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           Introduction 

 Airborne pathogens entering the lungs fi rst encounter the mucus layer overlaying 
epithelial cells as a fi rst line of host defense [ 1 ,  2 ]. In addition to serving as the physi-
cal barrier to these toxic agents, intact epithelia also are major sources of various 
macromolecules including antimicrobial agents, antioxidants and antiproteases [ 3 ,  4 ] 
as well as proinfl ammatory cytokines and chemokines that initiate and amplify host 
defensive responses to these toxic agents [ 5 ]. Airway epithelial cells can be catego-
rized as either ciliated or secretory [ 6 ]. Secretory cells, such as goblet cells and Clara 
cells, are responsible for the production and secretion of mucus along the apical 
epithelial surface and, in conjunction with ciliated cells, for the regulation of airway 
surface liquid viscosity. In addition, submucosal mucus glands connect to the airway 
lumen through a ciliated duct that propels mucins outward. These glands are present 
in the larger airways between bands of smooth muscle and cartilage. See Fig.  1 .

   Initially, inhaled toxic agents encounter a mucus layer overlying the respiratory 
epithelium, become trapped, and are subsequently neutralized by macromolecules. 
Elimination of these toxic agents depends on mucociliary clearance and cough. 
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Continuous ciliary movement propels secretions proximally at about 1 mm per min-
ute [ 7 ], and this mucosal velocity is modifi ed by hydration of the mucus layer [ 7 ,  8 ] 
and adrenergic and cholinergic stimuli [ 7 ,  9 – 11 ]. Effi cacy of cough in the elimination 
of mucus depends on inspiratory muscle strength and expiratory fl ow velocity, which 
must detach the mucus from the airway surface and expel the secretions proximally. 

 A second layer of defense is provided by cell surface receptors (e.g. Toll-like 
receptors, TLRs) on epithelial cells and resident leukocytes. They bind to various 
components of the harmful agents and stimulate the production of proinfl ammatory 
cytokines (e.g. tumor necrosis factor-α, TNF-α) and chemokines (e.g. interleukin-8). 
Finally, a third layer of protection is mediated by leukocytes recruited to the lumen of 
the airways by chemotactic molecules that attack pathogens by direct phagocytosis, as 
well as through the release anti-microbial proteases (e.g. neutrophil elastase) and oxy-
gen radicals. Details of the role of airway epithelium in the host immune responses are 
described in a recent review [ 12 ]. This review is focused on the role of airway mucus, 
particularly MUC1 mucin, in the context of chronic infl ammatory lung diseases.  

    Clinical Consequences and Airway Pathology 

 Mucus is overproduced in several infl ammatory lung diseases, a process detrimental 
to the normal lung defense against environmental toxins. To make matters worse, 
diffi culty in secretion clearance secondary to ineffective cough or poor mucociliary 
transport leads to mucostasis and paradoxically predisposes to bacterial coloniza-
tion and infection [ 13 ,  14 ]. Dyspnea, cough and sputum production result from the 
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  Fig. 1    The airway epithelium and mucus gel       
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physical obstruction of the airways by mucus and stimulation of intrapulmonary 
vagal afferent nerves [ 15 ,  16 ]. Lung diseases such as COPD, bronchiectasis, and 
cystic fi brosis are characterized by mucus hypersecretion, chronic bacterial coloni-
zation, and repeated lower respiratory tract infections [ 17 – 21 ]. 

 Airway disease is a crucial pathologic component of multiple infl ammatory lung 
diseases (See Table  1 ). Pathologic changes in airway epithelium of COPD patients 
include squamous metaplasia, infl ammatory cell infi ltration, goblet cell hyperplasia, 
and mucus metaplasia, a process in which mucus is overproduced in response to 
infl ammatory stimuli (Figs.  2  and  3 ) [ 22 ]. These abnormalities are seen in both the 
larger central airways as well as smaller respiratory bronchioles [ 23 – 26 ]. Airway 
infl ammation from smoking begins early in the course of the disease, and leads to 
persistent and progressive airway remodeling, even after smoking cessation [ 27 ]. 
Niewoehner et al. discovered infl ammatory changes in the peripheral airways of 
young smokers who died suddenly, suggesting that airway disease developed before 
the diagnosis of COPD could be established [ 28 ]. As further evidence of this con-
cept, epithelial layer thickness and mucous metaplasia increase incrementally with 
disease severity [ 26 ,  29 ]. These alterations in the epithelium increase airfl ow obstruc-
tion by several mechanisms: (1) excess mucus occludes the airway lumen [ 30 ]; (2) 
epithelial layer thickening encroaches on the airway lumen, thereby reducing inner 
diameter [ 31 ]; and (3) increased mucus alters surface tension of the airway, predis-
posing it to collapse during expiration [ 32 ].  Hogg  et al. found inverse relationships 
between infl ammatory cell infi ltration and luminal occlusion of the small airways 
and lung function [ 29 ], strongly supporting the notion that small airway pathology is 
responsible for severity of illness. Airway disease also has prognostic signifi cance in 
COPD. Mucus metaplasia in COPD has been associated with worse physiologic 
response to lung volume reduction surgery [ 33 ] as well as greater mortality [ 34 ].

     Although it is established that quantity of emphysema correlates well with clini-
cal disease staging in COPD, the relationship between airway pathology, physiol-
ogy and symptom severity is weak at best. Chronic bronchitis exists in 26–45 % of 
all smokers, but COPD develops in only 15–20 % [ 35 ,  36 ]. Large airway mucous 
metaplasia correlates poorly with the degree of airfl ow obstruction[ 37 ] and amount 

   Table 1    Airway structural changes in airway diseases a    

 Variable  Asthma  COPD  Bronchiectasis 

 Mucus gland hyperplasia  ++  ++++  +++ 
 Subepithelial collagen deposition  +++  +  + 
 Angiogenesis  +++  +  + 
 Increased smooth muscle  +++  +  + 
 Increased proteoglycan depositin  +++  +  + 
 Increased elastin  ++  ?  + 
 Epithelial damage  +++  ++  + 

   a Overall estimate of the signifi cane of these changes in the conditions mentioned. Scores are as 
follows: + = mild, ++ = moderate, +++ = signifi cant, ++++ = marked, ? = uncertain (Adapted with 
permission from the American College of Chest Physicians. Bergeron C, Boulet LP. Structural 
Changes in Airway Diseases: Characteristics, Mechanisms, Consequences, and Pharmacologic 
Modulation.  Chest  2006; 129: 1068–1087)  
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  Fig. 2    Examples of airway remodeling in COPD.  A  represents mucous metaplasia ( MM ) of the 
epithelium and smooth muscle hypertrophy ( SM ).  B  represents peribronchial fi brosis ( black 
arrow ).  C  shows squamous metaplasia.  D  shows an infl ammatory infi ltrate of lymphocytes in the 
adventitia of a bronchiole (Reprinted with permission from the American Thoracic Society. 
Copyright© American Thoracic Society. Kim V, Rogers TJ, Criner GJ. New concepts in the patho-
biology of chronic obstructive pulmonary disease.  Proc Am Thor Soc  2008; 5: 478–485. Offi cial 
Journal of the American Thoracic Society)       

  Fig. 3    Periodic Acid Fluorescent Schiff stain of a small airway from a patient with advanced 
emphysema. The entire airway is seen in  A  and a quadrant of the airway in  B . Mucin granules are 
shown in red along the apical border of the epithelium. Note the large intralumenal mucin plug ( M ) 
in  A , also noted in  B  ( white arrow ) (Reprinted with permission from the American Thoracic 
Society. Copyright© American Thoracic Society. Kim V, Rogers TJ, Criner GJ. New concepts in 
the pathobiology of chronic obstructive pulmonary disease.  Proc Am Thor Soc  2008; 5: 478–485. 
Offi cial Journal of the American Thoracic Society)       
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of mucus expectoration [ 38 ]. Small airway disease has been found in surgical lung 
specimens from those with advanced emphysema, with no clinical or radiographic 
evidence to suggest its presence preoperatively [ 29 ,  33 ,  39 ]. More importantly, the 
degree of small airway mucous metaplasia is diffi cult to detect clinically by burden 
of cough or sputum [ 40 ]. 

 Despite the disconnect between symptoms and airway pathology, chronic cough 
and sputum production in COPD have multiple consequences, including an acceler-
ated decline in lung function, [ 41 ,  42 ] increased exacerbation frequency [ 43 – 47 ], 
greater respiratory symptoms [ 43 ,  48 ], worse health related quality of life [ 43 ], and 
higher mortality [ 35 ,  49 ]. These phenomena are without a doubt a result of increased 
airway infl ammation and worsened airfl ow obstruction, in addition to the aforemen-
tioned mechanisms. In a long term study of over 9,000 adults, an excess yearly rate 
of FEV 1  decline of 12.6–22.8 mL was attributed to chronic mucus hypersecretion 
[ 21 ]. We have found chronic cough and sputum production in patients with severe 
COPD were associated with higher dyspnea scores and more upper airway symp-
toms [ 43 ,  48 ]. In multiple studies, patients with chronic bronchitis and COPD were 
found to be at a 1.20–1.92-fold increased risk for COPD exacerbation compared to 
those without chronic bronchitis [ 43 – 47 ]. The cause of the observed increase in all- 
cause mortality, however, is still a matter of debate. It is hypothesized that the 
increased lung infl ammation associated with chronic bronchitis causes greater sys-
temic infl ammation, resulting in numerous downstream consequences, including 
coronary artery disease, dyslipidemia, osteoporosis, and skeletal muscle weakness 
[ 50 ]. In the Tucson Epidemiological Survey of Airway Obstructive Disease, chronic 
bronchitis was associated with a 2.2-fold greater risk of all-cause mortality in those 
under the age of 50, and was also associated with higher serum levels of IL-8 and 
C-reactive protein at enrollment [ 49 ]. 

 In asthma, chronic infl ammation and thickening of the small airway epithelium, 
submucosal space, and smooth muscle has been noted in several pathologic studies 
[ 51 – 53 ]. In addition, shedding of the epithelial layer has been noted in postmortem 
studies, bronchoalveolar lavage fl uid, and sputum samples [ 54 ], most likely as a 
result of weakened attachment of epithelial cells to the basement membrane. Large 
airway goblet cell hyperplasia and smooth muscle hypertrophy are prominent 
pathologic features of asthma. Goblet cell hyperplasia is more consistently seen in 
asthma compared to COPD, where clinical and pathologic phenotype is a highly 
variable combination of airway disease and emphysema. In asthma, mucus hyperse-
cretion leads to obstruction of the majority of distal airways and ultimately respira-
tory failure during fatal asthma exacerbations [ 55 ]. Diffuse occlusion of the small 
and medium sized airways by mucus and cellular debris has been demonstrated in 
multiple autopsy studies of patients who died from asthma [ 56 ,  57 ]. Goblet cell 
hyperplasia is also seen in less severe cases as well;  Ordonez  et al. found a greater 
number of goblet cells and secreted mucins in subjects with mild to moderate 
asthma compared to control subjects [ 58 ]. 

 Similar to asthma, mucus hypersecretion in cystic fi brosis leads to airfl ow 
obstruction and small airway occlusion [ 59 ]. However, cystic fi brosis is caused by 
dysfunction of an epithelial chloride channel, which results in sodium and water 
infl ux to the epithelial layer and therefore depletion of the airway surface liquid [ 19 ]. 
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The increased viscosity and tenacity of secretions makes detachment from the 
 epithelium and propulsion outward during cough exceedingly diffi cult. Excess mucus 
production combined with airway surface liquid dessication results in mucostasis, 
causing colonization by pathogenic bacteria such as  Pseudomonas aeruginosa , 
 Staphylococcus aureus , and  Burkholderia cepacia  [ 18 – 20 ].  

    Airway Mucus and Mucins 

 Mucus, or the airway surface liquid, is a complex mixture of ions, salts, peptides, 
proteins, glycoconjugates and water. Strict regulation of mucus production is indis-
pensable for normal lung function. The protective function of mucus depends on its 
proper composition of constituent components, particularly mucin glycoproteins. 
Mucins are high molecular weight proteins with O-glycosidic linkages between the 
fi rst GalNAc residue of the oligosaccharide side chains and serine and threonine 
amino acids of the polypeptide backbone. Over 20 mucin (MUC in human, Muc in 
animals) genes have been cloned, 12 of which are expressed in the lung [ 2 ,  60 ]. The 
airway mucin include secreted gene products (MUC2, 5AC, 5B, 7, 8, and 19) and 
membrane-tethered mucins (MUC1, 4, 11, 13, 16, and 20). MUC5AC and MUC5B 
are the two major secretory mucins in the respiratory tract. The levels of these mucins 
in mucus have been shown to signifi cantly increase, and to directly correlate with, 
the number of goblet cells under the pathological conditions of goblet cell metaplasia 
or goblet cell hyperplasia. Although the exact roles of MUC5AC and MUC5B in the 
airways remain to be fully elucidated, it has been suggested that MUC5AC expres-
sion is inducible during airway infl ammation, whereas MUC5B expression is consti-
tutive [ 61 ]. A recent report supports this notion by demonstrating that MUC5AC 
levels correlated with the degree of airway obstruction in COPD patients [ 62 ]. 
Cystic fi brosis, in contrast, is characterized by greater MUC5B levels compared to 
MUC5AC [ 63 ,  64 ], suggesting that impaired mucociliary clearance is the principal 
mechanism responsible for the overwhelming burden of mucus in these patients.  

    Epithelial TLRs as Mediators of Airway Infl ammation 

 TLRs, and related molecules, on airway epithelial cells comprise a second line of 
defense against inhaled microbial pathogens [ 65 ]. These pattern recognition recep-
tors (PRRs) constitute an evolutionary conserved family of gene products that inter-
act with pathogen-associated molecular patterns (PAMPs) to initiate downstream 
signal transduction and innate infl ammatory responses. In general, all TLRs possess 
a leucine-rich repeat region in their ectodomains and an intracellular Toll/interleu-
kin- 1 receptor (TIR) domain. TLR signaling is activated by agonist-induced recep-
tor homodimerization, recruitment of cytoplasmic adaptor proteins (MyD88, 
TIRAP, TRIF) to the TIR domain, and activation of protein kinases (IRAKs, 
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TRAF6) [ 66 ]. Although all of the 10 known human TLRs are expressed by airway 
epithelial cells, TLR2 and TLR5 are the predominant respiratory PRRs [ 67 ,  68 ]. 
TLR5 engages fl agellin, the major protein component of the bacterial fl agellum, 
while TLR2 recognizes a diverse array of components from Gram-positive and 
Gram-negative bacteria, including lipoproteins and peptidoglycan. It remains 
unclear how a single receptor (TLR2) can recognize such a broad diversity of stim-
uli, but a possible explanation is the ability of TLR2 to form heterodimers with 
TLR1 and TLR6. For example, bacterial peptidoglycan interacted with the TLR2/6 
co-receptor complex on airway epithelial cells to activate NF-κB and stimulate pro-
duction of TNF-α [ 69 ]. The magnitude of the response generated by the TLR2/6 
heterodimer was greater than that produced by TLR2 alone. While TLR5 homodi-
mers are clearly capable of binding to fl agellin, Mizel et al. [ 70 ] reported that nitric 
oxide production by airway epithelial cells in response to fl agellin was dependent 
on interaction of TLR5 with TLR4. TLR2 also was shown to be involved in signal-
ing induced by fl agellin in human airway epithelial cells, suggesting a possible 
TLR2/TLR5 heterodimer interaction [ 67 ]. Biotinylation of surface proteins of air-
way epithelial cells followed by co-immunoprecipitation experiments demonstrated 
that both TLR2 and TLR5 were associated with the ganglioside, asialoGM1, in the 
plasma membrane [ 71 ]. IRAK1 and TRAF6 were also found in the co-receptor 
complex, whereas TLR4 was not. Furthermore, treatment of airway epithelial cells 
with  Pseudomonas aeruginosa  pili or fl agella mobilized asialoGM1, TLR2, and 
TLR5 to the apical surface of the cells leading to Ca +2 -associated activation of 
mitogen- activated protein kinases (MAPKs), nuclear translocation of NF-κB, and 
production of IL-8 [ 67 ]. These combined results indicate that TLRs link the 
asialoGM1 glycoconjugate to intracellular signal transduction leading to a proin-
fl ammatory host response following interaction with bacterial components. Other 
groups, however, have questioned the role of asialoGM1 as a cell surface receptor 
for  P. aeruginosa , particularly clinical isolates of the bacterium [ 72 ].  

    Neutrophil Elastase in the Airways 

 Neutrophils and macrophages constitute a third layer of defense in the clearance of 
bacteria from the lungs. The anti-microbial function of these immune cells is 
directly mediated through phagocytosis, and indirectly by the release of anti- 
microbial agents [ 73 ]. Among the soluble mediators released by neutrophils is the 
serine protease, neutrophil elastase (NE). Studies using NE knockout mice showed 
that this protease is required for host defense against experimental infection by 
Gram-negative bacteria [ 74 ]. However, the role of NE in the normal lung response 
to spontaneous bacterial infection needs to be more fi rmly established. Some evi-
dence suggests that NE promotes neutrophil migration into the lung by degradation 
of the extracellular matrix, but this remains controversial [ 75 ]. In general, NE is 
considered as a proinfl ammatory molecule, and NE chemical inhibitors decrease 
infl ammation and lung edema in animal models [ 76 ]. Part of the mechanism through 
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which NE mediates its anti-microbial effects is up-regulation of mucin secretion by 
goblet cells [ 77 ]. Using a co-culture system containing neutrophils and primary 
tracheal epithelial cells, Kim et al. [ 78 ] demonstrated that activation by fMLP/cyto-
chalasin B resulted not only in increased NE production by neutrophils, but also 
greater mucin release from the epithelial cells. Both effects were blocked in a dose- 
dependent fashion by pretreatment with α1-protease inhibitor, implicating a proteo-
lytic effect of NE on the epithelial cells. Kohri et al. [ 79 ] reported that NE treatment 
of NCI-H292 airway epithelial cells stimulated the production of MUC5AC mucin 
through transforming growth factor-α (TGF-α)-dependent activation of the epider-
mal growth factor receptor (EGFR). Park et al. [ 80 ] showed that NE treatment of 
well- differentiated primary normal human bronchial epithelial (NHBE) cells cul-
tured at an air-liquid interface (ALI) increased the release of MUC5AC and MUC5B 
mucins via an intracellular signaling pathway involving protein kinase Cδ (PKCδ). 
To date, NE is the most potent mucin secretagogue described.  

    Control of Airway Infl ammation 

 Given the intricate and diverse host airway infl ammatory mechanisms, a critical bal-
ance between these processes and the counter-regulating anti-infl ammatory path-
ways is absolutely required to maintain a homeostatic environment in the airways. 
This balance ensures that harmful environmental insults are effectively neutralized 
without excessive bystander tissue damage. Although a large body of literature has 
characterized the microbial-stimulated pro-infl ammatory pathways summarized 
above, relatively less is known about the compensatory anti- infl ammatory responses. 
Nevertheless, it is hypothesized that failure to down- regulate airway infl ammation 
results in the development of acute or chronic respiratory diseases, including COPD, 
CF, ARDS, and asthma [ 25 ]. A number of anti-infl ammatory molecules have been 
shown to play an important role in controlling the normal infl ammatory response in 
the lung, including IL-10, transforming growth factor-β (TGF-β), peroxisome pro-
liferator activating receptor (PPAR)-γ, and Mucin-1 (MUC1) [ 25 ,  81 ,  82 ]. However, 
what is less clear is whether defective expression and/or structure/function of these, 
or related, anti- infl ammatory mediators is responsible for the etiopathogenesis of 
infl ammatory lung diseases. The following sections briefl y describe each of these 
key anti-infl ammatory mediators with the goal of stimulating further basic and clini-
cal research on their role in airway infl ammatory diseases.  

    Interleukin-10 

 IL-10 down-regulates the expression of proinfl ammatory cytokines, including 
interferon-γ (IFN-γ), IL-2, and TNF-α, major histocompatibility complex (MHC) 
class II antigens, and leukocyte co-stimulatory molecules [ 83 ]. IL-10 also enhances 
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B cell survival, proliferation, and antibody production. These pleiotropic effects are 
mediated through interaction of the IL-10 homodimer with its cognate IL-10 recep-
tor α subunit (IL-10Rα), and subsequent binding of this ligand-receptor complex to 
the IL-10R2 co-receptor. An accumulating body of evidence points toward a role for 
IL-10 in chronic infl ammation during COPD and asthma [ 84 ,  85 ], although a direct 
causal effect for IL-10 in the pathogenesis of these disorders is unclear. In the case 
of CF, airway secretions from affl icted patients, as well as CFTR −/−  mice, have 
decreased IL-10 levels compared with secretions from normal individuals or 
CFTR +/+  mice [ 82 ].  

