Chapter 7
High-Dimensional Statistics

Jianqing Fan

7.1 Contributions of Peter Bickel to Statistical Learning

7.1.1 Introduction

Peter J. Bickel has made far-reaching and wide-ranging contributions to many
areas of statistics. This short article highlights his marvelous contributions to high-
dimensional statistical inference and machine learning, which range from novel
methodological developments, deep theoretical analysis, and their applications. The
focus is on the review and comments of his six recent papers in four areas, but only
three of them are reproduced here due to limit of the space.

Information and technology make data collection and dissemination much easier
over the last decade. High dimensionality and large data sets characterize many
contemporary statistical problems from genomics and neural science to finance
and economics, which give statistics and machine learning opportunities with
challenges. These relatively new areas of statistical science encompass the majority
of the frontiers and Peter Bickel is certainly a strong leader in those areas.

In response to the challenge of the complexity of data, new methods and greedy
algorithms started to flourish in the 1990s and their theoretical properties were
not well understood. Among those are the boosting algorithms and estimation
of insintric dimensionality. In 2005, Peter Bickel and his coauthors gave deep
theoretical foundation on boosting algorithms (Bickel et al. 2005; Freund and
Schapire 1997) and novel methods on the estimation of intrinsic dimensionality
(Levina and Bickel 2005). Another example is the use of LASSO (Tibshirani
1996) for high-dimensional variable selection. Realizing issues with biases of the
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Lasso estimate, Fan and Li (2001) advocated a family of folded concave penalties,
including SCAD, to ameliorate the problem and critically analyzed its theoretical
properties including LASSO. See also Fan and Lv (2011) for further analysis.
Candes and Tao (2007) introduced the Dantzig selector. Zou and Li (2008) related
the family folded-concave penalty with the adaptive LASSO (Zou 20006). It is Bickel
et al. (2009) who critically analyzed the risk properties of the Lasso and the Dantzig
selector, which significantly helps the statistics and machine learning communities
on better understanding various variable selection procedures.

Covariance matrix is prominently featured in many statistical problems from
network and graphic models to statistical inferences and portfolio management.
Yet, estimating large covariance matrices is intrinsically challenging. How to reduce
the number of parameters in a large covariance matrix is a challenging issue. In
Economics and Finance, motivated by the arbitrage pricing theory, Fan et al. (2008)
proposed to use the factor model to estimate the covariance matrix and its inverse.
Yet, the impact of dimensionality is still very large. Bickel and Levina (2008a,b)
and Rothman et al. (2008) proposed the use of sparsity, either on the covariance
matrix or precision matrix, to reduce the dimensionality. The penalized likelihood
method used in the paper fits in the generic framework of Fan and Li (2001) and
Fan and Lv (2011), and the theory developed therein is applicable. Yet, Rothman
et al. (2008) were able to utilize the specific structure of the covariance matrix and
Gaussian distribution to get much deeper results. Realizing intensive computation of
the penalized maximum likelihood method, Bickel and Levina (2008a,b) proposed
a simple threshold estimator that achieves the same theoretical properties.

The papers will be reviewed in chronological order. They have high impacts on
the subsequent development of statistics, applied mathematics, computer science,
information theory, and signal processing. Despite young ages of those papers, a
google-scholar search reveals that these six papers have around 900 citations. The
impacts to broader scientific communities are evidenced!

7.1.2 Intrinsic Dimensionality

A general consensus is that high-dimensional data admits lower dimensional
structure. The complexity of the data structure is characterized by the intrinsic
dimensionality of the data, which is critical for manifold learning such as local
linear embedding, Isomap, Lapacian and Hessian Eigenmaps (Brand 2002; Donoho
and Grimes 2003; Roweis and Saul 2000; Tenenbaum et al. 2000). These nonlinear
dimensionality reduction methods go behond traditional methods such as principal
component analysis (PCA), which deals only with linear projections, and multidi-
mensional scaling, which focuses on pairwise distances.

The techniques to estimate the intrinsic dimensionality before Levina and Bickel
(2005) are roughly two groups: eigenvalue methods or geometric methods. The
former are based on the number of eigenvalues greater than a given threshold.
They fail on nonlinear manifolds. While localization enhances the applicability of
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PCA, local methods depend strongly on the choice of local regions and thresholds
(Verveer and Duin 1995). The latter exploit the geometry of the data. A popular
metric is the correlation dimension from fractal analysis. Yet, there are a couple of
parameters to be tuned.

The main contributions of Levina and Bickel (2005) are twofolds: It derives the
maximum likelihood estimate (MLE) from a statistical prospective and gives its
statistical properties. The MLE here is really the local MLE in the terminology
of Fan and Gijbels (1996). Before this seminal work, there are virtually no formal
statistical properties on the estimation of intrinsic dimensionality. The methods were
often too heuristical and framework was not statistical.

The idea in Levina and Bickel (2005) is creative and statistical. Let Xy, -+, X,
be a random sample in R”. They are embedded in an m-dimensional space via X; =
g(Y,), with unknown dimensionality m and unknown functions g, in which Y; has
a smooth density f in R™. Because of nonlinear embedding g, we can only use the
local data to determine m. Let R be small, which asymptotically goes to zero. Given
a point x in R?, the local information is summarized by the number of observations
falling in the ball {z: ||z —x|| <}, which is denoted by Nx(t), for 0 <t < R. In
other words, the local information around x with radius R is characterized by the
process

{N(1): 0 <1 <R} (7.1)

Clearly, Nx(¢) is a binomial distribution with number of trial n and probability of
success

PIX;—x]| < 1) ~ FV ()™, ast—0, (1.2)

where V (m) = n"/2["(m/2 4 1)] " is the volume of the unit sphere in R". Recall
that the approximation of the Binomial distribution by the Poison distribution. The
process {Nx(¢) : 0 <t < R} is approximately a Poisson process with the rate A(¢),
which is the derivative of (7.2), or more precisely

A1) = nf(X)V (m)m™ " (7.3)

The parameters 6 = log f(x) and m can be estimated by the maximum likelihood
using the local observation (7.1).

Assuming {Ng(¢),0 <t < R} is the inhomogeneous Poisson process with rate
A(t). Then, the log-likelihood of observing the process is given by

R R
L(m,0) = / log A.(1)dNy(1) — / (). (7.4)
0 0
This can be understood by breaking the data {Nx(¢),0 <t < R} as the data
{N(A),N(2A) —=N(A),--- ,N(TA)—=N(TA—A)}, A=R/T (7.5)

with a large 7 and noticing that the data above follow independent poisson
distributions with mean A(jA)A for the j-th increment (The dependence on x
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is suppressed for brevity of notation). Therefore, using the Poisson formula, the
likelihood of data (7.5) is

T
[Texp(=2(jA)A)[A(jA)A]™M) /(N (jA)1)
j=1

where dN(jA) = N(jA) — N(jA — A). Taking the logarithm and ignoring terms
independent of the parameters, the log-likelihood of the observing data in (7.5) is

™M=

[logA(jA)|dN(jA)— ZQL JA)A
=

Taking the limit as A — 0, we obtain (7.4).
By taking the derivatives with parameters m and 6 in (7.4) and setting them to
zero, it is easy to obtain that

. -1
i) = {log(r) - M(®) " ["(ogna(o)} 7.6)

Let Ty (x) be the distance of the k-th nearest point to x. Then,

Nx(R) !
MR(X) = {NX(R)1 Z,l log[R/Tj(X)]} : (1.7)

Now, instead of fixing distance R, but fixing the number of points k, namely, taking
R = Ti(x) for a given k, then, Nx(R) = k by definition and the estimator becomes

X -1
i (x) = {kl Y 10g[Tk(x)/Tj(x)]} : (7.8)
j=1

Levina and Bickel (2005) realized that the parameter m is global whereas the
estimate 7y (x) is local, depending on the location x. They averaged out the n
estimates at the observed data points and obtained

n
e =n""Y (X)) (7.9)
i=1
To reduce the sensitivity on the choice of the parameter k, they proposed to use

ka
M= (ky—ki+1)"" Y i (7.10)
k=k;

for the given choices of k| and k.
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The above discussion reveals that the parameter m was estimated in a semi-
parametric model in which f(x) is fully nonparametric. Levina and Bickel (2005)
estimates the global parameter m by averaging. Averaging reduces variances, but
not biases. Therefore, it requires & to be small. However, when p is large, even with
a small k, T;(x) can be large and so can be the bias. For semiparametric model,
the work of Severini and Wong (1992) shows that the profile likelihood can have
a better bias property. Inspired by that, an alternative version of the estimator is to
use the global likelihood, which adds up the local likelihood (7.4) at each data point
X,‘, i.e.

n

L(6x,, - ,6x,,m) = Y L(6y,m). (7.11)
i=1

Following the same derivations as in Levina and Bickel (2005), we obtain the
maximum profile likelihood estimator

-1

= (X MR]Y, Y loglR/Tix)] 1.12)

In its nearest neighbourhood form,

n k -1
= {[n(k—Z)]1 > log[Tk(Xi)/Tj(Xi)]} : (7.13)

i=1j=1

The reason for divisor (k —2) instead of k is given in the next paragraph. It will be
interesting to compare the performance of the method (7.13) with (7.9).

Levina and Bickel (2005) derived the asymptotic bias and variance of estimator
(7.8). They advocated the normalization of (7.8) by (k — 2) rather than k. With this
normalization, they derived that to the first order,

E(g(x))=m,  var(iy(x)) =m?/(k—3). (7.14)

The paper has huge impact on manifold learning with a wide range of ap-
plications from patten analysis and object classification to machine learning and
statistics. It has been cited nearly 200 times within 6 years of publication.

7.1.3 Generalized Boosting

Boosting is an iterative algorithm that uses a sequence of weak classifiers, which
perform slightly better than a random guess, to build a stronger learner (Freund
1990; Schapire 1990), which can achieve the Bayes error rate. One of successful
boosting algorithms is the AdaBoost by Freund and Schapire (1997). The algorithm
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is powerful but appears heuristic at that time. It is Breiman (1998) who noted
that the AdaBoost classifier can be viewed as a greedy algorithm for an empirical
loss minimization. This makes a strong connection of the algorithm with statistical
foundation that enables us to understand better theoretical properties.

Let {(X;,Y;)}_, be an i.i.d. sample where ¥; € {—1,1}. Let # be a set of weak
learners. Breiman (1998) observed that the AdaBoost classifier is sgn(F' (X)), where
F is found by a greedy algorithm minimizing

i 1Y exp(~ViF(X,)), (7.15)
i=1

over the class of function

il k
Froo = U{lehji)tjER,hjEf%ﬁ}.
k=1 j=1

The work of Bickel et al. (2005) generalizes the AdaBoost in two important
directions: more general class of convex loss functions and more flexible class
of algorithms. This enables them to study the convergence of the algorithms and
classifiers in a unified framework. Let us state in the population version of their
algorithms to simplify the notation. The goal is to find F € .Z. to minimize
w(F) = EW(YF) for a convex loss W(-). They proposed two relaxed Guass-
Southwell algorithms, which are basically coordinatewise optimization algorithms
in high-dimensional space. Given the current value F;, and coordinate /, one intends
to minimize W (F,, + Ah) over A € R. The first algorithm is as follows: For given
o € (0, 1] and Fy, find inductively Fy, F>, ..., by Fyi1 = Foy+ Amhin, A €R, by €
such that

W(Fpi1) <o min W(F,+Ah)+ (1 — a)W(F,). (7.16)
ALER heH
In particular, when A,, and h, minimize W (F,, + Ah), then (7.16) is obviously
satisfied with equality. The generalization covers the possibility that the minimum
of W(F,, + Ah) is not assumed or multiply assumed. The algorithm is very general
in the sense that it does not even specify a way to find A,, and A, but a necessary
condition of (7.16) is that

W(Eni1) S W(Fn).

In other words, the target value decreases each iteration. The second algorithm is
the same as the first one but requires

W(Fp) + A2 <o min  [W(Ey+Ah) +yA% + (1 — a)W(F,).  (7.17)
AER heH

Under such a broad class of algorithms, Bickel et al. (2005) demonstrated
unambiguously and convincingly that the generalized boosting algorithm converges
to the Bayes classifier. They further demonstrated that the generalized boosting
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algorithms are consistent when the sample versions are used. In addition, they
were able to derive the algorithmic speed of convergence, minimax rates of the
convergence of the generalized boosting estimator to the Bayes classifier, and the
minimax rates of the Bayes classification regret. The results are deep and useful.
The work puts boosting algorithms in formal statistical framework and provides
insightful understanding on the fundamental properties of the boosting algorithms.

Regularization of Covariation Matrices

It is well known that the sample covariance matrix has unexpected features when
p and n are of the same order (Johnstone 2001; Marécenko and Pastur 1967).
Regularization is needed in order to obtain the desire statistical properties. Peter
Bickel pioneered the work on the estimation of large covariance and led the
development of the field through three seminal papers in 2008. Before Bickel’s
work, the theoretical work is very limited, often confining the dimensionality to
be finite [with exception of Fan et al. (2008)], which does not reflect the nature of
high-dimensionality. It is Bickel’s work that allows the dimensionality grows much
faster than sample size.

To regularize the covariance matrices, one needs to impose some sparsity
conditions. The methods to explore sparsity are thresholding and the penalized
quasi-likelihood approach. The former is frequently applied to the situations in
which the sparsity is imposed on the elements which are directly estimable. For
example, when the p X p covariance matrix X is sparse, a natural estimator is the
following thresholding estimator

3 =(611(161j] > 1)) (7.18)

for a thresholding parameter 7. Bickel and Levina (2008b) considered a class of
matrix

)4
{z:oiigM, Y |o,~j|qgc,,,\ﬁ}, (7.19)
=

for 0 < g < 1. In particular, when g = 0, ¢,, is the maximum number of nonvanishing
elements in each row. They showed that when the data follow the Gaussian
distribution and 7, = M’ (n~ ' (log p))"/? for a sufficiently large constant M,

15, - = =0, (c,, (n! 1ogp)“’q>/2), (7.20)

and
1 _ 1—q/2
P15, = 2l = 0, (e, (1" 10gp) 7). (7.21)

uniformly for the class of matrices in (4.3), where ||A|?> = Amax(ATA) is the
operator norm of a matrix A and [[A[|7 =¥, ; a%]- is the Frobenius norm. Similar
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results were derived when the distributions are sub-Gaussian or have finite moments
or when ¢, is chosen by cross-validation which is very technically challenging and
novel. This along with Bickel and Levina (2008b) and El Karoui (2008) are the first
results of this kind, allowing p > n, as long as ¢, does not grow too fast.

When the covariance matrix admits a banded structure whose off-diagonal
elements decay quickly:

Y loyjl<Ck®  Viandk, (7.22)
ik

as arising frequently in time-series application including the covariance matrix of
a weak-dependent stationary time series, Bickel and Levina (2008a) proposed a
banding or more generally tapering to take advantage of prior sparsity structure. Let

Spp = (61(Ji— j| <k)

be the banded sample covariance matrix. They showed that by taking k, =<
(nfllogp)fl/(z(owrl))’

A

1£54, = £l = 0, [ (1 togp)/ et ] =554 — 571 (7.23)
uniformly in the class of matrices (7.22) with additional restrictions that
c< )l'min(z) < A'max(z) <C.

This again shows that large sparse covariance matrix can well be estimated even
when p > n. The results are related to the estimation of spectral density (Fan and
Gijbels 1996), but also allow non-stationary covariance matrices.

When the precision matrix 2 = X! is sparse, there is no easy way to apply
thresholding rule. Hence, Rothman et al. (2008) appealed to the penalized likelihood
method. Let ¢,(0) be the quasi-likelihood function based on a sample of size n and
it is known that 6 is sparse. Then, the penalized likelihood admits the form

(n(8)+ X P2 (16)])- (7.24)
J

Fan and Li (2001) advocated the use of folded-concave penalty p; to have a better
bias property and put down a general theory. In particular, when the data Xy, --- , X,
are i.i.d. from N(0,X), the penalized likelihood reduces to

r(Q2) —log|Q2|+ Y pa(|oi]), (7.25)
i,j

where the matrix €2 is assumed to be sparse and is of primary interest. Rothman
et al. (2008) utilized the fact that the diagonal elements are non-vanishing and
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should not be penalized. They proposed the penalized likelihood estimator Q;L,
which maximizes

tr(QZ) —log|Q2[+ 1Y |w;l. (7.26)
i#]
They showed that when A = [(log p) /n]'/?,

|Q)L_-Q|%“—0P< (”“Lﬂ> (7.27)

where s is the number of nonvanishing off diagonal elements. Note that there are
p + 2s nonvanishing elements in £2 and (7.27) reveals that each nonsparse element
is estimated, on average, with rate (n~! (log p))~1/2.

Note that thresholding and banding are very simple and easy to use. However,
they are usually not semi-definite. Penalized likelihood can be used to enforce the
positive definiteness in the optimization. It can also be applied to estimate sparse
covariance matrices and sparse Chelosky decomposition; see Lam and Fan (2009).

The above three papers give us a comprehensive overview on the estimability
of large covariance matrices. They have inspired many follow up work, including
Levina et al. (2008), Lam and Fan (2009), Rothman et al. (2009), Cai et al. (2010),
Cai and Liu (2011), and Cai and Zhou (2012), among others. In particular, the
work inspires Fan et al. (2011) to propose an approximate factor model, allowing
the idiosyncratic errors among financial assets to have a sparse covariance matrix,
that widens significantly the scope and applicability of the strict factor model in
finance. It also helps solving the aforementioned semi-definiteness issue, due to
thresholding.

7.1.4 Variable Selections

Peter Bickel contributions to high-dimensional regression are highlighted by his
paper with Ritov and Tsybakov (Bickel et al. 2009) on the analysis of the risk
properties of the LASSO and Dantzig selector. This is done in least-squares setting
on the nonparametric regression via basis approximations (approximate linear
model) or linear model itself. This is based the following important observations
in Bickel et al. (2009).

Recall that the LASSO estimator BL minimizes

)4
(2n)*1|\Y—Xﬁ||2+A_ZIIBj|- (7.28)
J=
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A necessary condition is that O belongs to the subgradient of the function (7.28),
which is the same as

I~ X(Y = XB) o < 2. (7.29)
The Danzig selector (Candes and Tao 2007) is defined by

ﬁD:argmin{HﬁHl : ||n’1X(Y—XB)||w§)L}. (7.30)

Thus, BD satisfies (7.29), having a smaller Li-norm than LASSO, by definition.
They also show that for both the Lasso and the Danzig estimator, their estimation
error O satisfies

[8sel1 < cll6s]1

with probability close to 1, where J is the subset of non-vanishing true regression
coefficients. This leads them to define restricted eigenvalue assumptions.
For linear model, Bickel et al. (2009) established the convergence rates of

1Bp—Bllpforpe(1.2] and [IX(Bp—B)]2. (7.31)

The former is on the convergence rate of the estimator and the latter is on the
prediction risk of the estimator. They also established the rate of convergence for
the Lasso estimator. Both estimators admit the same rate of convergence under the
same conditions. Similar results hold when the method is applied to nonparametric
regression. This leads Bickel et al. (2009) to conclude that both the Danzig selector
and Lasso estimator are equivalent.

The contributions of the paper are multi-fold. First of all, it provides a good
understanding on the performance of the newly invented Danzig estimator and its
relation to the Lasso estimator. Secondly, it introduced new technical tools for the
analysis of penalized least-squares estimator. Thirdly, it derives various new results,
including oracle inequalities, for the Lasso and the Danzig selector in both linear
model and nonparametric regression model. The work has a strong impact on the
recent development of the high-dimensional statistical learning. Within 3 years of
its publications, it has been cited around 300 times!
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Abstract

We propose a new method for estimating intrinsic dimension of a
dataset derived by applying the principle of maximum likelihood to
the distances between close neighbors. We derive the estimator by
a Poisson process approximation, assess its bias and variance theo-
retically and by simulations, and apply it to a number of simulated
and real datasets. We also show it has the best overall performance
compared with two other intrinsic dimension estimators.

1 Introduction

There is a consensus in the high-dimensional data analysis community that the only
reason any methods work in very high dimensions is that, in fact, the data are not
truly high-dimensional. Rather, they are embedded in a high-dimensional space,
but can be efficiently summarized in a space of a much lower dimension, such as a
nonlinear manifold. Then one can reduce dimension without losing much informa-
tion for many types of real-life high-dimensional data, such as images, and avoid
many of the “curses of dimensionality”. Learning these data manifolds can improve
performance in classification and other applications, but if the data structure is
complex and nonlinear, dimensionality reduction can be a hard problem.

Traditional methods for dimensionality reduction include principal component anal-
ysis (PCA), which only deals with linear projections of the data, and multidimen-
sional scaling (MDS), which aims at preserving pairwise distances and traditionally
is used for visualizing data. Recently, there has been a surge of interest in manifold
projection methods (Locally Linear Embedding (LLE) [1], Isomap [2], Laplacian
and Hessian Eigenmaps [3, 4], and others), which focus on finding a nonlinear
low-dimensional embedding of high-dimensional data. So far, these methods have
mostly been used for exploratory tasks such as visualization, but they have also
been successfully applied to classification problems [5, 6].

The dimension of the embedding is a key parameter for manifold projection meth-
ods: if the dimension is too small, important data features are “collapsed” onto the
same dimension, and if the dimension is too large, the projections become noisy
and, in some cases, unstable. There is no consensus, however, on how this dimen-
sion should be determined. LLE [1] and its variants assume the manifold dimension
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is provided by the user. Isomap [2] provides error curves that can be “eyeballed” to
estimate dimension. The charting algorithm, a recent LLE variant 7], uses a heuris-
tic estimate of dimension which is essentially equivalent to the regression estimator
of [8] discussed below. Constructing a reliable estimator of intrinsic dimension and
understanding its statistical properties will clearly facilitate further applications of
manifold projection methods and improve their performance.

We note that for applications such as classification, cross-validation is in principle
the simplest solution — just pick the dimension which gives the lowest classifica-
tion error. However, in practice the computational cost of cross-validating for the
dimension is prohibitive, and an estimate of the intrinsic dimension will still be
helpful, either to be used directly or to narrow down the range for cross-validation.

In this paper, we present a new estimator of intrinsic dimension, study its statistical
properties, and compare it to other estimators on both simulated and real datasets.
Section 2 reviews previous work on intrinsic dimension. In Section 3 we derive the
estimator and give its approximate asymptotic bias and variance. Section 4 presents
results on datasets and compares our estimator to two other estimators of intrinsic
dimension. Section 5 concludes with discussion.

2 Previous Work on Intrinsic Dimension Estimation

The existing approaches to estimating the intrinsic dimension can be roughly di-
vided into two groups: eigenvalue or projection methods, and geometric methods.
Eigenvalue methods, from the early proposal of [9] to a recent variant [10] are based
on a global or local PCA, with intrinsic dimension determined by the number of
eigenvalues greater than a given threshold. Global PCA methods fail on nonlinear
manifolds, and local methods depend heavily on the precise choice of local regions
and thresholds [11]. The eigenvalue methods may be a good tool for exploratory
data analysis, where one might plot the eigenvalues and look for a clear-cut bound-
ary, but not for providing reliable estimates of intrinsic dimension.

The geometric methods exploit the intrinsic geometry of the dataset and are most
often based on fractal dimensions or nearest neighbor (NN) distances. Perhaps the
most popular fractal dimension is the correlation dimension [12, 13]: given a set
S, ={z1,...,2,} in a metric space, define

2 n n
Calr) = === 3" 3 Ui~ < 7). 1)

n(n—1) &~ £

i=1 j=i+1
The correlation dimension is then estimated by plotting log C,,(r) against logr and
estimating the slope of the linear part [12]. A recent variant [13] proposed plotting
this estimate against the true dimension for some simulated data and then using
this calibrating curve to estimate the dimension of a new dataset. This requires a
different curve for each n, and the choice of calibration data may affect performance.
The capacity dimension and packing numbers have also been used [14]. While
the fractal methods successfully exploit certain geometric aspects of the data, the
statistical properties of these methods have not been studied.

The correlation dimension (1) implicitly uses NN distances, and there are methods
that focus on them explicitly. The use of NN distances relies on the following fact: if
X1,..., X, are an independent identically distributed (i.i.d.) sample from a density
f(z) in R™, and Tj(z) is the Buclidean distance from a fixed point x to its k-th
NN in the sample, then

~ F@)V (m)[Ti()]™, @)

3|
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where V(m) = 7/2[I'(m/2 +1)] 7! is the volume of the unit sphere in R™. That is,
the proportion of sample points falling into a ball around z is roughly f(z) times
the volume of the ball.

The relationship (2) can be used to estimate the dimension by regressing log Ty
on logk over a suitable range of k, where T}, = n~! 22;1 Ty (X;) is the average of
distances from each point to its k-th NN [8, 11]. A comparison of this method to
a local eigenvalue method [11] found that the NN method suffered more from un-
derestimating dimension for high-dimensional datasets, but the eigenvalue method
was sensitive to noise and parameter settings. A more sophisticated NN approach
was recently proposed in [15], where the dimension is estimated from the length of
the minimal spanning tree on the geodesic NN distances computed by Isomap.

While there are certainly existing methods available for estimating intrinsic dimen-
sion, there are some issues that have not been adequately addressed. The behavior
of the estimators as a function of sample size and dimension is not well understood
or studied beyond the obvious “curse of dimensionality”; the statistical properties
of the estimators, such as bias and variance, have not been looked at (with the
exception of [15]); and comparisons between methods are not always presented.

3 A Maximum Likelihood Estimator of Intrinsic Dimension

Here we derive the maximum likelihood estimator (MLE) of the dimension m from
i.i.d. observations X,..., X, in RP. The observations represent an embedding of a
lower-dimensional sample, i.e., X; = ¢(Y;), where Y; are sampled from an unknown
smooth density f on R™, with unknown m < p, and g is a continuous and sufficiently
smooth (but not necessarily globally isometric) mapping. This assumption ensures
that close neighbors in R™ are mapped to close neighbors in the embedding.

The basic idea is to fix a point z, assume f(x) & const in a small sphere S, (R) of
radius R around x, and treat the observations as a homogeneous Poisson process in
Sz(R). Consider the inhomogeneous process {N(t,x), 0 <t < R},

N(t,z) = Z 1{X; € S.(t)} ®)
i=1

which counts observations within distance ¢ from x. Approximating this binomial
(fixed n) process by a Poisson process and suppressing the dependence on z for
now, we can write the rate A(t) of the process N(t) as

A(t) = f(2)V (m)me™ ! (4)
This follows immediately from the Poisson process properties since V (m)mt™ =1 =
d

[V (m)t™] is the surface area of the sphere S, (t). Letting 6 = log f(z), we can

write the log-likelihood of the observed process N(¢) as (see e.g., [16])

L(m, 0) /0 " log At AN (1) /O @) dr

This is an exponential family for which MLEs exist with probability — 1 as n — oo
and are unique. The MLEs must satisfy the likelihood equations

oL R = m_
% /0 dN(t)—/O At)dt = N(R) — eV (m)R™ =0, (5)
/ R
g—i = (%Jr“//((:z)))N(R)Jr/O logt dN(t) —
—"V (m)R™ <logR+ “// ((:;))) =0. (6)
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Substituting (5) into (6) gives the MLE for m:

1 N(R,z) -1
mr(z) = | ——=— log —— . (7)
(@) N(R,z) ; T;(x)

In practice, it may be more convenient to fix the number of neighbors k rather than
the radius of the sphere R. Then the estimate in (7) becomes

-1
k-1
)= | > ) ®)

Note that we omit the last (zero) term in the sum in (7). One could divide by
k — 2 rather than k — 1 to make the estimator asymptotically unbiased, as we show
below. Also note that the MLE of 0 can be used to obtain an instant estimate of
the entropy of f, which was also provided by the method used in [15].

For some applications, one may want to evaluate local dimension estimates at every
data point, or average estimated dimensions within data clusters. We will, however,
assume that all the data points come from the same “manifold”, and therefore
average over all observations.

The choice of k clearly affects the estimate. It can be the case that a dataset has
different intrinsic dimensions at different scales, e.g., a line with noise added to it
can be viewed as either 1-d or 2-d (this is discussed in detail in [14]). In such a
case, it is informative to have different estimates at different scales. In general,
for our estimator to work well the sphere should be small and contain sufficiently
many points, and we have work in progress on choosing such a k automatically.
For this paper, though, we simply average over a range of small to moderate values
k=ky... ks to get the final estimates

1 1 k2
e = =S (X)) . e ——— S i 9
e = 2 me(X5) m k27k1+1k; My (9)

The choice of k1 and ko and behavior of 1y, as a function of k are discussed further
in Section 4. The only parameters to set for this method are ki and ks, and the
computational cost is essentially the cost of finding k2 nearest neighbors for every
point, which has to be done for most manifold projection methods anyway.

3.1 Asymptotic behavior of the estimator for m fixed, n — oo.

Here we give a sketchy discussion of the asymptotic bias and variance of our estima-
tor, to be elaborated elsewhere. The computations here are under the assumption
that m is fixed, n — 00,k — oo, and k/n — 0.

As we remarked, for a given x if n — oo and R — 0, the inhomogeneous binomial
process N(t,z) in (3) converges weakly to the inhomogeneous Poisson process with
rate A(t) given by (4). If we condition on the distance T (z) and assume the Poisson
approximation is exact, then {m’1 log(13/1;):1<j<k-— 1} are distributed as
the order statistics of a sample of size k—1 from a standard exponential distribution.
Hence U = m™! Z;‘;ll log(Tx/T;) has a Gamma(k —1,1) distribution, and EU ' =
1/(k —2). If we use k — 2 to normalize, then under these assumptions, to a first
order approximation

m?

k=3

E (my(z)) =m, Var(my(z)) = (10)
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As this analysis is asymptotic in both k and n, the factor (k—1)/(k — 2) makes
no difference. There are, of course, higher order terms since N(f.2) is in fact a
binomial process with EN(f,z) = A(t) (1+ O(t?)). where O(1?) depends on m.

With approximations (10), we have Em = Emy = m, but the computation of
Var(m) is complicated by the dependence among mi(X;). We have a heuristic
argument (omitted for lack of space) that, by dividing . (X;) into n/k roughly
independent groups of size k each, the variance can be shown to be of order n=1,
as it would if the estimators were independent. Our simulations confirm that this
approximation is reasonable — for instance, for m-d Gaussians the ratio of the theo-
retical SD = C(ky. ko)m//n (where C(ky. k) is caleulated as if all the terms in (9)
were independent) to the actual SD of m was between (1.7 and 1.3 for the range of
values of m and n considered in Section 4. The bias, however, behaves worse than
the asyinptotics predict, as we disenss further in Section 5.

4 Numerical Results

(@ (b)
al e g
4 L -

e
i

Dimension estimate m
Dimension estimate m,

Figure 1: The estimator my, as a function of £, (a) H-dimensional normal for several
sample sizes. (b) Various m-dimensional normals with sample size n = 1000.

We first investigate the properties of our estimator in detail by simulations, and
then apply it to real datasets. The first issue is the behavior of 1y as a function
of k. The results shown in Fig. 1 are for m-d Ganssians N,,, (0. 1), and a similar
pattern holds for observations in a unit cube, on a hypersphere, and on the popular
“Swiss roll” manifold. Fig. 1(a) shows my. for a 5-d Gaussian as a function of k for
several sample sizes n. For very small k the approximation does not work vet and
iy, is unreasonably high, but for k& as small as 10, the estimate is near the true value
m = 5. The estimate shows some negative bias for large k, which decreases with
growing sample size n. and, as Fig. 1(b) shows, increases with dimension. Note.
however, that it is the intrinsic dimension m rather than the embedding dimension
p = m that matters; and as our examples below and many examples elsewhere
show, the intrinsic dimension for real data is frequently low.

The plots in Fig. 1 show that the “ideal” range ky ... ks is different for every com-
bination of m and n, but the estimator is fairly stable as a function of k, apart
from the first few values. While fine-tuning the range ky ...k for different n is
possible and would rednce the bias, for simplicity and reproducibility of our results
we fix by = 10, ko = 20 throughont this paper. In this range, the estimates are not
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affected much by sample size or the positive bias for very small k. at least for the
range of m and n under consideration.

Next, we investigate an important and often overlooked issue of what happens when
the data are near a manifold as opposed to exactly on a manifold. Fig. 2(a) shows
simulation results for a 5-d correlated Gaussian with mean 0, and covariance matrix
loij] = [p+ (1 = p)&i;]. with §;; = 1{i = j}. As pchanges from 0 to 1, the dimension
changes from 5 (full spherical Gaussian) to 1 (a line in %), with intermediate values
of p providing noisy versions.

(a) (b)

€ » "e
. — MLE “"‘
sl P

]

MLE of dimension
Estimated dimension

Figure 2: (a) Data near a manifold: estimated dimension for correlated 5-d normal
as a function of 1 — p. (b) The MLE. regression, and correlation dimension for
uniform distributions on spheres with n = 1000. The three lines for each method
show the mean £2 SD (95% confidence intervals) over 1000 replications.

The plots in Fig. 2(a) show that the MLE of dimension does not drop unless p
is very close to 1, so the estimate is not affected by whether the data cloud is
spherical or elongated. For p close to 1. when the dimension really drops, the
estimate depends significantly on the sample size, which is to be expected: n = 100
highly correlated points look like a line. but n = 2000 points fill out the space
around the line. This highlights the fundamental dependence of intrinsic dimension
on the neighborhood scale, particularly when the data may be observed with noise.
The MLE of dimension, while reflecting this dependence, behaves reasonably and
robustly as a finction of both p and n.

A comparison of the MLE, the regression estimator (regressing log Ty on log k),
and the correlation dimension is shown in Fig. 2(b). The comparison is shown
on uniformly distributed points on the surface of an m—dimensional sphere, but
a similar pattern held in all our simulations. The regression range was held at
k= 10...20 (the same as the MLE) for fair comparison, and the regression for
correlation dimension was based on the first 10... 100 distinet values of log C, ().
to reflect the fact there are many more points for the log C,, (r) regression than for
the log T, regression. We found in general that the correlation dimension graph can
have more than one linear part, and is more sensitive to the choice of range than
either the MLE or the regression estimator, but we tried to set the parameters for
all methods in a way that does not give an unfair advantage to any and is easily
reproducible.

The comparison shows that, while all methods suffer from negative bias for higher
dimensions, the correlation dimension has the smallest bias, with the MLE coming
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in close second. However, the variance of correlation dimension is much higher
than that of the MLE (the SD is at least 10 times higher for all dimensions). The
regression estimator, on the other hand, has relatively low variance (though always
higher than the MLE) but the largest negative bias. On the balance of bias and
variance, MLE is clearly the best choice.

Figure 3: Two image datasets: hand rotation and Isomap faces (example images).

Table 1: Estimated dimensions for popular manifold datasets. For the Swiss roll.
the table gives mean(SD) over 1000 uniform samples.

Dataset | Data dim.  Sample size  MLE Regression  Corr. dim.
Swiss roll 3 1000 21(0.02) L8(0.03)  2.0(0.24)
Faces G4 x 64 G9% 4.3 4.0 3.5

Hands 480 = 512 481 3.1 2.5 3.0!

Finally, we compare the estimators on three popular manifold datasets (Table 1):
the Swiss roll, and two image datasets shown on Fig. 3: the Isomap face database?,
and the hand rotation sequence” nsed in [14]. For the Swiss roll, the MLE again
provides the best combination of bias and variance.

The face database consists of images of an artificial face under three changing con-
ditions: illmmination, and vertical and horizontal orientation. Henee the intrinsic
dimension of the dataset should be 3, but only if we had the full 3-d images of the
face. All we have, however, are 2-d projections of the face, and it is clear that one
needs more than one “basis” iimage to represent different poses (from casnal inspec-
tion, front view and profile seem sufficient). The estimated dimension of about 4 is
therefore very reasonable.

The hand image data is a real video sequence of a hand rotating along a 1-d curve in
space, but again several basis 2-d images are needed to represent different poses (in
this case, front. back, and profile seem sufficient ). The estimated dimension around
4 therefore seems reasonable. We note that the correlation dimension provides two
completely different answers for this dataset, depending on which linear part of the
curve ig nsed: this is frther evidence of its high variance, which makes it a less
reliable estimate that the MLE.

5 Discussion

In this paper, we have derived a maxinm likelihood estimator of intrinsic dimen-
sion and some asvinptotic approximations to its bias and variance. We have shown

"This estimate is obtained from the range 500...1000. For this dataset. the correlation
dimension curve has two distinet linear parts, with the first part over the range we would
normally use, 10...100, producing dimension 19.7, which is clearly nnreasonable.

*http://isomap.stanford.edu/datasets.html

*http://vasc.ri.cmu.edu//idb/html /motion/hand/index.html
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that the MLE produces good results on a range of simulated and rcal datascts
and outperforms two other dimension estimators. It does, however, suffer from a
negative bias for high dimensions, which is a problem shared by all dimension esti-
mators. One reason for this is that our approximation is based on sufficiently many
observations falling into a small sphere, and that requires very large sample sizes in
high dimensions (we shall elaborate and quantify this further elsewhere). For some
datascts, such as points in a unit cube, there is also the issue of edge effects, which
generally become more severe in high dimensions. One can potentially reduce the
negative bias by removing the edge points by some criterion, but we found that
the edge cffects are small compared to the sample size problem, and we have been
unable to achieve significant improvement in this manner. Another option used by
[13] is calibration on simulated datasets with known dimension, but since the bias
depends on the sampling distribution, and a different curve would be needed for
every sample size, calibration does not solve the problem either. One should keep in
mind, however, that for most interesting applications intrinsic dimension will not be
very high — otherwise there is not much benefit in dimensionality reduction; hence
in practice the MLE will provide a good estimate of dimension most of the time.
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Abstract

We give a review of various aspects of boosting, clarifying the issues through a few simple results,
and relate our work and that of others to the minimax paradigm of statistics. We consider the
population version of the boosting algorithm and prove its convergence to the Bayes classifier
as a corollary of a general result about Gauss-Southwell optimization in Hilbert space. We then
investigate the algorithmic convergence of the sample version, and give bounds to the time until
perfect separation of the sample. We conclude by some results on the statistical optimality of the
L, boosting.

Keywords: classification, Gauss-Southwell algorithm, AdaBoost, cross-validation, non-parametric
convergence rate

1. Introduction

We consider a standard classification problem: Let (X,Y),(X},Y1),..., (X,,Y,) be an i.i.d. sample,
where ¥; € {—1,1} and X; € x. The goal is to find a good classification rule, x — {—1,1}.

The AdaBoost algorithm was originally defined, Schapire (1990), Freund (1995), and Freund
and Schapire (1996) as an algorithm to construct a good classifier by a “weighted majority vote” of
simple classifiers. To be more exact, let # be a set of simple classifiers. The AdaBoost classifier
is given by sgn(Z’,‘,’,’ 1 Amhim(x)), where A, € R, hy, € 51, are found sequentially by the following
algorithm:

0. Letcy=cy=---=¢,=1,andsetm= 1.
1. Find h,, = argminy,c,, 37, ¢;h(X;)Y;. Set

lm:%IOg(

2%

Sty 1cihm(X,)Y,> _L (th()m Y,Cf)
27' 101_27 ]Clhm(Xi)Y: zh,,,()(,)/}’, Ci

(©2006 Peter J. Bickel, Ya’acov Ritov and Alon Zakai.
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2. Set ¢; < c;exp(—Auhu(X:)Y;), and m < m+ 1, 1f m < M, return to step 1.

M is unspecified and can be arbitrarily large.

The success of these methods on many data sets and their “resistance to overfitting”—the test
set error continues to decrease even after all the training set observations were classified correctly,
has led to intensive investigation to which this paper contributes.

Let 7.. be the linear span of # . That is,

o k
Feo = Uf}'k, where:rkz{z},jhj: }\,jER, hjE.’f[, 1 S]Sk}
k=1 J=1
A number of workers have noted, Breiman (1998,1999), Friedman, Hastie and Tibshirani (2000),
Mason, Bartlett, Baxter and Frean (2000), and Schapire and Singer (1999), that the AdaBoost clas-
sifier can be viewed as sgn(F(X)), where F is found by a greedy algorithm minimizing

n! iexp(—&-F(Xi))
i=1

over Fe.

(From this point of view, the algorithm appeared to be justifiable, since as was noted in Breiman
(1999) and Friedman, Hastie, and Tibshirani (2000), the corresponding expression £ exp(—Y FX )) s
obtained by replacing the sum by expectation, is minimized by

F(X) = %log(P(Y —11X)/P(Y = -1 \X)),

provided the linear span #.. is dense in the space # of all functions in a suitable way. However, it
was also noted that the empirical optimization problem necessarily led to rules which would classity
every training set observation correctly and hence not approach the Bayes rule whatever be n, except
in very special cases. Jiang (2003) established that, for observation centered stumps, the algorithm
converged to nearest neighbor classification, a good but rarely optimal rule.

In another direction, the class of objective functions W (-) that can be considered was extended
by Friedman, Hastic, and Tibshirani (2000) to other ¥, in particular, W (¢) = log(1 +e~%), whose
empirical version they identified with logistic regression in statistics, and W (¢) = —2¢ +¢2, which
they referred to as “L, Boosting” and has been studied, under the name “matching pursuit”, in
the signal processing community. For all these objective functions, the population optimization of
EW(YF(X)) over # leads to a solution such that sgnF (X) is the Bayes rule. Friedman et al. also
introduced consideration of other algorithms for the empirical optimization problem. Lugosi and
Vayatis (2004) added regularization, changing the function whose expectation (both empirically and
in the population) is to be minimized from W (YF (X)) to W,,(YF(X)) where W, — W as n — oo.
Biihlmann and Yu (2003) considered L, boosting starting from very smooth functions. We shall
elaborate on this later.

We consider the behavior of the algorithm as applied to the sample (¥}, X)),. .., (¥y,X,), as well
to the “population”, that is when means are replaced by expectations and sums by probabilities. The
structure of, and the differences between, the population and sample versions of the optimization
problem has been explored in various ways by Jiang (2003), Zhang and Yu (2003), Biihlmann
(2003), Bartlett, Jordan, and McAuliffe (2003), Bickel and Ritov (2003).

Our goal in this paper is
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1. To clarify the issues through a few simple results.

2. To relate our work and that of Biihlmann (2003), Biihlmann and Yu (2003), Lugosi and Vay-
atis (2004), Zhang (2004), Zhang and Yu (2003) and Bartlett, Jordan, and McAuliffe (2003) to
the minimax results of Mammen and Tsybakov (1999), Baraud (2001) and Tsybakov (2001).

In Section 2 we will discuss the population version of the basic boosting algorithms and show
how their convergence and that of more general greedy algorithms can be derived from a general-
ization of Theorem 3 of Mallat and Zhang (1993) with a simple proof. The result can, we believe,
also be derived from the even more general theorem of Zhang and Yu (2003), but our method is
simpler and the results are transparent.

In Section 3 we show how Bayes consistency of various sample algorithms when suitably
stopped or of sample algorithms based on minimization of a regularized W follow readily from
population convergence of the algorithms and indicate how test bed validation can be used to do
this in a way leading to optimal rates (in Section 4).

In Section 5 we address the issue of bounding the time to perfect separation of the different
boosting algorithm (including the standard AdaBoost).

Finally in Section 6 we show how minimax rate results for estimating £(Y |X) may be attained
for a “sieve” version of the Ly boosting algorithm, and relate these to results of Baraud (2001),
Lugosi and Vayatis (2004), Biihlmann and Yu (2003), Barron, Birgé, Massart(1999) and Bartlett,
Jordan and McAuliffe (2003). We also discuss the relation of these results to classification theory.

2. Boosting “Population” Theorem

We begin with a general theorem on Gauss-Southwell optimization in vector space. It is, in part,
a generalization of Theorem 1 of Mallat and Zhang (1993) with a simpler proof. A second part
relates to procedures in which the step size is regularized cf. Zhang and Yu (2003) and Bartlett et
al. (2003). We make the boosting connection after its statement.

Let w be a real, bounded from below, convex function on a vector space H. Let % = %' U
(—#"), where #' is a subset of H whose members are linearly independent, with linear span #.. =
{Z’”‘,Zl Ambim: Aj€R, hyje g, 1< j<k,1<k<oeo}. Weassume that .. is dense in H, at least in
the sense that {w(f) : f € F} is dense in the image of w. We define two relaxed Gauss-Southwell
“algorithms”.

Algorithm I: For o € (0, 1], and given f; € H, find inductively f2, f3,...,... by, fms1 = fon+ Anhims
Am €ER, hy € H and

W(fn+ ) < 00 min w(fo+ M)+ (1= o)w(f) - 1
AER, hest
Generalize Algorithm [ to :

Algorithm II: Like Algorithm I, but replace (1) by

W(fon +Anh) +Y)‘/Zn <o min  (w(fyn+Ah) +Y7"2) + (T =o)w(fn) -

AER, hest

There are not algorithms in the usual sense since they do not specify a unique sequence of iter-
ations but our theorems will apply to any sequence generated in this way. Technically, this scheme
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is used in the proof of Theorem 3. The standard boosting algorithms theoretically correspond to
o = 1, although in practice, since numerical minimization is used, o. may equal 1 only approxi-
mately. Our generalization makes for a simple proof and covers the possibility that the minimum
of w(fis +Ah) over # and R is not assumed, or multiply assumed. Let 0y = infrey w(f) >
—co. Let w/(f;4) the linear operator of the Gataux derivative at f € .. in the direction / € #..:
W (f3h) = 0w(f+Ah)/OA|,_,. and let w”(f; h) be the second derivative of w at f in the direction A:
W (f,h) = 0*w(f + Ah)/OA? ‘A:o (both derivative are assumed to exist). We consider the following
conditions.

GS1. Forany ¢ and ¢; such that @y < ¢] < ¢ < oo,

0 < inf {w"(f,h) :c1 <w(f) <c2, h€H}
< sup (W' (f,h):w(f) <ca, h€ H } < oo.

GS2. Forany ¢; < eo,
sup {w'(f, ) : w(f) <co, h€ H} <oo.

Theorem 1 Under Assumption GS1, any sequence of functions generated according to Algorithm
1 satisfies:
W(fm) < +cm

and if ¢,y > 0:
W(fm) 7W(f;n+1) > é(W(ﬁn)) >0

where the sequence c,, — 0 and the function §(-) depend only on o, the initial points of the iterates,
and # . The same conclusion holds under Condition GS2 for any sequence f,, generated according
to algorithm II.

The proof can be found in Appendix A.
Remark:

1. Condition GS2 of Theorem 1 guarantees that ¥;>_; A2, < . It can be replaced by any other
condition that guarantees the same, for example, limiting the step size, replacing the penalty
by other penalties, etc.

2. It will be clear from the proof in Appendix A that if w” is bounded away from 0 and oo then
cm is of order (logm)’% so that we, in fact, have an approximation rate — but it is so slow as
to be essentially useless. On the other hand, with strong conditions such as orthonormality of
the elements of #/, and #f a classical approximation class such as trigonometric functions we
expect, with Ly boosting, to obtain rates such as m~'/2 or better.

Let(X,Y)~P,Xex,Ye{-1,1}. Let# C {h:x — [—1,1]} be a symmetric set of functions.
In particular, # can, but need not, be a set of classifiers such as trees with

Ho=—9. 2)

470



SOME THEORY FOR GENERALIZED BOOSTING ALGORITHMS

Given a loss function ' : R — R™, we consider a greedy sequential procedure for finding a function
F that minimizes EW (YF(X)). That is, given Fy € 3( fixed, we define for m > 0:

Aom(h) = argmin EW (Y(FM(X) + Xh(X)))
AeR

= argmin W (1 (i (X) + 2 (1))

Fm+l = Fm +)"m(hm)hm

Assume, wlog (without loss of generality), by shifting and rescaling, that W (0) = —W'(0) =
Note that by Bartlett et al. (2003), #'(0) < 0 is necessary and sufficient for population consistency
defined below. We can suppose again wlog in view of (2), that A,, > 0. Define #; and #.. as in
Section 1 and let ¥ = #.. be the closure of .. in convergence in probability:

{F :3Fy € T, Fu(X) 25 F(X)}

argmin EW (YF(X))
Fey

F
F.

If sgnF.. is the Bayes rule for 0-1 loss, we say that F.. is population consistent for classification,
“calibrated” in the Bartlett et al. terminology. Let

) = PI=1Y)
W(x,d) p)W (d) + (1 - p(x))W (—d).

W(F) = W(X,FX))

By the assumptlons below £ is the unique function such that W' (F..) = 0 with probability 1, where
W!(F) = W'(X,F(X)) and W'(x,d) = oW (x,d) /dd. Define W similarly.
Here are some conditions.

Pl. P[p(X)=0or1]=0.

P2. W is twice differentiable and convex on R.

P3. 4 is closed and compact in the weak topology. # is the set of all measurable functions on x .
P4. W”(F) is bounded above and below on {F : ¢| < W(F) < ¢3} forall ¢1, ¢, such that

jnf EW(F) <c| <cy < EW(F).
eF

P5. F. € Ly(P).

Note that P1 and P2 imply that ¥ (x,d) — oo as |d| — oo, which ensures that F., is finite almost
anywhere. Condition P1, which says that no point can be classified with absolute certainty, is only
needed technically to ensure that W (x,d) — o0 as |d| — o, even if W itself is monotone. It is not
needed for L, boosting.

Conditions P2 and P4 ensure that along the optimizing path ' behaves locally like W,(¢) =
—2t+1? corresponding to L, boosting. They are more stringent than we would like and, in particular,
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rule out ¥ such as the “hinge” appearing in SVM. More elaborate arguments such as those of Zhang
and Yu (2003) and Bartlett et al. (2003) can give somewhat better results.

The functions commonly appearing in boosting such as, W, (t) = e, Wa(t) = =2t +1>, W;(t) =
—log(1 +e~%) satisfy condition P4 if P1 also holds. This is obvious for W,. For W and W, it is
clear that P4 holds, if P1 does, since otherwise E 74 (Y Fa(X )) — oo, The conclusions of Theorem
2 continue to hold if /1 € # = |h| > & > 0 since then below w"(F;h) = ERX(X)W (F(X)) >
S2EW (F(X)) and P4 follows. Note that if || # 1 the A optimization step requires multiplying A2
by ER%(x).

‘We have,

Theorem 2 [f # is a set of classifiers, (h* = 1) and Assumptions P2 — PS5 hold, then
FulX) 5 Fu(X) |
and the misclassification error, P(YF,(X) < 0) — P[YF..(X) < 0], the Bayes risk.
Proof Identify w(F) = EW (YF(X)) = EW (F(X)). Then,
w!(F,h) = ER* (X)W (F(X)) = EW" (F(X))
and (P4) can be identified with condition GS1 of Theorem 1. Thus,
EW (Fu(X)) — EW (Fa(X)) .

Since,

EW (Eu(X)) —EW (Fu(X)) = E ((Fw —Fm)z/ol W (1 =0 (X)Fa(X) +M,,,(X))xdx> -0,

the conclusion of Theorem 2 follows from (P4). The second assertion is immediate. |

3. Consistency of the Boosting Algorithm

In this section we study the Bayes consistency properties of the sample versions of the boosting
algorithms we considered in Section 2. In particular, we shall

(i) Show that under mild additional conditions, there will exist a random sequence m, — oo such
that an LF.X,, where 1:",,, is defined below as the mth sample iterate, and moreover, that such
a sequence can be determined using the data.

(i) Comment on the relationship of this result to optimization for penalized versions of #. The
difference is that the penalty forces m < oo to be optimal while with us, cross-validation (or a
test bed sample) determines the stopping point. We shall see that the same dichotomy applies
later, when we “boost” using the method of sieves for nonparametric regression studied by
Barron, Birge and Massart (1999) and Baraud (2001).
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3.1 The Golden Chain Argument

Here is a very general framework. This section is largely based on Bickel and Ritov (2003).

Let ©; C ©, C ... be asequence of sets contained in a separable metric space, © = U©,, where
" denotes closure. Let TT,, : ©,, — 29711 be a sequence of point to set mappings. Let K be a target
function, and V.. = argming_g K (). Finally, let K, be a sample based approximation of K. We
assume:

Gl. K : © — Riis strictly convex, with a unique minimizer V...

Our result is applicable to loosely defined algorithms. In particular we want to be able to con-
sider the result of the algorithm applied to the data as if it were generated by a random algorithm
applied to the population. We need therefore, the following definitions. Let § (0, 0) be the set of
all sequences U, € ©,,, m =0,1,... with &9 = ¥y and satisfying:

6,7,:1 € Hm(gm) _
K(Opy1) <o inf_ K(ﬁ) +(1- O“)K(ﬂm)'
V€T, (9n)

The resemblance to Gauss-Southwell Algorithm T and the boosting procedures is not accidental.
Suppose the following uniform convergence criterion is satisifed:

G2. If {8} € (D, ) with any initial Do, then K() — K (D) > &(K(9) — K(9-.)), for
&(-) > 0 strictly increasing, and K(0,) —K(9..) < c,, where ¢, — 0 uniformly over S (99, 0).

In boosting, given P, © = {F(X),F € ¥ } with a metric of convergence in probability, ©,, =
(S Ajhjhy € # 3, Ty (F) = TI(F) = {F + Ah,A € R,h € # }, and K(F) = EW (YF(X)). Con-

j=1
dition G2, follows from the conclusion of Theorem 1.
Now suppose K,,(-) is a sequence of random functions on ©, empirical entities that resemble the

population K. Let 3,,(1‘}0., o) be the set of all sequences 1%,,,{91_,1 ..., such that 1?}0‘,, = 10y, and

6m+],n € Hm(é}nur)
kn({(}m—l,n) < a’min{k,,(13) RS nm('&mm)} + (1 - a’)kn(ﬁm.n)-

We assume

G3. K, is convex, and for all integer m, sup{|K,(9) —K(0)| : 0 € 4,,} 22 0 as n — oo, for a
sequence 4,, C ©,, such that P(9,,, € 4,,) — 1.

In boosting, K,(F) =n~' 31 W (V:F(X})). K(F) = E,(YF(X))

The sequence {9,,} is the golden chain we try to follow using the obscure information in the
sample.

We now state and prove,

Theorem 3 If assumptions G1— G3 hold, and o! € (0,1), then for any sequence {O .} € 5 (0,0,
there exists a subsequence {i,} such that K (O, ) Y (V).
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Proof
Fix 09 and o, o0 < o', Let M,, — oo be some sequence, and let 7, = argminmgMn K(ﬁ,,,{,,). We

need to prove that K({M,H,,) ELIN K (). We will prove this by contradiction. Suppose otherwise:

i dpun) — K (9) > ,
n1lgf1,,K(ﬁ”"") K(x)>c1 >0, nexn (3)

where 2( is unbounded with positive probability. Let €, = supye 4, [K(®) — K,,(ﬁ)|. For any fixed
M, Emn ~5 0 by G3. Let

m, = argmax{m’ <My Nm<m' et p+2Emn < (o —0)E(c1) & Opp € Am}.

