Chapter 5
Adaptive Estimation

Jon A. Wellner

5.1 Introduction to Four Papers on Semiparametric
and Nonparametric Estimation

5.1.1 Introduction: Setting the Stage

I discuss four papers of Peter Bickel and coauthors: Bickel (1982), Bickel and
Klaassen (1986), Bickel and Ritov (1987), and Ritov and Bickel (1990).

The four papers by Peter Bickel (and co-authors Chris Klaassen and Ya’acov
Ritov) to be discussed here all deal with various aspects of estimation in semi-
parametric and nonparametric models. All four papers were published in the period
1982-1990, a time when semiparametric theory was in rapid development. Thus
it might be useful to briefly review some of the key developments in statistical
theory prior to 1982, the year in which Peter Bickel’s Wald lectures (given in 1980)
appeared, in order to give some relevant background information. Because I was
personally involved in some of these developments in the early 1980s, my account
will necessarily be rather subjective and incomplete. I apologize in advance for
oversights and a possibly incomplete version of the history.

A key spur for the development of theory for semiparametric models was the
clear recognition by Neyman and Scott (1948) that maximum likelihood estimators
are often inconsistent in the presence of an unbounded (with sample size) number
of nuisance parameters. The simplest of these examples is as follows: suppose that

(X;,Y:) ~ Na (i, i), 0%), i=1,...,n (5.1)
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are independent where ; € R for i = 1,...,n and 6 > 0. Then the maximum
likelihood estimator of 62 is

2 X 2 o’
6, =(4n) "' Y. (Xi—Y)* =, e
i=1
This is an example of what has come to be known as a “functional model”. The
corresponding “structural model” (or mixture or latent variable model) is: (X;,Y;)

are i.i.d. with density ps ¢ where

Po.c(x,y) = /lq) <x_“) Lo (y_“) dG(u)

(&) (e (&) (e

where ¢ is the standard normal density, ¢ > 0, and G is a (mixing) distribution on R.

Equivalently,
X z 13}
(7)=(2)+(C)

where Z ~ G is independent of (8,€) ~ N,(0,1), and only (X,Y) is observed. Here
the nuisance parameters {y;,i = 1,...,n} of the functional model (5.1) have been
replaced by the (nuisance) mixing distribution G. Kiefer and Wolfowitz (1956)
studied general semiparametric models of this “structural” or mixture type, {pg ¢ :
6 € © C R?, G a probability distribution}, and established consistency of maximum
likelihood estimators (6,,G,) of (8,G). (Further investigation of the properties of
maximum likelihood estimators in structural models (or semiparametric mixture
models) was pursued by Aad van der Vaart in the mid 1990s; I will return to this
later.)

Nearly at the same time as the work by Kiefer and Wolfowitz (1956) and Stein
(1956) studied efficient testing and estimation in problems with many nuisance
parameters (or even nuisance functions) of a somewhat different type. In particular
Stein considered the one-sample symmetric location model

Py ={pos(x)=f(x—0): 6 €R, f symmetric about 0, Iy < oo}
and the two-sample (paired) shift model

Py =Apuv,y) =fx—pw)fy—v): u,veR, I <o}

here Iy = [(f'/f)?fdx. Stein (1956) studied testing and estimation in models
P and 7, and established necessary conditions for “adaptive estimation”: for
example, conditions under which the information bounds for estimation of 0 in the
model &2, are the same as for the information bounds for estimation of 0 in the
sub-model in which f is known. Roughly speaking, these are both cases in which
the efficient score and influence functions are orthogonal to the “nuisance tangent
space” in L(z) (P); i.e. orthogonal to all possible score functions for regular parametric
submodels for the infinite-dimensional part of the model. Models of this type, and in
particular the symmetric location model &7, remained as a focus of research during
the period 1956-1982.
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Over the period 1956—-1982, considerable effort was devoted to finding sufficient
conditions for the construction of “adaptive estimators” and ‘“adaptive tests” in
the context of the model &;: Hijek (1962) gave conditions for the construction
of adaptive tests in the model &7, while van Eeden (1970) gave a construction
for the sub-model of &7 consisting of log-concave densities (for which the
score function for location is monotone non-decreasing), Beran (1974) constructed
efficient estimators based on ranks, while Stone (1975) gave a construction of
efficient estimators based on an “estimated” one-step approach.

This, modulo a key paper by Efron (1977) on asymptotic efficiency of Cox’s
partial likelihood estimators, was roughly the state of affairs of semiparametric
theory in 1980-1982. Of course this is an oversimplification: much progress had
been underway from a more nonparametric perspective from several quarters: the
group around Lucien Le Cam in Berkeley, including P. W. Millar and R. Beran, the
Russian school including I. Ibragimov and R. Has’minskii in (now) St. Petersburg
and Y. A. Koshevnik and B. Levit in Moscow, and J. Pfanzagl in Cologne. Over the
decade from 1982 to 1993 these two directions would merge and be understood as
a whole piece of cloth, but that was not yet the case in 1980-1982, the period when
Peter Bickel gave his Wald Lectures (and prepared them for publication).

5.1.2 Paper 1

The first of these four papers, On Adaptive Estimation, represents the culmination
and summary of the first period of research on the phenomena of adaptive estimation
uncovered by Stein (1956): it gives a masterful exposition of the state of “adaptive
estimation” in the early 1980s, and new constructions of efficient estimators in
several models satisfying Stein’s necessary conditions for “adaptive estimation” in
the sense of Stein (1956). Bickel (1982) begins in Sect.5.1.2 with an explanation
of “adaptive estimation”, with focus on the “i.i.d. case”, and introduces four key
examples to be treated: (1) the one-sample symmetric location model & introduced
above; (2) linear regression with symmetric errors; (3) linear regression with a
constant and arbitrary errors, a model closely related to the two-sample shift model
&, introduced above; and (4) location and variance-covariance parameters of
elliptic distributions. The paper then moves to an explanation of Stein’s necessary
condition and presentation of a (new) set of sufficient conditions for adaptive
estimation involving L,(Py, ¢)—consistent estimation of the efficient influence
function (“Condition H”). Bickel shows that the sufficient conditions are satisfied
in the Examples (1)—(4), and hence that adaptive estimators exist in each of these
problems. It was also conjectured that Condition H is necessary for adaptation.
Necessary and sufficient conditions only slightly stronger than “Condition H” were
established by Schick (1986) and Klaassen (1987); also see Bickel et al. (1993,
1998), Sect. 7.8.

According to the ISI Web of Science, as of 20 June 2011, this paper has
received 228 citations, and thus is the most cited of the four papers reviewed
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here. It inspired the search for necessary and sufficient conditions for adaptive
estimation (including the papers by Schick (1986) and Klaassen (1987) mentioned
above). It also implicitly raised the issue of understanding efficient estimation in
semiparametric models more generally. This was the focus of my joint work with
Janet Begun, W. J. (Jack) Hall, and Wei-Min Huang at the University of Rochester
during the period 1979-1983, resulting in Begun et al. (1983), which I will refer to
in the rest of this discussion as BHHW.

5.1.3 Paper 2

Neyman and Scott (1948) had focused on inconsistency of maximum likelihood
estimators in functional models, and Kiefer and Wolfowitz (1956) showed that
inconsistency of likelihood-based procedures was not a difficulty for the corre-
sponding structural (or mixture) models. Bickel and Klaassen (1986) initiated
the exploration of efficiency issues in connection with functional models, with a
primary focus on functional models connected with the symmetric location model
). In particular, this paper examined the functional model with X; ~ N(6, Giz)
independent with Giz €R™, 8 € R, for 1 <i < n.The corresponding structural model
is the normal scale mixture model with shift parameter 0, and hence is a subset of
. In fact, it is a very rich subset with nuisance parameter tangent spaces (for
“typical” points in the model) agreeing with that of the model 7. The main result
of the paper is a theorem giving precise conditions under which a modified version
of the estimator of Stone (1975) is asymptotically efficient, again in a precise sense
defined in the paper.

This paper inspired further work on efficiency issues in functional models: see
e.g. Pfanzagl (1993) and Strasser (1996). According to the ISI Web of Science (20
June 2011), it has been cited 15 times. These types of models remain popular (in
September 2011, MathSciNet gives 414 hits for “functional model” and 480 hits for
“structural model”), but many problems remain.

Between 1982 and publication of this paper in 1986, the paper Begun et al. (1983)
appeared. In June 1983 Peter Bickel and myself had given a series of lectures at
Johns Hopkins University on semiparametric theory as it stood at that time, and had
started writing a book on the subject together with Klaassen and Ritov, Bickel et al.
(1993, 1998), which was optimistically announced in the references for this paper
as “BKRW (1987)”.

5.1.4 Paper 3

This paper, Bickel and Ritov (1987), treats efficiency of estimation in the structural
(or mixture model) version of the errors-in-variables model dating back at least to
Neyman and Scott (1948) and Reiersol (1950), and perhaps earlier. As noted by the
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authors: “Estimates of f3 in the general Gaussian error model, with Xy diagonal, have
been proposed by a variety of authors including Neyman and Scott (1948) and Rubin
(1956). In the arbitrary independent error model, Wolfowitz in a series of papers
ending in 1957, Kiefer, Wolfowitz, and Spiegelman (1979) by a variety of methods
gave estimates, which are consistent and in Spiegelman’s case n'/2—consistent and
asymptotically. Little seems to be known about the efficiency of these procedures
other than that in the restricted Gaussian model ...”. This model is among the first
semiparametric mixture models involving a nontrivial projection in the calculation
of the efficient score function to receive a thorough analysis and constructions of
asymptotically efficient estimators. The authors gave an explicit construction of
estimators achieving the information bound in a very detailed analysis requiring
17 pages of careful argument.

The type of construction used by the authors involves kernel smoothing esti-
mators of the nonparametric part of the model, and hence brings in choices of
smoothing kernels and smoothing parameters (€,, ¢, and v, in the authors’ notation,
with nc2v® — o). This same approach was used by van der Vaart (1988) to construct
efficient estimators in a whole class of structural models of this same type; van der
Vaart’s construction involved the choice of seven different smoothing parameters.
On the other hand, Pfanzagl (1990a) pages 47 and 48 (see also Pfanzagl 1990b)
pointed out that the resulting estimators are rather artificial in some sense, and
advocated in favor of maximum likelihood or other procedures requiring no (or at
least fewer) smoothing parameter choices. This approach was pursued in van der
Vaart (1996). Forty years after Kiefer and Wolfowitz established consistency of
maximum likelihood procedures, Van der Vaart proved, efficiency of maximum
likelihood in several particular structural models (under moment conditions which
are sufficient but very likely not necessary), including the errors-in-variables model
treated in the paper under review. The proofs in van der Vaart (1996) proceed via
careful use of empirical process theory. Furthermore, Murphy and van der Vaart
(1996) succeeded in extending the maximum likelihood estimators to confidence
sets via profile likelihood considerations.

This paper has 35 citations in the IST Web of Science as of 20 June 2011,
but it inspired considerable further work on efficiency bounds and especially on
alternative methods for construction of efficient estimators.

5.1.5 Paper4

In the period 1988-1991 several key questions on the “boundary” between non-
parametric and semiparametric estimation came under close examination by van
der Vaart, Bickel and Ritov, and Donoho and Liu. The lower bound theory under
development for publication in BKRW (1993) relied upon Hellinger differentiability
of real-valued functionals. (The lower bound theory based on pathwise Hellinger
differentiability was put in a very nice form by van der Vaart (1991).)
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But the possibility of a gap between the conditions for differentiability and
sufficient conditions to attain the bounds became a nagging question. In Ritov
and Bickel (1990), Peter and Ya’acov analyzed the situation in complete detail
for the real-valued functional v(P) = [ p*(x)dx defined for the collection & of
distributions P on [0, 1] with a density p with respect to Lebesgue measure. This
functional turns out to be Hellinger differentiable at all such densities p with an
information lower bound given by

I} = 4Var(p(X)) = 4/(p(x) —v(P))*p(x)dx.

However, Theorem 1 of Ritov and Bickel (1990) shows that there exist distributions
P € & such every sequence of estimators of v(p) converges to v(p) more slowly
than n~* for every o > 0. It had earlier been shown by Ibragimov and Hasminskii
(1979) that the \/n— convergence rate could be achieved for densities satisfying a
Holder condition of order at least 1/2, and in a companion paper to the one under
discussion Bickel and Ritov (1988), Peter and Ya’acov showed that this continued
to hold for densities p satisfying a Holder condition of at least 1/4.

These results have been extended to obtain rates of convergence in the “non-
regular” or nonparametric domain: see Birgé and Massart (1993, 1995) and Laurent
and Massart (2000). More recently the techniques of analysis have been extended
still further Tchetgen et al. (2008) and Robins et al. (2009). As of 20 June 2011, this
paper has been cited 45 times (ISI Web of Science).

5.1.6 Summary and Further Problems

The four papers reviewed here represent only a small fraction of Peter Bickel’s work
on the theory of semiparametric models, but they illustrate his superb judgement in
the choice of problems suited to push both the theory of semiparametric models
in general terms and having relevance for applications. They also showcase his
wonderful ability to see his way through the technicalities of problems to solutions
of theoretical importance and which point the way forward to further understanding.
Paper 1 was clearly important in development of general theory for the adaptive case
beyond the location and shift models &) and &,. Paper 2 initiated efficiency theory
for estimation in functional models quite generally. Paper 3 played an important
role in illustrating how semiparametric theory could be applied to the structural
(or mixing) form of the classical errors in variables model, hence yielding one of
the first substantial models to be discussed in detail in the “non-adaptive case” in
which calculation of the efficient score and efficient influence function requires a
non-trivial projection.

As noted by Kosorok (2009) semiparametric models continue to be of great
interest because of their ... genuine scientific utility ... combined with the breadth
and depth of the many theoretical questions that remain to be answered”.
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Fig. 5.1 Numbers of papers with “semiparametric” in title, keywords, or abstract, by year, 1984—
2010. Red =MathSciNet; Green = Current Index of Statistics (CIS); Blue = ISI Web of Science

Figure 5.1 gives an update of Fig. 2.1 of Wellner et al. (2006). The trend is clearly
increasing!
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THE 1980 WALD MEMORIAL LECTURES
ON ADAPTIVE ESTIMATION

By P. J. BICKEL'
University of California, Berkeley

We simplify a general heuristic necessary condition of Stein’s for adaptive
estimation of a Euclidean parameter in the presence of an infinite dimensional
shape nuisance parameter and other Euclidean nuisance parameters. We
derive sufficient conditions and apply them in the construction of adaptive
estimates for the parameters of linear models and multivariate elliptic distri-
butions. We conclude with a review of issues in adaptive estimation.

1. Introduction. In 1956, C. Stein published a paper in the Third Berkeley Sympo-
sium which deserves to be as well known as its celebrated companion piece on the
inadmissibility of the normal mean. In this work Stein dealt with the problem of estimating
and testing hypotheses about a Euclidean parameter 6 or, more generally, a function g (6)
in the presence of an infinite dimensional “nuisance” shape parameter G. The question he
asked (framed in estimation terms) was, “When can one estimate 6 as well asymptotically
not knowing G as knowing G?”” He gave a simple necessary condition, which he checked
in several important examples and, in one of these—testing that the center of symmetry
has a specified value—he indicated a procedure that should work.

In recent years there has been considerable interest in an important situation where
Stein’s condition is satisfied, estimating the center of symmetry of an unknown symmetric
distribution. Completely definitive results for this problem were obtained by Beran (1974)
and Stone (1975). In this paper we return to Stein’s original general formulation in the
iid. case. Motivated by his necessary condition for existence of adaptive estimates we
obtain a simple sufficient condition for adaptation and apply it to a variety of important
examples.

The paper is organized as follows. In Section 2 we define what we mean by adaptive
estimation of 6; more precisely, we review some known results in the area and introduce
the examples with which we will deal. In Section 3 we recall Stein’s necessary condition for
adaptation, and introduce a condition which we prove is sufficient. In Section 4 we check
that our sufficient condition is satisfied in our examples. Section 5 contains a discussion of
the connections between our work and recent research of Lindsay (1978, 1980), Hammer-
strom (1978), Levitt (1974) and others, as well as a discussion of open questions. Finally,
in Section 6, we gather technical parts of the proofs of our results.

2. What is adaptation? For simplicity we restrict ourselves throughout to the i.i.d.
case. This is quite unnecessary for the heuristics of the paper. However, at least some of
our proofs employ the assumed independence of the observations quite heavily.

Let Xj, - - -, X, be i.i.d. 2 dimensional vectors with common distribution F. Let us recall
the basic facts about the asymptotic theory of estimation when F ranges over a parametric
model as put into their most elegant form by Le Cam.

Suppose that F is of the form F, where § € ©, an open subset of R”, and the F,; have
densities which we denote by f(-, §) with respect to a sigma-finite measure p on R* Write
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Ey, Py, %5 respectively for expectations, probabilities, and laws when 8 holds. Let ¢(x, 6)
= log f(x, 6), and define the following regularity conditions.

ConbpItioNns R. Forall 8 € O,
(i) ¢(-, ) is differentiable in (the components of) 0 a.e. Pyand? = (3£/36, -+ - , 34/96,).
(i) The Fisher information matrix I1(0) exists, I(0) = E,{¢T¢ (X, 0)} < ;
(iii) Square root likelihood is differentiable in quadratic means, i.e. as t — 0,
172

FX0, 0+ 8) Ct,r e
E,,HW} 1-5¢ (X1,0)] =o(tf),

and
Py {f(X1,0) =0} =o0( t]),

where | - | denotes the Euclidean norm (cf. b, and b; on page 10 of Le Cam, 1969).
(iv) There exist n'*-consistent estimates of 6, ie. {(#,(X\, ---, X.)} such that
n'*(6, — 6) = Op, (1).

Under these conditions the following theorem holds (Le Cam, 1969; Fabian and Hannan,
1980). Call 4 a regular point if 1(6) is nonsingular and if I(-) is continuous at 6.

THEOREM 2.1. Under Conditions R there exist estimates {8,,} such that

(a) For all regular, 6, ,%"{nl/z(ﬁ,. —6,)} = A(0,I7'(0)) whenever n'?|6, — | < M for
alln, M < .

(b) The estimates {6,} are asymptotically locally sufficient in the sense of Le Cam
(1969) and locally asymptotically minimax in the sense of Hdjek (1972) as modified
by Fabian and Hannan (1980).

Statement (a) says that {§,} are efficient in the usual sense. Hajek (1972) also
establishes, for £ = 1, that any estimates satisfying (a) also are efficient in the sense of
Rao. That is, if we define A,(-) by

(2.1) 6n=8+n"' 31 2 (Xi, O)I'(6) + An(6),
then
(2.2) n'?A,(8) —p, 0,

for 4, as in the theorem. In Theorem 6.1 (Section 6.4) we extend this result to general %.
REMARK 1. The construction of §, used by Le Cam will prove useful to us later.
Let Ry = {(n™"2(i1, -+, is), i1, - -, iy are arbitrary integers}, and let
(2.3) 8, = the point in R% closest to .
If 7*(x, 6) has the property that
nTVEYIL (XX, ) — (X, 8)) + n'2(0, — 0)1(8) = op,(1)
whenever n'/?| 8, — 6| < M, then Theorem 4 of Le Cam (1969) shows that
(2.4) b0 =0, +n7' T £4(X,, 8)17(F,)

is efficient in the sense of Theorem 2.1; where I is a generalized inverse of I. Of course,
this construction is not unique and has unpleasant aspects such as the “discretization” of
7, and its non-iterative character. However, the construction works in great generality, i.e.,
under the mild and natural Condjtions R(»{)-R(iv).

We shall actually want to take #* = Z. To do so we need an inconsequential strengthening
of R(iii) which is valid in all our examples. We call UR (iii) the assumption that for all §
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€ O, the differentiability condition of R (iii) holds uniformly in some neighbourhood of 6.
We show in Theorem 6.2 (Section 6.4) that R(i), R(ii) and UR(iii) enable us to take
£* = {in (2.4).

REMARK 2. Condition R(iv), although clearly necessary, appears hard to verify. In
fact, Le Cam shows that if we assume identifiability of § and nonsingularity of I(8) for all
8 € O, R(i)-R(iii) imply R(iv). We have chosen to leave R(iv) in its present form for
reasons which will be apparent later.

In a preprint which we saw after our lectures were prepared, Fabian and Hannan (1980)
give a very careful treatment of estimation in locally asymptotically normal families. They
present, among other results, the “right” version of Hajek’s local asymptotic minimaxity,
as well as a rigorous discussion of Stein’s (1956) necessary conditions for adaptation. Their
notion of adaptation agrees with ours (in their more general framework).

The models for which we will discuss adaptation may be described as follows: The
common d.f. F of the X, ranges over a set which can be parametrized by a Euclidean
parameter 6 of interest, and a shape nuisance parameter G, i.e.,

(2.5) F={Fuc:0€0,GE ¥}

where O is an open subset of R”, % is a set of distributions on some space, and the map
(8, G) — Fy,) is known.
For each G € ¥, define

(2.6) Fo={Fuc:0€ O).

The models % are parametric models. Suppose that #; satisfies R (i), R (ii) and UR (iii)
for each G € %. Define f (-, 0, G), Z (-, 8, G), I(8, G) respectively as density, log likelihood,
and information in ;. Call (6, G) regular if 8 is regular in Z;. Finally, in view of the Le
Cam theorem, we can state the following definition.

DEFINITION. A sequence of estimates {6, } is adaptive if and only if, for every regular
4, G),

(2.7) Lo (nB, - 6,)) = ¥ (0,7, G))

whenever n'*| 8, — 8| stays bounded. Thus adaptive estimates, if they exist, are efficient
for every 7 even though knowledge of the true G may not be used in the construction of
the estimates.

Adaptive estimates of § have been constructed in the first of our examples.

ExAMPLE 1. Estimation of the center of symmetry. Letk=p =1 Take O = R, ¥
= {All distributions symmetric about 0}, Fi,6)(x) = G(x — 0).

The problem of adaptive estimation of 4 in this model began to be studied by van Eeden
(1970) and Takeuchi (1971), although the corresponding testing problem was earlier
considered by Stein (1956) and solved by Hajek (1962). The definitive theorem was
obtained by Beran (1974) and Stone (1975).

Let

(2.8) 1(G) = f {g'(x)}*/g(x) dx
whenever g, the density of G, is absolutely continuous, and let I(G) = « otherwise.

THEOREM 2.2. There exist translation and scale equivariant estimates, {9,,} such
that

(2.9) Lioo(n ) — 470, ITN(G))
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for all G € Y with I(G) < .

Hajek (1962) has shown thflt for this model (6, G) is regular if 1(6, G) = I(G) < . The
converse is also true. Thus {6,} are adaptive according to our general definition. In fact,
Stone (1975) shows that the estimates he constructs satisfy (2.9) with I~'(G) = 0 whenever
I(G) =x.0

We will construct adaptive estimates of ¢ in the following generalization of Example 1.

EXAMPLE 2. [Estimation of regression with symmetric errors. We describe the model
structurally in terms of a variable X ~ F(5,¢). Here k. = p + 1 and © = R”. Let
(2.10) X=(CY)
where C is a p dimensional random vector and Y a scalar. Further,
(2.11) Y=C0"+e
where ¢ ~ G, and ¢ and C are independent. We again take
% = {All distributions G on R symmetric about 0}.

Finally, we suppose

(2.12) E(C"C) is nonsingular.
This is just a stochastic version of the usual multiple regression model,
X, =CO"+¢, i=1.--,n,
where Cy, ---, C, are p dimensional vectors of constants such that C” = (CT, ..., CT)

and C”C is nonsingular.

We deliberately do not specify that the distribution of C is known. The adaptive
estimates we construct depend only on the data and work for any distribution of C
satisfying (2.12). 0

In many interesting situations a parameter 4 for which efficient estimates exist in every
model % cannot be consistently estimated in # because the parameter becomes un-
identifiable. This is true in the next two examples. However, in both, natural functions
q(#) can be so estimated. In fact, adaptive estimation of these functions is possible. The
definition of adaptive estimation of q is straightforward:

DEFINITION. Suppose q:© — R, d < p, has a total differential ¢ (8), a d X p matrix.
A sequence of estimates {§.} of q is adaptive if and only if, for every regular (9, G),
(2.13) Lo (n"*(gn — q(62)} > ¥ (0, G(O)I'6, G)g(H)T)

whenever n'’* | 6, — | stays bounded.

EXAMPLE 3. Regression with a constant and arbitrary errors. In Example 2, let C
=(C®, 1), C° ap — 1 dimensional vector. Define X, Y, ¢ as before and suppose ¢ and C are
independent. However, let ¢ = {all distributions on R}, and replace (2.12) by

(2.14) E(C° - EC®°)"(C° — EC°) nonsingular.

Evidently 6 is not identifiable in .# since a change in the constant 6, could equally well be
a change in G. However, g(8) = (64, - - - , 6,-1) can be adaptively estimated, as we shall see.
A special case of this model, where p = 2 and
co = 1 with probability A
0 with probability 1 — A,
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can be thought of as a two-sample model with random sample sizes, i.e., we observe N
observations with distribution G(x — 6, — #;) and n — N observations with distribution
G (x — 0;), where N has a binomial (n, ) distribution.

Adaptation in the two-sample model with fixed sample sizes (and unknown scale) was
studied by Stein (1956), Weiss and Wolfowitz (1970), and Wolfowitz (1974). A definitive
result was obtained by Beran (1974). Weiss and Wolfowitz (1971) considered the fixed
sample size multiple regression model and obtained partial results. 0

ExAMPLE 4. Parameters of elliptic distributions. The following multivariate gener-
alization of the symmetric one-sample location and scale model has been considered by
Huber (1977) and others. Let

X=p+eV 2

where p is an unknown 1 X & vector, V is a positive definite £ X k symmetric matrix, and
V™% is the unique positive definite symmetric square root of V~'. We suppose ¢ ~ G,
where

%= {G: G absolutely continuous, spherically symmetric on R*}.

Take 8 = (p, [V]) where for any symmetric £ X k matrix M = | m;; |, we define [M] to
be the lexicographically written row vector of the lower k(% + 1)/2 entries of M. Thus, p
=k(k + 3)/2 and

O = {(y, [V]) : V symmetric positive definite}
is an open subset of R”.
Here 6 is efficiently estimable at regular points of % but is not identifiable in # A

common scale change in all coordinates is ascribable to either V or G, yet (u, V/tr V) can
be estimated consistently, in fact, adaptively, as we shall see.

3. Stein’s considerations and a sufficient condition for adaptation. We begin
by recalling Stein’s necessary condition for adaptation. Define a parametric subfamily of
% as a set {%,}, n € T, where T is an open set in R’ and the map n — G, is smooth. The
parametric submodel of # corresponding to the parametric subfamily {G,} is naturally
defined by {Fy,, :0 € ©, n € T'}. Here is Stein’s necessary condition.

CoNDITION S.  For every parametric submodel obeying R.(i)-R (iv) with G,,= G,

a [}
(3.1 j {5?, £(x, 8, G,) E A(x, 6, G,,)} f(x, 6o, Go)pu(dx) =0

0=00,n =m0

i=1,.-,p, j=1,-++,¢t
Stein (1956) shows that if an adaptive estimate of 6 exists and (6, Go) is regular, then
Condition S must hold. The argument is simple. Let

Ly I
I=
(121 Izz)'
where Iy is p X p and I is ¢ X ¢, be the (p + ¢) X (p + t)-dimensional Fisher information
matrix of the parametric submodel Fi4,,) evaluated at (6, 1), and write

_ Ill IlZ
I''= ( 2 orz)
Now, by definition, if {4, }A is adaptive, then I = I"'(6,, Go) is the asymptotic variance
covariance matrix of n'/*@, — §,) whenever n'?| 6, — 6| stays bounded. But, by Hajek’s

(1972) theorem, I'! is the smallest variance covariance matrix achievable in this way. Thus
i = I'"" which is equivalent to I, = 0, which is Condition S.
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Condition S suffers from two defects: (i) it can be awkward to verify, (ii) it is unclear
how to proceed from it to the construction of adaptive procedures. We now proceed to
derive a simpler condition which is at least heuristically necessary and which in turn leads
to a verifiable sufficient condition.

All the examples we have studied exhibit the following simple convexity structure:

ConpiTION C. % is convex and Go, G1 € ¥ implies that for0 < a <1

Facora-aey = aFecy + (1 — a)Fgq,.

This structure suggests that we examine Condition S for the following {G,}. Fix Go and G,
take T'= (0, 1), and let

G, =1Go + (1 — 1)Gi.

Then Condition S becomes for n>0,i=1, ---, p,

f 20056, G (1(x, 6, Gy) — fx, 6, Go))u(dz) = 0.

Letting n — 0 formally we get for “all” Go, G; € % that the following holds.

CONDITION S*,
J £(x, 8, Go)f(x, 8, G)u(dx) = 0.

It may be shown formally that if Condition S* holds, so does Condition S (Bickel, 1979).
Condition S* has a simple heuristic interpretation. If G, is a fixed shape in %let 8% be the
M-estimate corresponding to Gy, i.e., solving

St f(xi, 05, Go) = 0.

We know that, under regularity conditions (Huber, 1967), if Condition S* holds, then
n'2(% — ) is asymptotically normal under F5c, with mean 0 and variance covariance
matrix A™'B(AT)~!, where

’

62
A= “ - f},m £(x, 6, Go)f(x, 8, G)u(dx)

(3.2)
B= f £T(x, 8, Go)e (x, 8, Go)f(x, 8, G)p(dx).

A heuristic summary of this is as follows. Firstly, M-estimates corresponding to a fixed
shape Go should be n™'/* consistent for § under every shape G;. Secondly, suppose we can
estimate the true G by data-dependent {G,} so that the score functions #(-, -, G,) converge
to ¢(-,-, G) and so that the matrices A,, B, obtained by replacing G, by G, in (3.2)
converge to I(4, G). It then seems plausible that the sequence of M-estimates corresponding
to G, is adaptive.

Motivated by these considerations we now formulate two conditions, GR(iv) and H.

CoNDITION GR(iv). There exist estimates {8,} such that n"*(8, — 8) = Op,,, (1) at all
regular points (6, G).
Let

A= {h:h maps R*xX6© to R* and
(3.3)
f h(x, 0)Fye(dx) =0 forall §€6,GE ).
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In view of Condition S*, /# includes the space of possible score functions. For convenience
we introduce
(3.4) é(x, 8,G) ={(x, 0, G0, G),

where I” is any generalized inverse. (In fact we only need ¢ for 8 such that I(6, G) is
nonsingular.) Note that ¢ can be substituted for ¢ in Condition S*. Here is our main
condition:

Conpi1TION H. Appropriate consistent estimation of score functions is possible. That

is, there exists a sequence of maps ;m:(R”)’” - Hm=1,2, ..., taking (x1, + -, Xn) into
(-, 3 X1, -+, Xn) such that for all regular (6, G) and any |6, — 6] = O(m~"?),
(3.5) J' I;m(xy On; X1, oo, X)) — Z(x, O, G)Isz,,,,c)(dx) -0

in Py probability.

Note that GR(iv) is evidently a necessary condition for adaptive estimation and is the
natural generalization of R(iv). Under Condition S*, M-estimates corresponding to a fixed
shape are natural candidates for §,. In view of Stein’s necessary Condition S*, we
conjecture that Condition H is necessary for adaptation. W. R. van Zwet pointed out a
suggestive inequality bolstering this conjecture (Klaassen, 1980, Theorem 3.2.1). In any
case these conditions are sufficient.

THEOREM 3.1. If Conditions GR(iv) and H hold, then adaptive estimates exist.

NotE. The construction is closely related to that given for adaptive rank tests in the
linear model by Hajek (1962). A related construction for Example 1 has been given by
Bretagnolle (private communication). See also Hasminskii and Ibragimov (1978).

Proor. Define 6, as in (2.3). Let {m(n)} be a sequence of subsample sizes with m(n)
= o(n). Write m for m(n) and let 7 = n — m.
Define

(3.6) bu= 00+ 77 Sls 6K, B3 X, o, X,
We claim {6,} is adaptive. By Theorem 6.2,
O+ A7 Bmir £(X,, B0, G)

is efficient for every regular (6, G). Write P, for P ). Then to prove the theorem it is
enough to show

@7 AV i (Gl Xy 3 X,y -+, X) = £(Xs, B, G)) = 03, (1).

Now we use a trick of Le Cam’s and note that we need only establish (3.7) with b, re-
placed by 6, = 8 + t,n~'/% where t, is an arbitrary convergent deterministic sequence. This
follows since 8, is vn — consistent and the intersection of its range with any sphere of
radius Mn~'/? about 4 is finite with cardinality bounded independent of n. Having made
the replacement, we prove (3.7). Note that R(i) — R(iil) imply that the 7 dimensional

product measures of X,.+1, « -+, X, under P, and under P, are contiguous. Therefore, it
suffices to prove (3.7) in P, probability. Condition on X, ---, X, for this probability.
Since £(-, ; X1, +++, X») € #,

(3.8 J Zn(x, On; X1, -+, X)) f(x, 6, G)u(dx) =0
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and by R(i) — Rfiii),
(3.9) f £(x, 8, G)f(x, 0, G)p(dx) = 0.

Therefore

Eo[| A2 S iss (bnlXiy O3 KXoy -+, Xm) = (X, 0, G} | X, -+ o) Xon]
(3.10) . )
- fwm(x, B0 Xi, -+ -y Xn) — £(x, B0, G)[*(x, 6, GIpa(dx) — O

in Py probability by Condition H and hence, by contiguity again, in Pj, probability. Claim
(3.7) is proved, and the theorem follows. O

Notes. It is possible to replace Condition H by the following condition H’ which
permits separate estimation of / and I

ConDITION H'. (a) There exist maps Zm(R”)’" — # such that for all regular (8, G),
|6 — 8] = Om™'7?)

(3.11) J’ |2m(x, Om; X1, -+ oy X)) — £(, Oy G)*f(, O, Guldx) = op,(1).
(b) There exist estimates f,,,(Xl, -+, Xi») of I(6, G) consistent for all regular (6, G).

It is easy to show that if GR(iv) and H’ both hold, and if we define

(3.12) 0% =G+ 87 Times (X, B Xo, -+, X
then
(3.13) 03 =8+ 77 Smer 6Ky B X, + -+, X) [0, G) + o, (™)

and 0% is adaptive. R
A natural choice of I, is provided by
(3.14) o= 7 Slmes E7(Ke B Koy -+, Xo)
We show in Section 6.2 that this choice of I, is consistent for regular (4, G) provided that
GR(iv) and (3.11) hold, and if

(3.15) m™ Y 7K, Om, G) — 16, G)

in P, probability for all regular (6, G).

These are the results we will apply to Example 2 and which are applicable to other
situations where all of 4 is estimable. To deal with Examples 3 and 4 we need an extension
of our theory. First we study the analogue of Condition S* when we only ask that (),
rather than all of §, be estimated adaptively. Stein considers this question in a slightly
different formulation. He writes 6 = (g, t) with ¢ = g() and ¢, the rest of 6, is a nuisance
parameter, and he introduces the model {Fy,}. He notes that adaptive estimation of ¢
is possible only if the upper left-hand corner of the inverse of the information matrix for
(g, t) with n = no fixed is the same as the upper left-hand corner of the inverse of the
information matrix for (g, ¢, ) evaluated at no. We do not pursue further his matrix
formulation of this condition, but only note that in the presence of convexity Condition C,
Stein’s condition is heuristically equivalent to the d equations

CONDITION S* (generalized).

f £(x, 8, Go)I ™10, Go)g"(0) f(x, 0, G)u(dx) = 0
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for every shape Go, G: € 4. For q(8) = 6, ¢ is the identity and our more general formulation
of S* agrees with our old one.

New difficulties are introduced by the possible lack of identifiability of §. Of course we
need to have ¢ identifiable. That is, if

(3.16) Fy,6)=Fucy=F
then

q(6o) = q(6)).

But adaptation requires more. If F' can be embedded in both #;, and %, as in (3.16), then
the information bound for estimation of ¢ must be the same in both parametric families.
That is, (3.16) implies

(3.17) G(80)I (B0, Go)g "(86) = G(8:)I (61, G1)g"(6y).

This condition is satisfied in all our examples because if %, and Z, have a member in
common then they are the same, or, rather, one is a smooth relabelling of the other. For
instance, in Example 3, (3.16) holds if and only if G, is obtained from Gy by a translation.
We shall use this structural feature in a stronger way to reduce % and make 6 identifiable.
Here is a formal statement of our structural assumptions. They are obviously satisfied in
Examples 3 and 4.

AssumpTION Al. Either 5, = F, or F6,N\ Fc, =D, for all Go, G € ¥.

AssUMPTION A2. There exists T C R?™ and a smoothly invertible map from © to
Q@ X T where @ = q(0) which carries 6 into (q(8), t(8)). That is, we can identify q with a
piece of 6.

AssUMPTION A3. Ifwe replace 8 by (q, t) and F, = F, there exists a unique smoothly
invertible mapping 7(q, -) of T into itself defined by Fi.c,) = Fi-c,)-

Assumption Al implies that there exists an “identifying subset” % C % such that (i) &
= {Fu):GE %, 0 € 06}, and (i) 4 is identifiable when G is restricted to % provided that
it is identifiable in each ;. We can select % as a set of representatives of the equivalence
classes generated by the relation G = G: © %, = Z,. For instance, in Example 3 we can
take % = {G:u(G) = 0} where p is a location parameter. As we noted, Assumptions A2
and A3 imply that if (a) F = Z,, Go € %, and (b) Fy,¢) = F,c,, then g(0) = q(6o) and
(3.16) holds. That is, it does not matter in which parametric model %; we embed a
distribution F. The value of ¢ and the ease with which ¢ can be estimated remain the
same. Since we can talk about estimation of 4 for (6, G) € ® X % it is natural to propose
the following extensions of the conditions for «/r_z-consistency and appropriate consistent
estimation of score functions.

GENERAI:IZED ConbDITION GR(iv). There exists % satisfying (i) and (ii) above and
estimates {6.} such that

n2(f, — 8) = Op, (1)
for all (6, G), GE %.

We now redefine 7, # for given q. Our definitions agree with the old ones when g is the
identity. Let

H = {h:h maps R* X © into R so that

J’ h(x, 8)f(x, 8, G)u(dx) =0 forall (4, G)}.

(3.18) /(x, 0, G) = £(x, 8, G, G)g"@).
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Condition H is now generalized as was condition GR(iv), merely by substituting % for %.
The easy extension of Theorem 3.1 is as follows.

THEOREM 3.2. If Assumptions A1-A3 and the generalized conditions GR(iv) and H
hold, then adaptive estimates {G,} of q(6) exist.

The proof is the same as for Theorem 3.1 when we propose as estimate
(3.19) o= @) + 77 Yr (X, 0 X, -+, X

4. Adaptation in Examples 1-4. For the examples we leave verification of the
trivial structural Assumptions Al through A3 to the reader. In each example we shall
proceed through the following steps:

Step A. Formally verify Stein’s orthogonality Condition S* and in the process con-
struct what we can think of as the “space of possible score functions” # or a suitable
subset .

Step B. Find a suitable identifying subset %, and construct vn-consistent estimates
{6.) so as to satisfy GR(iv).

Step C. Construct score function estimates ¢ satisfying (3.5) and taking values in %
ie. satisfy Condition H for the appropriate consistent estimation of score functions, or
satisfy its modification H’ providing for separate estimation of ¢ and I.

Since Example 1 is a special case of Example 2 and has already been dealt with
satisfactorily, we begin with Example 2. For convenience from now on we write P for P,.

ExAMPLE 2. Step A. If the distribution of C has density r with respect to some », and
if G has density g, then X = (C, Y) has density (with respect to the product measure)

4.1 fle, 5,6, G) = r(c)g(y — cf7),
and

(4.2) ¢, 5,6,G) = c% (y— c87).
Then

Euwen#(C, ¥, 0,G)=Em,cn>{ (“))} (C)EG,,{g (‘:)’}=o,

since g’/g is antisymmetric and G, is symmetric about 0. Thus, Condition S* is satisfied
and by our argument, # D #; where h € # if and only if

4.3) hlc, y,0) = cf(y — c87)
for ¢ bounded and antisymmetric, i.e.
(4.4) U3) = —9(=).

So we will use score function estimates of the form (4.3).

Step B. Let y:R — R be such that y is twice continuously differentiable, with ¢ and
its derivatives bounded. Suppose, moreover, that y’ > 0 and that ¢ is antisymmetric. Let
{0 } be the M-estimates corresponding to v, i.e., the unique solutions of

(4.5) T CopYi— COY) =0, j=1,...,p,

where X, = (C,, Y,), Ci = (Ca, - -+, Cp). Then by Huber’s theorem (Huber, 1973), {én} are
Vn-consistent. (This is just the construction suggested in the previous section.)

Step C. By modifying the arguments of Héjek (1972) it is easy to see that (4, G) is
regular if g is absolutely continuous with derivative g’ and if I(G), the Fisher information
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for location given in Section 2, is finite. The converse is also true (proof available from
author).
By (4.2) we calculate

(4.6) 2, 7,0,G) = C% (y = B"WE(CTO)(G))

where the last term is just 77'(6, G). To apply Condition H or H’ we need to estimate
g’/g and I(G). This is achieved by the following lemma whose proof is given in Section 6.1.

LEMMA 4.1. Let ¢, &, --- be iid. random variables. There exists a sequence of
function estimates ¢,:R X R" — R,m =1, 2, -+ -, such that q» is bounded for each m and
such that as m —

’ 2
(4.7) j{qm(y;flr "':Em)_ﬂy_)} g(y)dy—0
g(y)

in probability whenever the common d.f. of the ¢, is G with density g and I(G) < o.

We proceed to show how to estimate ¢ and I(G) separately and verify Condition H’.
Let

(4.8) =Y. - CORXy, -+, Xn), i=1,---,m,

be the residuals with respect to the “discretized” estimate based on the first m observations.
Define

(4.9) Ynl(y; X1, o0y X)) = Y% {qnl(y; &1, -+, €n) — gul=; €1, -+, 6m))
and

(4.10) ule, 3, 0, X, -y Xn) = CYn(y — BT X, -+, Xo).
Clearly ¢ (-; X, -+, Xn) € # and

J' It?m(c, Yy Om; Xa, oy Xi) = 4, ¥, 0m, G)|* flc, ¥,0m, G) dyv(dc)

(4.11) =Jc
= S Ep, eee, £ _g_’
—[{qum(y,eh s €m) . (¥)

Now let 6,, = 6 + ¢.., where ¢, and ci, - -+, ¢ are p-dimensional vectors such that | ¢, | =
O(m™"?) and Y2, citmtnc; is bounded independent of m. Then the sequence of
m-dimensional product measures induced by ¢, -+, &, and e, — ¢1t5, + -+, &n — Callh are
contiguous if I(G) < « (Hajek and Sidak, 1967, page 211). Since ECCT is finite, if | tm| =
O(m™"?), ¥\ citmtme! = Op,(1). Thus, by Lemma 4.1,

(4.12) f

But, as usual, by the structure of §, and its m'/*-consistency, this result is enough to
establish

’

2
Un(y = BT; Xy, ey X) — % (y—Z)| cTg(y — OT) dy v(dc)

2

&(y) dy} E'CCT}.

’ 2
Gnl(yi &1 — Cith, -+, e — Cuth) — gz (9| &y dy—s,0.
!

(4.13) f {qm<y; i, oeeyém) —% (y)} &(y) dy —p, 0.

Substituting in (4.11), we see that 2,,L is a consistent estimate of Z in the sense of part (a)
of Condition H’, in (3.11).
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There are various ways to construct I.. For instance, we can verify (3.15) in this case as
follows:
N\ 2
m7 Y AKX, O, G) = m T T, C?C.(gg) (Y, - C:o%)
(4.14)

—p, E(CTC)I(G) = 16, G)
by the weak law of large numbers. By contiguity we can replace 6,, by 8 in P, . This yields
as the consistent estimate of (3.14),

(415 IO = 27 Y CTCHR(Yi = CT; 1, -+, ).
A more familiar alternative, which may similarly be shown to work, is
(4.16) I® = (n™ S CTC)A™ s Yo Yi— Cilims €1, + -, ém).

We have proved the following result.

THEOREM 4.1. Let 0, be defined as in (4.5), Ym as in (4.9). Let
(4.17) én = 0—71 + ﬁil Z;‘=m+1 Ci\l/m(Yi - Czo- g; ély M) gm)
where I, is given by (4.15) or (4.16). Then {é,.} is adaptive in Example 2.
ExaMPLE 3. B
Step A. Ifc = (c° 1), q(0) = (61, -- -, 6,1) and ¢ is defined by (3.18), we get
g

(4.18) Z(c, 3,0, G) = (c° — EC°)(Var C°)™ i (y— cd")I(G).

Thus, formally
Ewanf (X, 6, G) = E(C° — EC®)(Var c%“E%@)I*(G) =0

and Condition S* is satisfied. In view of (4.18) it is natural to choose
(4.19) Hy= {h:h(c, y,8) = (c° — EC°)(Var C°)"4x(gf — ¢67), Y boundedy}.
Step B. Let y be as in Step B of Example 2 and define

(4.20) Yo = {G: f Y(y)Gldy) = 0} .

Evidently % is an identifying subset and, by Huber’s theorem, (5,,} corresponding to  are
n-consistent when G is restricted to %.

Step C. A possible definition of ¢ is just '
@421)  nle,y, 6 Xy, -+, Xn) = (¢° = EC*)(Var C°) ' guly — 8731, -+ -, ém)I™",
where
(4.22) I= 7" Yt @i — ClTs &1, -, Em),
gm is given in Lemma 4.1 and the & are defined by (4.8). That ; works is evident by the
same argument as we gave for Theorem 4.1, since regular (4, G) again correspond to I(G)

< oo, This is not satisfactory, however, because the resultant estimates depend on the first
and second moments of the unknown distribution of C°. We claim that estimating these
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does just as well. Here is one way of proceeding. Define
(4.23) Ci=n""ZmC?
Var C° = n' 31, (CP — C9)T(C? - C2).
Let
(4.24)  Gu=0"+ 7 Thopar (CF = C2)(Var C2) gu(Y, — CAT; 61, -+, 6)T

where 877" is the vector of the initial p — 1 elements of §,.

THEOREM 4.2. The estimates §, defined by (4.24) adaptively estimate (6, - , 6,_,)
in Example 3.
Proor. We know that
(4.25) A7 Y1 (CF = EC®)gn(Yi = CL; 61, -+, ém)(Var C°)™ = op(n" /)
and
(4.26) Var C° = Var C° + op(1).

Therefore, replacing Var C° by Var C° in (4.21) will still lead to adaptive estimates. Thus
to establish that the estimates given by (4.24) are adaptive it suffices to prove that

427) A7 Thmi (C2 — EC°)(Var C°) gu(Y, — CO% &1, -+, ém) = 0p(n™2)
or, since C? — EC° = Op(n™"?), that
(4.28) A7 Yiems1 @n(Yi— COT; &1, v, én) = 0p(1).

To prove (4.28) we show that we can replace g, by g'/g and Y, — ¢, 87 by ¢, and then apply
the law of large numbers. Details are given in Section 6.2. 0

ExaMPLE 4. Step A. In this case if § = (y, [V]), then
(4.29) flx, 8, G) = {det(V)}'"*y({(x — w)V(x — w)"}'"/%)

where det denotes determinant, and y maps R* into itself. Of course, y(| x| ) is the density
of G. We want to estimate

(4.30) q(u, [V]) = (1, @([V])

where go is any homogeneous function of [V]. A “most general” choice is go([V]) =
[V1/tr(V). We can write, for (4, Go) regular,

Az, b, Go) NG, Go) = WO (x, u, V), [x°(x, m, V)])

where Y° is 1 X &, x° is k£ X k symmetric, and [x] denotes the k(% + 1)/2 dimensional
vector of the lower half of x. It is shown in Section 6.3 that

(4.31) Yo(x, p, V) =¢°((x — p) V%0, J) V2
(4.32) x°(x, 1, V) = V2x°((x — p) V2,0, J)V2,

where J is the & X k identity matrix. We further show in Section 6.3 that, if | - | is the
Euclidean norm and v, (| x|) is the density of Gy, then

(4.33) Vo 0,d) = — 218 (| RI (o)
[x] vo
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and
X5 0,d) = [I3'Gok(k +2 22 X0 (| x), i),
(4.34) [x] v
3 -1 x2 Y’
3 0 . .
2{12(Go)m— 1} {m%”xl) + 1} y L=,
where
%0 12
(4.35) L(G) = o j pel [—YY]- (r) dr
0
’ 0 2
(4.36) L(G) = cx J r’*“[LY]—(ﬁ dr
0

and c; is the surface area of the unit sphere in R*. Then by (4.31) and (4.32),
437 Euo(¥° (X, 1 V), [x°(X, 1, V)]}¢7O)
= Eono {¥°(X, 0, )V [V/%°(X, 0, J) V1) (0).

Moreover, if i # j, X{, changes sign if all the coordinates of x other than x, are left
unchanged while x, - —x,. Since if § = (0, [/]), all the X, are identically distributed and

the distributions of (Xi, ---, Xx) and (+ Xi, --., = X;) are the same, we conclude that
(4.38) Eonev°X,0,J) =0
(439) E(0.|J],G;X°(X; 0, J) = CJ,

where ¢ depends on G and Gy. Therefore
(4.40) EounalV°(X, 0, J)V?] = c[V].

Substituting (4.38) and (4.40) back into (4.37) we find that all components of (4.37) vanish
either by (4.38) or by Euler’s equation Y=, Vs dgo/dvr, = 0.

The orthogonality Condition S* follows and our argument makes it clear that /#defined
in (3.3), contains the set # of A (x, 6) defined by

(4.41) hix,0) = W((x — W VAV [V ((x — ) V) V)G 0),

where ¥ is 1 X & and x is symmetric 2 X & with forms

(4.42) ¢(x)=w(|x|)ia|
[x]
w(|x)) 22y, i),
|x| ,
(4.43) Xy (%) = X
{w(|x|)|7|+l}a3, 1=

where w is bounded and ai, @;, a; are constant. Clearly & is much bigger than 54, but #
is the space of natural estimates of /.

Step B. Thanks to Maronna (1976) we can find an identifying subset % and corre-
sponding Vn — consistent 8, as follows. Let u; and u, be functions on R*. Define the M-
estimate (fi., V) corresponding to u; and u, to be any solution of

(4.44) n! 2:‘=1 u ({(X; - "-’Ln)vn (Xz - I‘l»n)T} 1/2) =0
RS e (X — i) V(X = ) "X — i) T — i) = [T] ™

if one exists, and arbitrarily otherwise.
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It is easy to see that the maximum likelihood estimates for a particular G are of this
type. Let uy, u, satisfy conditions (A) — (D) on page 53 of Maronna (1976). In addition, if
Y (s) = su,(s), L = 1, 2, suppose that sy, (s) are bounded, j = 1, 2, and ¥; > 0. By Theorem
5.6 of Maronna, under these conditions n"*(ji, — I, V. — V) = Op(1) for all F € Fwhere
u V, G), V(u, V, G) satisfy uniquely

(4.45) j w({(x = V(x -7« - B)f(x, 6, G) dx =0

(4.46) f w({(x -V (x - ) "Hx -7 (x - f(x,0,G) dx =[V]".
It is clear by the unicity of i, V that

(4.47) B, V,G) =y,

(4.48) V, V, G) = c(G)V,

where ¢ (G) is that measure of scale which is the unique solution of the equation
1
E{us(cee™)} = =

existence is guaranteed by the monotonicity of u,. Clearly we can take as an identifying
subset

(4.49) % ={G:c(G)=1)

and 6, = (fn, V) defined by (4.44).

Step C. It may be shown that regularity of (6, G) is equivalent to absolute continuity
of y on (0, ») and finiteness of I, (G) and I,(G). (Proof available from author.) We will
show how to construct adaptive estimates of go(V) in a simple fashion and then discuss
the simultaneous adaptive estimation of p.

Note that if X has density given by (4.29), then log | (X — u) V'/*| has density j given by

(4.50) J(2) = cre”y(ed).
Thus
(4.51) y7(y) =y“'{jj—. (log ) —k}, ¥>0,

and this leads to the following construction of an estimate of y'/y.
Let i, be obtained by discretizing fi. as usual while [V,,] is the closest member of the
m ™'/ lattice to V,, which itself corresponds to a positive definite matrix. Let
zm=log | (X, = i) V2|, i=1,---,m,
and define

(4.52) wm(y; X1, oo+, Xm) =y {qn (108 ¥} Zimy «++ » 2mm) — k).
We claim that

(4.53) f |x|?

in Py probability if (4, G) is regular. The proof follows the usual lines. By construction
of fim, Vi it is possible to treat them as deterministic sequences such that | ftm — p| and
| Ve — V| = O(m™"?). Since (8, G) is regular the m-dimensional product measures induced
by e, -+, &m and (Xy — fin) Vii% -+ -, (X — im) V{2 are contiguous. If we also use (4.51)
we can conclude that (4.53) is equivalent to

’

wn (| 2]; X1, ~~,Xm)—y7(|x|)

2

y(|x|)dx—0

2 2
(4.54) f ‘ qn(log |x|;log |&], --+ , log|em])) —jj—, (log|x|)| y(|x])dx—0
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in probability whenever &, - - -, &x, are i.i.d. with common distribution G such that I (G)
and I, (G) are finite. But the integral in (4.54) equals

(4.55) J’

Moreover,

2
g(z) dz.

qm(z; log | e, «-- ,logleml)—]j—. (2)

= () A : _ 2
(4.56) T (z) dz = e —Y— (e*) +kp g(z)dz=L(G) -k

using integration by parts. Thus the integral in (4.55) tends to 0 whenever I,(G) < by
Lemma 4.1 and (4.54) and hence (4.53) holds. Now that we have an estimate w,,(+; X,

«, Xn) of y'/y we can estimate I, (G) by, for instance, splitting our preliminary sample
of m, taking m = 2¢and letting

(4.57) i2 =¢! ZE":/H q;zn(ztm; Zimy tv vy Zem) 3
Evidently I depends only on X, .-, X,,. Moreover, we can argue as for (4.28) that,
whenever (4, G) is regular,
(4.58) I —» I(G) in probability.

Now define xo (-, O, J) by substituting I, for I (Go) and w (+; X1, +++ , Xn) for Y0/v0 in
(4.34) and let
(4.59) bn@, 8,0, -, Xn) = [VI o = V72, 0, H)VIIGE (VY.

This is the natural estimate of /corresponding to go([V]). Now after some algebra, if 6,,
= (m, [Va]),

(4.60) f |2m(x; O X1y vy Xn) = A, Oy )T O, GO, Go ([VI)T Pf(x, 0, G) dx

=OP<J’I(x—;um)Vh.’Zl2 wn (X = pn) Val5 Xo,y oo ey Xin)

’ 2
—77(|(x—um)V‘m’2|)' £, Om, G) dx> + Op(l, - I).

But, the right-hand side of (4.60) is 0,,(1) by (4.53) and (4.58). From (4.60) and the structure
of ¢ we see that ¢ falls in # given by (4.41) and is appropriately consistent. We have
proved the following result.

THEOREM 4.3. In Example 4, if we define
(4.61) Gon = qo([VaD) + 77} Tl 2n (X, 0 Xo, -+, Xi),
then {g..} is an adaptive estimate of go([V]).

To estimate p simultaneously and adaptively using the estimate of y’/y we need to
show that

(4.62) j

in probability, or equivalently that

(4.63) f e %

—

2

v(|x])dx— 0

wn(|x]; X, -~',Xm)—y7(|x|)

2

g(2) dz

qm(2;log |&1], -+, log|em]|) —jj—. (2)
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in probability. Unfortunately, to show (4.63) we need

- -2z (j/)2 _ i k-1 Y -1 :
(4.64) e ——j-(z) dz=c | v 7(3’) +hy T y(y)dy<o

—o0 0
and this happens if I; (G) <  and
(4.65) f Y*7y(y) dy < oo,

0

a superfluous condition.

To get rid of (4.65) we need to estimate y’/y differently by smoothing the multivariate
empirical distribution of (X; — i) V »/* and constructing an estimate of y’/y out of the first
partial derivatives of the smoothed empirical distribution. This can be done but we omit
the tedious and rather technical definition of the estimate and the necessary argument.

5. Questions raised by this work and other issues in adaptive estimation.

5.1 When is adaptation not possible? We have seen heuristically the necessity of the
s/r—z-consistency condition GR (iv) and the orthogonality Condition S when there are no
nuisance parameters. In parametric models Vn -consistency is available under mild smooth-
ness and identifiability conditions while orthogonality is special. Orthogonality seems
special in these nonparametric nuisance parameter models as well. We illustrate with a
famous example of Neyman and Scott. The failure of adaptation in this case was already
noted by Wolfowitz (1953).

ExaMPLE 5. Estimation in Model II. Suppose X; = (X1, Xi2), =1, -+ - , n, such that
(5.1) Xy=m+e, j=12

where the ¢;, are independent identically distributed 470, ), and the p. are independent
and identically distributed with common distribution G. Let © = R*, ¥ = {all distributions
on R}. It is easy to see that all (§, G) are regular, and there is a natural Vn -consistent
estimate, the best unbiased estimate when the y; are treated as constants,

- 1 p
(56.2) 6, = o Y (Xa — X)?

Thus Condition GR (iv) holds. But Condition H does not. For instance, take G, to be point
mass at 0. Then

. _1f(xt+ad)
(5.3) Ax1, x2, 0, Go) = r {T_ 1}
and
. 1
(5.4) E(,;,GM(X, 0, Go) = F f }I.ZdG(IJ.) >0

unless G = Go. Thus adaptation in the sense we have discussed is not possible. Note that
the natural estimate 8, has asymptotic variance 26>/n in this case while I7'(6, Go) = 6°/n.
Lindsay (1978, 1980) and Hammerstrom (1978) have independently studied situations such
as this one (which are the rule rather than the exception) where adaptation is not possible.
They have obtained what may be viewed as a minimax optimality property of 8, in
Example 5 and analogous results in other problems of this type. We are investigating the
natural extension of adaptation in this context.

5.2 Better estimates. The estimates we construct in Examples 2-4 have some serious

295



P. J. BICKEL

failings: (i) the estimate of ¢ is based on a small subsample rather than all the data; (ii) the
estimates do not have natural invariance properties possessed by reasonable estimates in
these problems, primarily because of the discretization of 8,; and (iii) the behavior of the
estimates when I(#, G) is singular is not analyzed.

We believe that analogues of Stone’s procedures in the location problem (which meet
all these criticisms) can be constructed using the special structures of our examples. We
have not pursued this since our interest lies primarily in illustrating the applicability of the
general Condition H.

5.3 Extensions to other asymptotic structures. The theory we have developed extends
naturally to cases where the observations are independent but not identically distributed,
e.g., the usual linear model context. It can be applied, we believe, to the linear model and,
as Stein’s calculations and Wolfowitz (1974) indicate, to multiple regression models where
both the location and the scale of the dependent variable are functions (possibly nonlinear)
of the independent variables. Other extensions to non-independent situations, such as that
treated in part in Beran (1976), should also be possible.

5.4 Efficient estimation of functionals. Levitt (followed by Ibragimov and Khazminski
and others), in a series of papers starting with Levitt (1974), has studied how best to
estimate functions §(F') in nonparametric models, basing this work in part on Stein (1956).
In some sense our problem can be viewed as the estimation of the solution #(F) of
I ¢ (x, 8, G) dF 40 (x) = 0 which is meaningful (though possibly nonexistent) for F € %
Beyond this formal connection there seems to be no real link between our studies.

5.5 Uniformity of adaptation. Beran (1978) notes in the location problem (Example 1)
that adaptive estimates converge to their limiting distributions uniformly on (shrinking r-
dependent) “contiguous” neighborhoods of each G. This property can, we believe, be
suitably re-expressed to apply generally. However, the weakness of this property is pointed
out by Klaassen (1980) who shows (in Example 1, his Theorems 3.2.1 and 3.3.2) that for
reasonable fixed neighborhoods the convergence is far from uniform. Thus from a practical
point of view adaptive estimates may not work nearly as well for moderate samples as we
might expect.

5.6 Practical questions. The difficulty of nonparametric estimation of score functions
suggests that a more practical goal is partial adaptation, the construction of estimates
which are (i) always ﬁ-consistent, and (ii) efficient over a large parametric subfamily of
& Our results indicate that when the orthogonality Condition S* and \/;-consistency
Condition GR(iv) hold, this goal should be achievable by using a one-step Newton
approximation to the maximum likelihood estimate for the parametric subfamily by
starting with an estimate which is vVrn-consistent for all of % Partial adaptation in
Example 2 is discussed in Hogg (1980). This highlights an important practical and
theoretical question in problems of this type, how to construct vn -consistent estimates.
When there are no nuisance parameters present and adaptation is possible, maximum
likelihood estimates for fixed shapes are natural candidates. In general, this question
deserves further study. The constructions of Birgé (1980) may prove useful.

6. Theoretical Details.

6.1 Proof of Lemma 4.1. We use Stone’s (1975) approach. Let ¢, be the 470, o?)
density, g be any density, and define the convolution of g and ¢,

(6.1) 8o = &*¢o
and the convolution of the empirical d.f. and ¢,

(6.2) Eo(y) =m ' T doly — &).
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We suppress dependence on ¢, - - -, &, in what follows.
For given o0, ¢, dn, en» > 0 define
Em(3) if fo(NZdn, |Y|Sen and |Z(D]= ol
63  gu(n =4 ¥

0 otherwise.
We claim that if ¢,, — ®, e, — ®, 6,, — 0 and d,, = 0 in such a way that
(6.4) OmCm —> 0,
(6.5) enom = o(m),

then g, satisfies the conclusions of Lemma 4.1. The argument proceeds by

LEMMA 6.1. If the conditions of Lemma 4.1 hold and q. satisfies (6.3)-(6.5), then

(6.6) f {qm(y) — &om (y)} &.,(¥) dy —p 0.
(g>0] &

m

Proor. We use the elementary estimates noted in Stone. For k, universal constants
and all y,

(6.7) Var g9(y) < ko™ Vm™'g,(y), i=0,1,---..
Denote the conditions in (6.3) by A, B, C and the left-hand side of (6.6) by I; + I, where

Py , 2
. g
(6.8) I =f {A—(y) ——(y)} 8on(y) dy
e &0 &
r 72
6.9) L= Lewnl” () ay.
sy Eon

Bound E(I)) by
(6.10) Z[J Ean(NE{&:(y) — gon(¥)} dy + J ch8on(NE{&o(y)
'ABC ABC
— &on(M))? dy} =o(1)
by (6.7), (6.4) and (6.5). Bound

r 12
E(L) < f [é;’—“] (DPU & (N) > enon()

(6.11)
+ P{go,(¥) < dm, 8(y) >0} + I(| y| > en)] dy.

We claim that

(6.12) 8o.(y) = g(y) in probability for ally if mo, — o,

(6.13) £..(y) = g’(y) in probability a.e.y if mod — oo,
g/ 2 g72

(6.14) fﬁ(y) dysf 2 (y) dy for all m.

Evidently (6.12) and (6.13) imply that if ¢,, — % and d,, — 0, then the two probabilities in
(6.11) tend to O a.e. y, while (6.12)-(6.14) imply uniform integrability of g, */g, (y) and
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hence that
(6.15) EI,— 0.

Together (6.10) and (6.15) will establish Lemma 6.1. It remains to prove (6.12)-(6.14).
Now by (6.7), for all y,

(6.16) 8on(¥) — &m(y) > 0 in probability if ma,, — oo,
(6.17) £86.(y) — g5.(y) > 0 in probability if mo2, — co.

Continuity of g and (6.16) imply (6.12). To prove (6.13) write (using the absolute continuity
of g),

f | gom(¥) — &' (y)| dy =

j (&'(y—onx) — g'(y))$ (x) dx
(6.18) ®

= J f | &'(y — omx) — g'(¥)| dy$ (x) dx.

Note that I(G) < o implies [Z.|g’(y)| dy < ». Thus we can apply the L, continuity
theorem and the dominated convergence theorem to conclude that the right-hand side of
(6.18) tends to 0 as 6,, — 0 and (6. 13) follows from (6.17) and (6.18). Finally, (6.14) is a well
known inequality (see Hajek and Sidak, 1967, page 17). The lemma is proved. O

Next we need

LEMMA 62. Ifo— 0,

(6.19) f {
[g>0]

Proor. Apply (6.12)-(6.14).

) - T (y)} dy — 0.

LEMMA 6.3. If 6cm — 0,

(6.20) j g7 (Y)(VEon(y) — VE(¥) )* dy —p 0.
[g>0]

ProoF. Write, using Cauchy’s form of Taylor’s theorem,

1
VE.(y) —Ve(y) =¢ { gqx(y)/2gq(2(y>} dA
(6.21)

=- —J () f 28'(y —Ao2)¢(2) dz dA.
Thus we can bound the square in the integrand of (6.20) by

2
f Erom (y){f 28'(y — Aom2)p(2) dz} d\
(6.22)

¢(2) dz dA

- g_?n " {28'(y — Aom2))?
4 0 =)

- &(y = Aomz)
by convexity of (u, v) — u?/v. Substitute (6.22) in (6.20) and use | g | < ¢, to bound (6.20)
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by

C;ZnU.anJ'IJ'mjmg/z() 2()d dv d\
— V) 2z z 2 av .
4 )l 8 i

Since the integrals stay bounded independent of m, the result follows. 0O

Lemma 4.1 follows from Lemmas 6.1 and 6.3 since

, 2
f {qmm —% (y)} g(y) dy

1/2 2
53[ f {qm<y>—qm(g"“> (y)} g0y dy
(6.23) Le>0] &

j { (g )1/2 o g 172 2

+ =) () - (—”)(-ﬂ> (y)} g(y) dy
1e>0) g Bon/\ &

LAY AN g .\

+ 2on ﬂ) (y) — = (y)} g(y) dy],

JAG)E) -t

and the first term tends to 0 by Lemma 6.3, the second by Lemma 6.1, and the last by
Lemma 6.2. 0

6.2 Consistency Proofs. B
(i) Consistency of I, in (3.14). As usual, we can take 6, to be deterministic, and in view
of (3.15) we need only check that

(6.24) B =R Dimis {ETUX,, On; X, -+, Xn) — £THX,, 0, G)} >, O
whenever |6, — 8| = O(n™/?). But by (3.11),
Eo {|An] | X1y« v, X}
(6.25) < E{|2TH X, 0 Xi; X, +++y Xon) = 8 Komet, Oy G| Xiy <+, X
= op, (1)

and the result follows. _
(ii) Consistency in Theorem 4.2. Again we can treat 6, as deterministic. Define
measures {Q,} on (R”*")" with densities

M2 r(e) gy — ¢i) T TTimer r(c)g(yi — (6 — 8,) 7).

We can argue as in the proof of (4.12) that the measures {@.} are contiguous to the
product measures specifying the distribution of the observations when 8 is true. It follows
that (4.28) is equivalent to

(6.26) A7 Y1 gmless €1, ++ -, €m) = 0p(1).

By the usual calculation, conditioning on the first m observations,

, 2
([ Shee st 0 - £ )] 8]

, 2
= f{qm(y; I . g? (y)} &g(y) dy = 0p(1)

by (4.13) and we can substitute g’/g for ¢.. in (6.26). With this final substitution, (4.28)
follows from the WLLN. O
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6.3 Identities of Example 4.

Verification of (4.31) and (4.32). Write /= (2’1, %) where
. a¢ o/ ol . .
H=—, -, —|, ={4—11=7 .
oy opr av,j

4(x, 8, Go) = — | (x — mv'ﬂ’rl% ((x = V2 (x =)V

Evidently

(6.27)
=4((x —p) V2, 0,[J], Go) V2,

; (i) =) vo U2y o _8y
(6.28) fz(xya,Go)—{<Ww(|(x w V7] U’)<1 2)}:

where V™' = | v¥ | and x = (x1, - - -, Xz).
Define a linear operator Ls on R***/?, corresponding to a k£ X k matrix B = || b, |, by
+1 k(k+1
he k(k ) « ( . )

¢ 2

matrix

Lg= , rZS,iEj,

3,
‘(bubs, + b,rb..g)<1 - -j)

where (r, s) indexes rows and (i, j) columns. It is easy to verify that

(6.29) 4,8, Go) = &((x = p) V2,0, [ ], Go) L2,
By (6.27) and (6.29) we have
V1/2 0 T Vl/2 0
(6.30) 18, Go) = ( 0 LV"I/Z) I, [J], Gn)( 0 vauz)
and, finally,
. . 172 -t
Ax, 8, Go) I7'(8, Go) = ¢((x — p) V'/2,0,[J], Go) I (0, [J], Go) X (VO L‘Tf)—w)

Since V'* is symmetric, (4.31) follows. To get (4.32) it is enough to verify that

(6.31) Lg'=Lg- forany B,

and that if x is a triangular array

(6.32) xL§ =[BQ(x)BT],

where Q(x) is the symmetric matrix whose ij-th entry is x,, if i = j, or x, if i < j. The

verifications of (6.31) and (6.32) are straightforward exercises in matrix multiplication.

Verification of (4.33) and (4.34). In this case V'? = J. For convenience suppress
(0, [J], Go) in the arguments of functions for this discussion. We have

(6.33) A(x) = - ﬁ% (Ix]),

630 siraco - 5(2) gx0 5% =1 {5(2) xp o
by symmetry. Next, note that

(6.35) Alx) = {(%1‘ (x]) - a,,><1 - 6,,/2)}

1=y
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and by symmetry

(6.36) EZHX) =0

(6.37) EZHX) = || @rsillrzsizss
where X = (X, -+, Xz)

@y =0, unlessr=1i,s=},

_ L XiX3 (v,
(6.38) am,m—E{IX|2 (70 XD}, r#s,
X3 Yh }2
Q= E{ S Y01 X)) + 1} .
{|X| % X!
Xix3 (v)\’ _[XiX3 AN
(639 E{W ) (XD = B{qxpe B IXIS, ) 0D

by spherical symmetry of Go. The second term in (6.39) is just I>(Go), while the first term
is independent of G, and may be shown to equal 27'(% + 2)~! by taking G to be the
spherical normal distribution. Thus

(6.40) Crors =k Nk +2)'L(Go), r#s.

A similar computation gives

_ 1 Xi Yo : 1= 1 -1 -1 _
(6.41) arr,rr_TE{W(%) (X1 1—73’3 (kB +2)7'L(Gy) — 1.

We see from (6.37) that I1(0, [/], Go) is a diagonal matrix with entries given by (6.40) and

(6.41). Upon inverting it and substituting (6.40) and (6.41) in #(x, 0,[J], G,), we obtain
(4.33) and (4.34).

6.4 Two Theorems on efficient estimates.

THEOREM 6.1. Under R suppose {8,} are such that, for a given 8, %, {n"/*(6, — 6,)}
— A(0, I7'(8)) whenever n'*| 6, — | < M for all n, M < . Then,

(6.42) %0, — 0) = n"2 YR A X:, )I78) + 0,,(1).

Nore. This claim is in fact valid in great generality if the local asymptotic normality
(LAN) condition of Héjek (1972) holds with A.(8) replacing n™'/? ¥, A X., 6). Moreover
it is clear that everything is local so that the condition and conclusion need only hold at a
point § on which 6, can depend.

PROOF. Since the sequence of joint laws £, of n'/%(, — 6) and n ™2 ¥, A(X,, 0) I (8)
is tight under Py it is enough to show that if &,,, is any subsequence weakly convergent to
ZP* (say) then £* must concentrate on the diagonal. by a contiguity and analyticity
argument, see Roussas (1972, pages 136-141), we can show that the joint characteristic
function ¢*(u, v) of ¥ * satisfies the equation

¢*(u, v) = ¢*(u, O)exp{—ul'(8) vT}exp{—*vI(8)vT}
(Substitute ' = I(6), h = vI"'(6) in (3.11) of Roussas.) But, by hypothesis,
¢*(u, 0) = exp{—%ul'(8)u"}
so that
o*(u, v) = exp{—Y%(u+ v)I'(O)(u+v)")},
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and the theorem follows. 0

THEOREM 6.2. IfR(i), R(ii) and UR(iii) hold and if 8, is Vn-consistent and discre-
tized as in (2.3) and

b=0,+n 'S 4X;, 0,)1(6,),

then 6, is efficient in the usual sense.

Proor. In view of the arguments leading to Theorem 4 of Le Cam (1968), it is enough
to show that for § regular and any sequence 8, such that n'/* |6, — §| < M for all n

(6.43) RTVEYL {AX,, 0,) — H(Xi, 0)) + 126, — 6)1(6) = o0,,(1).
We claim that (6.43) is implied by the fact that
(644) Th {UX,, 0, + hn"V2) — ¢(X,, 0,)}
=hn"2 YR, H(X;, 0,) — %RI(8.) AT + 0,,(1)

for all . To see this, note that from the usual LAN condition

1 {0Xi, 00 + hn™'%) — £(X;, 0)) = n'72(6, — 0) + hn" V231, £(X,, 0)
(6.45)
—%{n"%(6, — 8) + R}I(8){n"*(8, — 8) + h) T + op,(1);

(646) T {AX., 6,) — (X, 0)} = nV*(8, — O)n" V2 YL, £(X,, 0)
- % {(6. — 0)1(6)(6, — 6)") + op,(1).

Subtracting (6.46) from (6.45) and matching the coefficient of 4 in (6.44) yields (6.43).
Finally, (6.44) is just the usual statement of LAN with 6 replaced by 6,. It is argued in

exactly the same way as the usual equivalence,—see pages 54-63 of Roussas (1972) for

example,—but, of course, we use the uniformity in UR (iii). The theorem follows. 0O
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We discuss estimation of parameters in functional and structural models in
relation to Robbins’ empirical Bayes and compound decision theories. We construct
an efficient estimate of » in the normal functional model, X; independent A" (v, 9,)
where e < 62 < 1/e,e> 0,1 <i <n. ©1986 Academic Press, Inc.

1. INTRODUCTION

In 1956, Robbins [15] (see also Good [4]) initiated the systematic study of
nonparametric empirical Bayes procedures. Robbins [16] is a good entry to
the large literature. The focus of his work and that of its many successors
has been the model:

I: We observe random variables or vectors Xj,..., X, iid. F where F
ranges over all (or most) mixtures of a parametric family { F,: § € ©} with
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® C R”. That is,

F=[F,,dc(0)

for some probability G on 0, belonging to a set ¥. Equivalently, we observe
X, 1 <i < n where (6, X;) are iid. with §, ~ G and given §,, X, ~ Fy.
Work in the area has focused on questions such as simultaneous estimation
of 8 =(0,,...,6,)" with squared error loss, L(8,d) = n"'X"_,(6, — d,)%,
d = (d,,...,d,)7, and the possibility of constructing decision rules

§*(X) = (h*(X;;X),..., h*(X; X)), X=(X,....X,)", (1.1)
which to first order approximate the Bayes rule,

8(X,G) = (h(X,,G),..., h(X,,G))"
where
h(X,G) = E(81X), (8, X)~ (6, X,).

Robbins came to the empirical Bayes formulation from his 1951 consider-
ation of the compound decision problem [14].

II: Observe X, independent with X; ~ F,, §, € K compact C @, for
1 < i < n. A typical problem now is to simultaneously estimate 6, ..., 6, as
well as possible, asymptotically, ie., to find §*(X,..., X,) =
(h#,X), ..., h*,(X))T such that

lim inf,n 1 Y {Eo'(h,'n(x) - 9:')2

i=1

—E, (h5,(X) = 6)°} <0 (12)

for any competing sequence 8,(X) = (h,(X),..., &,,(X))". The solution,
heuristically, is to use 8* given by (1.1) since the risks in (1.2) should be
close to model I risks when G = G, is the empirical distribution of 4,,..., 6,.

A key element in the transition from I to II evidently lies in establishing
that the approximation of 8(X, G) by §*(X) is in a suitable sense, uniform
in G.

An analogous set of questions was investigated by Neyman and Scott
[12], Kiefer and Wolfowitz [8], and notably, recently Lindsay [10] and
others. Their focus is on estimating a parameter » common to the X; in the
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presence of random (structural models) or fixed (functional models) nui-
sance parameters 0., ..., 6,. The corresponding models are:

I': (Structural) X,..., X, i.id. F where
F= fF("‘de(a) (1.3)

Ge€ 9, veE Hopen CR"™
II': (Functional) X, independent with X, ~ F,,,, 6, € Kcf, K
compact, 1 <i < n.

Again {F, 4,:» € H,0 € O} is a postulated parametric model.

In various examples discussed by these authors it is clear that » can be
estimated at rate n~!/2. For instance, if F,, g, is the #"(», 6?) distribution,
X is a n'/? consistent estimate of » in model I if [§%dG(0) < oo and in II'
if the empirical second moment of 6, n~'¥7 .67 is bounded. What are
optimal procedures in this context? For simplicity take m = 1.

Let F, ., denote the distribution (1.3), P, g, the associated probability
measure, etc. Call a (sequence of) estimate(s) regular (I') if

-%n,a">(n'/2(Tn - V,.)) - JV(O, "12'(”0, Go)) (1.4)

whenever », = », and G, = G, (weakly) for all vy € H,G, € 4. Call T*
efficient (I) if {T,*} is regular (I’) and

a7*(v,, Gy) < 07(v,, Gp) (1.5)

for all regular {7, }, (vy, Gy).
In model I’ let ¢ be the set of all probability distributions on K. Call an
estimate regular (1I') if

@) T,(xy,...,x,) is symmetric in (x,,..., X,)
(i) &, 0,002 (T, = 1,) > N (0, 07(ry, Gy))

whenever », — », and G,, the empirical distribution, n~'L/_,I(6, < -), of
(8,,...,0,)}, tends (weakly) to G, € . An estimate T,* is efficient (II') if it
is regular (II") and satisfies (1.5) for regular (II') competitors 7,,.

In problem I’ sufficiency of the order statistics permits us to restrict to
symmetric estimates. In problem II’ invariance of the problem under
permutations of the 6, leads less forcefully to the same conclusion. The
passage from efficiency (I') to efficiency (II') is as in Robbins’ problems a
question of uniformity.
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Evidently,

PROPOSITION 1.1.  Suppose 9 for both models is the set of all distributions
on K.

() if T, is regular (I1') it is regular (I')
(i) If T.* is efficient (I') and regular (II') then T.* is efficient (IT').

An extension of the theory of information (Cramér-Rao) bounds to
models with infinite dimensional nuisance parameters such as I’ has been
developed by Koshevnik and Levit [9], Pfanzag] [13], and Begun e al. [1] on
the basis of a fundamental paper of Stein [17). Under regularity conditions,
efficient (I') estimates are regular (I’) estimates achieving these information
bounds. Methods for constructing such estimates in a general context are
discussed in [13,2,3] among others. We do not study the general situation
further but show in an important special case how to construct estimates
which are not only efficient (I’) but also regular (II') and hence efficient ar).

The example we consider and extend somewhat is the normal location
problem with variances possibly changing from observation to observation.

F, 4 =H(v,0%) (1.6)
with ® = R™. Take K = [¢,1/¢] for fixed ¢ > 0 and ¥, all distributions on
K. Then F, g, is still a symmetric location family in ». If G is known,
efficient estimates are asymptotically A"(», I"}(H )/n) where H =
JFo.6,dG(8),

I1(H) =j[hh,]2(t)dt

h(1) =/:°9"1(p(t0"1)dG(0).

The general information bound theory indicates that it should be possible
to adapt perfectly in this case, i.e., do as well not knowing G as knowing it.

Iy

In fact, Stone [18] constructs an estimate v, which is location and scale
equivariant and such that,

p(n2(5, - »)) > 4 (0, I7\(H)) (1)
whenever X, ..., X, areiid. F and

F(-) = F(- + ») is symmetric about 0. (1.8)
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Here, we define generally for H on [— o0, 0] = R, H(R)> 0

I(H)

f [n]? wa H has an absolutely
R h continuous density 4 on R,

oo  otherwise. (1.9)

For convenience, in the sequel, distribution functions are defined by capital
letters and their densities, by convention, are the corresponding lower case
letters. In Section 2 of this paper we construct a modified and simplified
translation but not scale equivariant version of Stone’s estimate, »,, which
satisfies (1.7) and is also regular (II') for the model (1.6). In fact, we show
for the symmetric location model,

THEOREM 1.1.  Zy (n*/?v}) converges to #°(0, I ~1(H,)) whenever

(a) H, = Ho, Hy(R) =1
(b) I(H,) = I(Hy) < oo.

Then, in Theorem 2.1, we show that uniformity of convergence persists in
a generalization of model II".

Theorem 1.1 is the best that one can hope for in adaptive estimation of
location since £ (n'/23,) > #°(0, I"'(H,,)) as n = o, uniformly in m,
H, = H, as m = oo, and sup, I(H,,) < oo imply that I(H,) - I(H,).

This estimate is also asymptotically minimax in Huber’s [6] sense and can
be used for the construction of an adaptive confidence interval, v +
z(nl*)~1/% where, inf,Pylvy - z(nI¥) Vi<v<pr+ z2(n¥)"V?] >
2®(z) — 1 for any family # of distributions symmetric about 0 which
does not have point mass at +oco as a weak limit point. The details of
these results and other robustness properties of {»¥} will appear in Bickel
et al. [3].

2. THE RESULTS
Suppose the common distribution of Xj,..., X, iid. is H as in (1.8),
with H € 5. Suppose J# does not have point mass at + oo as a weak limit

point. Then there exist uniformly n!/2? consistent translation equivariant
estimates ¥, of », such that,

2, (025, - »)) » #(0,0%(H)) (2.1)
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uniformly on 5 and sup,0?(H) < co. For instance let

-t

k(t) (22)

- (1+e)
be the logistic density. If 7, is the unique solution of
n kl
Y (Xi-»)=0
-1 k
then it is easy to see that 7, satisfies (2.1).

To define »} we proceed as in Stone [18], but use the logistic rather than
the normal kernel for smoothing. Let

k,(x)= %k(i)

g

If £, is the empirical d.f. of X,, ..., X,, define
R . 12
ho(x) = [ko(x = 2)dE(2) = = ¥ kolx = X))
ni_

Next let

1
2,(x9) = 31a(x ) = 4 (=x + ).

Let ¢ be symmetric and continuous at 0 with support [-1,1, 0 < ¢ <1
and ¢ (0) = 1. Let

¥ (x) = ¥(c,x)

and o0,10,c,l0 at a rate to be determined later. Write §,, g,,, h, for
4o, 4,5 ho, Then we define

vi(v) = v = 13(0) 3,06, )9, (x)h, (x + ») dx
where

1,(0) = [@20e )4, () h,(x + v) dx.
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Finally our estimate is
* — y¥(3
vt =v¥(3,).
Since we have selected 7, to be translation equivariant, the second term of
v¥ is translation invariant and »} itself is translation equivariant, and
therefore we may and do assume thai the true value of » = 0, i.e,, that H, is
the common distribution of the X;. We then define the density and score

function of the convolution H, of H, with the logistic distribution with
mean 0 and variance 0?2

hu(x) = [ko(x = 2)h,(2) &z

Ga(x) = Z_"(x)'

Then,
h,(x) = Eh,(x) (2.3)

and i”(vn*) estimates the quantity

L(H,) = [@(x)4,(x)h,(x) dx.

We prove Theorem 1.1 by a series of lemmas. The proof is somewhat
simpler than our original thanks to an idea of J. Ritov. Uniformly for
H, €2,

LEMMA 2.1.  Write g,(x) for 4,(x,0) etc. Then,
J1a,(x)9u(x) A, (x + ) = 4u(x)4n() hy (x)] dx
= [3,(x) ¥, (%) (x) dx

= 0,5 (@) = BN h, () a4 0,(0,57)  (2.)

I(v)=1+ Op(a,,_31/). (2.5)
LEMMA 2.2.
[(@(x) = (=) ¥ (x)h,(x) dx = 0,(0, % 'nY)  (26)

f(},,(x)\p,‘(x)ix;(x)dx=f,,+0p(u,,’3c;ln‘1). (2.7)
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LEmMMA 2.3.
Ja, ()9 () h,(x) dx = [3,(x)4,(x)h,(x) dx +0,(n7; o, 2)
(2.8)
(H ) +0 ( 5/2 —1/2 —1/2) (29)
LemMa 24. Ifc, = o,, nef — oo, and sup,I(H,) < oo, then
W/ = =n V) D (2,009 (x)k, (x - X,) dx + 0,(1).
i=1
(2.10)
LEMMA 2.5. If H, - H, and sup,I(H,) < oo,
lim inf, I, (H,) > I(H,) (2.11)
and
lim inf, I( H,) > lim inf,I,( H,) > I(H,). (2.12)
If also I(H,) — I(H,) < oo, then
J(h717h, = h52m,)’(x) dx = . (2.13)

LEMMa 26. If H,— Hy, Hy(R) =1, and I(H,) - I(Hp) < oo, the

family of product measures Q,,,0 with density (@ h,(x; — 0/n'/?)} satisfies
Le Cam’s L.A.N. condition and

dQn [
dQn 0

h’

-0 S () = 3#U(H) <o) @14

log
and

( _1/2\2 (X))-»/V(o I(Hy)).

Proof of Lemma 2.1. Taylor expand, about » = 0, to find that (2.4)
equals

2 @) = G240 (x)

w2 ffa-n [ (@n(x, ), (x + )], - M]‘pn(x)dux
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Note that if || - || is the sup norm,

2%
h

B

=

= Op(onir)’

n

n

since there exist finite constants C, with

Uk"’(x)dG(x) < G [k(x)dG(x) forall r,G.  (215)
Hence,
a,qn rl ilff) r+1l/s
‘al’r("'}) —Op(s--_z-l ;‘n

=0,(0, ")

and (2.4) follows. A similar argument yields (2.5).

Proof of Lemma 2.2. Write, using symmetry,
[(@i(x) = @(=x) b, (x) dx
= [(@(x) = ai(=x) (b, = ) (x) ax

. 1/2
= Op([f(é:, - ‘7:,)24’,.1’"(4‘) dx]
s
(h,—h,)’ V2
X (f_iu-"__"’"(x) dx| |. (2.16)
By (2.15),
E(hY = D) (x) < G210, @V, (x) (2.17)

and consequently

[ = B, () e = 0, (7o, V). (218)
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Next write
hy Ry
ke Ry by (R, - h, (e — B 2.20
R S e A AR (2.20

197 = G2 =14, + 4,13, — 3,

<20} h"~;l(il"—il") +hY (k- R)|. (221)

Using (2. 19)—(2.21) and (2.15) we get
[ = )4k, (x) ax
—0( 4 (h, = )R, (x)ax + [(hy = hy)hy W, (x) dx
+o [, = B iy, (x) ax |

=0 (o‘sc"n‘l)

by (2.18). From this, (2.16), and (2.18), we obtain (2.6). Similarly,
Jabae) e~ 1, = 5 [(320x) = G2(=)) 9, () d
(a3(x) = 42(=x)) ¥, (h, = k,)(x) dx

=0 (ﬁqn - @2, lh, M(x)dx)
= Op((fmf = Gk, (x) dx)m

X(f(ir" — k)R, (x) dx)m)
=0,(0,%;'n1). (2.22)

Proof of Lemma 2.3. For (2.8) write
J@ = a)vh(x) dx = [(3,- 3,)40,(h, - b,)(x) dx

and proceed as for (2.16).
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For (2.9) write
I~ [a3,0,x) dx = [@4,(h, = B)(x) dx+ [(7} = 22),h,(x) dx
. o e 1/2
= Op(o;z(/(h" - hn) h;l‘Pn(x) dx)

. 1/2
VAT ATAXPS
= OP(U’:S/ZC;‘/Zn_l/Z)

as in (2.21)—(2.22). O

Lemma 2.4 follows from Lemmas 2.1-2.3 and liminf,I,(H,) > 0, a
consequence of Lemma 2.5 and our assumption on .

Proof of Lemma 2.5. For the proof of (2.11), without loss of generality
suppose /2 is continuously differentiable since for any ¢, satisfying our
conditions and ¢ > 0, there exists a ¥, satisfying them such that %2 is
continuously differentiable and

(1= e)¢,(x) <¢y(x)  forall x.

If H, > H,, Hy(R) > 0, and sup,/(H,) < M < oo by Cauchy-Schwarz,
1)
() — RO = 5 | 1o () d

1
< S VA(H,) =

MI/Z

5 |x — y|*/2. (2.23)

<

Since [h,(x) dx = 1 for all n, (2.23) implies {4,(x,)} bounded for any x,.
By Ascoli’s theorem, (2.23) then implies { 4}/ } and hence {4,} compact in
the sup norm on [—a, a] for all a < 0. Since H, 5 H,, a subsequence
argument yields

/2 (x) > ki (x) (224)

uniformly on [—a, a]. Next define an operator T, on L,(R) by

1
T,(v) = 5 [ b 0 (x) dx = [9i/0(x) dhi/*(x)
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and
1
T(v) = E'[;hf,hgl/zu(x) dx.
If v is continuously differentiable with compact support,
T,(0) = = [WA([W2] 0 + o91)(x) dx > = [ RY%/(x) dx = T(v)
R R

by (2.24) since the integrand is bounded and vanishes off a compact.
Moreover

4TI = [¢ P a
R " h,
=I,(H, <I(H,) <M. (2.25)
By the Banach Steinhaus theorem,
T,(v) = T(v) (2.26)
for all v and
lim inf, |71 > |IT||* = %I(Ho) (2.27)

and (2.11) follows.
Since H, > H, and I,(H,) < I(H,) < I(H,), (2.12) follows from (2.11).

Now take ¢, = 1. The argument leading to (2.25)—(2.27) is valid. There-
fore if I(H,) — I(H,), by (2.25) and (2.27),

Tl = |IT}I. (2.28)
But (2.26) and (2.28) imply

IT, =T -0
which is equivalent to (2.13).

Proof of Lemma 2.6. By Theorem 3.1, p. 124 of [7], we need only check
that

P) 2
sup{f(h;h;l/z(x - 1—/2) - h’,,h;’/z(x)) dx: 10 < M} -0,
n

VM < o0,
w1
il

The first claim follows from (2.13) and the L, continuity theorem, the

and
h,

h

n

2£n1/z}h,,(x) dx—>0, Ve>0.
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second from (2.13) and (2.24).

Proof of Theorem I.1. By Lemmas 2.4 and 2.5, & (n'/?»}) and
Ly (n" VI H)E — [§.¥.(x)k,(x — X)) dx) are asymptotically
equal. Moreover,

<o, ! =o0(n"?)a.s. (2.29)

a0k, (x = ) s

and, by (2.12),

2
lim supnf(fq,,xpn(x)kan(x -2) dx) h,(z) dz
< limsup,Z,(H,) = I(H,),
if H, ud H, and I(H,) — I(H,). By Lindeberg’s theorem, the sequence
£y (n'/?v¥) is then tight and all its limit points are A"(0, 6?) with 6% <
I"Y(H,). If Hy(R) =1 and I(H,) < o, by Lemma 2.6, and Cor. 11.1,

p. 161 of [7], 6% = I"!(H,) and the theorem follows. As a by-product we
obtain

J(Jawtokole =2 x| ) e = 10m). 30
a

THEOREM 2.1. Suppose Xi,,-.., X,, are independent, X,, has density
h(-— ) =06, (-—»), i=1,...,n, fsymmetric about O and I(F)
< o0. By H, we denote the distribution function of h, = n 1T h,,. If H,
and H, satisfy the conditions of Theorem 1.1, then

Lo 0.,(n7¥) = H(0, " (H,)). (2.31)

Proof of Theorem 2.1. The proofs of Lemmas 2.1-2.4 are essentially
unchanged for this new model, as we can see by noting that the key
inequalities (2.15) and (2.17) continue to hold. Moreover,

vare g,,,....8, ”_1/22 qn‘Pn(x)ko(x—Xi)dx
©.6,,,....6,) n

= J{ fasa ko5 = 2 ax) ma(o) e = 101,

by (2.30). Consequently, (2.29) and Lindeberg’s theorem yield (2.31).
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Notes. (1) If f= ¢, Theorem 2.1 shows that »* is regular (II) and

hence by Theorem 1.1 and Proposition 1.1 efficient (I1’). We conjecture that

it

is in fact efficient within the class of all asymptotically normal translation

equivariant estimates which are symmetric and even depend on G,. That is,
v¥ does as well as if we knew the 6, up to a permutation.

(2) The companion problem, X, = (X, X,,), X;;, X;, independent

A(8,, v) is much easier. Lindsay [10] and Hammerstrom [4] showed that the
UMVU estimate 2n)'Z7_(X;; — X,,)? is efficient.
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EFFICIENT ESTIMATION IN
THE ERRORS IN VARIABLES MODEL!

By P. J. BICKEL AND Y. RiTOV

University of California, Berkeley and The Hebrew University of
Jerusalem

We consider efficient estimation of the slope in the errors in variables
model with normal error when either the ratio of error variances is known
and the distribution of the independent is arbitrary and unknown or the
distribution of the independent variable is not Gaussian or degenerate. We
calculate information bounds and exhibit estimates achieving these bounds
using an initial minimum distance estimate and suitable estimates of the
efficient score function.

1. Introduction. Errors in variables models have been the subject of an
enormous amount of literature. A fairly recent reference with a good bibliogra-
phy is Anderson (1984).

In its simplest form the model assumes n independent observations X; =
(X, Y,), which are written as

X, =X/ + ¢,
(1.1)

Y, = a+ BX/ + ¢&5.
The X/ are viewed either as

(i) unknown constants;
(ii) independent identically distributed random variables.

Model (i) is called functional and (ii) structural by Kendall and Stuart (1979),
Chapter 29.

The (¢, £;,) are considered random vectors, which are identically distributed
with mean 0, as well as independent of the X/ in model (ii). In this paper we will
deal exclusively with large sample theory in the structural model, although we
believe our results generalize to the functional model. Our aim in this paper is
the construction of efficient estimates of 8 under various assumptions in various
special cases of (1.1). We also suggest how our results may be extended to
instrumental variable models through the special case of repeated observations
at the same X .

Write X, X, ¢, ¢, for “generic” observations. If we do not make any assump-
tions on the distributions of X and (g, ¢,), then B is clearly unidentifiable. In
fact, B is unidentifiable even if we assume ¢, ¢, to be independent Gaussian
variables with unknown variances and suppose X’ is also Gaussian.

Received October 1984; revised September 1986.

!This research was supported in part by ONR Contract N00014-80-C-0163.

AMS 1980 subject classifications. Primary 62G20; secondary 62P20.
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However, B has been shown to be identifiable under various sets of assump-
tions. These fall into two broad classes:

(A) Gaussian errors. (e, ¢€,) have a bivariate Gaussian distribution with
variance—covariance matrix =. The usual way to make B identifiable in the
literature is to assume ¢, ¢, independent and either

(1.2) Var(e,) = cVar(e,)
(1.3) Var(e,) = c,,

with ¢, assumed known. Both (1.2) and (1.3) are plausible under special cir-
cumstances [see Kendall and Stuart (1979), Chapter 29, for a discussion]. We
shall explore a generalization of (1.2),

(1.4) S =022,

where =, is known. Model (1.3) can be analyzed in the same way. We shall call
(1.4) the restricted Gaussian error model. This model and its generalizations to
more complicated situations have been extensively studied; see Anderson (1984),
for example. A second model in which the identifiability of 8 was established by
Reiersel (1950) puts no restriction on = but requires X’ to be non-Gaussian
(where constants are viewed as Gaussian). We shall call this the general Gauss-
ian error model.

(B) General independent errors. Assume ¢, ¢, independent. If (1.2) holds, 8
is identifiable. This restricted independent error has also been extensively
studied. If (1.2) is not present but either X’ is non-Gaussian or ¢,, &, have no
Gaussian component, then, again according to Reiersel (1950), B is identifiable.
This arbitrary independent error model is probably most satisfactory but our
results do not bear on it.

We review briefly some results on these models.

The restricted Gaussian model can be reduced to case (1.2) with ¢, = 1. The
maximum likelihood estimate for 8 in this case is  », which minimizes the sum
of squared perpendicular distances of observed points from the fitted line

n (Y, - a - BX,)
(15) = (e PX) " Bf J

=1
This estimate is well known to be n'/%consistent and asymptotically normal not
only under the restricted Gaussian model but also under the restricted indepen-
dent error model, see Gleser (1981) who considers multivariate generalizations. In
the presence of fourth moments, it is not hard to show that n!/*consistency and
asymptotic normality persist under the restricted independent error model when
3, is the identity. Estimates of B in the general Gaussian error model, with =,
diagonal, have been proposed by a variety of authors including Neyman and
Scott (1948) and Rubin (1956). In the arbitrary independent error model,
Wolfowitz in a series of papers ending in 1957, Kiefer and Wolfowitz (1956) and
Spiegelman (1979) by a variety of methods gave estimates, which are consistent
and in Spiegelman’s case n!/?-consistent and asymptotically normal.
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Little seems to be known about the efficiency of these procedures other than
that in the restricted Gaussian model the estimate fp is efficient if X’ is
Gaussian by the classical results for M.L.E.’s in parametric models. Our main
aims in this paper are:

In the general Gaussian error model:

(i) To give the structure that efficient estimates in the sense of Stein (1956),
Koshevnik and Levit (1976) and Pfanzagl (1982) must have (Theorem 2.1).

(i) To exhibit a reasonable efficient estimate (Theorem 2.2). In addition, we
extend Theorem 2.1 to the simplest instrumental variable model, m repeated
measurements with Gaussian errors,

X=X/ +e

Y,-j=a+,BX,-+e,-jz, j=1,...,m,i=1,...,r,n=mr,

ijls

and

Y,

X, = {(X,,Y,), j=1,...,m},

j)
where m > 2.

The ¢;;, are independent and identically distributed Gaussian and independent
of ¢;; which are also Gaussian. We refer this as the multiple Gaussian measure-
ments model. Note that in this model if m > 2, the assumption of non-Gaussian-
ity of the distribution of X’ is unnecessary.

We speak of efficient estimation in the sense of Stein (1956) as developed by
Koshevnik and Levit (1976), Pfanzagl (1982), Begun, Hall, Huang and Wellner
(1983) and in a forthcoming monograph by Klaassen, Wellner and ourselves. Let
P be the set of possible joint distributions of X. We call P, a parametric
submodel of P if P, C P and P, can be represented as { Pz ,; 8 € R, 1 € E open
C R*}. A parametric submodel is regular if at every (B, 7m,) the mapping
(B,m) = P, , is continuously Hellinger differentiable. Suppose that P belongs
to P,—a regular parametric submodel of P. Then the notion of information
bound and efficient estimation of B are well defined [e.g., Ibragimov and
Has’minskii (1981), pages 158-169]. Let n~'I~'(P; B, P,) denote the asymptotic
variance of an efficient estimate of 8 when P ranges over P,. Clearly, if we only
assume that P € P we can estimate no better than if we assumed that P € P,,.
Accordingly, let I(P; B,P) = inf(I(P; B,P,): P, a regular parametric submodel,
P € P}, be the information bound for estimating 8 under P.

Loosely speaking, ﬁn is regular and efficient in P if

Ly(Vn (8, - B(P))) - N(0, I"}(P; B,P)),

in some sense uniformly in P € P. Here N(y, 62) denotes the normal distribu-
tion with mean p and variance o2 The weakest kind of uniformity acceptable is
that

(1.6) Ly(Vn (By — B(P,))) - N(0, I"Y(P; B, P)),

for sequences P, € P,, a regular parametric submodel as above, with P, =
Pignny |Ba = Bol = O(n™%) = n,, = mo| for some By, no, P = P, ).
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If I-(P; B,P) is assumed at some P,, we obtain from the Hajek-Le Cam
convolution theorem, Ibragimov and Has'minskii (1981), that ,l?,, is asymptoti-
cally linear

B.= B(P) + 1t Y I(X,, P; B,P) + oy(n~2),
i=1

where [ is defined as the efficient influence function, which has the properties
Epi(xn P;8,P) =0,
Epl*(X,, P,8,P) = I"}(P; B,P).
Finding [ is equivalent to finding a suitable least favorable P, (at each P). We

discuss the theory which guides us in this search in Section 3.
Note that an estimate is efficient if

(a) it converges in law uniformly [as in (1.6)] on P and

(b) it is efficient in some parametric submodel P, at each P. By the Hajek-
Le Cam theorem (b) holds iff the efficient influence function is the influence
function of the (local) maximum likelihood estimate of 8 in P,,.

In Section 2 (Theorem 2.1), we exhibit { and P, for the general Gaussian error
model and the restricted Gaussian model and discuss the main features of
I(P; B, P). In Theorem 2.2 we exhibit, for each of the two models, an estimate g,
converging in law uniformly [as in (1.6)] on P, which has I as influence function.
By (a) and (b), § is necessarily efficient. The proof of Theorem 2.1 is deferred to
Section 3, and the proof of Theorem 2.2 to Section 4.

2. The main results. Without loss of generality let (¢;;, €;,) ~ N(0, £) where
2 = [0;;]2x2 is nonsingular. Let § = (a, 8, £) and
Y-a—-BX

a(8) ’

(2.2) T(8) = T(X,8) =5 2(8)[(02 = Borx) X + (Boy, — 0x)(Y — &),
where 5%(8) is the variance of Y — a — BX if 8 is true,
(2.3) 5%(0) = B0y, — 2Bo;; + 0y

Then given 6, T(#) is a complete and sufficient statistic for X’ treated as a
parameter, i.e., for the model {LyX|X’ = n): n € R}. This follows since given
X’ =1,(X,Y)have an N(n, @ + 7, £) distribution. Moreover, U(8) is ancillary
in this problem. It is necessarily independent of T(#) in the original model and is
distributed N(0, 1). T(8) is also the unbiased predictor of X’, i.e., given X’ =1,
T(#) has a N(n, 6%(8)) distribution, where

6%(6) = 5_2(0)("11022 - 0122)'

We can write the joint density of X under (8, G), where G is the distribution of
X',

(2.4) p(x,0,6) = [K(x,2,6)G(d),

(2.1) U(9) = UX,0) =
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where
K(x,z,0) - [21‘1(0110‘22 - 0122)1/2] o
xexp{ - [2(011022 - 0122)]
X [022(x -2) - 20,(x — 2)
X(y—a— fz) + oy(y — a — B2)’]}
= [27;-(011022 - 0122)1/2] _lexp{ - %Uz(x, 0)}

G%(0)
2

-1

(T(x, 8) - )}

is the conditional density of X given X’ = z.
Fix 6 = 6,, G = G,. Drop the argument 8 in U(8), T(8), 5%(6), and 6%(9). Let

(2.5) w(t) = w(t,0,G) =5—1f¢(5-l(t—z))c(dz)

be the density of T and let

Xexp{—

I, = f [T (t)dt

w

be the Fisher information for location of w. Let n = (g, 7), p € R, 7> 0, and

TR
G(-,n) = Go(T)-
Define
(2.6) P, = {P(9.G(-,w))}‘

That is, in P, we assume G known up to location and scale. P, is not the same in
the general Gaussian error model and the restricted Gaussian error model since 3
varies freely in the former!

THEOREM 2.1. Assume [7°G(dn) < . Then P, is the least favorable regu-
lar parametric submodel and the information bounds and the efficient influence
functions for estimating B at 6 = 6,, G = G, are as follows:

Restricted Gaussian error model. Define the random variable

27) z=a(T- E(T) + 62%(T)).

This is the efficient score function defined by Begun, Hall, Huang and Wellner
(1983). The information bound of (1.5), which we write as I, is given by

©8) I, =Ey(1¥)" = 7 *Var(T) + 6*I, - 26?)

=6 %(Var(X’) + 6%(6%, — 1))
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and the efficient influence function is given by
(2.9) I,=1x/1,.

General Gaussian error model. Define
wl
(2.10) 1y =6“U(T—E(T) +10-1—(T)).
2
The information bound is given by

(2.11) I, = E(1¢)* = 67%(Var(T) - I;?)

=5 *(Var(X') + 6% - I;'")
and the efficient influence function by
(2.12) I,=1p/1,.

NoTEs.

Restricted Gaussian error model.

(1) If 6,, = 0, then 6 = 0 and we are in the case where T'= X = X" is observed
without error. In this case,

.= Var(X’")/Var(Y — « — BX)
is the reciprocal of the asymptotic variance of n'/? times the ordinary

least-squares estimate as it should be.
(2) If X’ is normal, Var(T') = I;' and (2.7) becomes

7% (Var(X’) + 6%(62 — Var(T))I,) = 5 *(Var X")(1 — 6%1,)
=3¢ *Var’(X’)/Var,(T),
which we shall call I,.

This is just the asymptotic variance of S, if 2, = identity [see, e.g., Gleser
(1981)], whatever be G. So we conclude that we can do as well not knowing G as
knowing it is Gaussian. This is a special instance of the claim that P, given by
(2.6) is least favorable.

(3) We can study the asymptotic efficiency I /I, of ﬁp if G, is not normal. We
show in Section 5 that, I./I, > (1 + ¢%/(B* + 1)(Var(X") + ¢%))"". In par-
ticular, if the signal-to-noise ratio in X, Var(X’)/o?, is large B, is close to
efficiency.

(4) The score function I} can be written as

1X=6"W(E(X'|T)- E(X")).
The least-squares estimate if X’ were known is based on the score function
¢ U(X' - E(X")).
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Thus the efficient estimate replaces the unobservable X’ by its best “esti-
mate” E(X'|T).

(5) Suppose that with = = 023 we have m repeated observations at each X/,
Then by sufficiency /}, evaluated at the mean of each set of observations
with = replaced by 2,/m, is the efficient score function.

General Gaussian error model.

(1) Normality of X’, under which B is unidentifiable, corresponds to G = point
mass at 0. Appropriately, I, = 0 as G tends to point mass since then T
approaches normality and 6% ~ I; .

(2) Necessarily, I, > I,. The inequality is always strict since

o*(I, - I,) = I; (612 — 26%1, + 1)
= I; (8%, - 1)" > o,
since I, the Fisher information for X’ + ¢, is always smaller than the Fisher
information for ¢, which is just 2.

Multiple Gaussian measurements model. The efficient influence function can
be calculated as for the general Gaussian error model, but is much more
complicated.

Let X = (X;,Y), j=1,...,m, where X; = X’ + g, Y =a+ BX' +e,isa
generic observation. We assume the ¢;; are independent Gaussian with mean 0
and Var(e;;) = 6y, Var(e;,) = og. Let

U= (1_/—/31?— a) /0,

(2.13)
T= (0225(_ + 3011(?_0‘))/(022 + /32011),
where Y = m™'E7Y, X = m™'L7 , X;. Let
o = ("22 + /32011)/’":
(2.14) 62 = 0,,0p/m’,

w’\2
I, = f( —) w(t)dt, where w is the density of T given by (2.13).
w
The efficient score function is then
ur U o
(2.15) I*=—% +a,—7—(T) +a3(U*- 1) + a,S, + a,S,,
0,6 0,62 w )
where

(x,-X)

- (m-1)
=1 o1

Jj=1 022

and the a’s are functions of m, o2, of and I,. For m = 1 the form of /* agrees
with [} as it should. As m — oo,
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which corresponds to *. This is as expected since m large corresponds to o;,, ogy
essentially known. The information I, for this problem is I, plus a complicated
positive term vanishing for m = 1.

We now construct efficient estimates. The idea is to proceed as in the classical
estimation of the location problem:

(2) Find a good estimate §, of B.
(b) (i) Consider I as I(x,8,m,G) where 6 = (8,7), G are now viewed as
dummy variables and the argument x replaces X. For example,

I(x,0,G) = 6"1(0)U(x,0)(T(x, 0) = [T(x,0)Py,o(dx)

+5%0) 2 (1(x,0),0)) [1,0,6),

where T is given by (2.2) and «(-, 8) is the marginal density of T(X, §), under
Py, g)- Construct a suitable estimate Ix, 8;X,,...,X,) of I(x,8,n,G).
(ii) Form

a

n
Bn=ﬂn+ Z l( Bn!xli"'?xn)
as the efficient estimate.

PRELIMINARY ESTIMATE. We motivate our f§, as follows. If we calculate
under Py and B = B,, Var(Y) > Var(8X), then

(2.16) L(Y) = L(BX + oZ + p),
for Z ~ N(0,1) independent of X and
p=E(Y) - BE(X),
o2 = Var(Y) — f2Var(X).
If Var(Y) < Var(B8X), then

(2.17) L(X)=L(%+6Z+p.),

for Z ~ N(0, 1) independent of Y, some o, pu. For |B| # |B,| neither identity (2.16)
nor (2.17) can hold; see Proposition 5.1. Our initial estimate is essentially a
minimizing value for the distance between the natural estimates of the laws in
(2.16) or (2.17). We believe our estimate may be improved by considering the
joint distribution of (X,Y) and not only the marginals. For that note that if
(2.16) holds, then

L(BX +0Z+p,Y)=L(Y,BX + 0Z + ).

Another possible estimate is given by Spiegelman (1979) who does not assume
Gaussianity of the errors but does assume ¢,, ¢, independent. Different estimates
B,, B, are appropriate for the restricted Gaussian error model and the general
Gaussian error model. Essentially, Bb works whenever [3 does except when G is
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Gaussian. We give 8, formally and sketch the difference for B.. Without loss of
generality, we assume E(g;) = E(e,;) = 0.

Let F, be the empirical distribution function of X;, i =1,..., n, and Fi(-) be
the distribution function of X. Let Fy(-) and Fy(-) be the empirical distribution
function of Y, and the distribution function of Y, respectively. Let

a(B) = Y -BX, 6%(B) = Iaf - B,
pent BTN, @=nt (X-XF, A-d/

i=1 i=1

(2.18)

2 ~2
Define, for 67 > 0, 6; > 0,
2

o(y) dy,

_ y— Bx — A(B)

B)

A - fo| J o

if 62 > p262
(2.19) 7

2

Bx —y+i(B) Ao(Ay) dy

-] (sen B)6(B)

() - fo | i)

if 67 < B22.
Note that A,(B) can be defined by continuity at o(B) =0 since P[|B| +
62(B) > 0, VB8] = 1. For given a > 0, let A, (B, a) be the corresponding quantity
with Y, replaced by Y; + aX;, i = 1,..., n. Let B}(a) minimize A (B, @). B, =0
poses difficulties but we can always shift away from this value. Accordingly, let
Bn* = Bn* (0)! if Iﬁn*(0)| 2 80
= Bx(28,) — 28,, if |BX(0)| < &,.
Finally, we need to distinguish between + 8. For that let Vf’,,* be the empirical
distribution function of 67 X(Y; — p(BF) — B}X,), where

2 =n' Y (Y- u(B?) - BIX)’

i=1

and Wn“ the corresponding quantity for — ﬁ,,*. Let

B=pr. it [[W () - ooty ay < [IW(5) - 2()[6(y) dy

= —B¥, otherwise.

For the restricted Gaussian error model, =, = identity we proceed as above
but change the definition of 6%(8) to, using the new information,

[1- B
1+ B2
and switch the definition of A (8) as B2 < 1lor > L.

nt Y (Y- 4(8) - BX,)’

i=1

6.(B) =
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EFFICIENT ESTIMATES. Note that
(2.20) Bo,, — 0y, = BVar(X) — cov(X,Y)
Bo,, = Var(Y) — Beov(X,Y),

(2.21)

(2.22) a=E(Y) - BE(X).
We can reparametrize the general Gaussian error model using (8, a, vy, Y2,

6,,, G), where y,, v,, a are the expressions in (2.20)-(2.22), respectively. Abusing

()8: “9?1:?2) 50 that
U(0) = (% =« = BX) /(B + v2)”*
“))/ By, + 12)-

notation, let 4

T{S} - (TzX +nlY,
Define 6, = (B,, &,, J1n> T2n) by substituting sample moments and £, in the

deﬁmtlons (2.20)-(2.22) for B, a, v,, v,. Let
A(E) = e {1+ e ),

A(E) = %A(%]

v, 10, to be characterized later, let A, = A, and estimate «,

For sequences c,, »,
by the kernel estimator,
&,(t,8) = ; EA (t— Ty(0)) +
i=1
Define the efficient estimate for the general Gaussian error model by
(2.23) B..=B,+n ;! 2 (3)(1‘ T. + ;' =(T. é))
where U, T; are used for Uy(4,), Ty(4,), and T. = n™'Er T},
o 2
@20 fL-n £(2) (@(0).4),
~ 1 nof . Whorow 2
(2.25) fy= (B + %2a) n ' X |\Ti- Tt rEIZ'(Tn 3»)) .
i=1 n
Similarly, we define the efficient estimate B... for the restricted Gaussian error
model by
U 2 o o ol e
fro= Buat 72 £ S T (14 ) 1 (200
i=1 "n Wy
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where

6= (L+8) 7 L (Y- u(B) - £X.)
i=1

(B(Yi- &) +x)(1+42)"
L= Y (Tu= T (e 2) 6222 (1, 0))

in accordance with (2.7) and (2.8).
Let {c,}, {7,) be such that

c,—0, v, > 0, ne2yf - .
THEOREM 2.2. (i) Suppose G, is non-Gaussian, [x2dGy(x) < co and P, =
{Po,60): 0 € O} is regular. Then, if Py = Py ¢, satisfies the general Gaussian

error model,
(2.26) Ly (n2( B, — B(By))) > N(0, I, (By)),

for all Py € P,
(i) If also nv; ®log n — 0, the convergence in (2.26) continues to hold if P, is
replaced by P, = Py ., where

6, = (B, a, Y1r Yans O11n) = 0 = (B, @, Y15 Y2» 011)

and G, — G weakly and [2°G,(dz) — [2’G(dz) < .

(iti) Write (2.21)~(2.23) as B, = B,(B,) and let B, = Bn, Bin=BuBioy, ),
i=1,2,3,....Then, fori> 1, all B, are efficient and |B,, — ,_ Lal =0, (n71%)
for all i > 2

(iv) If B, is replaced by ,l?,m and the restricted Gaussian error model is
considered then claims (i)-(iii) continue to hold with I, replaced by I,,.

NoTEs.

(1) Let K c P be compact in the total variation norm topology. Part (ii) of the
theorem shows that the convergence in (2.24) is uniform over K if P —» I(P)
is continuous on K. These are the largest sets over which we may expect
uniform convergence.

(2) Part (iii) of the theorem may be mterpreted in terms of running the iteration

i tO convergence Suppose the stopping rule is of the form: Stop as soon as
1Bin — Bi_1,ul < €,, where &, |0, n'/2, > ¢ > 0. This is reasonable since the
random fluctuations in the estimate are of order n~1/2, Then, by part (iii),
with probability tending to 1 the iteration stops with [?2,,.

Under more stringent conditions on »,, ¢, we conjecture that tedious calcu-
lations will show that, in fact, lim ﬁm emsts w1th probability tending to 1 and is
efficient.
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3. Information bounds and proof of Theorem 2.1. Let P, be a regular
parametric submodel of a model P written in the form (P ;s BER, yEE C
R*}. Let I(X, B,y) denote the log likelihood of an observation from P, ., and
let [(X) = 3L/ B gy, vos J(X) /3o, yoyy 1 <J <k, where y=
(Y1 ---» ¥x)- Begun, Hall, Huang and Wellner (1983) [see also Efron (1977) and
Neyman (1957)] show (in slightly different terms) that, if B, = Pg_ .,

I(Py; B,P,) = nlin{E([o(X) - f: chj(X)) :(cpy...c) € Rk}
=E{[l*]2(X)},

where
. k
(38.1) *=1- ch l;
j=1

and the c* are uniquely determined by the orthogonality condition
(3.2) EI*[(X)=0, j=1,...,k.
Moreover, the efficient influence function for P, is given by

(3.3) [(X, BB, Py) = I*(X)/I(Py; B,P,).

Therefore, to calculate [ for P,we need only calculate the projection Z 1eF A X),
in Ly(P,), of [, into [[;: 1 <j < k], the linear span of I,,..., . Let H(h|L)
denote the projection of h € Ly(P,) into a closed linear space L C Ly(Pp).

To prove Theorem 2.1 we go through the following steps for the restricted
Gaussian error model and an analogous series for the general Gaussian error
model.

2

(i) Identify (v;,7v,) = (a,0%), where o2 is given by (1.4) and let 7 =

(M- Me—) index G, ie,

P, = {Pw,cq): n€E,0=(a,B,0%),0B€ R}.
Calculate formally fj, 0<j<k,at P,="Py ¢ ) where j=068, j=12o
a, 02, j > 3 o n. 0

We project I, into [l j = 1] in two steps. First, calculate, for 0 <j < 2,
I'I(Z | V'), where

(3.4) = [lj: j=> 3],
I*= [o - H(l'o|V) - H(lo - H(10|V)|W),
where

w=[i-n(lv):1<js<2.
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Claim (3.4) is well known and can be verified by checking (3.2). We establish
that:

(ii) For any regular parametric submodel P,
[L: 23] c {a(T): a(T) € Ly(PR,), Ea(t) = 0}

and then prove:

(iii) If P, is given by (2.6), then P, is regular and
(3.5) [i: j=3] 2 [E(i(x)T)].
The existence of a model P, having property (3.5), but not the specific choice
(2.6), follows from Theorem 14.3.12 of Pfanzagl (1982). Note that
(3.6) E(h(X)-E(A(X)IT))a(T)=0, forall a(T), ke L,(P).
Now (ii) and (iii) imply that, for P, given by (2.6),

O(4v) = E(I(X)T), o0<i<2,

and hence by (3.4) if I} is the I* of P, given by (2.6),

(87) 13(X) =Iy(X) - E(i(X)|T) - }i:ld,(ij(X)) - E(i(x)IT),

with {d;: 1 <j < 2} determined by (3.2) for j = 1,2. Take P, to be any regular
parametric submodel. By (ii) and (3.6)
El3(X)i(X)=0, j=3.
By (3.2)
El3(X)i(X)=0, j=1,2.
Therefore,
E(1*(X))* - E(I3(X))*
(3.8) = E(1%(X) - 13(X))" + 2E(I3 (X)(1* - 13)(X))
= E(1*(X) - 13(X))’ > 0,

since I* — I} e[ 2 J = 1]. We conclude that P, given by (2.6) is least favorable.

ProoF OF THEOREM 2.1. For mnemonic convenience we write [, = lp and
[;=1, 1., 1, etc., as appropriate.

Reétricted Gaussian error model. (i) 'Differentiating (2.4) we get, for 6 = 6,,
G = G,,

L(X)

P_I(X’ 0,G)f(°11°22 - 0122)_1(011(Y_ a— fz) - o(X - 2))
x zK(X, z,0)G(dz)

1 U Boy — oy

° (0)'/( 0(9) * 011092 — “122 (T_ Z)

X 26(67H(8)(T - 2))G(dz) /w(T),

(3.9)
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since
X=T-5"0)(Boy; — 0,,)U,
Y—a=BT+ a5 %0)(oy — Boy,)U.

Similarly,

1, = [o(T)é(6)] "
3.10 J 011 — Oz
GO0 o B o) ste o - o),

le= 2—%‘—2((U2 —1) +67%9)
(3.11)

x [(57(0)(T - 2)* = 1)o(67(0)(T - 2)G () /o(T)].

(ii) Suppose P, = {F, ¢} is a regular submodel with G, < G, = G lfg, =
dG,/dG, g, = 1, and, formally,

=2

618 ) = fom| - (T - 2| F2I6 () ru(T),

a function of T only. If ;o exists only in the Hellinger sense it is easy to check
that lj+2 is an L, limit of functions of T and hence T measurable.
(iii) If P, is given by (2.6),

al
a—M(X,o, G,)

%‘2(7,_ (Z:Ii)

_ w"l(T)a—ifexp{— )Z}G(dz)

p=0,7=1

(3.13) .
- o) f(T - z)exp{— (1~ z)“’}G(dz),

Al
3.14) —
(314) --(X,60,G,)

= w“(T)fz(T — 2)exp{ =6 (T - 2)*}G(dz).

p=0,7=1
The independence of U and T and EU = 0 yield from (3.9)

1 Boy — oy

E(LIT) =& J2T = 2)e(67X(T - 2))G(dz) /wo(T),

2
011022 ~ O12

which is proportional to d//3r as required. Therefore,

b= E(T) =570 [o(67 (T = 2)6(a)]  feo(67(T - 2)6(ee).
From (2.5)

(3.15) I, — E(1,T) = a-IU(T + 52%(T)).
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Similarly,
l,— E(L T) =5V,

1
Ly — E(102|T) = %E(Uz - 1).

Now, from (3.10) and (3.13)

(3.16) l,— T(LV) = I, - E(1,IT)
and necessarily by (ii)
(3.17) Lp—TI(1,2|V) = Le — E(12|T) + b(T).

Therefore, (3.17) is orthogonal to both (3.16) and (3.15) so that d, = 0. On the
other hand, it is easy to see that d, = E(T). From (3.7), (3.15) and (3.16) we
obtain Theorem 2.1 for a restricted Gaussian model.

General Gaussian error model. We find after some computation

wl
I, =a,(U2-1)+ ,BHU:(T) + vu.0(T),

(3.18) Loy = a(U? = 1) + U —(T) + 7,b(T),

O22

’

®
i, = a12(U2 -+ BmU:(T) + Y125(T),

O12

where
b(T) = 57" [2%(67X(T - 2))G(dz) /w(T),

a;  Bu
and the matrix | ay 3;2 has dimension 2. Let V = [L(®), L(x)].

a By
From (3.18) the linear span of I, — E(I_|T), lv., - H(ZOU|V), i, j=1,21s
(3.19) [U, vr-1, U%(T), c(T)],

where ¢(T') = II(5(T)|V). We find the projection of lg — E(L4|T) on (3.19) by
using the independence of U and T, EU = 0, EU? = 1. We obtain

& (I(UTI[UY)) + H(UTi[U%(T)]) + GZU%/(T)

= ¢ UE(T) +

1 w’
~2 - —
G Io)Uw (1),

since E(T(w’/w)(T) = —1. We conclude that under the submodel (2.6), with =
varying freely, I is the efficient score function. But clearly, El#(X)a(T') = 0 for
all a(T) € Ly(P,) and, in view of (ii), the argument leading to (3.8) applies to I3*
also and (2.6) is least favorable. O
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4. Proof of Theorem 2.2 and miscellaneous results. We begin by study-
ing B

PROPOSITION 4.1. If either

(4.1) Ly,(¥) = Ly(BX)+N
(4.2) LP(,(X) = LPQ(Y/:B)*N

(where N is a Gaussian law and * denotes convolution), then |B| = |B,| or G,
is Gaussian. If B = B, one of these relations holds.

ProOOF. Let  be the characteristic function of X’. The case 8, = 0 is simple.
Assume B, # 0. Without loss of generality, take E((X) = E(Y) = 0and 8, = 1.
Suppose |B| # 1 and without loss of generality, take |8| > 1. Then (4.1) becomes

(4.3) ¥(8) = y(Bt)er,
for some a. Iterating (4.3) we get for all %, ¢
(B**-1)
v(B*e) = exp(—atzm)n[x(t).

Putting u = 8%t and letting & — oo,
¥(u) = exp(—au?(B2 - 1) (1 + 0(1)))(1 + 0(1))

and we get G, Gaussian. The same argument works for (4.2). O

PROPOSITION 4.2. Suppose that P consists of all probabilities satisfying the
general Gaussian error model with [x®dG(x) < co. Then for every P, € P

Jim lim Py[VnB, - B(B)| = M] =o0.

!

PROOF. Let

2,008) = Vi { () - B() - [o TEHE

®
@9 = ((B) - FG) + s [ (B2 - () - 20(8))/8)

) (A (x) - F()|

—F((y - n(B) — 20(B))/B))s(2) dz},

where F,, F, are the marginal distribution functions of X and Y under P, and
1(B), o(B) are obtained by substituting population for sample moments in (2.18)
and (2.19). By strong approximation, e.g., Csorgd (1981), we can construct Z(-,- ),
a mean 0 Gaussian process in C([ — o0, 0] X [ — o0, 00]) such that

(4.5) sugIZn(y, B) — Z(y, B)| = 0,(1).
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Let Zn(-,~ ) be defined by replacing u(B), 6(B8) by i(B),6(B) in (4.4). For
o(B) = ¢, the family of functions x = ®((y — Bx — u(B))/0(B)) is uniformly
bounded and equicontinuous. Moreover,

sup{o~(B)Bo((y — Bx — n(B)/o(B))

~6(B)Bo(y — Bx = u(B))/o(B)): o(B) = ¢} ~p0.
From (4.4) we then conclude that

sx;p{lzn(y, B) - Z,(y,B)|: o(B) = ¢} - 0.
Now there exist ¢, > 0 such that inf{o(8): |B| < 8) > ¢ and so

sup {|Z,(5,B) — Z,(3,B)|: 1B < 8} »p0.
On the other hand, yfrom 45)

sgp{lZA,.(y,B) ~Z(3B)]: 8< 1B} =50

and so

(4.6) sup{|Z,(y,B) = Z(y,B)|} —»0.
Similarly,

(4.7) sup(|Z(x, B) = Z*(x, B)|} =0,
where

Bx —y+ i(B) .
—W) d(Fy(y) - Fz(}’)))

and Z* is an appropriately defined Gaussian process. A weak consequence of
(4.6) and (4.7) is that for all ¢ > 0,

inf(A,(B): & < |82~ B3} ~p oo

ZA:(x’B) = ‘/’I(FAl(x) - Fy(x) - f(l)(

and
An( BO) = Op(l)
Therefore, by Proposition 4.1

min{|B(0) — o), |B(0) + Bol) = 0.

Since Y — p(B8) — BX is normal if and only if 8 = B,, we conclude that B, is
consistent.
We need to distinguish several cases for n'/2-consistency:

@) 1Bl = 28, 6%(By) > 0;
(d) 1Bol = 389, 0*(By) = 0;
© 38 < 1Bl < 38y;

@) 1Bl < 38y
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(a) Suppose also that Var(Y) > BZVar(X). Then, by (4.4) and (4.5)

(y—Bx—n(ﬂ)) ?

—(d) ¢(y)dy

dFl(x)) +2(5,B)

AB) - f«z(FQ(y)— fo
+Q.(B),

where
sup{|Q.(B)|: 1B — Bol < &,} = 0,(1).

Now, under these conditions,

a ¥ — Bx — u(B)
%ﬁp(——o(ﬁ) )dFl(x)

= —o_l(ﬂ)fd)(y—_ﬂx_—u(ﬁ))(x — E(X) — 36_2([3)

a(B8)
X(y — Bx — n(B))Var X ) dF(x),
y = Bx — p(B)
aﬁf( +(B) )dFl(")B"

= =By ((y — EY)fy(y) + Var Yfy'(y)),

which cannot vanish identically as a function of y unless Y is normal (i.e., 8, = 0
or G, is normal). Moreover, the derivative in (4 8) is bounded as a function of y
and continuous in 8. We can conclude that §, is n'/?-consistent in this case. This
follows since A (8,) = O,(1) and

8,(8) = [(2(5,B) + 0B, = B)e(3)) 6(3) dy + 0,(1),
where c¢(y) is the derivative in (4.6). Unboundedness of n'/%(f, — B,) leads to a
contradiction since c(y) does not vanish identically.

Case (a) with Van(Y) < B2Var(X) is dealt with similarly using Z*.
(b) If o(B,) = 0, calculate (taking 8, > 0)

: o g, [y = Bx—r(B) o2 B
Bh_{‘};o(ﬂ_ﬁo) [f‘i’( o(B) )dF1(x) FI( Bo )]
= Jim (8= 80) " [(F(y - w(8)

_ZU(B))/B) - Fl((y - I"(ﬂo))/ﬁo)) dQ(z)
- —‘Bofzfl«y — u(Bo))/Bo) = Var XK/((y — n(Bo))/Bo)-

(4.8)

Again this expression cannot vanish identically in y unless F; and hence G, is
normal. Boundedness in y and continuity in 8 again hold. (i) and case (b) follow.
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(c) In this range since ﬁ,, is consistent, we are driven to minimizing either
A,(B,0) or A,(B,28). In the first case, we are minimizing at |8, > 8/2 and get
n'/%.consistency. In the second case, after reparametrization, we again minimize
at 8/2 < B, < 78/2 and again get n'/?-consistency.

(d) In this range since B, is consistent, we minimize A (8,28) with probabil-
ity tending to 1. But after reparametrizing this corresponds to minimizing at
By = 38/2 and we again get n'/%-consistency. O

NoTEs.

(1) For cases (ii) and (iii) of Theorem 2.2 we need to check that convergence in
our arguments holds uniformly for sequences with [P, — Py — 0,
[x2dG,(x) > [x?dG(x), where |- | is total variation. A careful examina-
tion of the argument shows that for consistency, we need only check that

?“’P,, E\(Y), 6:(2 -p, VarPo(X):

X —»p E(X), 67 =p Varp(Y).
For n!'/2-consistency, the derivatives in (4.8) and (4.9) are now evaluated at
Bo. © P, and depend on the marginals of T, F,, « P, with ||F,, — Fo| = 0
and F,, © P, non-Gaussian. The derivatives still converge to that
for F,, uniformly for 8 bounded and are bounded uniformly in y, since
sup, [|x| dF;, < oo. The argument can now be made at the limit Fy, as
before. .

(2) Under the restricted Gaussian error model the same argument yields that 3,,
is n'/2-consistent.

We now proceed to study the correction term which gives efficiency.
PROPOSITION 4.3. Whatever be G,

(49) L] <@+ finetan).

ProoF. By a standard Laplace transform theorem, writing & for 6(4,),
[(n = £)$(67(t = ))Go(dn)
[$(67(¢ = m))Go(dm) ’

< [ln = tio((57X(¢ = m)))Go(dn)

< fin - dGu(dn) [6((57 ¢ - m))Goldn),

by an inequality of Chebyshev [Hardy, Littlewood and Pdlya (1952), page 43]
since ¢(¢) is decreasing for ¢ > 0. O

PROPOSITION 4.4. Suppose H, - H weakly and [x?dH,(x) — [x?dH(x).
Then

wl
—=(t) =§7*
Wo

lf(n = )¢((67(¢ = )))Go(dn)

I(H,+®) > I(H+®),
where I denotes Fisher information for location.
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ProoF. By dominated convergence for all ¢
H,x(t) > Hx¢(2),
[H,*¢](t) » [Hxs](¢).
By Proposition 4.3

ILH, * o1 (2)["

(4.10) [H. 9] < V(¢t, H,),
where
V(e, H) = a[Heo)(0)[ ¢+ [rti(dn)).
But
V(t,H,) > V(¢t,H) forallt
and

[vie, H,) dt = Bfnan(dn) + 48 [H(dn) + 4 = Jvie, H)at.
The sequence in (4.10) is uniformly integrable and the result follows. O

PROPOSITION 4.5. Let

(4.11) won(t) = [wo(t = 0,8)A(s) ds + c,.
Then if we write T; for Ty(6,),
4, “on |
(u12) B2 - S| o,
n on
’ ’ 2
(4.13) E(:Z"(Tl) - Z—E(Tl)) So.

ProoF. We repeatedly use the inequalities

(i) - -1
|wal < 0, ‘Wons Wop < Opp, -

Write
! :!=1[A’n(Tl - T/) - w(’)n(Tl)]

n
@

W n
- (Tl) =
on

‘:)l
—(Ty)
w, (%)

_ w(’)n( Tl )

~
WonWn

1 n
; E An(Tl - T}) - wOn(Tl) .
j=1

The first term has L, norm bounded by

e,nVEV ([N, AT, - Tp)) = O(c; o, 20" 12).
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The second term is similarly norm bounded by
0(c; ', 2n1?)

and (4.12) follows.
For (4.13) note that, for all ¢, by dominated convergence,

wl
- =(t).
Wo
Without loss of generality, take 6(6,) = 1. Then

00n(t) = [t~ 1) d(GorX,)(n) + e,

wl
(4.14) o

whnlt) = [wit = a,8)A(s) ds.
By Proposition 4.3 we get

[ o,.]2

On

(t) < 2(t2 fn dGyo* A, (n))
But
/tzwo(t) dt < o,
so that by dominated convergence and (4.14)
f( °") (£)wy(t) dt > f 0]2(t) dt.
L, convergence of w{,/w,, to wj/w, follows. O

PROPOSITION 4.6. For sequences {P,},{c,},{»,} as in Theorem 2.2(ii), and
all M finite,

sup{

where §,, < P,,,

w7 £ 00| 21000 - E210)| ‘
(4.15) - ’ "

n1/2|0 - 00n| = M} _)P,, 0’

sup{nw % é{v(o)(:r(o) — Ep(T(0)) + ;! °"(T(0)))
(4.6 ~ 00| i) = EofTi00) - T3 °"(T(oo,,)))}
+ 1008 = Bon) |: 17710 = b 1<M}
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This proposition reduces the proof of case (ii) to establishing that if U; e
Ud8,), T; = Ti(65,)

(4.17) Lpo(n"1/2 i{u(r Ep(T)) + I} 0"(T)}) - N0, I;(By))

i=1

and
(418) w p (2 )(T)—> 1(R),
(4.19)7 nt Ele(T+IOI(P0 O ) p, I(Py).

All three claims follow since
LP,,(Uh T) - LPO(Un 1),

w/n wl
2(¢) - 22(¢), forall ¢,
Won Wo

and Ep(U?), Ep(T?), [([w,])%/ w0, )(2) dt all converge to the appropriate limits
under P,. The last claim is a consequence of Proposition 4.4.

PROOF OF PROPOSITION 4.6. Denote the (random) functions in absolute
values in (4.15) by

Q.(4), whereA = (8 — 8,,)n'/2.
Now
(4.20) Qn(o) N
by Proposition 4.5.
Write
-1 T (:):’ “’6,,
Qun(8) =7 L T| Z(T(6),0) = Z(T(H))).
i=1 n

0n

T

Qu(8) =n £ U, F(r

@)
It is easy to see that for (4.15) we need only check that

(4.21) sup{|Q.(A)|: [A| < M} -, 0, i=1,2.

Throughout this calculation we write A, = A, and repeatedly use

£

A i —i
&, = W= Cpy D < wTA.

We begin with i = 1. Let
1/ln(A) =

By Cauchy-Schwarz and uniform integrability of T (as P, varies), it is enough

& | &

(Tl(o) 6) - . (T(0) 0).
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to check that
(4.22) Esup(V,,(8))" = O(n 1y, %(c;? + log n)).
A

Note first that

(4.23) |V1n(0)| = c;l|‘:’:;(T17 b5,) — w6n(Tl)| + c;l"n_l":’n(Tu 6,,) = wOn(Tl)l‘
Let F, be the empirical distribution function of Tj,..., T, and F its expec-

tation. Then

| 872, 8o) = @4u(t)]| = O(n 7", 2) + 7 i [No(2 = T) — EX,(¢ - T)]

i=2

=0(n"'0;2) + o(1)/(ﬁ,,(s) — F(s))Ny(t - s)ds

< 0(n"'5;?) + O(1)sup |Fy(s) - F(s)| [IN"(s) s,
8§
where the 0 terms are nonstochastic and independent of ¢. A similar bound holds
for the second term in (4.23) and hence
(4.24) EV2(0) = O(n~'v;%c;?).
Next we write

a b
T(6)=T.+ =U,+ =T,
t( ) ﬁ i ‘/E i
so that a, b are well defined functions of A and note that
(U, — UNUT(0) — T(0)) &,
— 172 J n J __r T
ag Vn(8) = n { ne, + TA(T,(0) — T,(6)) a"( 1(0),9)

E(U, - UN(T(6) ~ T(6)  [ba)’
nc, + IA,(Ti(8) - 1;(0)) - Ul(w—o") (Tl(e))}-

Therefore,
2

(4.25) ESUP{‘;EW(A)1= (8) < M}

1
< C(M)n'lvn"‘E(max(Ul — U+ Uf) - o( Ogno,,-4).
J .

Similarly, we can bound

-1/2 ):(Tl — T})erz(Tl(a) - 7}(0))
75 Ve®)] =7 &,(T(0),0)
(4.26) %(Tl(ﬂ) 0)YIT, — TIN,(Ty(6) — Ti(8))

-7, wé") (T,(8))|.

Won

341



P.J BICKEL AND Y. RITOV

Representing T, = kTy(8) + (¢/ Vn )U,, k = 1, we can bound (4.26) by

An-V2» Z|T(0) T(a)l}\ (T(0) - 7}(0))
ne, + IA(Ty(6) — T(9))

+n"1/2

vy, _2
5o B+ 72U+ 1T))
Representing T, = kT,(6) + (¢/ Vn)U,, k — 1, we can bound (4.26) by

An-12, Z|T(0) T,(6) [\, (Ty(6) - 7}(0))
ne, + LA, (Ty(8) — T(6))

av,
+n12 a—l"(A)
a

+ "';1_2(|U1| + |T1|)}’

for a constant A depending on M only. Since A (|¢]) is decreasing, the first term
in curly brackets is bounded using the Chebyshev inequality by

(4.27) n~ Y |Ty(8) - Ty(8)|.
Since (4.27) is bounded by

B{n L( T + IT2| + n~ (U + |U))},
for B depending on M only, we obtain

v,
(4.28) E sup (Al < M} = O(n" 'y, *logn).

Combining (4.24), (4.25) and (4.28), we get (4.21) for i = 1.
The proof of (4.21) for i = 2 is similar, but more complicated using the almost
independence of U(8), T(9).
First, since &,(-, 6,) does not depend on the U,
(429) EQ3,(0) = EUPE(VE(0))
' = O(n‘%,,"c;"").

Next,
a QZ n

S o) - 22| 2] @0 - (2] )

TUNAT(0) — TH(6))
T ne, + IA(Ti(0) — Ty(6))
ot LUN(T(6) - T;(9))
LU, (T(") O e+ IAT(0) - T,(0))
= Rln(A) + RZn(A) + R3n(A))

1YY,
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By arguing as for (4.22)
sup{ER%,(A): |A| < M} = O(n"'v;%(c;2 + log n)).
The additional », % comes from the third derivatives in A, we have to deal with.

To deal with R,, and R,,, note that we can define ¢(6) such that the
Gaussian random variable

(4.30) U(6)=U, + %(T X/!)

is independent of Tj(#). This follows since T}(#) is a linear combination of X/

and the Gaussian variables U, and T; — X/, both of which are independent of X.
Using (4.30)

o N(T(8) - T(8))

2 -2 17, n 13 J

an{as oy - o) MO O |

=0(n"';*) + O(n"Yog ny; %),
since
EU(0) - (1),
E max(UU(6) - ) =0(n"ogn).
We can bound ER2 (A) similarly to get

(4.31) sup{E(a—inn(A))2: 1Al < M} =0(n",%(c,? + logn)).

Finally, we need to study (3/9b)@Q,,(A). It is possible to pass from the bound on
E((3/3a)Q,,(A))? to the bound on E((3/3b)Q,,(A))? as was done in the
passing from the bound on (d/da)V,,(A) to the bound on (3/3b)V,,(A). We
conclude

9 2
(4.32) sup{E(%Qu(A)) DAl < M} =0(n"%,;%(c;? + logn)).
If we combine (4.31) and (4.32) with (4.29), we get by the standard
Billingsley—Chentsov fluctuation inequalities [Billingsley (1968)],
sup{|Vp,(A)]: 1Al < M} = Opn(n“o,fe(c;"’ +logn)).

The proof of (4.15) is complete.
We now prove (4.16). Let

W,(A) = n-"%5(0) ¥, U0 T(0) — Ep(T3(0)) + I ""(T(e)))

i=1
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where 8§ = 6, + An'2, A = (A,,...,A,), A, = B, etc. Claim (4.16) is equivalent
to

4 gW,(0

(4.33) sup{ W, (A) — W,(0) — X aA( )A, a1y sM} —p 0
j=1 J

and

IW,(0) _ .
(4.34) ) N I1,,5(6,)8,;| —p, 0, j=1,...,4.
J
Now,
IW,(0)

Y [x,-(n N Ialﬂ(n)) + U4l + (T, - ET))

" x(l + i )’(T,-))J,

for suitable y,, 5, the laws of the summands converge to Ly(A), where

aA,

w,

0n
Wop
W} @\’
A=X|T+ Io“w—(T) + U(WU + vo(T - E,T)) |1 + I — | (T)],
o Wo

and the summands are uniformly integrable (P,) by Proposition 4.4. Therefore,

Iw, _

K(O) ~p, E\(A) = 1,5(6,),

1

after some computation. A similar argument establishes (4.34) for j > 1. For
(4.33) we check that for 1 <j < k < 4,

(4.35) oW, A)|: 1Al <M 0

. sup BAjaAk( )| 14] < - 0.