    Transforming Growth Factor-β 

 TGF-β is an anti-infl ammatory cytokine that exists in three isoforms, TGF-β1, -β2 
and -β3. TGF-β knockout mice are embryonic lethal as a result of profound multi-
organ infl ammation. TGF-β +/−  heterozygous mice have reduced levels of the cyto-
kine and exhibit exacerbated airway infl ammation compared with wild type animals, 
suggesting a role for endogenous TGF-β in suppressing the development of allergic 
airway disease [ 86 ]. Additional evidence supporting an anti-infl ammatory role for 
TGF-β comes from the observation that intratracheal delivery of TGF-β suppressed 
allergen-induced airway infl ammation in a murine model of asthma [ 87 ]. Increased 
airway infl ammation also was evident upon inhibition of TGF-β-dependent intracel-
lular signaling [ 88 ]. Genetic studies have demonstrated an association between gene 
polymorphisms of the TGF-β locus and COPD [ 89 ]. Finally, a possible role for 
TGF-β in CF comes from the report that CF human cell lines and cells from CFTR −/−  
mice have decreased Smad3 levels and decreased responses to TGF-β [ 90 ].  

    Peroxisome Proliferator Activating Receptor-γ 

 PPAR-α, -β, and -γ are members of the steroid hormone receptor family of ligand- 
activated transcription factors [ 82 ]. PPARs form heterodimers with retinoid X 
receptors that regulate gene transcription. PPARγ is expressed as two isoforms, 
PPARγ1 and PPARγ2, that differ by the presence of a unique 30 amino acid segment 
in the latter [ 91 ]. PPARγ2 is primarily expressed in adipose tissue, while PPARγ1 is 
expressed in the lung, heart, skeletal muscle, intestine, kidney, pancreas, spleen, 
breast, and lymphoid tissues [ 92 ]. Both PPARγ molecules are activated by pros-
tanoids, a subclass of eicosanoids consisting of prostaglandins, thromboxanes, and 
prostacyclins. Synthetic PPARγ ligands, such as the thiazolidinediones [ 93 ], have 
been developed that suppress infl ammation both in vitro and in vivo [ 94 ,  95 ], includ-
ing in response to lung infection with  Pseudomonas aeruginosa  [ 96 ], the major 
bacterial species that is responsible for the morbidity and mortality of CF. In the 
case of CF, at least three lines of evidence have been reported for an anti- infl ammatory 
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role for PPAR-γ. First, PPAR-γ inhibits airway infl ammation by competitively 
inhibiting NF-κB binding to gene promoters, thereby blocking the activation of pro-
infl ammatory cytokines [ 97 ]. Second, PPAR-γ expression is decreased in lung of 
CFTR −/−  mice compared with CFTR +/+  mice [ 98 ]. Finally, CF airway epithelial cell 
lines have reduced PPAR-γ levels compared with normal cells [ 99 ]. Thus, decreased 
PPAR-γ expression likely contributes to defective NF-κB signaling that favors 
increased airway infl ammation in CF, and possibly other infl ammatory airway dis-
eases. However, the exact mechanisms by which PPARγ down-regulates infl amma-
tory responses in CF and other lung diseases remain to be clarifi ed.  

    MUC1 Mucin 

 Of the 20 known mucin genes, MUC1 was the fi rst to be cloned [ 100 ,  101 ]. MUC1 
is a single pass, transmembrane glycoprotein located on the apical surface of airway 
epithelial cells and is composed of two polypeptide chains, a large molecular weight 
(>250 kDa) subunit containing glycosylated variable number of tandem repeats 
(VNTR) and a SEA ( s ea urchin sperm protein,  e nterokinase,  a grin) domain, and a 
25 kDa subunit comprised of the transmembrane and intracellular COOH-terminus 
(CT) regions of the molecule [ 25 ]. The two polypeptide structure of MUC1 arises as 
a consequence of proteolysis within the SEA domain [ 102 ]. MUC1 is unique among 
the membrane-bound mucins because its CT region constitutes a signal transduction 
domain. The CT contains multiple amino acid sequence motifs predicted as binding 
sites for Shc, c-Src, Grb-2, β-catenin, and phosphoinositide 3-kinase (PI3K) [ 25 ]. 
These motifs are evolutionarily conserved and undergo tyrosine phosphorylation. 
The presence of CT phosphorylation sites associated with signaling cascades that 
have been characterized for other membrane receptors has suggested that MUC1 is 
functionally analogous to cytokine and growth factor receptors [ 103 ].  

    Anti-Infl ammatory Role of MUC1 in Airway Epithelia 

 Identifi cation of a functional role for MUC1 in the airways was made possible by 
the generation of Muc1 knockout (Muc1 −/− ) mice [ 104 ]. Early experiments demon-
strated that Muc1 −/−  mice were predisposed to developing spontaneous eye infl am-
mation due to infections by  Staphylococcus ,  Streptococcus , or  Corynebacterium  
compared with wild type animals with an intact Muc1 gene [ 105 ]. Subsequent stud-
ies by Lu et al. [ 106 ] using an experimental model of bacterial lung infection showed 
that Muc1 −/−  mice exhibited reduced lung colonization by  P. aeruginosa , greater 
recruitment of leukocytes and higher levels of TNF-α and KC (mouse IL-8) in 
BALF compared with their wild type littermates. In vitro and in vivo mechanistic 
studies have indicated that MUC1/Muc1 plays an anti-infl ammatory role during 
 P. aeruginosa  airway infection by suppressing TLR5 signaling [ 107 – 110 ]. 

V. Kim et al.



91

More interestingly, the anti-infl ammatory effect of MUC1/Muc1 was not limited to 
TLR5, but also included TLR2, 3, 4, 7 and 9, suggesting that this cell surface mucin 
may be a universal, negative regulator of TLR signaling [ 110 ]. Given that the host 
responses to lung pathogens involves the expression of multiple PAMPs, which 
must be activated and regulated in response to infection, this fi nding suggests a 
crucial role for MUC1/Muc1 in the resolution of infl ammation, and perhaps in the 
genesis of chronic infl ammatory disorders, such as COPD, CF and asthma.  

    Regulation of MUC1 Expression by TNF-α 

 Given the anti-infl ammatory role of MUC1 in the airways, it is crucial to understand 
the mechanisms by which MUC1 gene expression is regulated. Several proinfl am-
matory cytokines have been shown to up-regulate MUC1 expression. Noteworthy in 
this regard is TNF-α. Skerrett et al. [ 111 ] reported that TNFR1 −/−  mice treated intra-
nasally with  P. aeruginosa  showed signifi cantly increased airway infl ammation 
compared with wild type mice, as measured by enhanced bacterial clearance from 
the lungs, increased numbers of neutrophils in BALF, and higher levels of TNF-α in 
BALF. Subsequently, TNF-α was demonstrated to stimulate MUC1 expression in 
A549 lung epithelial cells [ 107 ,  112 ]. The molecular mechanism of TNF-α-induced 
MUC1 up-regulation has been described in detail using a combination of biochemi-
cal, pharmacological, and molecular biological approaches [ 107 ]. The requirement 
for TNF-α in increased MUC1 expression has also been observed in A549 cells 
infected with respiratory syncytial virus (RSV) [ 109 ], as well as in mice infected 
with  P. aeruginosa  [ 113 ]. Thus, these results suggest that TNF-α may play a key 
role in controlling infl ammation during airway infection, from the initiation phase 
of bacterial exposure to the fi nal resolution of infl ammation, the latter likely by 
inducing the expression of key anti-infl ammatory molecules, such as MUC1, with 
possible assistance by IL-10 and/or PPAR-γ.  

    A Proposed Model for the Anti-Infl ammatory Role 
of MUC1 in the Airways 

 Based on the accumulated published literature, we propose the following model to 
account for MUC1, TLRs, and TNF-α in the airway epithelial response to respira-
tory infection [ 25 ]. Normally, transiently inspired pathogens are quickly removed by 
mucociliary clearance and phagocytosis by resident leukocytes in the airway lumen. 
With abnormally high pathogen load, for example due to a predisposing condition 
such as CF, microbial PAMPs activate TLRs resulting in the production of pro-
infl ammatory mediators (IL-8 and TNF-α), thereby promoting leukocyte infl ux into 
the airways. During the early stage of infection, MUC1 expression is suffi ciently low 
and TLR signaling is not antagonized. However, after invading pathogens have been 

Role of Epithelial Cells in Chronic Infl ammatory Lung Disease



92

cleared, increased levels of infl ammatory products such as neutrophil elastase 
and TNF-α up-regulate MUC1 expression which, in turn, suppresses the release of 
TNF-α, thus inhibiting TLR-dependent airway infl ammation. The net effect facili-
tates pathogen removal and returns the lungs to homeostasis. Future experiments 
are needed to provide additional support for this proposed negative feed-back loop 
model system.  

    MUC1 Mucin and Chronic Infl ammatory Lung Disease 

 TNF is the major pro-infl ammatory molecule during airway infection. Ulich et al. 
[ 114 ] demonstrated that intratracheal LPS-induced neutrophilic infl ammation in 
rats can be inhibited by intratracheal administration of soluble TNFR, suggesting 
that TNF/TNFR interaction plays a key role in LPS-induced airway neutrophilic 
infl ammation. Interestingly, TNFR1 defi cient mice not only failed to control either 
LPS or  Pseudomonas aeruginosa -induced neutrophilic infl ammation [ 111 ] but 
showed greater neutrophilic infl ammation to the contrary. Recently Choi et al. [ 113 ] 
showed that Muc1 −/−  mice behaves exactly the similar way as TNFR defi cient mice 
in response to airway  Pseudomonas aeruginosa  infection, i.e., an increased neutro-
philc infl ammation, compared with their WT Muc1 +/+  mice. The relationship 
between TNFR and Muc1 can be explained by Koga et al. [ 107 ] who demonstrated 
that the levels of MUC1 are controlled by the TNF/TNFR signaling pathway. Thus, 
MUC1/Muc1 seems to be controlled mainly by TNF both in vivo [ 113 ] and in vitro 
[ 107 ]. This timely regulation of infl ammation and its resolution has also been dem-
onstrated  in vivo  between TNF and IL-10, in which the former induces the latter, 
one of the major anti-infl ammatory molecule [ 115 ]. Thus, failure to induce suffi -
cient levels of anti-infl ammatory molecules in a timely manner during the course of 
lung infl ammation will result in lung tissue damage, and the subsequent repair pro-
cesses will result in lung remodeling, a major characteristic of infl ammatory lung 
diseases such as COPD and CF. Whether other anti-infl ammatory molecules are 
also controlled through the similar mechanism remains to be elucidated. 

 One of the interesting questions that arise from this study is why there are mul-
tiple anti-infl ammatory molecules and how they interact with each other during 
airway infection. For example, it has been shown that MUC1 induces IL-10, an 
anti-infl ammatory cytokine, in dendritic cells [ 116 ] and that the levels of IL-10 in 
the BALF of Muc1 KO mice were signifi cantly greater following  Pseudomonas 
aeruginosa  infection as compared with those of Muc1+/+ mice (unpublished data), 
suggesting the possible collaboration between the two during infl ammation. The 
same question may be applied to other anti-infl ammatory molecules in the lung that 
have been reported recently, including CD44 [ 117 ], aryl hydrocarbon receptor [ 118 ] 
and various lipid mediators [ 119 ,  120 ]. Further studies are required to understand 
the functional relationships between the known anti-infl ammatory molecules during 
the resolution of airway infl ammation.  

V. Kim et al.



93

    Summary and Conclusions 

 In summary, airway epithelial cells play a critical role in the pathogenesis of chronic 
infl ammatory lung disease. Their primary role in the process of host defense becomes 
dysregulated, and the excess infl ammation causes increased mucus production and 
hypersecretion, resulting in mucostasis, airway obstruction, and tissue remodeling 
from several downstream events. Clinical consequences include an accelerated 
decline in lung function, greater respiratory symtoms, exacerbations of underlying 
lung disease, recurrent lower respiratory tract infection, and higher mortality. 
Multiple complex interactions between infl ammatory cytokines and epithelial cells 
exist, and the precise roles of each in the generation of mucins and the amplifi cation 
of lung infl ammation remain unclear. There is, however, emerging evidence that the 
role of MUC1 mucin is essential to the airway epithelium’s response to environmen-
tal toxic agents, and therefore essential to the development of chronic and persistent 
infl ammation. Further studies are required to better understand the roles of this 
mucin as well as others in the pathogenesis of infl ammatory lung disease.     
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