Clearly, m, LN oo, and for any m < m,, assuming (3):

K('E)m ) K ('E)m.n)"!‘gm.n
of

< in[ﬁ kn(ﬂ) + (1 - a’)kn(émfl,n) + Em,n
V€M1 9m-1
S 0(4/ in[ﬁ K(‘ﬁ) + (1 - a/)K(ﬁ,,,,].,,) +£mf].n + 281»1,/1
Vel 101
—a inf K@)+ (1—0)KDn_1,)
Vel Oy
— (o o) (K(Dpe1) = inf K(O)) + €m0+ 28mn
By 1O
<o inf K®)+(1—)KBn_14)
V€1 9m-1

- ((X’ - G)E_,(K<{§m,n) _K(ﬁw)> +8m 1,n +2€mtn

<o inf K@) +(1—)KBu1,)
Vel 10—

g Cl) +€n ]n+2€mn

<a inf K@®)+(1-o)K 1‘),,,,1_,,) forallm <m, .
LIS | M

Thus, there is a sequence {5(") 175(2"), ...} € 5(9,0), such that o — 12),7,,”, m < m,. Hence, by
Assumption G2, K( myn) < K(0w) +cp,, where {c,,} is independent of », and ¢,, — 0. Therefore,
since my, — oo, (6,,1” n) = K(¥.), contradicting (3). ]

In fact we have proved that sequences m,, can be chosen in the following way involving K.

Corollary 4 Let M, be any sequence tending to . Let i, = argmin{K(d,,,,) : 1 <m < M,}.
Then, under G1 — G3, 15,71,, LH?N.

To find 15,;,,“,, which are totally determined by the data determining K,,, we need to add some in-
formation about the speed of convergence of K, to K on the “sample” iterates. Specifically, suppose
we can determine, in advance, M;, — oo, €, — 0 such that,

P[sup{‘len(ém,n) _K(ﬁm.n)‘ 1<m< M:} > En] <g,.
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Then 1, = argmin{]i',,(f}m’,,) : 1< m <M} yields an appropriate O, sequence. We consider this
in Section 4. Before that we return to the application of the result of this section to boosting.

3.2 Back to Boosting

We return to boosting, where we consider ©,, = {Z’” Ajhj:h; € R,hj € 91}, and therefore IT,, =
IT, T1(9) = {O+Ah,A € R,h € 7 }. To simplify notation, for any functlon a(X.,Y), let Pya(X, Y)
! 37, a(X;, ) and Pa(X,Y) = Ea(X,Y). Finally, we identify O, ,, = e 1?» hj= =YL vy e
We assume further

GALl. W(-) is of bounded variation on finite intervals.
GA2. # has finite L, bracketing entropy.

GA3. There are finite ay,a,.. . such that sup, ;’:, \5»,-7,,| < ay,, with probability 1.

Theorem 5 Suppose the conclusion of Theorem | and Conditions GA1-GA3 are satisfied, then
conditions G2, G3 are satisfied.

Proof Condition G2 follows from Theorem 1. It remains to prove the uniform convergence in
Condition G3. However, GA2 and GA3 imply that ¥ = {F : F =37 h;h;,h; € 7, |A;| < M} has
finite L bracketing entropy. Since /¥ can be written as the difference of two monotone functions
{W(YF):F € ¥ } inherits this property. The result follows from Bickel and Millar (1991), Propo-
sition 2.1. ]

4. Test Bed Stopping

Again we face the issue of data dependent and in some way optimal selection of #z,. We claim
that this can be achieved over a wide range of possible rates of convergence of EW (ﬁ,ﬁn(YX )) to
E W(FN(YX )) by using a test bed sample to pick the estimator. The following general result plays a
key role.

Let B= B, — oo, and let (X,Y),(X1,11),...,(Xpi5,Yuip) be iid. P, X €x, Y| <1. Let
By X 5 R, 1 <m < mpybe data dependent functions which depend only on (X,,11),..., (X, Yy)
which are predictors of Y. For g,g1,g2: X xR — R, given P, define

1 &
(g1.&2)s = Ezgl(Xb+rt>Yb+n)g2(Xb+mYb+n)
n =1
(g.&2)r = Pl@i(X,V)&aX,Y)) = / 21(x,3)g2(x,7)dP(x,y)
gl = (g1.82)

lellp = (g1.82)r

Let,
t=argmin{[|¥ =, (X)|>: 1 <m<M,}
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and O be the selected predictor. Similarly, let
0 =argmin{||Y —0,,(X)|3: 1 <m<M,}

and 9, be the corresponding predictor.

That is, ¥ (X,Y) is the predictor an “oracle™ knowing P and (X;,Y;), 1 <i <n would pick from
¥, ,f}w to minimize squared error loss. Let 9, (X) = Ep(Y|X), the Bayes predictor. Let 2 be a
set of probabilities and r,, = sup{Ep||o — 0o |3 : P € 2}.

The following result is due to Gyorfi et al. (2002) (Theorem 7.1), although there it is stated in
the form of an oracle inequality. We need the following condition:

C. Byrp/logM, — eo.

Theorem 6 (Gyorfi et al.) Suppose condition C is satisfied, and |Y| < 1, | {?,,,Hw < 1. Then,

sup{‘Ep(Y —f‘}T)z—Ep(Y—f}o)2| :Per}=o(r,).

Condition C very simply asks that the test sample size B, be large only: (i) In terms of r,, the
minimax rate of convergence; (ii) In terms of the logarithm of the number of procedures being
studied. If |Y| < 1, there is no loss in requiring [|¥|l» < 1, since we could also replace ¥, by

its truncation at £1, minimizing the L, cross validated test set risk. Along similar lines, using
sgn({?m) is equivalent to cross validating the probability of misclassification for these rules, since if
Oy Y € {—1,1} E(Y —0,)2 =4P(D,, £ Y).

As we shall see in Section 6. typically r, = n"+5, and M, is at most polynomial in n. If n/B,
is slowly varying, we can check that the conditions hold. Essentially we can only not deal with 7,

of order n~ " logn.

S. Algorithmic Speed of Convergence

We consider now the time it takes the sample algorithm to convergence. The fact that the algorithm
converges follows from Theorem 1. We show in this section that in fact the algorithm perfectly
separates the data (perfect separation is achieved when Y;F,,(x;) > 0 for all i = 1,...,n) after no
more than ¢;»” steps. Perfect separation is equivalent to empirical misclassification error 0.

The randomness considered in this section comes only from the ¥;, while the design points are
considered fixed. We denote them, therefore, by lower case xy,...,x,. We consider the following

assumptions:

O1. W has regular growth in the sense that W" < k(W + 1) for some K < co. Assume, wlog, that
w(0)=-Ww'0)=1.
02. Suppose xi,..., x,, are all different Then the points can be finitely isolated by #/ in the sense

that there is & and positive o, ..., oy such that for every 7 there are hy,..., hy € # such that

Zﬁ-,] ojhj(xg) =1 if s =i, and 0 otherwise. Assume further, as usual, that if 2 € # then

W =1land —he .

Condition O1 is satisfied by all the loss functions mentioned in the introduction. Condition O2
is satisfied, for example by stumps, trees, and any # whose span includes indicators of small sets
with arbitrary location. In particular, if x; € R, x] <x3 <--- <x,, and # = {sgn(- —x),x € R}, we
can then take oy = 0 = 1, Ay () = sgn (- — (x;—1 +x;)/2), and o (-) = —sgn (- — (x; +xi31)/2)
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Theorem 7 Suppose assumptions Ol and O2 are satisfied and the algorithm starts with F;(0) = 0.
IfYiF,(x;) < 0 for at least one i, then

n n 1

LS W () — - S W (Vi () >

—_—.
ni3 ni5 2K(n2§:1(xj)
. . k 2
Hence, the boosting algorithm perfectly separates the data afier at most 2x(n¥;_, |a;])* steps.

Proof Let, for i such that Y;F,(x;) <0,

n
I =n W (V) + i) )
s=1
and f},(0;h) = df,,,()»;h)/dl]kzo. Consider Ay,...,/h; as in assumption O2. Replace #; by —h; if
necessary to ensure that Y;Zj‘-:, ohj(xg) = Os;. Then

k k n
N o (0shy) =n7t Y oy 3 (Vi (xs)) Vi (xs)
Jj=1

Jj=1 s=1
=n"'W (YiFu(x)).

Hence

o 1 e w'(0 -1
hlg]f{ﬂz(O;h) < Tm’_mW (YiFn(xi)) < ©) )

=US5E o ok o)
ny; 10 nYj 0 nYj 0

since Y;Fy,(x;) < 0 for at least one . _ _
Let /2 be the minimizer of f},(0,%). Note that in particular £,(0;4) < 0. The function f,(-;4) is

m
convex, hence it is decreasing in some neighborhood of 0. Denote by A its minimizer. Consider the

Taylor expansion:
_ o _ a2 o
Jn(Ash) = fn(0:h) +}"/fn(0;h) T mn z w” (K‘(Fm(xs) +}‘(7‘)h<xs))>
s=1
- - A, ~ =
= £(0:1) +n£f{xﬁ,,(0;h) + EZT w (Y[(Fm(xs) + K(K)hm))) }
where 1(%) lies between 0 and A. By condition 01,
- ~ -
{0 52 S (1) +300075)) |
_ 2.1 - 2
< inf{hf;,(0:h) + %S:zl W(Y,-(F,,,(xs) + x(x)h(xs))) + %} )

_ 2
<inf /3 (0:) +155)
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becaus_e % f:IIV@(Fn,(xS)+X(X)}7(xS)) < % W (YiF,(xs)) < W(0) =1 since A minimizes
Sm(A:h) on [0,A], A is an intermediate point, and Fo = 0. Combining (4) and (5) and the mini-
mizing property of /,

(£,(0:))°

Fnhh) < f(0:h) — 2

< fu(03h) — m

The second statement of the theorem follows because the initial value of n ' 3| W(Y,-Fo(x,-)) is
1, and the value would fall below 0 after at most m = 2K(n2f:1 ocj)z steps in which at least one
observation is not classified correctly. Since the value is necessarily positive, we conclude that all
observations would be classified correctly before the mth step.

|

6. Achieving Rates with Sieve Boosting

We propose a regularization of L, boosting which we view as being in the spirit of the original
proposal, but, unlike it, can be shown for, suitable #/, to achieve minimax rates for estimation
of E(Y|X) under quadratic loss for # for which E(Y]X) is assumed to belong to a compact set
of functions such as a ball in Besov space if X € R or to appropriate such subsets of spaces of
smooth functions in X € R%—see, for example, the classes # of Gyorfi et al. (2003). In fact,
they are adaptive in the sense of Donoho et al (1995) for scales of such spaces. We note that
Biihlmann and Yu (2003) have introduced a version of L, boosting which achieves minimax rates
for Sobolev classes on R adaptively already. However, their construction is in a different spirit
than that of most boosting papers. They start out with # consisting of one extremely smooth and
complex function and show that boosting reduces bias (roughness of the function) while necessarily
increasing variance. Early stopping is still necessary and they show it can achieve minimax rates.

It follows, using a result of Yang (1999) that our rule is adaptive minimax for classification loss
for some of the classes we have mentioned as well. Unfortunately, as pointed out by Tsybakov
(2001), the sets {x: |Fp(x)| <€} can behave very badly as € | 0, no matter how smooth Fp, the
misclassification Bayes rule, is, so that these results are not as indicative as we would like them
to be. In a recent paper, Bartlett, Jordan, and McAuliffe (2003) considered minimization of the
W empirical risk n~ ' 37, W (V:F(X;)), for fairly general convex W, over sets of the form ¥ =
{F = 2’}’:, ojhy, hy € A, X0, |otj| < oy, (for some representation of F)}. They obtained oracle
inequalities relating EW (YF (X)) for 1:} the empirical minimizer over #; to the empirical W risk
minimum. They then proceeded to show using conditions related to Tsybakov’s (A1) above how to
relate the misclassification regret of #;, given by (P[Y F;(X) < 0] — P[Y Fp(X) < 0]) to (E,W (YE}) —
E,W (YFj)). the W regret where Fj; is the Bayes rule for /. Using these results (Theorems 3 and
10) they were able to establish oracle inequalities for 1:} under misclassification loss. Manor, Meir,
and Zhang (2004) considered the same problem, but focused their analysis mainly on L, boosting.
They obtained an oracle inequality similar to that of Bartlett et al. regularizing by permitting step
sizes which are only a fraction B < 1 of the step size declared optimal by Gauss-Southwell. They
went further by obtaining near minimax results on suitable sets.
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We also limit our results to L, boosting, although we believe this limitation is primarily due to
the lack of minimax theorems for prediction when other losses than L, are considered. We use yet a
different regularization method in what follows. We show in Theorem 8 our variant of L, boosting
achieves minimax rates for estimating £(Y|X) in a wide class of situations. Boosting up to a simple
data-determined cutoff in each sieve level of a model, and then cross-validating to choose between
sieve levels, we can obtain results equivalent to those in which full optimization using penalties are
used, such as Theorem 2.1 of Baraud (2000) and results of Baron, Birgé, Massart (1999). Then,
in Theorem 9, we show, using inequalities related to ones of Tsybakov (2001), Zhang (2004) and
Bartlett et al. (2003), that the rules we propose are also minimax for 0—1 loss in suitable spaces.

6.1 The Rule
Our regularization requires that # = % (=) = Upms1H (m) where # (") are finite sets with certain
properties. For instance, if # consists of the stumps in [0, 1], # = {F,(-) : F5(x) =sgn(x—y), x,y €
[0,1]} we can take 9 (") = {F;(-) : y a dyadic number of order k, y = 3, 05 < 2%}, Essentially,
we construct a sieve approximating #/. Let # (™) be the linear span of 7). Evidently ¥ =
Ums=1F . Let |# (")| = D,,. Then, dim(# ")) = D,,. We now describe our proposed regularization
of L, boosting.

We use the following notation of Section 4, and begin with a glossary and conditions. Let
X1, 1n),..., (X, 1), (X,Y) iid. with

(X,Y) ~ P<<pu Peer, X=(X,...%),Y=MN,....},).
Y € {-1,1}

1712

Il
—
s

~
Q
=

n

I = L XA
[flle = sup|flx.p)|

ENY
Fp(X) = Ep(Y|X)
Fu(X) = argmin{[[t(X)—Y|2: t€ g™}
Fu(X) = argmin{|[t((X)—Y|3: re 5™}
Ex = Conditional expectation given Xj,..., X,

Note that we will often suppress X, Y in v(X,Y,X,Y) and drop subscript to P.
Let F,M. the kth iterate in ¥,,, be defined as follows

Fy = K
ﬁm FL,0 = Fk;n,/}(m)
o Xm,kilm.km
where
Comprhmg) = argmin {—20P,(Y — Fp )+ A2Po ()}
AER he g (m)
lAc(m) = First £ such that 5»3,,,( < A,
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where A, , are constants. Let

where

x if x| <1
HE) = {sgn(x) if [x| > 1 ©

Note that we have suppressed dependence on 7 here, indicating it only by the “hats™. Let,

= argmin{||¥ — F, (x)[[« : m < M}

where
) 1 n+B ) n
Al = Ei:;lf (X:,Y;), and we take B= B, = @ .
The rule we propose is: 5= sgn(lLa ), where
F = H(F; i) - Q)

Note: We show at the end of the Appendix (Proof of Lemma 10) that for wavelet # we take at most
Cnlogn steps total in this algorithm.
6.2 Conditions and Results

We use C as a generic constant throughout, possibly changing from line to line but not depending
on m, n, or P. Lemma 6.3 and the condition we give are essentially due to Baraud (2001). Let x be
a sigma finite measure on { and | f||,, be the L(x) norm.

RL If 7 = {hyy,... . hp, } and Sonj = b/l w then {fn;},7 =1 is an orthonormal
basis of # ") in Ly () such that:

(i) Hfm,/

(ii) There exists an L such that for all m, j, j/,
fm,jfm,j’ =0 if ‘JfJ(‘ > L.

R2. There exists € = €(P) > 0 such that, € < ‘j—': <e lforallPee.

1
« < CDj, for all j, where || f|| = sup | f(x)] .
X

R3. Suppey ||Fp — Fu|3 < CD,,P forall m, B> 1.

R4. M, <Dy, < m for some p > 1.

Condition R1 is needed to conclude that we can bound the behavior of the L.. norm on ¥ (™) by
that of the L, norm for 4. Condition R2 simply ensures that we can do so for P € 2 as well. The
members f;, ; of the basis of # ) must have compact support. It is well known that if 7, consists
of scaled wavelets (in any dimension) then R1 holds. Clearly, if say u is Lebesgue measure on an
hypercube then to satisfy R2 # can consist only of densities bounded from above and away from
0. Condition R3 gives the minimum approximation error incurred by using an estimate F based
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on ¥ ™ and thus limits our choice of # . F inally, R4 links the oracle error for these sequences of
procedures to the number of candidate procedures.
Let
ra(P) = inf{Ep|| = Fp|3: 1 <m < My}, rn= Isuprn(P).
Pep
Thus, r, is the minimax regret for an oracle knowing P but restricted to 1:“,,,. We use the notation
ay =< b, for a shorteut for a,, = O(b,,) and b, = O(a,). We have

Theorem 8 Suppose that P and ¥ satisfy R1-R4 and that # is a VC class. If Ay = O(Dy/n),
then, .
sup Epll FX) — Fp(0) B < 7y ®)
P

Thus, I3 given by (7) is rate minimax.

Theorem 9 Suppose the assumptions of Theorem 8 hold and o =® N{P: P(|Fp(X)| <t) <ct®},
o.> 0. Let A,(F,P) be the Bayes classification regret for P,

Au(F,P)= P(YF(X) < 0) — P(YFp(X) < 0) . ©)

Then,

N otl
supA,(F,P) <rit .

Po

ind

ol

(10)

The condition P[|Fp(x)| <t] < ct®, some o > 0, ¢ sufficiently small appears in Proposition 1 of
Tsybakov (2001) as sufficient for his condition (A1) which is studied by both Bartlett et al. (2003)
and Mammen and Tsybakov (1999).

The proof of Theorem 9 uses 2 lemmas of interest which we now state. Their proofs are in the
Appendix.

We study the algorithm on #,,. For any positive definite matrix X define the condition num-
ber y(X) = ;‘»‘::g;, where Amax, Amin are the largest and smallest eigenvalues of X. Let G, (P) =
lEp fn,i(X) fin,j(X)]| be the Dy, x D,, Gram matrix of the basis { fu,1,-- ., fmn, }-

Lemma 10 Under R1 and R2,
@) Y(Gu(P)) < &2, where ¢ is as in R2.

b) Let G\y(P,) be the empirical Gram matrix ¥ = Y(Gn(P,)). Then, if in addition to R1 and
R2, # is a VC class, P[y(G,) > C1] < Cyexp{—C3n/L>Dy} for all m < M, for such that
D, <n/(logn)? for p > 1.

¢) If # is a VC class, P[||Fm,,~((m) —Flls < C%] =1-0(L) The C and 0 terms are determed
solely by the constants appearing in the R conditions.

Lemma 11 Suppose R1, R2, and R4 hold. Then,
- D, ~ A
Ep(Fn—Fp)? < C{Ep(Fy — Fp)? + =" + Ep(Fy — F)?}.

This “oracle inequality” is key for what follows.
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Proof of Theorem 9

P(YF(x) <0) = %Ep(l(F(X) > 0)(1 —FP(X))) + %Ep(l (F(X) < 0)(1 +FP(X))>.

Hence for all € > 0,

E,,( ) <0,Fp(X) > 0) Fp(X) — 1(F(X) > 0,Fp(X) < O>F/>(X)>
—E/»(Fp J1(F(OF(X) <0))
< Bp(|F(0) ~ Fo(X) [LFF(X) < 0,Fp(X)| > ©)) +€P(IFp(X)| <€)

< %E,, (F(X) = Fp(X))* + ce*t!

by assumption. The theorem follows. |

6.3 Discussion

1) If X € R and 9 ") consists of stumps with the discontinuity at a dyadic rational j/2", then
(M is the linear space of Haar wavelets of order m. This is also true if %, is the space
of differences of two such dyadic stumps. More generally, if # consists of suitably scaled
wavelets, so that || < 1, based on the dyadic rationals of order m, them F (m) is the linear
space spanned by the first 2” elements of the wavelet series. A slight extension of results
of Baraud (2001) yields that if we run the algorithm to the limit & = e for each m rather
than stopping as we indicate, the resulting £, obey the oracle inequality of Lemma 11 with
Appn = 0.

Suppose that X € R and F.. ranges over a ball in an approximation space such as Sobolev
or, more generally, Besov. Then, if # (") has the appropriate approximation properties, e.g.,
wavelets as smooth as the functions in the specified space, it follows from Baraud (2001) that
we can use penalties not dependent on the data to pick Fj; such that,
A 2 A
mng,)(F,;,(X) —E,:(Y\X)) xmjnmax{E,)(F(X) —E,)(Y|X))2 CEp(Y|X) € 7}
P F
= n~'7¢Q(n)
where Q(n) is slowly varying and 0 < & < 1. Here £ ranges over all estimators based only

on the data and not on P. The same type of result has been established for more specialized
models with X € R? by Baron, Birgé, Massart (1999), and others, see Gydrfi et al. (2003).

The resulting minimax risk,
minmax{Ep(F(X) — Ep(Y|X))” : Ep(Y]X) € 7}
7

is always of order n~'*Q(n) where Q(n) is typically constant and 0 < & < 1.

What we show in Theorem 8 is that if, rather than optimizing all the way for each m, we stop
in a natural fashion and cross validate as we have indicated, then we can achieve the optimal
order as well.
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2) “Stumps” unfortunately do not satisfy condition R1 with # Lebesgue measure. Their Gram
matrices are too close to being singular. But differences of stumps work.

3) It follows from the results of Yang (1999) that the rate of Theorem 9 for oo = 0, that is, if
Py = P, is best possible for Sobolev balls and the other spaces we have mentioned.

Tsybakov implicitly defines a class of Fp for which he is able to specify classification minimax
rates. Specifically let X € [0,1]9 and let b(x1,...,xs—1) be a function having continuous
partial derivatives up to order £. Let p,.(-) be the Taylor polynomial or order ¢ obtained
from expanding b at x. Then, he defines X(/,L) to be the class of all such b for which,
|b(y) = pox(¥)| < L|y—x|* forallx,y € [0,1]%"". Evidently if  has bounded partial derivatives
of order {+ 1, b € Z(¢,L), for some L. Now let

Py = {Pin(x) :xdfb(xh‘..,xd,l),
P[|Fp(x)| <t] <Ct, forall 0 <t <1,b€X(¢,L)}

Tsybakov following Mammen and Tsybakov (1999) shows that the classification minimax
regret for 2 (Theorem 2 of Tsybakov (2001) for K = 2) is ﬁ On the other hand, if we
assume that ¥ = Fp(x) + & where € is independent of X, bounded and E(g) = 0, then the L,
minimax regret rate is 2¢/(2¢ + (d — 1)) — see Birgé and Massart (1999) Sections 4.1.1 and

Theorem 9. Our theorem 9 now yields a classification minimax regret rate of

2 2 20
3 20+(d—1) 30+3@d-1)

which is slightly worse than what can be achieved using Tsybakov’s not as readily computable
procedures. However, note that as ¢ — oo so that Fp and the boundary become arbitrarily
smooth, L, boosting approaches the best possible rate for 2, of % Similar remarks can be
made about 0 < o < 1. ‘

7. Conclusions

In this paper we presented different mathematical aspects of boosting. We consider the obser-
vations as an i.i.d. sample from a population (i.e., a distribution). The boosting algorithm is a
Gauss-Southwell minimization of a classification loss function (which typically dominates the 0-1
misclassification loss). We show that the output of the boosting algorithm follows the theoretical
path as if it were applied to the true distribution of the population. Since early stopping is possible
as argued, the algorithm, supplied with an appropriate stopping rule, is consistent.

However, there are no simple rate results other than those of Biithlmann and Yu (2003), which
we discuss, for the convergence of the boosting classifier to the Bayes classifier. We showed that
rate results can be obtained when the boosting algorithm is modified to a cautious version, in which
at each step the boosting is done only over a small set of permitted directions.
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Appendix A. Proof of Theorem 1:

Letwo = infyes w(f). Let £} = 3, Okmbions ban € 9, Ty |Okm| < o2, k=10,1,2,... be any member
of #. such that (i) f5 = fo: (i) w(f;) “\  wo is strictly decreasing sequence; (iii) The following
condition is satisfied:

w(f7) = owo + (L —o)w(fi_y) + (1 — o) (Vi1 — Vi), (11

where v N\, 0 is a strictly decreasing real sequence. The construction of the sequence {f}} is
possible since, by assumption, #.. is dense in the image of w(-). That is, we can start with the
sequence {w(f})}, and then look for suitable {f;}. Here is a possible construction. Let ¢ and 1
be suitable small number. Let y = (1 —o)(1+21)/(1-n), vx = eny*/(1 —7). Select now f; such
wo+c(1=m)¥ <w(f;) < wo+c(1+m)¥:. (1 should be small enough such that y < 1 and ¢ should
selected such that w(f{") < w(fp).) Our argument rests on the following,

Lemma 12 There is a sequence my — oo such that w(f,,) < w(f) +Vvi form>my, k=1,2,...,
and my < Lp(mp—y) < oo, where {i(+) is a monotone non-decreasing functions which depends only
on the sequences {vi} and { fi'}.

Proof of Lemma 12:
We will use the following notation. For f € F. let || f|l. = inf{X |vi|, /= Zvihi, hi € # }.
Recall that by definition w(fy) = w(f;). Our argument proceeds as follows, We will inductively
define m; satisfying the conclusion of the lemma, and make, if € ,, = w(fin) —w(f}),

Bhm < Ckm = max{v"' \/SzﬁB i/ SVl 72 }
“Pe g (14 Setfown (12)
e\ Smroum o(m My—1 +1))
where
Br = inf {w'(f3h) :wo+ Vi <w(f) <w(fy), he H}
(13)
B= sup {w(f;h):w(f) <w(fy), h€ H} < oo.
and
w=2lf- Al
14
pk:;—g(‘V(fb)—Wo). (14)

Having defined my; we establish (12) as part of our induction hypothesis for my_; < m < my;. We
begin by choosing m = m; = 1 so that (12) holds for m = M — 1 = 1. We do do this by choosing
Vo > 0, sufficiently small. Having established the induction for m < my_; we define my as follows.
Write now the RHS of (12) as g(my—1 ), where

512B W( k_])—W()
' 7

2By 8(w(fy|)—wo)
(log(l + W(M—V'F 1)))

) = mao
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We can now pick {(v) = max{v +1,min{m : g(v) < v,}}, and define mj = {i(vi—1).

Note that {B}, {tx}, {p«}. and B depend only the sequences {f;} and {vi}. We now proceed
to establish (12). for my 1 < m < my. Note first that since €, as a function of m is non-increasing,
(12) holds trivially for m' > m if €m < 0. By induction (12) holds for m < my_, and my hold for
some m > mk — 1. Recall that the definition of the algorithm relates the actual gain at the mth to the
maximal gain achieved in this step given the previous steps, see its definition (1). Suppose

ir}}fw(fm-l—khm) < wo+ V. (15)
Then

W) < 0Unfw(fon + M) + (1= 0)w(f), by (1)

<o(wo+ Vi) + (1= a)w(fw), by (15)

< o(wo+vi) + (1 =) (w(ff_;) +Vk-1), by the outer induction, since m > my_
<a(wo + Vi) + (W) —awo + (1 —a)vz), by (11)

=w(f{)+ Vi,

so that € 41 < V4. Therefore, mj, is not larger than m + 1, that is g ,» < v4 for m’ > m then (12)
holds trivially for m’ > m, and hence, by the second induction assumption for all m. We have
established (12) save for m such that,

i[}sz(fﬂ1+7\hn1) > wo + Vi and g, > 0. (16)

We now deal with this case.
Note first that by convexity,

W' (s fon = S| Z W) = W) = Etm- an

We obtain from (17) and the linearity of the derivative that, if f,, — f; = Zy;ﬁ; € Feon

Ekm < ‘2 7’Yiwl(fm; il!)

< sup W (fush)| Y 1l -
heso

Hence
sup [W (foush)| > _ Bbm
sup W Ums B2 = (18)
Now, if fe1 = fin + Ahm then,
W(fon+ Anhim) = w(fon) + W’ (s i) + %anw"(fm;hm), A€ [0, A (19)

where fm = fm +5»mhm and 0 57»,,, < Ap. By convexity, for 0 <A <A,

w(fn +7"hm) =w(fm(l— %) - %fmﬂ) < max{w(f,,,),w(f},,ﬂ)} =w(fm) <w(f1)-
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We obtain from Assumption GS1 that w”( f,,:1) € (B, B) given in (13). But then we conclude from
(19) that,

WU+ o) 2 )+ 08 (o )+ 592B0)

IW/(fm;hm)Iz
2B« ’
Note that w( £, + M) = w(fon) + AW (fn, B) + X" (fn+A'h, k) /2 for some X € [0,A], and if w(f;, +

M) is close to inf;_, w( fu + A, /) then by convexity, w(f, +Ah) < w(fn) < w(fo). We obtain from
the upper bound on w” we obtain:

(20)
= w(ﬁn) -

W(fn + Amhm) < ()L}~ ni{nlf w(fn +AR) + (1 —a)w(f), by definition,

€R, hest

. / . 1 2 B
SO dnf O+ M (fnih) + 31°B) + (1 = 0w (/) @1

osup,.., W (fsh)?
—w(fm) — Phe.lf2|Z (fmsh)| ,

by minimizing over A. Hence combining (20) and (21) we obtain,
|Wl(fm;hm)‘ 2 o.sup ‘W’(fm;h)l \/ & (22)
her B

By (21) for the LHS and convexity for the RHS:

OLSUP e 47 ‘W( (fm; h) |2

Sw(fin) = w(finst) < “)\mw/(fm§hm)

2B
Hence
osupy,c ., W (fmsh
] > P/:GJ(Z‘B (/o )|
Applying (18) we obtain:
O Em
> — ,
[Am| > Bl (23)

where lem = || — f7 |+
Let &Y, be the minimal point of w(f;, + Ah,). Taylor expansion around that point and using the
lower bound on the curvature:

W+ M) 2 W+ W)+ 3B 252 4
Hence

207 < 2 (w(fn) = wlon+ NS )

" B
5 (25)
%

< ﬁ (W(fm) = Ww(fms1 )) )
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where the RHS follows (1). Similarly

O =202 < 2 (0 fer) = W+ AS)

B
< 22D () —w(ors1) o
> aBk m m+1
Combining (25) and (26):
8
M < oy (Un) =wUni). @7
Since €, > 0 by assumption (16), we conclude from (27) that,
m
8
A< ——(w(fi 1) —wo). 28
=Z op Ui (28)
However, by definition,
1k.m+| S lk,m + p‘m‘
m
<+ M
2z 29)

§1k+(m+l—mk_1)l/2( i x?)[/z

i=my_y

by Cauchy-Schwarz, where, similarly,

lk = lkﬂ‘k 1= ”ka7| 7‘/(/5(*[‘*
<o =Kl A+ ey = Solls

my =1

<fo=Flet+ D Al

m=0

my1—1
_ 1/2 A2
<o Al +m mzﬂ 2 o)
8my—
<Ifo—fill+ m W) = w(fme ) by 27)
k

S N R GORT

< /T +pmy—1, asdefined in (14).
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Together, (23), (28), and (29) yield:

8 m
—=(w(fi=1) —wo) = A
oy i %’ . !
(12 m eii
> - 31)
w27
(12 m Sii

- 4B, % et Bw(fy) —wo) /o) V2 (i = my1)/2)?

Further, since €, are decreasing by construction and positive by assumption (16), we can simplify
the sum on the RHS of (31):

i 8%.,1‘
i e+ 8(w(f_y) = wo) /o) /2 (i = my—1)'/2)? )
- 8/(:," m—my_, 1

2 ,:2(‘) 1,3+8[(W(f:71)—W())/(XBk.

Using the inequality,

momey m-m1+1 ] 1 b
D > dr = —log(1+—(m—my_ +1
& atbi _.A a+bt b og< a(m e ))

on the RHS of (32), we obtain from (31) and (32) that (12) holds, for the case (16). This establishes
(16) for all £ and m.
|

Proof of Theorem 1: Since the lemma established the existence of monotone Ck s, it followed
from the definition of these function that w( ;) < w( f*(m ) where k(m) = sup{k: {®)(f3) < m} and
gk = gyo--- 0l is the kth iterate of the gs. Since {®)(f) < oo for all &, we have cslabllshcd the
uniform rate of convergence and can define the sequence {c,, }, where c,, = w( j,‘:(m)) wo.

We now prove the uniform step improvement claim of the theorem and identify a suitable func-
tion &(+). From (26) and (23) if &, > 0

2
W) W) 2 B, > O (b @3

Bound / ,, similarly to (30) by

Lem < i) +m'/2(i7»2) <l + ( (fo) —wo). (34)
g

B

Let m* (v) = inf{m’ : ¢,y <v—wy}, which is well defined since ¢,, — 0. Thus, any realization of the
algorithm will cross the v line on or before step number m*(v). In particular, m < m* (w(f,,)) for
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any m and any realization of the algorithm. We obtain therefore by plugging-in (34) in (33), using
the m* as a bound on m and the identity (a+b)? < 2a® 425 that:

. . (x}Bk W(ﬁn)gw(fl?)
Ww(fm) —w(fur1) > @12 8 (w(fo) (0 fo) —00) oy

as long as €, > 0. Taking the maximum of the RHS over the permitted range, yields a candidate
for the & function:

_ o3Py w—w(fy)
W= . {16821~ ()(w(;%)—wa)/am}'

This proves the theorem under GS1. Under GS2, the only inequality which we need to replace
is (20) since now PB4 = 0 is possible. However the definition of Algorithm 2 ensures that we have a
coeflicient of at least y on A2 in (20). The theorem is proved.

]
Appendix B. Proof of Lemmas 10 and 11 and Theorem 8
Proof of Lemma 10 Since by (R2)
Amax(Gm(P)) = sup x'G,(P)x
=1
= S‘l‘lp szixj /f;n,ifm,ddp
[x]=1
=sup [ (X xifumi) (335)

[xf=1

<e'sup [ Xxifui)du=¢""
=1

Amax(Gn(P)) > €, similarly.

Part a) follows.
For any symmetric matrix M define its operator norm | - |7 by Amax(M). For simplicity let
G = Gu(P) and G,, = G,u(P,). Recall that for any symmetric matrices 4 and and M:

|7“max’(A) _xma\(M)‘ < HA - MHI
[Amin(4) — Amin (M)] < [|[4 — M]|7.

) (36)

SP(HG ~Gnlr >2) P(1Gn—Gallr 21/( + 2))

Now,
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Recall that for a banded matrix M of with band of width 2L,
M7 = sup [|Mx|?

[xll=1
2

~ sup 3(5 M)

xl=1"a
< sup z Z xiMi

[xlI=1"a |p—a|<L
<2LMZ sup Y x2=2LMZ,
[lxl=1"a

where | M||. = max, |My|. Since both G, and Gy, (P) are banded of width d, say,

n

n

Hém *Gm”T < 2Lmax{‘ ! z(ﬁn.uﬁn,b)()(i) 7EPﬁr1,afm,b(Xvi))‘ : ‘afb‘ < L} .
1

If # is a VC class, we can conclude from (35)—(37) that,
P[Y(Gll1> Z CI] S CZ eXp{*C3n/L2D:,z}

@37

(38)

1
since by R1 (i), || fin]le < CwDii. The constants €, Cy, C; and C3 depend on the constants of the R
conditions only. This is a consequence of Theorem 2.14.16 p. 246 of van der Vaart and Wellner

(1996). This complete the proof of part b).
By a standard result for the Gauss-Southwell method, Luenberger (1984), page 229:

A A 1 A A2
st = Flly < (1= 5= ) Vs =l

YD
Hence
ﬂ A 1y . Ay 1 A Ao
HFer _EnH; - HFm,k} 1 _FmHZ Z A—HF;)LI( _Ean
YinDm
Thus, if
l 7 I AN » 2
n > HF;PI,/( Eﬂ”n HF;n.kvl F;n“,;
we obtain

Hﬁnuk - ﬁmH% < Dm'AYm/”'
(From (40) part (c) follows.

Note: Since

. N . N C
HFm,k ]_FmHi_HF;n.,k_F;nH,zl > ;
(39) implies that
( 1 )’2("1) 1
1—- > -
’Ylan n
Therefore:

/}(m) < logn?mDm .

If, for instance, as with wavelets D,, = 2", m < log, n we take at most Cnlogn steps total.
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Lemma 13
If Ex denotes conditional expectation give n X, ..., Xy, under R1 and F = F,

N D,
Ex|F,,,fF,,,\ﬁsC(#+||ErF|I%) 41

This is a standard type of result — see Barron, Birgé, Massart (1999). We include the proof for
completeness. Note that,

R 1
1 (X) =Y |17 = ;YT(I*P)Y

where Y = (Y1,...,Y,)" and P is the projection matrix of dimension Dy, onto the L space spanned
by (hi(X1),...,hj(Xn)), 1 < j < Dy Then, (I—P)v =0 for all v € L. Hence,
A 1
Ex|F,(X)-Y|?= ;Ex (Y- F,,,(X))T(I*P)(Y —Fu(X))

where Fy(X) = (Fu(X1), ... ,F,,,(X,,))T is the projection of (F(X),...,F(X,))" onto L. Note also
that,
[ En = Fonll = Y = F(X)[ 2 = [[Y = (X)17

where B(X) = (Fpu(X)), ..., Fn(X,))T . Hence,

EXllE?Z_EII ‘3 %EX(Y_FIH(X))IP(Y_Fm(X))

Il

= 1Ex(Y—F(X))"P(Y = F(X))+ 2Ex(F — F) P(Y — F (X))
= LExtrace[P(Y —F(X))(Y — F(X))]

+%EX(Fm - F)TP(Fm - F)(X)

But

Ex trace[P(Y — F(X)))(Y —F(X))] = % 2 Var (Y| X;)pii(X) < max Var(Yile)%
i=1 ! n
since

zn:p;,-(X) =trace P = Dy,
i=1
Also, since P is a projection matrix
(Fy—F)"P(Fy ~F)(X) < |Fy — F;
and (41) follows.

Proof of Lemma 11:
Take Ay, = 0. Let p,, = sup { % D te Tm} . By Proposition 5.2 of Baraud (2001), if po > /15 ',

ho—pg')?

P[P > po] < Dy, exp{—( 4 cplogn}
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where ¢, = W Here hy, hy C are generic constants. Baraud gives a proof for the case Var(Y |X) =
constant, but this is immaterial since only functions of X are involved in pj,. Therefore,

EI’(Fm - F]’>21(pm < P())
Zp%El’{Erz(ﬁm _Fm)z +En(Fm _F}’)z}
Dﬂ
C(Tl‘i’ ”F;u*FP”z) (42)

IA

IA

On the other hand,
EP(Fm *FP)zl(pm > PO) < ZP[pm > pO]

= CD2, exp{—AC,logn} (43)

Combining N(42) and (43) we obtain Lemma 11 for A, , = 0, £, = ]7“,,,. Putting in ]7“,,1 we add a term
CEp (Fm — F;,)?. We now apply Lemma 10 c) and the argument we used to obtain (42) and (43). W

Proof of Theorem 8: Note that we are limited to rates of convergence which are slower than nol.
This comes from the combination of R1(i) and bounding the operator by the /.. norm of the Gram
matrix. It is not clear how either of these conditions can be relaxed.

We need only check that if the {F;,} are the 8,, of Theorem 6 then the conditions of that theorem
are satisfied. By construction, ||Fj,|.. <1, B, = . By Lemma 11 and (R3),

= logn*

D
<Ot C.D,? (44)
B
and the right hand side of (44) is bounded by n ), [ ]
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We show that, under a sparsity scenario, the Lasso estimator and the
Dantzig selector exhibit similar behavior. For both methods, we derive, in par-
allel, oracle inequalities for the prediction risk in the general nonparametric
regression model, as well as bounds on the £, estimation loss for 1 < p <2
in the linear model when the number of variables can be much larger than the
sample size.

1. Introduction. During the last few years, a great deal of attention has been
focused on the ¢ penalized least squares (Lasso) estimator of parameters in high-
dimensional linear regression when the number of variables can be much larger
than the sample size [8, 9, 11, 17, 18, 20-22, 26] and [27]. Quite recently, Candes
and Tao [7] have proposed a new estimate for such linear models, the Dantzig se-
lector, for which they establish optimal £, rate properties under a sparsity scenario;
that is, when the number of nonzero components of the true vector of parameters
is small.

Lasso estimators have also been studied in the nonparametric regression setup
[2-4, 12, 13, 19] and [5]. In particular, Bunea, Tsybakov and Wegkamp [2-5] ob-
tain sparsity oracle inequalities for the prediction loss in this context and point out
the implications for minimax estimation in classical nonparametric regression set-
tings, as well as for the problem of aggregation of estimators. An analog of Lasso
for density estimation with similar properties (SPADES) is proposed in [6]. Mod-
ified versions of Lasso estimators (nonquadratic terms and/or penalties slightly
different from ¢) for nonparametric regression with random design are suggested
and studied under prediction loss in [14] and [25]. Sparsity oracle inequalities for
the Dantzig selector with random design are obtained in [15]. In linear fixed de-
sign regression, Meinshausen and Yu [18] establish a bound on the ¢; loss for the
coefficients of Lasso that is quite different from the bound on the same loss for the
Dantzig selector proven in [7].

The main message of this paper is that, under a sparsity scenario, the Lasso
and the Dantzig selector exhibit similar behavior, both for linear regression and

Received August 2007; revised April 2008.
]Supported in part by NSF Grant DMS-06-05236, ISF grant, France-Berkeley Fund, the Grant
ANR-06-BLAN-0194 and the European Network of Excellence PASCAL.
AMS 2000 subject classifications. Primary 60K35, 62G08; secondary 62C20, 62G05, 62G20.
Key words and phrases. Linear models, model selection, nonparametric statistics.

495



P. J. BICKEL, Y. RITOV AND A. B. TSYBAKOV

for nonparametric regression models, for £ prediction loss and for £, loss in the
coefficients for 1 < p <2. All the results of the paper are nonasymptotic.

Let us specialize to the case of linear regression with many covariates,
y = XB + w, where X is the n x M deterministic design matrix, with M possibly
much larger than n, and w is a vector of i.i.d. standard normal random variables.
This is the situation considered most recently by Candes and Tao [7] and Mein-
shausen and Yu [18]. Here, sparsity specifies that the high-dimensional vector
has coefficients that are mostly 0.

We develop general tools to study these two estimators in parallel. For the fixed
design Gaussian regression model, we recover, as particular cases, sparsity oracle
inequalities for the Lasso, as in Bunea, Tsybakov and Wegkamp [4], and £, bounds
for the coefficients of Dantzig selector, as in Candes and Tao [7]. This is obtained
as a consequence of our more general results, which are the following:

e In the nonparametric regression model, we prove sparsity oracle inequalities for
the Dantzig selector; that is, bounds on the prediction loss in terms of the best
possible (oracle) approximation under the sparsity constraint.

e Similar sparsity oracle inequalities are proved for the Lasso in the nonparametric
regression model, and this is done under more general assumptions on the design
matrix than in [4].

e We prove that, for nonparametric regression, the Lasso and the Dantzig selector
are approximately equivalent in terms of the prediction loss.

e We develop geometrical assumptions that are considerably weaker than those of
Candes and Tao [7] for the Dantzig selector and Bunea, Tsybakov and Wegkamp
[4] for the Lasso. In the context of linear regression where the number of vari-
ables is possibly much larger than the sample size, these assumptions imply the
result of [7] for the > loss and generalize it to £, loss 1 < p <2 and to predic-
tion loss. Our bounds for the Lasso differ from those for Dantzig selector only
in numerical constants.

We begin, in the next section, by defining the Lasso and Dantzig procedures and
the notation. In Section 3, we present our key geometric assumptions. Some suffi-
cient conditions for these assumptions are given in Section 4, where they are also
compared to those of [7] and [18], as well as to ones appearing in [4] and [5]. We
note a weakness of our assumptions, and, hence, of those in the papers we cited,
and we discuss a way of slightly remedying them. Sections 5 and 6 give some
equivalence results and sparsity oracle inequalities for the Lasso and Dantzig es-
timators in the general nonparametric regression model. Section 7 focuses on the
linear regression model and includes a final discussion. Two important technical
lemmas are given in Appendix B as well as most of the proofs.

2. Definitions and notation. Let (Z,Y)),...,(Z,,Y,) be a sample of inde-
pendent random pairs with

Yi= f(Z)) +W;, i=1,...,n,
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where f:Z — R is an unknown regression function to be estimated, Z is a Borel
subset of RY, the Z;’s are fixed elements in Z and the regression errors W; are
Gaussian. Let £y ={f1,..., fu} be a finite dictionary of functions f;:Z — R,
Jj=1,..., M. We assume throughout that M > 2.

Depending on the statistical targets, the dictionary $3; can contain qualitatively
different parts. For instance, it can be a collection of basis functions used to ap-
proximate f in the nonparametric regression model (e.g., wavelets, splines with
fixed knots, step functions). Another example is related to the aggregation prob-
lem, where the f; are estimators arising from M different methods. They can also
correspond to M different values of the tuning parameter of the same method.
Without much loss of generality, these estimators f; are treated as fixed functions.
The results are viewed as being conditioned on the sample that the f; are based
on.

The selection of the dictionary can be very important to make the estimation
of f possible. We assume implicitly that f can be well approximated by a member
of the span of #37. However, this is not enough. In this paper, we have in mind the
situation where M > n, and f can be estimated reasonably only because it can
approximated by a linear combination of a small number of members of F), or, in
other words, it has a sparse approximation in the span of ;. But, when sparsity
is an issue, equivalent bases can have different properties. A function that has a
sparse representation in one basis may not have it in another, even if both of them
span the same linear space.

Consider the matrix X = (f;(Z;))ij,i=1,...,n, j=1,..., M and the vec-
torsy = (Y1,....Y) T, f=(f(ZD)..... fF(Z )T, w= (Wy,..., W,)T. With the
notation

y=f+w,

we will write |x|, for the £, norm of x € RM 1< p < oo. The notation | - ||,
stands for the empirical norm

1 n
gl = |~ > 82z
i=1

for any g:Z — R. We suppose that || fjll» #0, j=1,..., M. Set

ax = Mmax illns min = min illn-
Smax | max, I flln JSmin ]Silelfjlln

Forany B = (B1. ..., Bu) € RM, define f5= Zy:] Bj f; or, explicitly, fg(z) =
ZM= Bifi(z) and fg3 = XB. The estimates we consider are all of the form f3;(-),
j=1PjJj B B

where f is data determined. Since we consider mainly sparse vectors £, it will be
convenient to define the following. Let

M
MB) =D Lig;20y =7 (B)]
j=1
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denote the number of nonzero coordinates of B, where I} denotes the indicator
function J(B) ={j € {1,..., M}:B; # 0} and |J| denotes the cardinality of J.
The value M (B) characterizes the sparsity of the vector 8. The smaller M (B), the
“sparser” f8. For a vector § € RM and a subset J C {1, ..., M}, we denote by &
the vector in RM that has the same coordinates as § on J and zero coordinates on
the complement J¢ of J.
Introduce the residual sum of squares
> 1 n
SB =~ Y= fp(ZoY

i=1
forall g € RM . Define the Lasso solution EL = (/§1,L~ e, EM,L) by

M
2.1) Br = argmin{ S(8) +2r 3" 11 £illalB;l ¢
BeRM j=1

where r > 0 is some tuning constant, and introduce the corresponding Lasso esti-
mator

M
2.2) fr) = fz,0) =Y Bjrfi@.

j=1

The criterion in (2.1) is convex in S, so that standard convex optimization pro-
cedures can be used to compute EL. We refer to [9, 10, 20, 21, 24] and [16] for
detailed discussion of these optimization problems and fast algorithms.

A necessary and sufficient condition of the minimizer in (2.1) is that O belongs
to the subdifferential of the convex function 8 — n~!|y — Xﬂl% +2r|D'2p);.
This implies that the Lasso selector .EL satisfies the constraint

1 Y
2.3) -D7'2xT(y - XBp)| =n,
n 00

where D is the diagonal matrix

D =diag{|l fill2,.... | fmll2}.

More generally, we will say that 8 € RM satisfies the Dantzig constraint if 8 be-
longs to the set

{ﬁ cRM. ‘%D_I/ZXT(y —Xﬁ)\ Sr}-

The Dantzig estimator of the regression function f is based on a particular
solution of (2.3), the Dantzig selector Bp, which is defined as a vector having the
smallest £1 norm among all g satisfying the Dantzig constraint

2.4 ED=argmin{|ﬂ|1:

1
—D_I/ZXT(y—Xﬂ)‘ §r}.
n )

498



LASSO AND DANTZIG SELECTOR

The Dantzig estimator is defined by

M
(2.5) fo@ = fz,)=>Bjnfi,

j=l1

where ED = (31,,3, ceey EM,D) is the Dantzig selector. By the definition of Dantzig
selector, we have |ﬁp|1 < |EL|1-

The Dantzig selector is computationally feasible, since it reduces to a linear
programming problem [7].

Finally, for any n > 1, M > 2, we consider the Gram matrix

1 1
W, =-xTX = (— Yo f (Z»f,v(zl«)) :
n n im1

1<j.j'=sM

and let ¢pmax denote the maximal eigenvalue of W,,.

3. Restricted eigenvalue assumptions. We now introduce the key assump-
tions on the Gram matrix that arc needed to guarantee nice statistical properties
of the Lasso and Dantzig selectors. Under the sparsity scenario, we are typically
interested in the case where M > n, and even M > n. Then, the matrix ¥, is
degenerate, which can be written as

8Tw,8)'/2 ). ¢ 15
min _— = min =
serRM:320  |8]2 SeRM:5-0 /11|82

Clearly, ordinary least squares does not work in this case, since it requires positive
definiteness of W,,; that is,

min [ X382
SeRM:5£0 /11|82

It turns out that the Lasso and Dantzig selector require much weaker assumptions.
The minimum in (3.1) can be replaced by the minimum over a restricted set of
vectors, and the norm |§|; in the denominator of the condition can be replaced by
the £, norm of only a part of §.

One of the properties of both the Lasso and the Dantzig selectors is that, for the
linear regression model, the residuals § = /§L — B and é§ = 3 p — p satisfy, with
probability close to 1,

(32) 18511 < coldyql1,

3.1)

where Jop = J(B) is the set of nonzero coefficients of the true parameter B of the
model. For the linear regression model, the vector of Dantzig residuals § satisfies
(3.2) with probability close 1 if co =1 and M is large [cf. (B.9) and the fact that
B of the model satisfies the Dantzig constraint with probability close to 1 if M is
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large]. A similar inequality holds for the vector of Lasso residuals § = B; — 8, but
this time with ¢y = 3 [cf. Corollary B.2].

Now, for example, consider the case where the elements of the Gram ma-
trix W, are close to those of a positive definite (M x M)-matrix W. Denote, by

&n 2 max; j [(W, — W); ;|, the maximal difference between the elements of the
two matrices. Then, for any § satisfying (3.2), we get

§Tw,8  §TWs 48T (w, —1)s

183 1813
T 2
_8TWE  ealdl]
2 2
1815 1615
3.3) T 5
L8 v ((1+Co)|310||>
|6|% " |8/0|2
§Tws
> — en(1 + c0)?|Jol.

83

Thus, for § satisfying (3.2), which are the vectors that we have in mind, and for
en|Jo| small enough, the LHS of (3.3) is bounded away from 0. This means that we
have a kind of “restricted” positive definiteness, which is valid only for the vectors
satisfying (3.2). This suggests the following conditions, which will suffice for the
main argument of the paper. We refer to these conditions as restricted eigenvalue
(RE) assumptions.

ASSUMPTION RE(s, ¢g). For some integer s such that 1 <s < M and a posi-
tive number ¢, the following condition holds:
[X3]2

min min _
Jo<il,.... M}, 8540, 118 g l2
[Jo|<s \3/6'|1500|31‘,h

A
K(S, (:0) =

The integer s here plays the role of an upper bound on the sparsity M (8) of a
vector of coefficients B.
Note that, if Assumption RE(s, cp) is satisfied with ¢p > 1, then

min{| X8| : M(8) <2s5,8 # 0} > 0.

In other words, the square submatrices of size < 2s of the Gram matrix are neces-
sarily positive definite. Indeed, suppose that, for some § # 0, we have simultane-
ously M(8) <2s and X§ = 0. Partition J(8) in two sets J(§) = Ip U I1, such that
[I;] <s,i=0,1. Without loss of generality, suppose that |87, |1 < [8z,]1. Since,
clearly, |67, |1 = |816-|1 and cg > 1, we have |815~|1 < coldpyl1. Hence, k (s, co) =0,
a contradiction.
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To introduce the second assumption, we need some notation. For integers s, m
suchthat 1 <s <M/2andm >s,s+m < M,avector § € RM and a set of indices
Jo € {1,..., M} with |Jo| <s; denote by J; the subset of {1, ..., M} correspond-
ing to the m largest in absolute value coordinates of § outside of Jy, and define
Joi E Jo U Ji. Clearly, J; and Jy; depend on m, but we do not indicate this in our
notation for the sake of brevity.

ASSUMPTION RE(s, m, cg).
[X3]2

min min _ >
JS{l,..M}, 840, V18, 12
|Jol=s |5J(‘)"]SCO|6J0|I

Kk (s, m,co) E 0.

Note that the only difference between the two assumptions is in the denomina-
tors, and k (s, m, co) < Kk (s, co). As written, for fixed n, the two assumptions are
equivalent. However, asymptotically for large n, Assumption RE(s, o) is less re-
strictive than RE(s, m, o), since the ratio « (s, m, co)/k (s, co) may tend to O if s
and m depend on n. For our bounds on the prediction loss and on the £; loss of the
Lasso and Dantzig estimators, we will only need Assumption RE(s, ¢p). Assump-
tion RE(s, m, ¢o) will be required exclusively for the bounds on the £, loss with
l<p=<2.

Note also that Assumptions RE(s’, cp) and RE(s’, m, ¢p) imply Assumptions
RE(s, co) and RE(s, m, cp), respectively, if s" > s.

4. Discussion of the RE assumptions. There exist several simple sufficient
conditions for Assumptions RE(s, ¢o) and RE(s, m, co) to hold. Here, we discuss
some of them.

For a real number 1 < u < M, we introduce the following quantities that we
will call restricted eigenvalues:

. xTW, x
Pmin(u) = min 2
xeRMil<M)=u |x]5
xTw, x
Prmax (1) =

max 5
xeRM:1<M(x)<u |X|2

Denote by X; the n x |J| submatrix of X obtained by removing from X the
columns that do not correspond to the indices in J, and, for 1 <m,my < M,
introduce the following quantities called restricted correlations:
clTX }1 X I .
Omy.my =max{7:11 NhL=a,|l;| <mj,c;e R“\{0},i = 1,2}.
nlcilz]eal
In Lemma 4.1, below, we show that a sufficient condition for RE(s, ¢g) and
RE(s, s, cp) to hold is given, for example, by the following assumption on the
Gram matrix.
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ASSUMPTION 1. Assume that
Pmin (25) > cobs 25

for some integer 1 <s < M /2 and a constant ¢y > 0.

This condition with ¢g = 1 appeared in [7], in connection with the Dantzig se-
lector. Assumption 1 is more general, in that we can have an arbitrary constant
co > 0 that will allow us to cover not only the Dantzig selector but also the Lasso
estimators and to prove oracle inequalities for the prediction loss when the model
is nonparametric.

Our second sufficient condition for RE(s, c¢g) and RE(s, m, ¢p) does not need
bounds on correlations. Only bounds on the minimal and maximal eigenvalues of
“small” submatrices of the Gram matrix W, are involved.

ASSUMPTION 2. Assume that
2
MPmin (s + 1) > ¢S Pmax (M)
for some integers s,m, such that | <s < M/2, m > s and s + m < M, and a

constant ¢g > 0.

Assumption 2 can be viewed as a weakening of the condition on ¢min in [18].
Indeed, taking s + m = slogn (we assume, without loss of generality, that s logn
is an integer and n > 3) and assuming that ¢max(-) is uniformly bounded by a
constant, we get that Assumption 2 is equivalent to

Pmin(slogn) > c¢/logn,
where ¢ > 0 is a constant. The corresponding, slightly stronger, assumption in [18]
is stated in asymptotic form, for s = s, — 00, as

lin}linf¢min(s,, logn) > 0.

The following two constants are useful when Assumptions 1 and 2 are consid-

ered:
Os 25
K1(s, co) = \/M(l a %>

Kk2(s,m, co) =/ Pmin(s +m) (1 — oy %)

The next lemma shows that if Assumptions 1 or 2 are satisfied, then the quadratic
form xTW, x is positive definite on some restricted sets of vectors x. The construc-
tion of the lemma is inspired by Candes and Tao [7] and covers, in particular, the
corresponding result in [7].

and
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LEMMA 4.1. Fix an integer 1 <s < M /2 and a constant co > 0.

(1) Let Assumption 1 be satisfied. Then, Assumptions RE(s, co) and RE(s, s,
co) hold with k (s, co) = «(s, s, co) = k1(s, co). Moreover, for any subset Jo of
{1,..., M}, with cardinality | Jo| < s, and any § € RM such that

4.1) 187¢11 < cold g1,

we have

1
WU)OIXMZ > k1 (s, co)ld sy |2,
where Py is the projector in RM on the linear span of the columns of X -

(i) Let Assumption 2 be satisfied. Then, Assumptions RE(s, co) and RE(s, m,
co) hold with k (s, co) = k (s, m, co) = k2(s, m, cp). Moreover, for any subset Jy of
{1,..., M}, with cardinality |Jo| < s, and any & € RM such that (4.1) holds, we
have

1
—=|Po1 X382 > k2(s, m, c0)|8 sy, |2

Jn

The proof of the lemma is given in Appendix A.

There exist other sufficient conditions for Assumptions RE(s, ¢g) and RE(s, m,
cp) to hold. We mention here three of them implying Assumption RE(s, ¢g). The
first one is the following [1].

ASSUMPTION 3. For an integer s such that | <s < M, we have
Pmin(s) > 2c0y,14/5,

where ¢o > 0 is a constant.
To argue that Assumption 3 implies RE(s, cp), it suffices to remark that

1 1 2
;|x3|§ > ;sjoxsz,(, - ;w}oxszjé-\

> rin($)18113 — %IS%XTXSJ(;I
and, if (4.1) holds,
187, X X8 ¢1/n < 18¢1 ﬁajglaixTXml/n
< 01181118 512

2
< coby.14/518 4, 13-

Another type of assumption related to “mutual coherence” [8] is discussed in
connection to Lasso in [4, 5]. We state it in two different forms, which are given
below.
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ASSUMPTION 4. For an integer s such that 1| <s < M, we have
Pmin(s) > 2cob1,15,

where ¢o > 0 is a constant.
It is easy to see that Assumption 4 implies RE(s, cp). Indeed, if (4.1) holds,
1 2 ber o1
;IXSIZ > ;5/0)( X387y — 201118 5511185011

4.2) > Pmin ()18 13 — 2¢001,118 4,17
> (Pmin(s) — 2¢001.15)18 13-

If all the diagonal elements of matrix XTX/n are equal to 1 (and thus ;| coin-
cides with the mutual coherence [8]), then a simple sufficient condition for As-
sumption RE(s, ¢o) to hold is stated as follows.

ASSUMPTION 5. All the diagonal elements of the Gram matrix W, arc equal
to 1, and for an integer s, such that 1 <s < M, we have

1

4. _—
“.3) i < (14 2co)s’

where ¢o > 0 is a constant.

In fact, separating the diagonal and off-diagonal terms of the quadratic form, we
get

85, XTX8 /= 18115 — 011185017 = 1851 — 01.15).

Combining this inequality with (4.2), we see that Assumption RE(s, cp) is satisfied
whenever (4.3) holds.

Unfortunately, Assumption RE(s, ¢o) has some weakness. Let, for example, f;,
j=1,...,2" — 1, be the Haar wavelet basis on [0, 1] (M = 2™), and consider
Zi=i/n,i=1,...,n.If M > n, then it is clear that ¢nin (1) = 0, since there are
functions f; on the highest resolution level whose supports (of length M ~1) con-
tain no points Z;. So, none of Assumptions 1-4 hold. A less severe, although sim-
ilar, situation is when we consider step functions f;(t) = Iy <j/m) for t € [0, 1].
It is clear that ¢pin(2) = O(1/M), although sparse representation in this basis is
very natural. Intuitively, the problem arises only because we include very high res-
olution components. Therefore, we may try to restrict the set Jy in RE(s, cg) to
low resolution components, which is quite reasonable, because the “true” or “in-
teresting” vectors of parameters B are often characterized by such Jo. This idea is
formalized in Section 6 (cf. Corollary 6.2, see also a remark after Theorem 7.2 in
Section 7).
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5. Approximate equivalence. In this section, we prove a type of approxi-
mate equivalence between the Lasso and the Dantzig selector. It is expressed as
closeness of the prediction losses ||f'D — f||3 and [[fL — f||ﬁ when the number of
nonzero components of the Lasso or the Dantzig selector is small as compared to
the sample size.

THEOREM 5.1. Let W; be independent N (0, o2) random variables with
62>0.Fixn>1,M>2. Let Assumption RE(s, 1) be satisfied with 1 <s < M.
Consider the Dantzig estimator fp defined by (2.5)—(2.4) with

log M
r= Ao |22
n

where A > 2+/2, and consider the Lasso estimator fL defined by (2.1)—(2.2) with
the same r. ,
If M(BL) < s, then, with probability at least 1 — M'~A"/8 e have

Azem/’fl)oz [l

~ 12 i 112
G0 o= flla =1/ = fllz| <16 25, 1)

og M.

Note that the RHS of (5.1) is bounded by a product of three factors (and a
numerical constant which, unfortunately, equals at least 128). The first factor
M(Br)o? /n < sa?/n corresponds to the error rate for prediction in regression
with s parameters. The two other factors, logM and f2,,/k?(s, 1), can be re-
garded as a price to pay for the large number of regressors. If the Gram matrix
W, equals the identity matrix (the white noise model), then there is only the log M
factor. In the general case, there is another factor frﬁax /k2(s, 1) representing the
extent to which the Gram matrix is ill-posed for estimation of sparse vectors.

We also have the following result that we state, for simplicity, under the assump-
tion that || f|l, =1, j=1,..., M. It gives a bound in the spirit of Theorem 5.1
but with M(E p) rather than M (EI,) on the right-hand side.

THEOREM 5.2. Let the assumptions of Theorem 5.1 hold, but with RE(s, 5)
in place of RE(s, 1), and let || fill, =1, j=1,..., M. If M(Bp) < s, then, with

probability at least 1 — M]_AZ/S, we have
Z,M(ED)UZ log M

) o2
(5.2) I fe— fl; =100 fp — fl; +81A 265"

REMARK. The approximate equivalence is essentially that of the rates as The-
orem 5.1 exhibits. A statement free of M (B) holds for linear regression, see dis-
cussion after Theorems 7.2 and 7.3 below.
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6. Oracle inequalities for prediction loss. Here, we prove sparsity oracle
inequalities for the prediction loss of the Lasso and Dantzig estimators. These in-
equalities allow us to bound the difference between the prediction errors of the
estimators and the best sparse approximation of the regression function (by an or-
acle that knows the truth but is constrained by sparsity). The results of this section,
together with those of Section 5, show that the distance between the prediction
losses of the Dantzig and Lasso estimators is of the same order as the distances
between them and their oracle approximations.

A general discussion of sparsity oracle inequalities can be found in [23]. Such
inequalities have been recently obtained for the Lasso type estimators in a number
of settings [2-6, 14] and [25]. In particular, the regression model with fixed design
that we study here is considered in [2—4]. The assumptions on the Gram matrix
W, in [2-4] are more restrictive than ours. In those papers, either W, is positive
definite, or a mutual coherence condition similar to (4.3) is imposed.

THEOREM 6.1. Let W; be independent N (0,(72) random variables with
62 > 0. Fix some ¢ > 0 and integers n > 1, M >2,1<s = M. Let Assump-
tion RE(s, 344/¢) be satisfied. Consider the Lasso estimator fi defined by (2.1)—
(2.2) with

log M

n

r=Ao

for some A > 2+/2. Then, with probability at least 1 — M'*Az/x, we have

I — fII2
(6.1)

C(e) f2x A% M(B)log M }

< (1 inf 5—flx
=(+e) ﬁ;ﬂg/w:[”fﬂ Flla+ k2(s,3+4/¢) n

M(B)=s
where C(¢g) > 0 is a constant depending only on ¢.
We now state, as a corollary, a softer version of Theorem 6.1 that can be used to

eliminate the pathologies mentioned at the end of Section 4. For this purpose, we
define

. |X4l
Iy ={JOC{I,...,M}:|JOI§sand min — 2>y,
ne 320, /nldpl2
|3J(<)'\1SL'0|510|1
where y > 0 is a constant, and set

Asyco =1B:T(B) € Js.y.c0)-

In similar way, we define sy m,c, and Ag y m,, corresponding to Assump-
tion RE(s, m, ¢p).
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COROLLARY 6.2. Let W;, s and the Lasso estimator jAL be the same as in
Theorem 6.1. Then, for all n > 1, ¢ > 0, and y > 0, with probability at least 1 —

2
M1=4/8 we have

~ C(&) frnAa® ( M(B)logM
1= i< e int gy — g1+ S (HOREH)

BEAsy.e
where /_\s,y.s ={Be As.y.3+4/a :M(B) <s}.

To obtain this corollary, it suffices to observe that the proof of Theorem 6.1
goes through if we drop Assumption RE(s, 3 + 4/¢), but we assume instead that
B € Ag,y 3+4/¢, and we replace k (s, 3+4/¢) by y.

We would like now to get a sparsity oracle inequality similar to that of Theo-
rem 6.1 for the Dantzig estimator fp. We will need a mild additional assumption
on f. This is due to the fact that not every 8 € R™ obeys the Dantzig constraint;
thus, we cannot assure the key relation (B.9) for all 8 € RM. One possibility would
be to prove inequality as (6.1), where the infimum on the right hand side is taken
over B satisfying not only M (B) < s but also the Dantzig constraint. However, this
seems not to be very intuitive, since we cannot guarantee that the corresponding
fp gives a good approximation of the unknown function f. Therefore, we choose
another approach (cf. [5]), in which we consider f satisfying the weak sparsity
property relative to the dictionary fi, ..., fyr. That is, we assume that there exist
an integer s and constant Cp < 0o such that the set

Cofl%axrz
k2(s,3+4/¢)

is nonempty. The second inequality in (6.2) says that the “bias” term || fg — f ||,21
cannot be much larger than the “variance term” ~ 2 r?c=2M(B) [cf. (6.1)].
Weak sparsity is milder than the sparsity property in the usual sense. The latter
means that f admits the exact representation f = fg«, for some p* € RM with
hopefully small M(B*) =s.

(6.2) As= {/3 eRM:MPB) <, s — [l < M(B)

PROPOSITION 6.3. Let W; be independent N (0, o) random variables with
02> 0. Fix some ¢ > 0 and integers n > 1, M > 2. Let f obey the weak sparsity
assumption for some Co < oo and some s such that 1 < s max{Ci(¢), 1} < M,
where

Crie)— Pmax frin
1@ =4[(1+e)Co+ Cle)l—7—
K fmin
and C(g) is the constant in Theorem 6.1. Suppose, further, that Assump-
tion RE(s max{C(¢), 1},3 + 4/¢) is satisfied. Consider the Danizig estimator
fp defined by (2.5)—(2.4) with

log M

n

r= Ao
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and A > 2/2. Then, with probability at least 1 — M"Az/s, we have
1o = £II;
(6.3)

2. A%52
s(+e) o ||f}3—f||5+C2(8)%<

slog M)
BERM M (B)=s K3 '

n
Here, C2(¢) = 16C1(¢) + C(¢) and ko = k (max(Cy(¢), 1)s, 3 +4/¢).

Note that the sparsity oracle inequality (6.3) is slightly weaker than the anal-
ogous inequality (6.1) for the Lasso. Here, we have infgegpm. y(p)=, instead of

infgepm. y(py<s in (6.1).

7. Special case. Parametric estimation in linear regression. In this section,

we assume that the vector of observations y = (Y7, ..., Yn)T is of the form
(7.1) y=XB"+w,
where X is an n x M deterministic matrix 8* € RM and w= (W, ..., W,)T.

We consider dimension M that can be of order n and even much larger. Then,
B* is, in general, not uniquely defined. For M > n, if (7.1) is satisfied for 8* = By,
then there exists an affine space U = {B*: XB* = X Py} of vectors satisfying (7.1).
The results of this section are valid for any 8* such that (7.1) holds. However, we
will suppose that Assumption RE(s, ¢g) holds with ¢o > 1 and that M(B*) <.
Then, the set U N {B*: M(B*) < s} reduces to a single element (cf. Remark 2 at
the end of this section). In this sense, there is a unique sparse solution of (7.1).

Our goal in this section, unlike that of the previous ones, is to estimate both X8*
for the purpose of prediction and g* itself for purpose of model selection. We will
see that meaningful results are obtained when the sparsity index M (8*) is small.

It will be assumed throughout this section that the diagonal elements of the
Gram matrix W, = XTX/n are all equal to 1 (this is equivalent to the condition
I fill.=1,j=1,...., M, in the notation of previous sections). Then, the Lasso
estimator of 8* in (7.1) is defined by
(72) B = argmin{ L1y - Xpi3 + 2111}

pgerm 11

The correspondence between the notation here and that of the previous sections is
I fslz =1XBI/n, N fs— flz=I1X(B—B"3/n,
12— fliz = 1X B — B9)I3/n.
The Dantzig selector for linear model (7.1) is defined by

(7.3) Bp = argmin|B];.
BeA
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where
1
A= {ﬂ eRM: ‘—XT(y— Xﬁ)‘ < r}
n %)

is the set of all B satisfying the Dantzig constraint.
We first get bounds on the rate of convergence of Dantzig selector.

THEOREM 7.1. Let W; be independent N 0,062 random variables with
62 >0, let all the diagonal elements of the matrix X" X/n be equal to 1 and
M(B*) < s, where | <s <M,n>1, M >2. Let Assumption RE(s, 1) be sat-
isfied. Consider the Dantzig selector Bp defined by (7.3) with

[log M
r= Ao |22
n

and A > /2. Then, with probability at least 1 — Ml_Az/z, we have

A N 8A log M
74 IBp—B"h = pETPRTRAL
. e 16A2
(7.5) [X(Bp — B3 < 26.10° *slog M.

If Assumption RE(s, m, 1) is satisfied, then, with the same probability as above,
simultaneously for all 1 < p <2, we have

1 2P=D o logM b
_ P P—
(16)  1Bp—BI} <2 siH\f] (2(”” e ) .

Note that, since s < m, the factor in curly brackets in (7.6) is bounded by a
constant independent of s and m. Under Assumption 1 in Section 4, with ¢cp =1
[which is less general than RE(s, s, 1), cf. Lemma 4.1(i)], a bound of the form (7.6)
for the case p = 2 is established by Candes and Tao [7].

Bounds on the rate of convergence of the Lasso selector are quite similar to
those obtained in Theorem 7.1. They are given by the following result.

THEOREM 7.2. Let W; be independent N (0, 02) random variables with
a2 > 0. Let all the diagonal elements of the matrix XTX/n be equal to 1, and
let M(B*) <s,where ] <s <M,n>1, M > 2. Let Assumption RE(s, 3) be sat-
isfied. Consider the Lasso estimator B defined by (7.2) with

log M
n

r= Ao

509



P.J. BICKEL, Y. RITOV AND A. B. TSYBAKOV

and A > 2/2. Then, with probability at least 1 — M'*Az/g, we have

~ N 16A log M
(1.7) 1BL—B"1 < /(2(‘?,3)(” -
- 1642
(1.8) IXBL= B3 = o 3)023' log M,
(7 9) M o ) < 64¢max §
) (BL) < KZ(S,3)5.

If Assumption RE(s, m, 3) is satisfied, then, with the same probability as above,
simultaneously for all 1 < p <2, we have

2(p—1) P
o Ao logM
(7.100  |BL — B 516[1+3\/7} ( 2(s, m, 3)F> '

Inequalities of the form similar to (7.7) and (7.8) can be deduced from the results
of [3] under more restrictive conditions on the Gram matrix (the mutual coherence
assumption, cf. Assumption 5 of Section 4).

Assumptions RE(s, 1) and RE(s, 3), respectively, can be dropped in Theorems
7.1 and 7.2 if we assume B* € Ay ¢, With co =1 or co = 3 as appropriate. Then,
(7.4) and (7.5) or, respectively, (7.7) and (7.8) hold with k = y. This is analogous
to Corollary 6.2. Similarly, (7.6) and (7.10) hold with k = y if B* € Ay m.¢, With
co =1 or cop = 3 as appropriate.

Observe that, combining Theorems 7.1 and 7.2, we can 1mmed1ately get
bounds for the differences between Lasso and Dantzig selector | ﬂL — /31)| p and
|X(ﬁL ;31))|2 Such bounds have the same form as those of Theorems 7.1 and 7.2,
up to numerical constants. Another way of estimating these differences follows di-
rectly from the proof of Theorem 7.1. It suffices to observe that the only property
of B* used in that proof is the fact that 8* satisfies the Dantzig constraint on the
event of given probability, which is also true for the Lasso solution Br. So, we can
replace B* by Br and s by M(Br) everywhere in Theorem 7.1. Generalizing a bit
more, we easily derive the following fact.

THEOREM 7.3.  The result of Theorem 7.1 remains valid if we replace 1Bp —
B*|5 by sup{|Bp — Blp:B € A, M(B) <5} for 1 < p <2and|X(Bp — B*)I3 by
sup{| X (Bp —ﬁ)l% B e A, M(B) <s}, respectively. Here, A is the set of all vectors
satisfying the Dantzig constraint.

REMARKS.

1. Theorems 7.1 and 7.2 only give nonasymptotic upper bounds on the loss,
with some probability and under some conditions. The probability depends on M
and the conditions depend on n and M. Recall that Assumptions RE(s, ¢p) and
RE(s, m, co) are imposed on the n x M matrix X. To deduce asymptotic conver-
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gence (as n — oo and/or as M — oo) from Theorems 7.1 and 7.2, we would need
some very strong additional properties, such as simultaneous validity of Assump-
tion RE(s, cg) or RE(s, m, cp) (with one and the same constant «) for infinitely
many n and M.

