Skip to main content

Robotic-Assisted Spine Surgery

  • Chapter
  • First Online:
Minimally Invasive Spine Surgery

Abstract

Spine surgery is challenging especially in patients with deformity or those who require complex revision surgeries. Robotic-assisted spine surgery systems have shown some promising initial results by increasing the accuracy of spinal instrumentation and thereby reducing potential complications, decreasing operative time, and reducing radiation exposure. The currently available robotic systems may show particular benefit in minimally invasive approaches and complex cases. Further experience and rigorous studies will be required before the full potential of robotic-assisted systems can be realized in the spine surgery field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanfranco AR, Castellanos AE, Desai JP, et al. Robotic surgery: a current perspective. Ann Surg. 2004;239:14–21.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Shoham M, Burman M, Zehavi E, et al. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Automation. 2003;19:893–901.

    Article  Google Scholar 

  3. Stuer C, Ringel F, Stoffel M, et al. Robotic technology in spine surgery: current applications and future developments. Acta Neurochir Suppl. 2011;109:241–5.

    Article  PubMed  Google Scholar 

  4. Lee J, Kim K, Chung W, et al. Human-guided surgical robot system for spinal fusion surgery: CoRASS. IEEE international conference on robotics and automation, 2008. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4543807

  5. Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part I—Technical development and a test case result. Neurosurgery. 2006;59:641–50; discussion 641−50.

    Article  PubMed  Google Scholar 

  6. Ortmaier T, Weiss H, Hagn U, et al. A hands-on-robot for accurate placement of pedicle screws. Proceedings of the 2006 IEEE international conference on robotics and automation, 2006. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1642345&queryText%3DA+hands-on-robot+for+accurate

  7. Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976). 2010;35:2109–15.

    Article  Google Scholar 

  8. Pechlivanis I, Kiriyanthan G, Engelhardt M, et al. Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976). 2009;34:392–8.

    Article  Google Scholar 

  9. Togawa D, Kayanja MM, Reinhardt MK, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2—Evaluation of system accuracy. Neurosurgery. 2007;60:ONS129–39; discussion ONS139.

    Article  PubMed  Google Scholar 

  10. Gaines Jr RW. The use of pedicle-screw internal fixation for the operative treatment of spinal disorders. J Bone Joint Surg Am. 2000;82-A:1458–76.

    PubMed  Google Scholar 

  11. Hicks JM, Singla A, Shen FH, et al. Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine (Phila Pa 1976). 2010;35:E465–70.

    Article  Google Scholar 

  12. Gautschi OP, Schatlo B, Schaller K, et al. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011;31:E8.

    Article  PubMed  Google Scholar 

  13. Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J. 2012;21:247–55.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976). 2007;32:E111–20.

    Article  Google Scholar 

  15. Shin BJ, James AR, Njoku IU, et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine. 2012;17:113–22.

    Article  PubMed  Google Scholar 

  16. Kantelhardt SR, Martinez R, Baerwinkel S, et al. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20:860–8.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013;22:661–6.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Devito DP, Gaskill T, Erickson M. Robotic-based guidance for pedicle screw instrumentation of the scoliotic spine. Spine Arthroplasty Society (SAS) 10th annual global symposium on motion preservation technology, 2010.

    Google Scholar 

  19. Hardenbrook M, Knoller N, Barzilay Y, et al. Clinical experience with miniature robot for spinal surgery: 89 clinical cases. Eposter presented at the 14th International Meeting on Advanced Spine Techniques (IMAST), Paradise Island (Bahamas), 2007.

    Google Scholar 

  20. Pfeiffer M, Schorer U, Hassel F, et al. First European experience with robotic assisted pedicle screw placement in the spine for fusion and dynamic stabilization (SpineAssist). 7th annual Spine Arthroplasty Society (SAS) global symposium on motion preservation technology, Berlin, 2007.

    Google Scholar 

  21. Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot. 2006;2:114–22.

    Article  CAS  PubMed  Google Scholar 

  22. Meir AR, Purushothamdas S. Computer-assisted spinal surgery for deformity—a review. Eur Musculoskelet Rev. 2011;6:48–54.

    Google Scholar 

  23. Lieberman IH, Hardenbrook MA, Wang JC, et al. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech. 2012;25:241–8.

    Article  PubMed  Google Scholar 

  24. Papadopoulos EC, Girardi FP, Sama A, et al. Accuracy of single-time, multilevel registration in image-guided spinal surgery. Spine J. 2005;5:263–7; discussion 268.

    Article  PubMed  Google Scholar 

  25. Takahashi J, Hirabayashi H, Hashidate H, et al. Accuracy of multilevel registration in image-guided pedicle screw insertion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35:347–52.

    Article  Google Scholar 

  26. Rampersaud YR, Foley KT, Shen AC, et al. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976). 2000;25:2637–45.

    Article  CAS  Google Scholar 

  27. Singer G. Occupational radiation exposure to the surgeon. J Am Acad Orthop Surg. 2005;13:69–76.

    PubMed  Google Scholar 

  28. Smith HE, Welsch MD, Sasso RC, et al. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med. 2008;31:532–7.

    PubMed Central  PubMed  Google Scholar 

  29. Ul Haque M, Shufflebarger HL, O’Brien M, et al. Radiation exposure during pedicle screw placement in adolescent idiopathic scoliosis: is fluoroscopy safe? Spine (Phila Pa 1976). 2006;31:2516–20.

    Article  Google Scholar 

  30. Wu H, Gao ZL, Lu ZW, et al. Radiation exposure to spine surgeon: a comparison of computer-assisted navigation and conventional technique. Zhongguo Gu Shang. 2009;22:874–6.

    PubMed  Google Scholar 

  31. Boris S, ALIK B, Vitaly A. Robot guided surgery in treatment of osteoporotic fractures. European Federation of National Associations of Orthopaedics and Traumatology (EFORT) 2011 Annual Congress; abstract 1097. 2011.

    Google Scholar 

  32. Zaulan Y, Alexandrovsky V, Khazin F, et al. Robotic assisted vertebroplasty: our experience with a novel approach to the treatment of vertebral compression fractures. World Society for Endoscopic Navigated and Minimal Invasive Spine Surgery (WENMISS) annual congress, London, 2008. http://www.bjjprocs.boneandjoint.org.uk/content/91-B/SUPP_III/390.3.abstract

  33. Ledonio CG, Polly Jr DW, Vitale MG, et al. Pediatric pedicle screws: comparative effectiveness and safety: a systematic literature review from the Scoliosis Research Society and the Pediatric Orthopaedic Society of North America task force. J Bone Joint Surg Am. 2011;93:1227–34.

    Article  PubMed  Google Scholar 

  34. Hu X, Lieberman IH. Use of robotic assisted pedicle screw placement in deformity and revision spine surgery. The 19th International Meeting on Advanced Spine Techniques (IMAST), Istanbul, 2012.

    Google Scholar 

  35. Watkins RG, Gupta A, Watkins RG. Cost-effectiveness of image-guided spine surgery. Open Orthop J. 2010;4:228–33.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Taylor R. A perspective on medical robotics. Proc IEEE. 2006;94:1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isador H. Lieberman MD, MBA, FRCSC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hu, X., Lieberman, I.H. (2014). Robotic-Assisted Spine Surgery. In: Phillips, F., Lieberman, I., Polly, D. (eds) Minimally Invasive Spine Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5674-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5674-2_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5673-5

  • Online ISBN: 978-1-4614-5674-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics