
Chapter 7
High-Dimensional Statistics

Jianqing Fan

7.1 Contributions of Peter Bickel to Statistical Learning

7.1.1 Introduction

Peter J. Bickel has made far-reaching and wide-ranging contributions to many
areas of statistics. This short article highlights his marvelous contributions to high-
dimensional statistical inference and machine learning, which range from novel
methodological developments, deep theoretical analysis, and their applications. The
focus is on the review and comments of his six recent papers in four areas, but only
three of them are reproduced here due to limit of the space.

Information and technology make data collection and dissemination much easier
over the last decade. High dimensionality and large data sets characterize many
contemporary statistical problems from genomics and neural science to finance
and economics, which give statistics and machine learning opportunities with
challenges. These relatively new areas of statistical science encompass the majority
of the frontiers and Peter Bickel is certainly a strong leader in those areas.

In response to the challenge of the complexity of data, new methods and greedy
algorithms started to flourish in the 1990s and their theoretical properties were
not well understood. Among those are the boosting algorithms and estimation
of insintric dimensionality. In 2005, Peter Bickel and his coauthors gave deep
theoretical foundation on boosting algorithms (Bickel et al. 2005; Freund and
Schapire 1997) and novel methods on the estimation of intrinsic dimensionality
(Levina and Bickel 2005). Another example is the use of LASSO (Tibshirani
1996) for high-dimensional variable selection. Realizing issues with biases of the
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Lasso estimate, Fan and Li (2001) advocated a family of folded concave penalties,
including SCAD, to ameliorate the problem and critically analyzed its theoretical
properties including LASSO. See also Fan and Lv (2011) for further analysis.
Candes and Tao (2007) introduced the Dantzig selector. Zou and Li (2008) related
the family folded-concave penalty with the adaptive LASSO (Zou 2006). It is Bickel
et al. (2009) who critically analyzed the risk properties of the Lasso and the Dantzig
selector, which significantly helps the statistics and machine learning communities
on better understanding various variable selection procedures.

Covariance matrix is prominently featured in many statistical problems from
network and graphic models to statistical inferences and portfolio management.
Yet, estimating large covariance matrices is intrinsically challenging. How to reduce
the number of parameters in a large covariance matrix is a challenging issue. In
Economics and Finance, motivated by the arbitrage pricing theory, Fan et al. (2008)
proposed to use the factor model to estimate the covariance matrix and its inverse.
Yet, the impact of dimensionality is still very large. Bickel and Levina (2008a,b)
and Rothman et al. (2008) proposed the use of sparsity, either on the covariance
matrix or precision matrix, to reduce the dimensionality. The penalized likelihood
method used in the paper fits in the generic framework of Fan and Li (2001) and
Fan and Lv (2011), and the theory developed therein is applicable. Yet, Rothman
et al. (2008) were able to utilize the specific structure of the covariance matrix and
Gaussian distribution to get much deeper results. Realizing intensive computation of
the penalized maximum likelihood method, Bickel and Levina (2008a,b) proposed
a simple threshold estimator that achieves the same theoretical properties.

The papers will be reviewed in chronological order. They have high impacts on
the subsequent development of statistics, applied mathematics, computer science,
information theory, and signal processing. Despite young ages of those papers, a
google-scholar search reveals that these six papers have around 900 citations. The
impacts to broader scientific communities are evidenced!

7.1.2 Intrinsic Dimensionality

A general consensus is that high-dimensional data admits lower dimensional
structure. The complexity of the data structure is characterized by the intrinsic
dimensionality of the data, which is critical for manifold learning such as local
linear embedding, Isomap, Lapacian and Hessian Eigenmaps (Brand 2002; Donoho
and Grimes 2003; Roweis and Saul 2000; Tenenbaum et al. 2000). These nonlinear
dimensionality reduction methods go behond traditional methods such as principal
component analysis (PCA), which deals only with linear projections, and multidi-
mensional scaling, which focuses on pairwise distances.

The techniques to estimate the intrinsic dimensionality before Levina and Bickel
(2005) are roughly two groups: eigenvalue methods or geometric methods. The
former are based on the number of eigenvalues greater than a given threshold.
They fail on nonlinear manifolds. While localization enhances the applicability of
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PCA, local methods depend strongly on the choice of local regions and thresholds
(Verveer and Duin 1995). The latter exploit the geometry of the data. A popular
metric is the correlation dimension from fractal analysis. Yet, there are a couple of
parameters to be tuned.

The main contributions of Levina and Bickel (2005) are twofolds: It derives the
maximum likelihood estimate (MLE) from a statistical prospective and gives its
statistical properties. The MLE here is really the local MLE in the terminology
of Fan and Gijbels (1996). Before this seminal work, there are virtually no formal
statistical properties on the estimation of intrinsic dimensionality. The methods were
often too heuristical and framework was not statistical.

The idea in Levina and Bickel (2005) is creative and statistical. Let X1, · · · ,Xn

be a random sample in Rp. They are embedded in an m-dimensional space via Xi =
g(Yi), with unknown dimensionality m and unknown functions g, in which Yi has
a smooth density f in Rm. Because of nonlinear embedding g, we can only use the
local data to determine m. Let R be small, which asymptotically goes to zero. Given
a point x in Rp, the local information is summarized by the number of observations
falling in the ball {z : ‖z− x‖ ≤ t}, which is denoted by Nx(t), for 0 ≤ t ≤ R. In
other words, the local information around x with radius R is characterized by the
process

{Nx(t) : 0 ≤ t ≤ R}. (7.1)

Clearly, Nx(t) is a binomial distribution with number of trial n and probability of
success

P(‖Xi − x‖ ≤ t)≈ f (x)V (m)tm, as t → 0, (7.2)

where V (m) = πm/2[Γ (m/2+ 1)]−1 is the volume of the unit sphere in Rm. Recall
that the approximation of the Binomial distribution by the Poison distribution. The
process {Nx(t) : 0 ≤ t ≤ R} is approximately a Poisson process with the rate λ (t),
which is the derivative of (7.2), or more precisely

λ (t) = n f (x)V (m)mtm−1 (7.3)

The parameters θ = log f (x) and m can be estimated by the maximum likelihood
using the local observation (7.1).

Assuming {Nx(t),0 ≤ t ≤ R} is the inhomogeneous Poisson process with rate
λ (t). Then, the log-likelihood of observing the process is given by

L(m,θ ) =
∫ R

0
logλ (t)dNx(t)−

∫ R

0
λ (t)dt. (7.4)

This can be understood by breaking the data {Nx(t),0 ≤ t ≤ R} as the data

{N(Δ),N(2Δ)−N(Δ), · · · ,N(T Δ)−N(TΔ −Δ)}, Δ = R/T (7.5)

with a large T and noticing that the data above follow independent poisson
distributions with mean λ ( jΔ)Δ for the j-th increment (The dependence on x



450 J. Fan

is suppressed for brevity of notation). Therefore, using the Poisson formula, the
likelihood of data (7.5) is

T

∏
j=1

exp(−λ ( jΔ)Δ)[λ ( jΔ)Δ ]dN( jΔ )/(dN( jΔ)!)

where dN( jΔ) = N( jΔ)−N( jΔ − Δ). Taking the logarithm and ignoring terms
independent of the parameters, the log-likelihood of the observing data in (7.5) is

T

∑
j=1

[logλ ( jΔ)]dN( jΔ)−
T

∑
j=1

λ ( jΔ)Δ .

Taking the limit as Δ → 0, we obtain (7.4).
By taking the derivatives with parameters m and θ in (7.4) and setting them to

zero, it is easy to obtain that

m̂R(x) =
{

log(R)−Nx(R)
−1

∫ R

0
(log t)dNx(t)

}−1

. (7.6)

Let Tk(x) be the distance of the k-th nearest point to x. Then,

m̂R(x) =

{
Nx(R)

−1
Nx(R)

∑
j=1

log[R/Tj(x)]

}−1

. (7.7)

Now, instead of fixing distance R, but fixing the number of points k, namely, taking
R = Tk(x) for a given k, then, Nx(R) = k by definition and the estimator becomes

m̂k(x) =

{
k−1

k

∑
j=1

log[Tk(x)/Tj(x)]

}−1

. (7.8)

Levina and Bickel (2005) realized that the parameter m is global whereas the
estimate m̂k(x) is local, depending on the location x. They averaged out the n
estimates at the observed data points and obtained

m̂k = n−1
n

∑
i=1

m̂k(Xi). (7.9)

To reduce the sensitivity on the choice of the parameter k, they proposed to use

m̂ = (k2 − k1 + 1)−1
k2

∑
k=k1

m̂k (7.10)

for the given choices of k1 and k2.
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The above discussion reveals that the parameter m was estimated in a semi-
parametric model in which f (x) is fully nonparametric. Levina and Bickel (2005)
estimates the global parameter m by averaging. Averaging reduces variances, but
not biases. Therefore, it requires k to be small. However, when p is large, even with
a small k, Tk(x) can be large and so can be the bias. For semiparametric model,
the work of Severini and Wong (1992) shows that the profile likelihood can have
a better bias property. Inspired by that, an alternative version of the estimator is to
use the global likelihood, which adds up the local likelihood (7.4) at each data point
Xi, i.e.

L(θx1 , · · · ,θxn ,m) =
n

∑
i=1

L(θxi ,m). (7.11)

Following the same derivations as in Levina and Bickel (2005), we obtain the
maximum profile likelihood estimator

m̂∗
R =

⎧⎨
⎩[

n

∑
i=1

Nxi(R)]
−1

n

∑
i=1

Nxi (R)

∑
j=1

log[R/Tj(xi)]

⎫⎬
⎭

−1

. (7.12)

In its nearest neighbourhood form,

m̂∗
k =

{
[n(k− 2)]−1

n

∑
i=1

k

∑
j=1

log[Tk(xi)/Tj(xi)]

}−1

. (7.13)

The reason for divisor (k− 2) instead of k is given in the next paragraph. It will be
interesting to compare the performance of the method (7.13) with (7.9).

Levina and Bickel (2005) derived the asymptotic bias and variance of estimator
(7.8). They advocated the normalization of (7.8) by (k− 2) rather than k. With this
normalization, they derived that to the first order,

E(m̂k(x)) = m, var(m̂k(x)) = m2/(k− 3). (7.14)

The paper has huge impact on manifold learning with a wide range of ap-
plications from patten analysis and object classification to machine learning and
statistics. It has been cited nearly 200 times within 6 years of publication.

7.1.3 Generalized Boosting

Boosting is an iterative algorithm that uses a sequence of weak classifiers, which
perform slightly better than a random guess, to build a stronger learner (Freund
1990; Schapire 1990), which can achieve the Bayes error rate. One of successful
boosting algorithms is the AdaBoost by Freund and Schapire (1997). The algorithm
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is powerful but appears heuristic at that time. It is Breiman (1998) who noted
that the AdaBoost classifier can be viewed as a greedy algorithm for an empirical
loss minimization. This makes a strong connection of the algorithm with statistical
foundation that enables us to understand better theoretical properties.

Let {(Xi,Yi)}p
i=1 be an i.i.d. sample where Yi ∈ {−1,1}. Let H be a set of weak

learners. Breiman (1998) observed that the AdaBoost classifier is sgn(F(X)), where
F is found by a greedy algorithm minimizing

n−1
n

∑
i=1

exp(−YiF(Xi)), (7.15)

over the class of function

F∞ =
∞⋃

k=1

{
k

∑
j=1

λ jh j : λ j ∈ R,h j ∈H }.

The work of Bickel et al. (2005) generalizes the AdaBoost in two important
directions: more general class of convex loss functions and more flexible class
of algorithms. This enables them to study the convergence of the algorithms and
classifiers in a unified framework. Let us state in the population version of their
algorithms to simplify the notation. The goal is to find F ∈ F∞ to minimize
w(F) = EW (YF) for a convex loss W (·). They proposed two relaxed Guass-
Southwell algorithms, which are basically coordinatewise optimization algorithms
in high-dimensional space. Given the current value Fm and coordinate h, one intends
to minimize W (Fm + λ h) over λ ∈ R. The first algorithm is as follows: For given
α ∈ (0,1] and F0, find inductively F1,F2, . . . , by Fm+1 =Fm+λmhm, λm ∈R, hm ∈H
such that

W (Fm+1)≤ α min
λ∈R,h∈H

W (Fm +λ h)+ (1−α)W(Fm). (7.16)

In particular, when λm and hm minimize W (Fm + λ h), then (7.16) is obviously
satisfied with equality. The generalization covers the possibility that the minimum
of W (Fm +λ h) is not assumed or multiply assumed. The algorithm is very general
in the sense that it does not even specify a way to find λm and hm, but a necessary
condition of (7.16) is that

W (Fm+1)≤W (Fm).

In other words, the target value decreases each iteration. The second algorithm is
the same as the first one but requires

W (Fm+1)+ γλ 2
m ≤ α min

λ∈R,h∈H
[W (Fm +λ h)+ γλ 2]+ (1−α)W(Fm). (7.17)

Under such a broad class of algorithms, Bickel et al. (2005) demonstrated
unambiguously and convincingly that the generalized boosting algorithm converges
to the Bayes classifier. They further demonstrated that the generalized boosting
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algorithms are consistent when the sample versions are used. In addition, they
were able to derive the algorithmic speed of convergence, minimax rates of the
convergence of the generalized boosting estimator to the Bayes classifier, and the
minimax rates of the Bayes classification regret. The results are deep and useful.
The work puts boosting algorithms in formal statistical framework and provides
insightful understanding on the fundamental properties of the boosting algorithms.

Regularization of Covariation Matrices

It is well known that the sample covariance matrix has unexpected features when
p and n are of the same order (Johnstone 2001; Marčcenko and Pastur 1967).
Regularization is needed in order to obtain the desire statistical properties. Peter
Bickel pioneered the work on the estimation of large covariance and led the
development of the field through three seminal papers in 2008. Before Bickel’s
work, the theoretical work is very limited, often confining the dimensionality to
be finite [with exception of Fan et al. (2008)], which does not reflect the nature of
high-dimensionality. It is Bickel’s work that allows the dimensionality grows much
faster than sample size.

To regularize the covariance matrices, one needs to impose some sparsity
conditions. The methods to explore sparsity are thresholding and the penalized
quasi-likelihood approach. The former is frequently applied to the situations in
which the sparsity is imposed on the elements which are directly estimable. For
example, when the p× p covariance matrix Σ is sparse, a natural estimator is the
following thresholding estimator

Σ̂t = (σ̂i, j I(|σ̂i, j| ≥ t)) (7.18)

for a thresholding parameter t. Bickel and Levina (2008b) considered a class of
matrix {

Σ : σii ≤ M,
p

∑
j=1

|σi j|q ≤ cp,∀i
}
, (7.19)

for 0≤ q< 1. In particular, when q= 0, cp is the maximum number of nonvanishing
elements in each row. They showed that when the data follow the Gaussian
distribution and tn = M′(n−1(log p))1/2 for a sufficiently large constant M′,

‖Σ̂tn −Σ‖= Op

(
cp

(
n−1 log p

)(1−q)/2
)
, (7.20)

and

p−1‖Σ̂tn −Σ‖2
F = Op

(
cp

(
n−1 log p

)1−q/2
)
. (7.21)

uniformly for the class of matrices in (4.3), where ‖A‖2 = λmax(AT A) is the
operator norm of a matrix A and ‖A‖2

F = ∑i, j a2
i j is the Frobenius norm. Similar
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results were derived when the distributions are sub-Gaussian or have finite moments
or when tn is chosen by cross-validation which is very technically challenging and
novel. This along with Bickel and Levina (2008b) and El Karoui (2008) are the first
results of this kind, allowing p � n, as long as cp does not grow too fast.

When the covariance matrix admits a banded structure whose off-diagonal
elements decay quickly:

∑
j:|i− j|>k

|σi j| ≤Ck−α , ∀i and k, (7.22)

as arising frequently in time-series application including the covariance matrix of
a weak-dependent stationary time series, Bickel and Levina (2008a) proposed a
banding or more generally tapering to take advantage of prior sparsity structure. Let

Σ̂B,k = (σ̂i jI(|i− j| ≤ k)

be the banded sample covariance matrix. They showed that by taking kn �
(n−1 log p)−1/(2(α+1)),

‖Σ̂B,kn − Σ̂‖= Op

[
(n−1 log p)α/(2(α+1))

]
= ‖Σ̂−1

B,kn
− Σ̂−1‖ (7.23)

uniformly in the class of matrices (7.22) with additional restrictions that

c ≤ λmin(Σ)≤ λmax(Σ)≤C.

This again shows that large sparse covariance matrix can well be estimated even
when p ≥ n. The results are related to the estimation of spectral density (Fan and
Gijbels 1996), but also allow non-stationary covariance matrices.

When the precision matrix Ω = Σ−1 is sparse, there is no easy way to apply
thresholding rule. Hence, Rothman et al. (2008) appealed to the penalized likelihood
method. Let �n(θ ) be the quasi-likelihood function based on a sample of size n and
it is known that θ is sparse. Then, the penalized likelihood admits the form

�n(θ )+∑
j

pλ (|θ j |). (7.24)

Fan and Li (2001) advocated the use of folded-concave penalty pλ to have a better
bias property and put down a general theory. In particular, when the data X1, · · · ,Xn

are i.i.d. from N(0,Σ), the penalized likelihood reduces to

tr(ΩΣ̂ )− log |Ω |+∑
i, j

pλ (|ωi j|), (7.25)

where the matrix Ω is assumed to be sparse and is of primary interest. Rothman
et al. (2008) utilized the fact that the diagonal elements are non-vanishing and
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should not be penalized. They proposed the penalized likelihood estimator Ω̂λ ,
which maximizes

tr(ΩΣ̂ )− log |Ω |+λ ∑
i
= j

|ωi j|. (7.26)

They showed that when λ � [(log p)/n]1/2,

‖Ω̂λ −Ω‖2
F = OP

(√
(p+ s)(log p)

n

)
, (7.27)

where s is the number of nonvanishing off diagonal elements. Note that there are
p+ 2s nonvanishing elements in Ω and (7.27) reveals that each nonsparse element
is estimated, on average, with rate (n−1(log p))−1/2.

Note that thresholding and banding are very simple and easy to use. However,
they are usually not semi-definite. Penalized likelihood can be used to enforce the
positive definiteness in the optimization. It can also be applied to estimate sparse
covariance matrices and sparse Chelosky decomposition; see Lam and Fan (2009).

The above three papers give us a comprehensive overview on the estimability
of large covariance matrices. They have inspired many follow up work, including
Levina et al. (2008), Lam and Fan (2009), Rothman et al. (2009), Cai et al. (2010),
Cai and Liu (2011), and Cai and Zhou (2012), among others. In particular, the
work inspires Fan et al. (2011) to propose an approximate factor model, allowing
the idiosyncratic errors among financial assets to have a sparse covariance matrix,
that widens significantly the scope and applicability of the strict factor model in
finance. It also helps solving the aforementioned semi-definiteness issue, due to
thresholding.

7.1.4 Variable Selections

Peter Bickel contributions to high-dimensional regression are highlighted by his
paper with Ritov and Tsybakov (Bickel et al. 2009) on the analysis of the risk
properties of the LASSO and Dantzig selector. This is done in least-squares setting
on the nonparametric regression via basis approximations (approximate linear
model) or linear model itself. This is based the following important observations
in Bickel et al. (2009).

Recall that the LASSO estimator β̂L minimizes

(2n)−1‖Y−Xβ‖2+λ
p

∑
j=1

|β j|. (7.28)
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A necessary condition is that 0 belongs to the subgradient of the function (7.28),
which is the same as

‖n−1X(Y−Xβ̂L)‖∞ ≤ λ . (7.29)

The Danzig selector (Candes and Tao 2007) is defined by

β̂D = argmin
{
‖β‖1 : ‖n−1X(Y−Xβ )‖∞ ≤ λ

}
. (7.30)

Thus, β̂D satisfies (7.29), having a smaller L1-norm than LASSO, by definition.
They also show that for both the Lasso and the Danzig estimator, their estimation
error δ satisfies

‖δJc‖1 ≤ c‖δJ‖1

with probability close to 1, where J is the subset of non-vanishing true regression
coefficients. This leads them to define restricted eigenvalue assumptions.

For linear model, Bickel et al. (2009) established the convergence rates of

‖β̂D −β‖p for p ∈ [1,2] and ‖X(β̂D −β )‖2. (7.31)

The former is on the convergence rate of the estimator and the latter is on the
prediction risk of the estimator. They also established the rate of convergence for
the Lasso estimator. Both estimators admit the same rate of convergence under the
same conditions. Similar results hold when the method is applied to nonparametric
regression. This leads Bickel et al. (2009) to conclude that both the Danzig selector
and Lasso estimator are equivalent.

The contributions of the paper are multi-fold. First of all, it provides a good
understanding on the performance of the newly invented Danzig estimator and its
relation to the Lasso estimator. Secondly, it introduced new technical tools for the
analysis of penalized least-squares estimator. Thirdly, it derives various new results,
including oracle inequalities, for the Lasso and the Danzig selector in both linear
model and nonparametric regression model. The work has a strong impact on the
recent development of the high-dimensional statistical learning. Within 3 years of
its publications, it has been cited around 300 times!
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