Skip to main content

Sensing and Sampling Probes for Bio-applications

  • Living reference work entry
  • First Online:
Handbook of Biochips

Abstract

Liquid sampling is critical for several chemical analysis of biological sample because sampling process may affect reliability of obtained results related to the composition of the analyzed medium. This process requires instruments that should be extremely small in size, biocompatible, and minimally invasive. With recent technological advances, the sampling and analysis stages can be merged by, for example, integrating ultraminiaturized sensing techniques into implantable probe architectures. One objective of this approach is to provide continuous analysis, to reduce the required sample volume and to provide real-time characterization of the sampled biological environment. We observed several multimodal probes that handle both, sampling, sensing, and analysis with embedded data processing system. In this section, we review various techniques for implementing molecular detection methods in miniaturized medical instruments for chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Altuna A, Bellistri E, Cid E, Aivar P, Gal B, Berganzo J, Gabriel G, Guimerá A, Villa R, Fernández LJ et al (2013) Su-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 13(7):1422–1430

    Article  Google Scholar 

  • Bird D, Gu M (2003) Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt Lett 28(17):1552–1554

    Article  Google Scholar 

  • Bito L, Davson H, Levin E, Murray M, Snider N (1966) The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem 13(11):1057–1067

    Article  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7(5):446

    Article  Google Scholar 

  • Gradinaru V, Thompson KR, Zhang F, Mogri M, Kay K, Schneider MB, Deisseroth K (2007) Targeting and readout strategies for fast optical neural control in vitro and in vivo. J Neurosci 27(52):14231–14238

    Article  Google Scholar 

  • Jeong JW, McCall JG, Shin G, Zhang Y, Al-Hasani R, Kim M, Li S, Sim JY, Jang KI, Shi Y et al (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674

    Article  Google Scholar 

  • John J, Li Y, Zhang J, Loeb JA, Xu Y (2011) Microfabrication of 3D neural probes with combined electrical and chemical interfaces. J Micromech Microeng 21(10):105011

    Article  Google Scholar 

  • Kuo JT, Kim BJ, Hara SA, Lee CD, Gutierrez CA, Hoang TQ, Meng E (2013) Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration. Lab Chip 13(4):554–561

    Article  Google Scholar 

  • LeChasseur Y (2011) Microsonde optique et électrique pour l’enregistrement de neurones unitaires in vivo. PhD thesis, Université Laval

    Google Scholar 

  • Lee WH, Ngernsutivorakul T, Mabrouk OS, Wong JMT, Dugan CE, Pappas SS, Yoon HJ, Kennedy RT (2016) Microfabrication and in vivo performance of a microdialysis probe with embedded membrane. Anal Chem 88(2):1230–1237

    Article  Google Scholar 

  • Microdialysis (2021) Probes & guides. https://microdialysis.com/products/probes-guides.html

  • Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M, Milekovic T, Asboth L et al (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347(6218):159–163

    Article  Google Scholar 

  • Neuronexus (2021) Neural probes. http://neuronexus.com/products/neural-probes/

  • Pongrácz A, Fekete Z, Márton G, Bérces Z, Ulbert I, Fürjes P (2013) Deep-brain silicon multielectrodes for simultaneous in vivo neural recording and drug delivery. Sensors Actuators B Chem 189:97–105

    Article  Google Scholar 

  • Smith A, Olson R, Justice J Jr (1992) Quantitative microdialysis of dopamine in the striatum: effect of circadian variation. J Neurosci Methods 44(1):33–41

    Article  Google Scholar 

  • Song P, Hershey ND, Mabrouk OS, Slaney TR, Kennedy RT (2012) Mass spectrometry “sensor” for in vivo acetylcholine monitoring. Anal Chem 84(11):4659–4664

    Article  Google Scholar 

  • Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161

    Article  Google Scholar 

  • Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5(5):519–523

    Article  Google Scholar 

  • Vargas E, Ruiz M, Campuzano S, Reviejo A, Pingarrón J (2016) Non-invasive determination of glucose directly in raw fruits using a continuous flow system based on microdialysis sampling and amperometric detection at an integrated enzymatic biosensor. Anal Chim Acta 914:53–56

    Article  Google Scholar 

  • Zhang S, Song Y, Wang M, Xiao G, Gao F, Li Z, Tao G, Zhuang P, Yue F, Chan P et al (2018) Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson’s disease using nano-based microelectrode arrays. Microsyst Nanoeng 4:17070

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Canada Excellence Research Chair in Photonic Innovations. The authors also acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Miled .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Miled, A., Landari, H., Boukadoum, M., Messaddeq, Y. (2021). Sensing and Sampling Probes for Bio-applications. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_68-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_68-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6623-9

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics