
catarrhalis , and  Pseudomonas aeruginosa  and others at potentially pathogenic con-
centrations) in the distal airways in stable COPD [ 9 ,  17 ,  28 ,  40 ,  41 ,  46 – 51 ], with 
more severe GOLD stage disease being associated with identifi cation of  Pseudomonas.  
Subsequent studies went on to associate colonization with more severe spirometric 
airfl ow obstruction [ 43 ]. Expanding on the recognition of bacterial colonization dur-
ing stable COPD, it was recognized that the prevalence of bacteria in the lower respi-
ratory tract increased signifi cantly during AECOPD as compared to stable COPD, 
when sampled by bronchoscopy [ 10 ,  46 – 48 ,  52 ]. Scientifi c advancement led to the 
recognition that changes in the overall numbers of potentially pathogenic bacteria in 
the airways between periods of colonization and acute exacerbation mattered less 
than the acquisition of a new strain of bacteria [ 10 ,  15 – 17 ,  28 ,  47 ]. Acquisition of a 
new strain of bacteria ( H. infl uenzae, M. catarrhalis, S. pneumoniae  or  P. aerugi-
nosa ) was associated with a greater likelihood of symptoms of an exacerbation, 
increased infl ammatory markers both locally and systemically (TNF-α, IL-8, IL-6, 
CRP, Neutrophil elastase) and development of a specifi c host immune response to the 
infecting pathogen [ 8 ,  10 ,  11 ,  15 ,  28 ,  47 ]. Although some authors have described a 
link between the presence of  Chlamydia penumoniae, Mycoplasma pneumoniae  and 
 Legionella  infection and AECOPD [ 53 – 55 ], these studies measured single serologic 
titers rather than serologic conversion, and an additional respiratory pathogen was 
often identifi ed. Studies using serologic conversion as a diagnostic criterion or 
molecular detection to identify the presence of atypical bacterial DNA in sputa [ 56 ] 
during AECOPD indicate only a minor role of these bacteria in exacerbations, often 
with co-infection with typical bacterial pathogens (Table  1 ).

   The signifi cant role of bacteria in both pathogenesis of COPD and AECOPD, 
combined with recent data from improved microbiological detection techniques that 
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the normal lung is not sterile, has led to recent research focused on understanding 
the microbiome of the lung in stable COPD and during exacerbations. Two groups 
recently published data using PhyloChip microarray analysis and quantitative PCR 
and pyrosequencing of the variable regions of the 16S rDNA. The fi rst study identi-
fi ed the bacterial diversity seen during severe AECOPD requiring intubation in 
eight patients [ 57 ], noting signifi cant bacterial richness (as defi ned by the number of 
bacterial taxa detected) that waned with prolonged intubation. The common ‘core’ 
of 75 bacterial taxa representing 27 classifi ed bacterial families was identifi ed in all 
patients studied. This group included members of the Pseudomonadaceae, 
Enterobacteriaceae, Campylobacteraceae and Helicobacteraceae families, among 
others. The majority of the bacteria belonged to the Proteobacteria phylum, with 
smaller contributions from Firmicutes and Bacteroidetes. The second study 
addressed the effects of cigarette smoke on the bacterial diversity in comparing 
healthy smokers to smokers with COPD to non-smokers [ 58 ]. The investigators 
demonstrated lung resident bacteria in all groups, and the dominant phyla were 
Proteobacteria, Firmicutes and Bacteroidetes, as noted in the fi rst study. There was 
heterogeneity in the bacterial communities in the non-smoker, healthy smoker and 
mild COPD patients, which was lost in the patients with moderate and severe 
COPD. Within each patient, geographic differences in bacterial heterogeneity were 
also noted, suggesting micro-anatomic differences in bacterial communities within 
the lung. Whether the micro-anatomic, spatially distinct bacterial communities 
within the lung or the overall airway bacterial diversity represent mechanisms of 
disease progression or contribute to AECOPD remains to be determined.  

    Viral Infections in AECOPD 

 Respiratory tract viral infections have long been suspected as capable of inciting 
infl ammation suffi cient to generate an acute exacerbation of COPD. The diagnosis 
of viral infection was initially done by cell culture and serologic methods, with 
more recent studies detecting viral infection by PCR in either sputa, BAL or naso-
pharyngeal swabs, with the greatest recovery seen in sputa as compared to nasopha-
ryngeal swabs [ 59 ,  60 ]. The most commonly recovered viruses (varying in 
prevalence in various studies) in AECOPD using the more sensitive PCR detection 
methods were infl uenza, rhinovirus, respiratory synctial virus (RSV), parainfl uenza, 
with the majority of infections due to rhinovirus. These viruses were also found in 
stable COPD, and it is not clear if those fi ndings were subclinical infection or colo-
nization, as there were no symptoms of active infection in the preceding 30 days 
[ 13 ,  14 ,  59 – 62 ]. Therefore, the presence of viruses in respiratory samples detected 
by sensitive techniques such as PCR may not always correlate with an acute infec-
tion and should be interpreted in its clinical context. 

 Though there are studies that suggest viral exacerbations are more severe or pro-
tracted than non-viral exacerbations [ 13 ,  14 ,  62 ], these studies did not study bacte-
rial infection concurrently. Virally-induced AECOPD were associated with higher 
airway levels of IL-6 as compared to AECOPD in which virus was not detected [ 61 , 
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 63 ,  64 ]. The presence of eosinophils in sputa samples recovered from AECOPD of 
viral etiology also differs from the infl ammatory cells present during bacterial or 
non-infectious AECOPD [ 11 ]. In studies that have examined viral and bacterial 
infection simultaneously, presence of dual infections are associated with increased 
clinical severity of exacerbation [ 62 ].  

    Altered Host Defense to Infectious Challenge in COPD 

 COPD is now recognized as a state of chronic infl ammation, with periods of exacer-
bation marking acute increases in this infl ammation, both locally and systemically. 
Both pathogenic and host factors determine the outcome of the acquisition of a 
bacterial strain. Approximately half of the acquisitions of pathogenic bacteria lead 
to an exacerbation. Pathogen virulence is likely to also play a role in determining 
which acquisitions lead to acute exacerbations. Strains of  nontypeable H. infl uenzae  
(NTHI) that are associated with exacerbations have more effective adherence to air-
way epithelium and result in increased IL-6 and IL-8 secretion in in vitro and mouse 
models, as compared to those strains associated with colonization [ 48 ,  65 ,  66 ], and 
demonstrated higher levels of neutrophil recruitment to the airway [ 9 ,  10 ,  65 ]. 

 There are also signifi cant differences in the host response to different pathogens. 
Patients with COPD are able to eradicate  Moraxella catarrhalis  and  Streptococcus 
pneumoniae  from the airway quite well following exacerbations, most likely related 
to an effective immune response [ 16 ,  37 ]. However, though antibody responses 
develop to NTHI or  Pseudomonas  following exacerbations, effective clearance is 
often not seen with these pathogens.  

    Alterations in Innate Immune Responses to Infectious 
Pathogens in COPD 

 The innate immune response is the most immediately responsive immune defense to 
the invading pathogen, and both anatomic and functional barriers (mucociliary 
clearance, epithelial tight junctions), as well as cellular immunity (recognition of 
invading pathogens via germline encoded pathogen recognition receptors (TLR, 
NOD)) and soluble mediators (SLPI, lysozyme, collectins). This initial innate 
response is multifaceted, including epithelial cells of the upper and lower airways, 
airway resident macrophages, dendritic cells and recruited polymorphonuclear cells. 

    Impaired Macrophage Phagocytosis 

 Multiple authors have demonstrated an association between increased infl ammatory 
cytokines present in the airways of patients with COPD and bacterial infection and 
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colonization of the lower airway [ 7 ,  9 ,  52 ,  67 ]. The dominant cytokines involved, 
IL-6, IL-8, TNF-α are also seen in AECOPD due to infection, and suggest a 
common innate immune response at the time of exacerbation. The source of these 
cytokines may be from either the airway epithelium, after adhesion and invasion by 
bacterial or viral pathogens, or from the alveolar macrophage after recognition of 
pathogen associated molecular patterns (PAMP’s) and activation of toll like recep-
tors (TLR). Alveolar macrophages are also less able to phagocytose bacteria in 
patients with COPD [ 29 ,  30 ,  68 ] and have a less robust response to bacterial pro-
teins, specifi cally OMP6 and LOS of NTHI [ 29 ], and are less able to clear apoptotic 
cells from the airway [ 69 ]. Both disease and cigarette smoke exposure contribute to 
this relative hypo-responsiveness, as alveolar macrophages from smokers who had 
ceased smoking have better phagocytic ability than those who continue to smoke 
[ 30 ,  31 ], and both were reduced relative to healthy controls. The ongoing presence 
of apoptotic cells in the airway may function as a source of endogenous ligand for 
inappropriate self-directed immune responses.  

    Mucociliary Clearance 

 Normal mucociliary clearance (MCC) maintains the sterility of the tracheobron-
chial tree by effectively trapping and clearing inhaled and micro-aspirated particles, 
including infectious pathogens [ 70 ,  71 ] Smoking disrupts MCC by inducing struc-
tural abnormalities in the ciliary apparatus [ 72 ]. Other investigators have shown that 
impairment of MCC is universal, though variable in moderate-to-heavy smokers 
[ 73 ]. Development of chronic bronchitis and airway obstruction in smokers is asso-
ciated with further deterioration in MCC [ 71 ,  73 ,  74 ]. Infi ltrating neutrophils likely 
contribute to MCC impairment, probably mediated by increased mucus production 
(mediated through proteolytic cleavage of TGFα and increased EGF receptor 
(EGFR) binding), reduced ciliary beating and reduced viscoelastic properties of 
mucus [ 75 ].  

    Soluble IgA 

 Tobacco smoke also has effects on airway levels of soluble IgA. The literature has 
demonstrated confl icting results [ 76 – 81 ], and though these trials were quite heter-
ogenous, they supported the issue of the importance of secreted airway immunity. 
The more recent trials support geographic changes in the structural integrity of the 
lung, demonstrating localized areas of IgA defi ciency associated with altered 
 epithelial cell integrity, and reduced pIgR expression (polymeric IgG receptor), 
which is required for trancytosis of the structural components of the IgA molecule 
from the basolateral to the apical surface of the epithelial cell. The reduction in 
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expression of the IgA transport system was supported by fi ndings of reduced total 
IgA in the BAL of patients with COPD [ 81 ,  82 ]. In contrast, the systemic IgA 
response elicited in the bronchial mucosa seems preserved in COPD, as demon-
strated in COPD patients with  Chlamydia pneumoniae  infection [ 78 ].  

    Antimicrobial Peptides 

 An increasing number of polypeptides with antimicrobial activity have been identi-
fi ed in the airway surface fl uid that may play an important role in host defense in the 
respiratory tract [ 83 – 85 ]. One major group of these peptides is cationic polypep-
tides. These include lysozyme, which is lytic to many bacterial membranes; lacto-
ferrin, which excludes iron from bacterial metabolism; defensins, which are released 
from leukocytes and respiratory epithelial cells; and the cathelicidin family of 
 proteins, (of which only LL-37 is found in humans), which are present in specifi c 
granules of neutrophils and airway epithelial cells [ 86 – 96 ]. Defi ciency in salivary 
lysozyme and sputum secretory leukocyte protease inhibitor (SLPI) has been related 
to more frequent exacerbations [ 15 ,  97 – 99 ]. In patients with normal baseline SLPI 
levels, these levels drop signifi cantly at the time of infective exacerbations, which 
return to normal after resolution of the exacerbation [ 89 ]. Lower levels of lysozyme 
and lactoferrin are noted with both colonization and infective exacerbations with 
NTHI and  Moraxella catarrhalis , as compared to pre-acquisition levels [ 89 ]. 
In contrast, LL-37 levels have been shown to increase in the presence of airway 
bacteria, both in states of colonization as well as infection, with greater increases 
during infective exacerbation, as compared to colonization [ 89 ]. The divergent 
responses of the airway anti-microbial peptides during infective exacerbation under-
scores the fundamental importance of host-pathogen interactions. Lower levels may 
be related to consumption in the face of infection, or a mechanism of bacterial 
 evasion of immune clearance. The role of tobacco smoke specifi cally on the anti-
microbial peptides has not been well studied, though murine models suggest that at 
least with regards to SLPI, the presence of tobacco smoke was deleterious to the 
protease inhibitory activity [ 100 ]. 

 Another important group of antimicrobial polypeptides are the collectins. 
Surfactant protein-A (SP-A) and surfactant protein-D (SP-D) are collectins with 
broad spectrum antimicrobial activity that also promote phagocytosis of particulates 
by alveolar macrophages [ 101 ]. Concentrations of SP-A and SP-D are decreased in 
smokers, and are further decreased in association with emphysema [ 102 ,  103 ], a 
fi nding noted in both human and animal models [ 104 ]. Mannose binding lectin 
(MBL) defi ciency has been strongly implicated in infection and COPD exacerba-
tions, with an odds ratio of 4.9 for infective exacerbations, as compared to normal 
MBL levels [ 105 ]. Though considerable progress has been made in understanding 
the basic biology of these polypeptides, their role in response to respiratory infec-
tions and in the pathogenesis of COPD is still poorly understood.  
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    Pattern Recognition Receptor Expression 

 Pattern recognition receptors, of which the transmembrane toll-like receptors (TLR) 
and cytosolic nucleotide-binding oligomerization domain (NOD) like receptors 
(NLR) and RIG-I-like receptors predominate, are germline encoded receptors that 
recognize conserved sequences present on mutiple infectious organisms (pathogen 
associated molecular patterns, PAMP). This non-specifi c recognition provides an 
immediate immune response (innate), without the initial requirement for effector 
memory responses (Table  2 ). 

 Recent evidence suggests that TLR signaling is not restricted to microorganism 
particles but that TLRs recognize a wide variety of signals such as heat shock pro-
teins [ 106 ], hyaluronan fragments [ 107 ], oxidative stress [ 108 ], and neutrophil 

    Table 2    Bacterial ligands from COPD pathogens that trigger signal transduction pathways in the 

human respiratory tract through pattern recognition receptors [ 139 ]         

 Pattern recognition receptor  Bacterial ligand  Bacterial species 

 TLR-1   S. pneumoniae  
 TLR-2  P6   H. infl uenzae  

 P2 porin 
 Lipoproteins 
 Lipoteichoic acid   S. pneumoniae  
 Pneumolysin 

 TLR-4  Lipooligosaccharide   H. infl uenzae  
  M. catarrhalis  
  P. aeruginosa  

 Pneumolysin   S. pneumoniae  
 Lipoteichoic acid 

 CD-14  Lipooligosaccharide   H. infl uenzae  
 LPS binding protein  Lipooligosaccharide   H. infl uenzae  

 Peptidoglycan   S. pneumoniae  
 TLR-5  Flagellin   P. aeruginosa  
 TLR-7   H. infl uenzae  
 TLR-9  CpG dinucleotides   S. pneumoniae  
 Nod1, Nod2  UspA1   M. catarrhalis  

 Peptidoglycan   H. infl uenzae  
  S. pneumoniae  

 CEACAM1  UspA1   M. catarrhalis  
 Platelet activating factor receptor  Pneumolysin   S. pneumoniae  

 Lipoteichoic acid 
 UspA2   M. catarrhalis  

 C-reactive protein  Phosphorylcholine   S. pneumoniae  

   TLR  toll like receptor 
  LPS  lipopolysaccharide 
  Nod  nucleotide-binding oligomerization domain 
  UspA  Ubiquitous surface protein 
  CEACAM  Carcinoembryonic antigen-related cellular adhesion molecule  
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elastase [ 109 ,  110 ]. This non-classical activation (or damage-associated molecular 
pattern (DAMP) activation), may explain the pro-infl ammatory state seen in ciga-
rette smoking healthy controls. Recent data defi nes a direct effect of cigarette smoke 
induced MMP and CXCL-8 secretion from epithelial cells that is mediated by acti-
vation of TLR4 [ 111 – 113 ], and independent of LPS present in the extract. This was 
neutralized by the addition of anti-oxidants, suggesting an oxidant stress induced 
activation of TLR4. 

 The classical pattern-recognition role for toll-like receptors through PAMP rec-
ognition, are affected by both tobacco smoke as well as the development of COPD, 
both on antigen presenting cells (dendritic cells and alveolar macrophages) as well 
as the airway epithelium. Decreased levels of TLR2 and TLR4 on both airway epi-
thelial cells as well as alveolar macrophages have been demonstrated in the presence 
of cigarette smoke as well as in patients with established COPD [ 114 – 116 ]. It has 
been presumed in the past that lower levels of these TLR’s contribute to impaired 
immune responses to pathogenic bacteria, but in the face of newer data demonstrat-
ing activation by reactive oxygen species present in cigarette smoke, these may as 
yet represent downregulation in an attempt to curb detrimental infl ammatory pro-
cesses, though this has yet to be investigated. The presence of soluble forms of both 
TLR 2 and TLR4, as well as CD14 are an emerging fi eld of study, and how levels of 
these proteins factor into the lower levels of cell surface expression is not yet defi ned.  

    Natural Killer Cells 

 Natural killer cells are classifi ed as lymphocytes based on their morphology, their 
lack of antigen specifi c receptors puts their responses within the realm of the innate 
immune response [ 117 ]. These cells have been found within the airways as well as 
the lung parenchyma, and act as cytolytic effector lymphocytes, inducing cell death 
in infected and structural cells in the lung [ 118 ,  119 ] through secretion of perforins 
and granzyme B. Increased numbers of CD3 - CD56 +  NK cells and NKT cells 
(CD3 + CD56 + ) have been noted in the induced sputum of patients with COPD 
as compared to healthy smokers or normal controls [ 119 ]. The CD56 +  cells of 
patients with COPD expressed greater cytolytic activity, which inversely correlated 
with FEV1 [ 119 ].  

    Dendritic Cells 

 Dendritic cells are the canonical antigen presenting cells that link the innate and 
adaptive immune responses. Dendritic cells act both locally upon antigen recogni-
tion (cytokine secretion) and in the lymphoid follicle, after migration from the 
 primary site. Dendritic cells function primarily by promoting differentiation of the 
CD4 +  T helper lymphocytes, as well as CD8 +  cytotoxicity [ 120 ]. 
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 Tobacco smoke has been associated with an expansion of dendritic cell popula-
tions in the lung. Both CD1a Langerhans-like dendritic cells (subepithelial and 
BAL) and myeloid dendritic cells are selectively recruited into the airways [ 120 –
 124 ], and demonstrate increased expression of co-stimulatory markers (CD80, 
CD86) in smokers as compared to non-smokers [ 121 ]. 

 In patients with COPD, all dendritic cell subsets (myeloid and plasmacytoid) 
demonstrated increased co-stimulatory molecule expression (CD80, CD83 and 
CD40) that correlated with COPD severity and was not explained by smoking alone 
[ 122 ]. Lung dendritic cells coordinate and co-localize with CD4+ T lymphocytes, 
and induce Th1 and Th17 responses [ 122 ,  125 ]. 

 The increased number and advanced maturation state of both myeloid and 
 plasmacytoid dendritic cells in the airways of patients with progressive GOLD stage 
COPD, suggests an enhanced antigen presenting capacity that develops with more 
severe disease. Whether this develops in response to bacterial colonization and 
more frequent antigen recognition, leads to self antigen presentation (anti-elastin 
and anti-endothelin) and progressive auto-immunity or whether these mature 
 dendritic cells are engendering a state of tolerance (via CTLA-4 interaction with T 
lymphocytes) has not been defi ned.   

    Alterations in Adaptive Immune Responses 
to Infectious Pathogens in COPD 

    Alterations in Cellular Immunity 

 Both the innate and adaptive immune responses are altered in COPD and smoking. 
Antigen specifi c effector memory responses, of both cell mediated and humoral 
arms of the adaptive immune response, are required to effectively clear established 
infection. These effector memory responses respond more slowly than the innate 
immune response, but are highly specifi c for the pathogens involved. 

 The airways of patients with COPD have been noted to retain signifi cant num-
bers of infl ammatory cells of both the innate and adaptive immune responses. Of the 
adaptive immune response, effector lymphocytes of both CD4+ and CD8+ lineages 
have been documented in the airways, and subepithelial spaces, with a predominant 
CD8+ presence [ 118 ,  126 ,  127 ]. Numbers and cytolytic activity of the CD8+ cells 
increases substantially in patients with COPD and progressive GOLD stage disease 
[ 119 ,  126 ]. Elevated levels of interferon gamma have been found in both the BAL 
and intracellular staining of these lymphocytes, suggesting a Th1 or Tc1 effector 
phenotype. 

 Of the CD4+ lymphocytes found in the airways of patients with COPD, there 
have been two sub-types identifi ed, both Th1 and Th17 cells [ 128 – 130 ]. Lung lym-
phocytes of the Th1 CD4+ lineage increase with severity of COPD and emphysema 
and secrete more interferon gamma than control smokers [ 131 ]. 
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 Th17 cells are a newly recognized CD4+ lymphocyte subset and regulate tissue 
infl ammation by producing IL-17A and IL-17F [ 132 ]. Th17 cells regulate immunity 
to extracellular pathogens, but have also been associated with auto-immunity [ 132 ]. 
IL-17A and IL-17F act on the airway epithelial cells to induce anti-microbial 
 peptides, G-CSF, GM-CSF and chemokine secretion. Recent data may support a 
geographically restricted role for the two forms of IL-17, with IL-17A localized to 
the infl ammatory hematopoietic cells in the sub-epithelium of small airways, and 
IL-17F localized to the lymphoid follicles and epithelial cells [ 129 ].  

    Alterations in Humoral Immunity 

 B cells have been shown to be present in increased numbers in the large and small 
airways of patients with COPD, organized into lymphoid follicles around the air-
ways and in the parenchyma of patients with COPD with advanced GOLD stage 
disease [ 133 – 137 ]. These follicles contain memory and naïve B cells, T cells, den-
dritic cells and follicular dendritic cells, which allow for T and B cell priming and 
clonal expansion [ 135 ,  136 ]. The B and T cells in the BALT are oligoclonal suggest-
ing antigen specifi c immunity [ 134 ,  138 ]. The antigens involved in this response 
have not been identifi ed, but leading candidates include microbial antigens, ciga-
rette smoke-derived antigens, damage-associated antigens from apoptosis or extra-
cellular matrix degradation and auto-antigens. 

 Despite recruitment of the appropriate effector cell populations, patients with 
advanced COPD are not able to effectively clear bacterial infection and bacterial 
colonization results. Whether the breakdown is solely at the level of the innate 
immune response, at the interface between the innate and adaptive immune response 
or due to derangements in the adaptive immune response alone, is not clear. It is 
likely that that with disease progression, there is progressive dysregulation of the 
immune response to invading pathogens, and downward spiral of infl ammation, 
infection, altered immune response, infl ammation and and tissue injury, that is 
amplifi ed during periods of AECOPD.      
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