2. Note that neither Assumption RE(s, c¢g) or RE(s, m, co) implies identifia-
bility of * in the linear model (7.1). However, the vector * appearing in the
statements of Theorems 7.1 and 7.2 is uniquely defined, because we addition-
ally suppose that M(B*) < s and c¢o > 1. Indeed, if there exists a 8’ such that
Xp = XpB*, and M(B') <, then, in view of assumption RE(s, ¢g) with ¢y > 1,
we necessarily have 8* = g’ [cf. discussion following the definition of RE(s, c¢)].
On the other hand, Theorem 7.3 applies to certain values of 8 that do not come
from the model (7.1) at all.

3. For the smallest value of A (whichis A = 2\/5) the constants in the bound of
Theorem 7.2 for the Lasso are larger than the corresponding numerical constants
for the Dantzig selector given in Theorem 7.1, again, for the smallest admissible
value A = /2. On the contrary, the Dantzig selector has certain defects as com-
pared to Lasso when the model is nonparametric, as discussed in Section 6. In
particular, to obtain sparsity oracle inequalities for the Dantzig sclector, we need
some restrictions on f, for example, the weak sparsity property. On the other hand,
the sparsity oracle inequality (6.1) for the Lasso is valid with no restriction on f.

4. The proofs of Theorems 7.1 and 7.2 differ mainly in the value of the tuning
constant, which is ¢g = 1 in Theorem 7.1 and ¢gp = 3 in Theorem 7.2. Note that,
since the Lasso solution satisfies the Dantzig constraint, we could have obtained a
result similar to Theorem 7.2, but with less accurate numerical constants, by sim-
ply conducting the proof of Theorem 7.1 with ¢y = 3. However, we act differently,
and we deduce (B.30) directly from (B.1) and not from (B.25). This is done only
for the sake of improving the constants. In fact, using (B.25) with ¢p = 3 would
yield (B.30) with the doubled constant on the right-hand side.

5. For the Dantzig selector in the linear regression model and under Assump-
tions 1 or 2, some further improvement of constants in the £, bounds for the co-
efficients can be achieved by applying the general version of Lemma 4.1 with the
projector Po inside. We do not pursue this issue here.

6. All of our results are stated with probabilities at least 1 — M'=4/2 or 1 —

M'=A*/3_ These are reasonable (but not the most accurate) lower bounds on the
probabilities P(B) and P(4), respectively. We have chosen them for readability.
Inspection of (B.4) shows that they can be refined to 1 — 2M ®(A+/log M) and
1 —2M ®(A/Tog M /2), respectively, where ®(-) is the standard normal c¢.d.f.

APPENDIX A

PROOF OF LEMMA 4.1. Consider a partition Jg§ into subsets of size m,
with the last subset of size < m: J§ = U1§=1 Jx, where K > 1, |Jx| = m for
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k=1,...,K — 1 and |Jg| < m, such that Ji is the set of indices correspond-
ing to m largest in absolute value coordinates of § outside U';;ll Jj (for k < K)
and Jg is the remaining subset. We have

K
|Poi X382 = | Po1 X812 — | Po1 X8,
k=2 2
K
(A1) =1[X8 2 —|D_ Por X3y,
k=2 2
K
> |X‘SJ()] [2 - Z |P01X3.lk|2-
k=2

We will prove first part (ii) of the lemma. Since for k > 1 the vector 8, has only m
nonzero components, we obtain

1 1
(A2) TEIP01X5Jk|2§ ﬁlx%klzS\/¢>max(m)|51k|2~

Next, as in [7], we observe that |87, , |2 < |8,11/+/m, k=1, ..., K — 1. Therefore,

18¢hi c|5 |
(A3) Zwm < < WPal o/ 1l = e 1312

where we used (4.1). From (A.1)—(A.3), we find

1 1 ——— [s
ﬁlxahz TEIX8/0||2_C0 ¢mux(m)\/;‘8J01|2
> (\/‘Pmin(s +m) — CO\/¢max(m)\/g> |8101 2,

which proves part (ii) of the lemma.
The proof of part (i) is analogous. The only difference is that we replace, in the
above argument, m by s, and instead of (A.2) we use the bound (cf. [7])

1
—|Po1 X812 <

Jn \/¢>—mm Ty Ol O

APPENDIX B: TWO LEMMAS AND THE PROOFS OF THE RESULTS

LEMMAB.l. FixM=>2 a{l\dn > 1. Let W; be independent N (0, ) random
variables with o > 0, and let f; be the Lasso estimator defined by (2.2) with

log M
n

r==Ao

512



LASSO AND DANTZIG SELECTOR

for some A > 2+/2. Then, with probability at least 1 — M'*Az/s, we have, simul-
taneously for all B € RM,

M
I = FIE+r Y 1 filnlBjL — B

j=1

(B.1) <Ifs— fI2+4r 3 1 filalBiL — Bl
JeJ(B)
<Ifp = FI2+4ryMB) | S 15512181 — B2,
Jjel(B)
and
(B.2) \1XT(f—x/§L> < 3 fonan /2.
n o0

Furthermore, with the same probability,
(B.3) MBL) < dbmax Frin (1 FL = FI2/ 7).

where ¢max denotes the maximal eigenvalue of the matrix XX /n.

PROOF OF LEMMA B.1. The result (B.1) is essentially Lemma 1 from [5]. For
completeness, we give its proof. Set r, ; = r| f;ll». By definition,

M M
SBL 42D ra Bl <SB)+2) rajlBil

j=1 j=1
for all B € RM, which is equivalent to

M
L= FIZ+2Y rajlBjLl

Jj=1

M n
) . 2 ~ )
<Wfp = FIa+2 3 ra Bl + = 3 WilTL = fp)(Z).
j=1 i=1
Define the random variables V; = nl f':] fi(Zi)W;, 1 < j <M, and the event
M

A= (2IV)] <rajl}
j=1

Using an elementary bound on the tails of Gaussian distribution, we find that the
probability of the complementary event A satisfies

M
P{A} < D P{V/n|Vj| > Vnra j/2} < MP{[n| = r/n/(20)}

j=1

2 2
A logM 2
< Mexp<_g_r2) = Mexp<_%g> :M]—A /8’
g

(B.4)
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where n ~ N (0, 1). On the event 4 we have

M M M
L= FI2 <\ fs— FU2+ D rujlBi — Bil+ Y. 2rn 1Bl = > 2 j1Bs .

j=1 j=1 j=1

Adding the term 294:1 Tn.j IEij — B;| to both sides of this inequality yields, on 4,

M
1L — FI2+ Y rujlBi — Bl

j=1

M
<lfs—flly +2 raBjL — Bl + 1Bl — 1Bj.LD-
j=1
Now, |Bj.1. — Bj1 +1Bj1 — 1Bj..l =0 for j ¢ J(B), so that, on A, we get (B.1).
To prove (B.2) it suffices to note that, on A, we have
1
(B.5) ’—D’I/ZXTW‘ <r/2.
n %)

Now, y =f+ w, and (B.2) follows from (2.3) and (B.5). ~
We finally prove (B.3). The necessary and sufficient condition for 8, to be the
Lasso solution can be written in the form

1 _ A A
;X(Tj)(y—XﬂL) =r| fjllnsign(Bj,L) if Bj,L #0,
(B.6)

‘;x2j>(y —XBo|<rlfile B =0,

where Xx(j) denotes the jth column of X, j =1,..., M. Next, (B.5) yiclds that,
on 4, we have

1 .
8.7) Wil =t
Combining (B.6) and (B.7), we get
1 ~ o~
(B.8) —x(j (€= XBL) = rllfjll./2  if BjL #0.
no 0
Therefore,

1 . . 1M _
—(E—XB)TXXT@A— XB1) = — 3 (x{, €~ XBD)’
j=1

1 ~
> — Y {0 XB)’
J:Bj.L#0

MPBPPNfi12/4 > fraMBL)r? /4.
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Since the matrices XTX /n and X XT/n have the same maximal eigenvalues,

d’max

1 —~ —~ ~ ~
(- XB) " XXT¢ - XBL) < e XBL3 = bmaxll f — FLIZ,

and we deduce (B.3) from the last two displays. [J

COROLLARY B.2. Let the assumptions of Lemma B.1 be satisfied and
I fill.=1,j=1,..., M. Consider the linear regression model y = XB+w. Then,

with probability at least 1 — M 1-4%/ 8. we have
18.7¢11 = 3[851,

where Jo = J(B) is the set of nonzero coefficients of 8 and § = EL - B.

PROOF. Use the first inequality in (B.1) and the fact that f = fg for the linear
regression model. [

LEMMA B.3. Let B € RM satisfy the Dantzig constraint
1
~D7'2XT(y—XB)| =r
n 0o
and set § = BD — B, Jo=J(B). Then,
(B.9) 18611 <1841

Further, let the assumptions of Lemma B.1 be satisfied with A > /2. Then, with
probability of at least 1 — M"Az/z, we have

(B.10) ‘1XT(f— XBp)| <2 fmax-
n

oo

PROOF OF LEMMA B.3. Inequality (B.9) follows immediately from the defi-
nition of Dantzig selector (cf. [7]). To prove (B.10), consider the event

1 M
B = —D"/ZXTW’ < }: Vil < il
Hn = Dln i< )

Analogously to (B.4), P{B¢} < M"Az/z. On the other hand, y = f+ w, and, using
the definition of Dantzig selector, it is easy to see that (B.10) is satisfied on 8. O

PROOF OF THEOREM 5.1.  Set § = B, — Bp. We have

1 ~ 1 ~ 2 ~ 1
—[f— XBLl3=—1f— XBpl3 — =8"XT(f— XBp) + —|X8|3.
n n n n

515



P.J. BICKEL, Y. RITOV AND A. B. TSYBAKOV

This and (B.10) yield

~ ~ 1 =~ 1
1o = flla <1 Fe = flla+ 2080 | =X (= XBp)| = ~IX8]3
(B.11) | *©
<= Flia+4 Fmaxr 1811 =~ X33,

where the last inequality holds with probability at least 1 — M!'=4%/2_ Since the
Lasso solution By, satisfies the Dantzig constraint, we can apply Lemma B.3 with
B = BL, which yields

(B.12) 18711 = 18501
with Jy = J(EL). By Assumption RE(s, 1), we get
1
(B.13) WMD > k|8 l2,
where k =« (s, 1). Using (B.12) and (B.13), we obtain
_ 2M'2(BL)
(B.14) 1811 <208 1 < 20 2 Bls s> < 2P g,
k/n

Finally, from (B.11) and (B.14), we gct that, with probability at least 1 — M ~4%/2,

~ ~ 8 frnaxr M /2 (B) 1
17o— 12 <Ife— £+ e MP) g, Lixs
(B.15) v "
N 16 £2. r2M(B,
< HfL—fllﬁJrMs

where the RHS follows (B.2), (B.10) and another application of (B.14). This
proves one side of the inequality.

To show the other side of the bound on the difference, we act as in (B.11), up
to the inversion of roles of EL and ED, and we use (B.2). This yields that, with

probability at least 1 — M1*A2/8’

~ -~ 1 ~
1fz = 17 < 1o — £1i; + 2181 ;XT(f—XﬂL)

|
——|X3[3

o N

(B.16) 1
< U7 = fliz+3 frar |81 = ~|X813.

This is analogous to (B.11). Now, paralleling the proof leading to (B.15), we obtain
- A 9 fraaxr > M (BL)

(B.17) 1= fl < = fll+ = 5=

The theorem now follows from (B.15) and (B.17). [
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PROOF OF THEOREM 5.2. Set, again, § = EL — ﬁl). We apply (B.1) with
B = Bp, which yields that, with probability at least 1 — M!~47/8,
(B.18) 1811 < 418501 + 1. fp — f1I2/7,
where, now, Jy =AJ(;§D). Consider the following two cases: (i) Ipr - fllﬁ >
2r|8,11 and (i) || fp — f||,21 <2r|8,11. In case (i), inequality (B.16) with fipax = 1
immediately implies

Ifz — FI2 <101 Fp — £I2.
and the theorem follows. In case (ii), we get, from (B.18), that
|8|l < 6|8.I()|1

and thus |& Jorll < 5|8,]1. We can therefore apply Assumption RE(s, 5), which
yields, similarly to (B.14),

6M'2(Bp)
Kk/n
where k =« (s, 5). Plugging (B.19) into (B.16) we finally get that, in case (ii),
18r M'/2(Bp)
K/n
81r>M(Bp)
K2 ’

(B.19) 1811 < 6M'2(Bp)I8sl2 < [X42,

~ ~ 1
Ife = fI2 <l fp— fIIZ + |X5|2—;|X3|%

(B.20)

<Ifp—fI2+ O

PROAOF OF THEOREM 6.1. Fix an arbitrary 8 € RM with M(B) <s.Setd=
D'2(BL — B), Jo = J(B). On the event A, we get, from the first line in (B.1), that

IfL— FIZ+rI8l < fp— FI2+4r Y I fillalBi — Bl

Jj€Jdo

=1fs— I +4r8 1,

and from the second line in (B.1) that

(B.21)

(B.22) 1o = FI2 < 1f5 — FI +4r MBS 2.
Consider, separately, the cases where

(B.23) 4ri8 sl el fs = f1I;

and

(B.24) ellfp = fliz <4rlésh.

In case (B.23), the result of the theorem trivially follows from (B.21). So, we will
only consider the case (B.24). All of the subsequent inequalities are valid on the
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event A N Ap, where A is defined by (B.24). On this event, we get, from (B.21),
that

1811 <4(1+1/e)8x 1,
which implies |8,6-|] < (3+4/¢)|d,]1. We now use Assumption RE(s, 3 +4/¢).
This yields

1 1 ~ ~
k85,13 < ~IX815 =~ (Bx — /)" D'2XTXD'(BL — p)

< %(B‘L — B XTX(BL — B) = faax |l 1 — f51I7,
where k =« (s, 3 4+ 4/¢). Combining this with (B.22), we find
1Fz = Fllz < Wfp = U7+ 4r fnaxte ™ MBI FL = f51ln
< fp = Fllp + 4 faxk ™~ MBYUFL = Flla+ 1 f5 = Flln)-

This inequality is of the same form as (A.4) in [4]. A standard decoupling argument
as in [4], using inequality 2xy < x2/b + by*> with b > 1, x = ric "'/ M(B) and y
being either || fL — fll» or || fg — flln, yields that

~ 5 b+l 862 f2.x
1= 10 = = S+ B ) oo,

Taking b =1 4 2/¢ in the last display finishes the proof of the theorem. U

PROOF OF PROPOSITION 6.3.  Due to the weak sparsity assumption, there ex-
ists € RM with M(B) <s such that | f5 — FI2 < Cof2. 22 M(B), where

n —

Kk =Kk(s,3 4+ 4/¢) is the same as in Theorem 6.1. Using this together with Theo-
rem 6.1 and (B.3), we obtain that, with probability at least 1 — M4/,

M(BL) < Ci(e)M(B) < Ci(e)s.

This and Theorem 5.1 imply

16C1 (g) f2,A0? (s logM)
3 :

Ifp = fI2<IfL— fI2+ E

Ko
where ko = k(max(Cj(¢), 1)s,3 + 4/¢). Once Again, applying Theorem 6.1, we
get the result. [

PROOF OF THEOREM 7.1. Set § = Bp — B* and Jy = J(B*). Using Lem-
ma B.3 with 8 = B*, we get that, on the event B (i.e., with probability at least
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1— MI_AZ/Z), the following are true: (i) %|XTX6|oo < 2r, and (ii) inequality (4.1)
holds with ¢p = 1. Therefore, on B we have

1 1
—1X63=—-8TxTxs
n n

1
< —[X"X8|ol8])
n
(B.25) < 2r (18501 + 185¢11)
<2(1 +co)rld sl
=< 2(] + C(])r\/;|6/()|2 =4r\/;|3/()|2
since ¢p = 1. From Assumption RE(s, 1), we get that
1
X813 = (8.3,
where k = « (s, 1). This and (B.25) yield that, on B,
1
(B.26) — X813 < 16r%s/k?, 81512 < 4r/s /K%
n

The first inequality in (B.26) implies (7.5). Next, (7.4) is straightforward in view
of the second inequality in (B.26) and of the relations (with co = 1)

B27) 18l =185l +185¢l1 < (14 co)l8 11 < (1+co)V/s18 12
that hold on B. It remains to prove (7.6). It is easy to see that the kth largest in

absolute value element of 616' satisfies |8,6-|(k) < |816-|1/k. Thus,

1 1
2 2 2
|515‘] |5 < |31(§'|| E 5= ;|51{§‘|1,
k=m+1

and, since (4.1) holds on B8 (with ¢p = 1), we find

cold o1 s s
8¢ 12 = T"z < coldul2y - < ol l2y -

Therefore, on B,

s
(B.28) [8]2 < (1 + CO\/%) 1871 2-
On the other hand, it follows from (B.25) that

1
—[X8[3 < 4r /518 |2
Combining this inequality with Assumption RE(s, m, 1), we obtain that, on 8,

18 1oy 12 < 4r+/5 /12,
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Recalling that ¢o = 1 and applying the last inequality together with (B.28), we get

2
(B.29) 1815 < 16(1 +c0\/%> (r/3/K%)*.

It remains to note that (7.6) is a direct consequence of (7. 4) and (B.29). This fol-
lows from the fact that inequalities Y% ji=1aj < b and Z 1 a < by witha; >0

imply

M M 2 o M =r/ M p-l
7 D —.

> = 3a s (L) (L)

j: = j:

J=1

bf PpyTt Wi<p<2. O

IA

PROOF OF THEOREM 7.2. Set § = EL — p* and Jy = J(B*). Using (B.1),
where we put B = B*,r, j =r and || fg — fl» =0, we get that, on the event 4,

1
(B.30) ~1X813 < 4r /5132

and (4.1) holds with ¢o = 3 on the same event. Thus, by Assumption RE(s, 3) and
the last inequality, we obtain that, on A,

1
(B.31) —|X813 < 16r%s /i, 187,12 < 4r /s /K2,
n

where k = k (s, 3). The first inequality here coincides with (7.8). Next, (7.9) fol-
lows immediately from (B.3) and (7.8). To show (7.7), it suffices to note that on
the event #4 the relations (B.27) hold with ¢o = 3, to apply the second inequality
in (B.31) and to use (B.4).

Finally, the proof of (7.10) follows exactly the same lines as that of (7.6). The
only difference is that one should set cop = 3 in (B.28) and (B.29), as well as in the
display preceding (B.28). O
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