We give the argument for a typical term, A; © »,,
a2vVn n "”n ’”

(4.36) 7 =2 Y o(0)U(0) 5 X2| = | (T(9)).
A% i1 Don

Since |w{)/w,,| < o, ¢, we bound (4.35) uniformly in |A| < M by
(@) n e o(nt R IUNTE + U) 7 Tip).
i-1 i-1

Since T? are uniformly integrable under P,,
(4.38) n~ 2 max|Tj| -5 0.
12

Claim (4.35) for j = k = 3 follows from (4.37) and (4.38). The other terms are
dealt with similarly and the result follows.
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Proposition 4.6 establishes claim (ii) of the theorem. For part (iii) note that
Proposition 4.6 shows that if 8* is n'/-consistent so is $,(8*) and, in fact,

'é"('B:) =Bontn7! i (X, P)+ OP,,(”—_I/Z)-

i=1
Therefore, taking B8* successively as ﬁo,” /§1m ..., we get
.éin - ﬁln = OP,,(nil/z)

and claim (iii) follows. Claim (iv) is established in exactly the same way as claims

(i)~(iii). O

PROPOSITION 4.7. The efficiency of Pp under model (Identity, ®), 1/1,
satisfies
1

I/ > (1+6%/(B%+ 1)(Var(X’) + ¢2))”
PROOF.
I/I. = [Var(X")] “*Var(T)[Var(T) - 262 + 6,
=1+ §*(IVar(T) — 1) /(Var(X"))’,

since Var(T) = Var(X’) + 62 Since T is, in general, an inefficient estimate of 7
in the location model T = 7 + & we must have 2 > I;! so that

I/I,— 1 <6*(Var(T) /6% - 1) /(Var(X "))
=62/Var(X’) = o2/(B% + 1)Var(X")

and the result follows. O
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ACHIEVING INFORMATION BOUNDS IN NON AND
SEMIPARAMETRIC MODELS?

By Y. Ritov anp P. J. BICKEL

The Hebrew University of Jerusalem and
University of California, Berkeley

We consider in this paper two widely studied examples of nonparamet-
ric and semiparametric models in which the standard information bounds
are totally misleading. In fact, no estimators converge at the n~* rate for
any a > 0, although the information is strictly positive ““promising’ that
n~1/2 is achievable. The examples are the estimation of [p? and the slope
in the model of Engle et al. A class of models in which the parameter of
interest can be estimated efficiently is discussed.

1. Introduction. Consider the standard simple random sampling model
on a sample space X: X,,..., X, ii.d. according to P € P, a set of probability
measures on X dominated by u. Let p denote the density of P and 6: P - R
be a parameter. Suppose P is a regular parametric model, that is,

1. P={(P,,: 0 €R, n €R™), where if s(6,n) =I[dP, ., /dul"/? the map
(8,m) — s(8, ) is continuously Fréchet differentiable from R™*! to L,(w),
with derivative $(6,7) an m + 1 vector of elements of L,(u).

2. The Fisher information matrix, 1(6, n) = 4[ [$,(0, m)$ (0, M) dp) s 1yxm+1)
(where the s, are the components of §), is nonsingular.

Then it is known [see, for example, Hajek (1972)] tl}at if 0 is identifiable it
can be estimated at rate 1/ yn . In fact, there exist 8, of “maximum likeli-
hood” type which have the property that, if I'! is the first element of 172,
then

L,X(n/%(6 — 9)) - N(0, I''(8,7))

uniformly on compact subsets of R™*! and I'! is the smallest asymptotic
variance achievable by uniformly converging estimates.

Levit (1978), Pfanzagl (1982) and Begun, Hall, Huang and Wellner (1983)
have used an idea of Stein (1956) to extend those lower bounds to P nonpara-
metric or semiparametric, provided that 6 is pathwise Hellinger differentiable
on P.

In this paper we investigate the question: Under the conditions of the above
authors, are the bounds necessarily sharp if we drop the restriction that P is a
regular parametric model?

Received October 1987; revised July 1989.

Research supported by ONR grant N00014-80-C-0163.

AMS 1980 subject classifications. 62G20, 62G05.

Key words and phrases. Rate of convergence, nonparametric estimations, functionals of a
density.
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We begin, in Section 2, by showing in the context of two widely studied
examples, estimation of [p?, and of the regression coefficient in the model of
Engle, Granger, Rice and Weiss (1986) that the answer is, in general, no. In
fact, the rate n~'/2 is not even achievable pointwise. Although the arguments
are specific, they can evidently be generalized to show similar results for much
broader classes of parameters. A general view of these phenomena is given in
Donoho and Liu (1988).

In Section 3 we show that the information bounds are valid for a general
class of semiparametric models. The class includes the regular parametric
models and is rich enough to contain models having essentially any tangent
space structure.

2. The bounds are not sharp. The first example we consider is
P = {P on [0, 1]: P absolutely continuous with density p < M},

where M is a finite constant and,

6(p) = [p*(x) dx.

Since the functional 6(p) is differentiable along every Hellinger path in P,
the regularity conditions required for validity of the information bound are
satisfied. This functional appears in the asymptotic variance of the
Hodges—-Lehmann estimator. Similar functions (the integral of the square of
the derivative of the density) appear in the theory of optimal density estima-
tion.

It is well known [Pfanzagl (1982) and Donoho and Liu (1988)] that the
information bound in this case is

(2.1) 4Varp(X) = 4[(p(x) - 6(p))*p(x) dx.

Hasminskii and Ibragimov (1979), following work of Schweder (1975), exhibit
an estimate 6, such that v (6, — 6(p))/2[Var p(X)]'/2 converges in law to
N(0, 1) uniformly on {P with densities p such that ||p|., + |||l < L}. Yet we
can establish the following.

THEOREM 1. For any & > 0, there exists a subset Py C P (compact in the
topology induced by the variational norm and having diameter less than ¢)
such that for every sequence of estimators 6 and every a > 0, there exists
P € P, such that

(2.2) liminf P[|6, — 6| = n~%] > 0.
n
A consequence of this result is that the rate of convergence on P,, as
defined, for example, by Stone (1980), is slower than n~* for any a > 0. In

fact, no sequence of estimators which is n~* consistent at each point of P,
exists. So the information bound is totally misleading for P.

348



ACHIEVING INFORMATION BOUNDS

To see what goes wrong, we consider the behaviour of a plausible type of
estimator. It is proved in Pfanzagl (1982)—see also Bickel, Klaassen, Ritov and
Wellner (to which we refer in the sequel as BKRW)—that if 6.4 is efficient,
then

n
Oe = 0(p) + 2071 1 (p(X;) — 8(p)) +0,(n"1?).
i=1
The naive approach to estimating 6 efficiently is to try 6 = 6(p,) +
2n"1L2_[5(X,) — 6(p,)] for p, an estimator of the density. For simplicity,
suppose p,(*) is based on an auxiliary sample. If 6 = 6,4 + 0,(n"'/2), we
would expect

E(81p,) = fpz(x) dx + 0,(n"1/?).
But,

E(815,) — [p*(x) dx = 2[p,(x)p(x) dx — [p2(x) dx — [p*(x) dx

= — [(Bu(x) = p(x)) dx.

According to Bretagnolle and Huber (1979), to have this last term be of order
n~1/2 uniformly for p € P we need a Hélder condition of order at least 1 on p
in P, viz. | p(x) — p(y)| < c|x — y|*/2. A positive result when p is so restricted
has been obtained by Ibragimov and Haminskii (1979). This argument cannot
be translated into a proof since we have considered only estimates of a
particular type in the discussion of the rate at which p can be estimated. In
fact, a cleverer construction [see Bickel and Ritov (1988)] shows that a Hélder
condition of order ; suffices. However, we hope the point is clear. The
calculations leading to the information bound are local. They are irrelevant to
actual performance if you can’t even get to within o,(n~'/*) of 6(p).
We begin with a simpler construction which establishes the following.

THEOREM 2. For any sequence of estimates @n there exists a compact P for
which the uniform rate of convergence is slower than a,, for any sequence
a, = 0, viz.

(2.3) lim inf sup P[|6, — 6] = a,| > 0.
LI A
Note that (2.3) implies the existence of € > 0 such that

liminfsupP“@,, - 0| > £] > 0.
n Po

The main idea of the proof is a ‘“Bayesian” construction. We exhibit a
sequence of prior distributions 1, assigning mass 1 each to finite subsets H,,
of {P: 6(P) =1 + %a,} and H,, of {P: 8(P) = 1 + %£q,}, whose size k(n)t»
such that the posterior probabilities of H,,, H,. given X,,..., X, are, with
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probability tending to 1, still equal to 3. More explicitly, the members pj;,,
=1,...,k(n), of H;,, j = 0,1, are equally likely a priori and are chosen so
that, with probability tending to 1,

k(n) n kn) n n

k™ Y(n) Z l_[lpoln(Xi) = kfl(n) Z _I—[lplln(Xi) = l:llp(Xi)’

1=11i= 1=11i=

where p is the uniform distribution on (0,1) (though this is inessential).
Define P, to be this countable collection of P;;,,’s together with their limit, the
uniform distribution. An immediate consequence from which (2.3) follows is
that,

iglnffpﬂén - 6| >a,|m,(dP) - 3,

and this establishes the theorem. This construction differs from similar con-
structions appearing in the density estimation literature where the corre-
sponding H,,, H,, are simple (consist of one point).

Proor oF THEOREM 2. Here is the sequence of priors, the union of whose
carriers is a set having the uniform distribution on (0,1) as its limit. We
prescribe m, through some auxiliary variables.

(1) Let
c,,  with probability 3,

a

"~ \2¢,, with probability %;

the sequence c,, |0 is to be chosen later.
(2) Let Ag,...,A,,, m = nd be independent identically distributed random
variables independent of «,, and equal to + 1 with probability ;.

m, is the distribution of the random density p given by

p((i +y)(m + 1)_1) =1+ Aa,h(y), i=0,....,m,0<y<1,
where (say)
¢ 0<
-(1-19), 3 <

The support of each m, is finite and [|p.— 1| < 2¢, with 1, probability 1, so
the union of the supports of m, is a sequence tending to the uniform
distribution. Now, if P corresponds to the random p,

h(t) = {

2

0(P) = fpz(x) de=(m+1)7" g:oj;l(l + Aja,h(y)dy =1 + CI—;—.

This construction, since m = n®, has the property that the m, probability
that at most one of the observed Xj,..., X, will fall into any of the intervals
[i/tm+ 1), i+ 1)/(m+1)is 1 — O(n~'). But one observation in a cell
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gives no new information on whether «, =c¢, or 2c, and so the posterior
probability,

=1 .
= + —
12

o2
Xl,...,Xn} =1'rn{0=1+ —31

wn{ XIX}
(2.4)

1
= E + O,n_n(l).
Let ¢, = 3a%/2 Then (2.4) implies that
inf P(|6, — 0]> a,| X1, Xy X,) =n 5
.0
or, for any 6, = 6.(X,, ..., X)),
[P, - 6| = a,|m(dP) = }.
Then
lin;infs;opPHén -0|>a,] > limninffP[]@n ~ 0| > a,|m(dP) = }

and (2.3) follows. To check (2.4), note that if at most one X, falls in each
interval, the posterior distribution of (a,, A, ..., A,)is

a(a, Ay, AlXy, ., X))
1

m o1+ A; -4 &
5 2O s f ()] e(Xsyons X,)

~ T1(1 + 8,0h(¥))",

i=0
where

fE(y) = 1% ah(y),
i i+l

1, ifthereexists X; € | ———, —— |,
i m+1 m+1

5. =

i

0, otherwise,
and Y, is the fractional part of (m +'1)X;. By symmetry, from (2.5),
ma, =c,Xq,..., X,) = 1
and (2.4) follows. O
Theorem 1 again uses a Bayesian construction. For the conclusion we can-
not reduce our problem from estimation to testing but have to construct a

prior distribution with infinite support whose Bayes risk for the loss function
1,(6,6) = 1(16 — 8] = a,,) is bounded away from 0.
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Proor oF THEOREM 1. We exhibit a P, contained in the ¢ ball around
U(0, 1) and m, concentrating on P, such that for all « > 0,

(2.6) lirr;infigr)iffP[]én - 6| = n~|my(dP) = §.
Then (2.2) follows. Otherwise, we could exhibit a > 0, 6, such that for all P,
P[|5,, - 9] > n“’] -0,
which by dominated convergence would imply
jp[|é,, - 6| > n=*|mo(dP) - 0,

contradicting (2.6). Here is ,. Let a,, A,0),...,A,(2% = 1), k=1,2,... be
independent, «;, = 0 or 1 with probability 3, each A,(i) = +1 with probability
3 each. Define the random functions

A7), 27 <x < (i +3)27%,

(2.7) hi(x) = ~A, (i), (i+3)2 " <x<(i+1)27%

Finally, the random density p is given by
p(x) =1+ Y cyarhy(x),
k=1

where the c, are positive Y%_;c, <é&/2. Note that since [h,(x)dx =0,
Jhih(x)dx = 8,
0(P) =1+ Y aZ?
i=1

Let B = (ay,...,a,_,) and 7, be the conditional distribution of all the a’s
and A’s given B. For any bounded loss function L(6, a),
(2.8) infE, L(6,5) = inf fE,,

L(6,8)v(dB) > jirsle,, L(8,8)v(dB),

0B 0B

where 8 ranges over all estimates of 6 based on X,,..., X, and v is the
marginal distribution of B. Therefore, there exists a value B, of B such that
the Bayes risk of 7, is no smaller than the Bayes risk of 7y, = 7. Under
o, if m = [3log, n] any interval of the form [i27™,(i + 1)2™™) contains at
most one of X;,..., X, with probability > 1 — (2n)~1. Arguing as before,
under 7, except on a set of probability O(n~!) the conditional distribution of
A={A,(i):1<i<2* k>m}given X,,..., X, is the same as the marginal
distribution. We claim that the same is true of the conditional distribution of
a ={ay,..., B > m}). Write the joint density of (a, A, X;, ..., X,) with respect
to the measure u, where, under u, the «a,’s and A,(i) have the distribution
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specified earlier and X, ..., X, are independent of a, A and are uniform (0, 1)
as

n m-—1

l_[(l + Z crapohh(X;) + Z crah (X;))

i=1 = k=m

The posterior density, if at most one X, is in each interval [i /2%, (i + 1)/2%),
k > m, is proportional to

H(A (X)+ L amn(X)ay),
= k=m

where Aj(x) =1+ XL}= ckakohk(x) Ay = AL(J) iff j is such that X, €
[j275( + 1278 and

+1, ifX;e[j274(i+4)27h,
Ek(Xi) = —k k
-1, fX;e[(j+ 327"+ 1)27%).
Then the posterlor probablllty that (@, 1. s @) = (@2, 1,..., a2, ) given
X, =%xy..., X, ,. is proportional to
n m+t 0
Eu{ H (Ai(Xi) + L coege(X)Au+ X ckakek(Xi)Aki)
i=1 k=m+1 k=m+t+1

— o0 )
X 1(am+1 TS PR P am+t)} .

But the «, and the A,; are independent under x. Multiplying out the product
and using the symmetry of the A,;, we obtain that the posterior probability is
proportional to IT7_;A;(X;) and our claim follows. To complete the argument
note that, under my, if B,, = L%_,, cX(aZ — 3),

©

P[B, = 3¢%] 2Pla,, =1, ¥ c,f(a%—%)ZO}Z%

k=m+1

by the symmetry and independence of «,,, and a? — 3, k=m +1,.... A
similar argument shows

P[B, < —%c%] = L.
Hence, if at most one X; falls in each i'nterval,
1an[|0 —a|>3cilXx,..., X, ]
> min{P[B,, 23c2|X,,..., X,|, P[B, < -i3|X,,..., X, ]}
2+ 0,(nY),

since, except on a set of probability O(n~!), the marginal and conditional
distributions of B,, agree. So the Bayes risk of =y, for the loss function
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L,(0,a)=1[6 —a| = 3c%] is =1+ 0(n™Y). If ¢, = 9¢Ylog n]~17¢, say,
then (2.6) follows from (2.8). O

In the model of Engle, Granger, Rice and Weiss (1986) we observe X, =
W,Z,,Y),i=1,...,n, where
(2.9) Y=BW+t(Z) +¢

and & ~ N(0,02). The joint distribution of (W, Z) and ¢ are unknown. In
recent work, Chen (1988) and Cuzick (1987) pave exhibited, under various
smoothness restrictions on ¢, estimates B which are asymptotically
N(0, I"'/n), where

(2.10) I=0"2E(W-E(W|Z))®>0

unless W is a function of Z. Local calculations yield this as the information
bound whenever W € L,. Let

P = {All distributions (W, Z, Y) given by (2.9) such that I >0and well defined} .

TueEOREM 3. (1) Even if o = 0 [or, equivalently, I given by (2.10) equals
), there exists a subset P, of P such that for all estimates B,,

(2.11) supP[|ﬁn - B| > a] >0 foranye > 0.
P,

2 For o > 0 there exists a compact subset P, of P such that for all
estimates 3, and all y > 0,

liminfsup“ﬁ -Bl = n"’] > 0.
n P,

We argue as for Theorem 2.

Proor or THEOREM 3. (1) We give the simpler construction for ¢ = 0 and
P, noncompact and sketch if for & > 0 and P, compact. Here is the prior ,.
Take W = +1 with probability 3 and 0 < Z < 1.

Let a,Ay,...,A,,, m = n® be iid. and equal to +1 with probability 1. If
a= —1, then =0, Z~ U(0,1) independent of W and #(z) = 0. If a =1,
then B = ¢ and the conditional density of Z|W and #(-) are given by

i i+1/2

=1—A, =cA, <
p(zlw) =1 - Aw, t(z) =cA,;, 1S 1

(2.12)
p(zlw) =1+ Aw,  #(2) = —cA,,

’

i+1/2 i+1
<z < .
m+1 m+1

Again with probability 1 — O(n 1), the posterior of A,..., A,, is the same as
the prior distribution. Note also by construction that BW + #(Z) = 0. So, with
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probability 1 — O(n~1),
Pla=1W,Z2,Y,i=1,...,n] =Pla=1W,Z;,i=1,...,n]
is proportional to,

(2.13) E{ [T~ am)"(+ A,-vm“s-‘},
i=1

where W, Z,,...,W,, Z, are fixed. If Z, falls in [j,/(m + 1,(j; + 1) /(m +
1)), we define §; = 1 if Z; is in the first half of that interval and 0 if it is in the
second. The expectation in (2.13) is again 1 and we conclude that the posterior
distribution of « is the same as its prior and hence that the Bayes risk of , is
bounded away from 0. (2.11) follows.

(2) If o =1 (say), proceed as follows. Let @, Aq,...,A,, be as above. Sup-
pose P[W=0]=P[W=1]= % and that the conditional distribution of Z
given W = 0 is U(0, 1). Under =, if « = —1, B = 0 and Z given W = 1 is also
U(0, 1). Let

; _ [a,A, i/(m+1)<z<(i+3)/(m+1),
w(2) = —a,A,, G+1)/(m+1) <z<if(m+1).
Ifa=1,B8=c, and
p(zW=1)
(2.14)  [1-b,4,, i/(m+1)y<z<(i+3)/(m+1),
Cl14b,4, ((+Y)/(m+1)<z<(i+1)/(m+1).

With probability 1 — O(n~?!), there is at most one Z; in each interval
[i(m + D™Y (G + D(m + 1)~!). Conditional on that event, being given
(W, Z;,Y;) is the same as being given (W;,V,, Y;), where V; is the fractional
part of (m + 1)Z,. Further, the posterior distribution of B is the same as the
conditional distribution of B given {(V,, Y;): W, = 1}. Given W, = 1, V, is U(0, 1)
by (2.14) since the conditional distribution of Aj; given W, = 1, where Z, €
(j;/(m + 1), (j; + 1)/(m + 1)), is the same as its prior.
Finally, the conditional density of Y; given W; =1, V,, a = 1, is

%(1 - bn)d)(y —Cp an)’+ %(1 + bn)¢(y —Cy + an)
=6(y) +yb(y)(c, — a,b,) + O(ck + d3).

If a,=c.® b,=c8, >0, the density of Y; given W, =1, V,, a =1 is
oL + 27 2h(y) + O(c2 + a®)), where [¢(y)h(y) dy = 0. One can show the
joint distribution of {(V;,Y;): W; = 1} under « = 1 is contiguous to that under
a = 0 provided c¢2~2® = O(n~1/2). Hence, by taking c, = n~1/4*¢, ¢ > 0, arbi-
trary, we can deduce that 8 cannot be estimated at a rate better than n~1/4*¢,

[m]
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3. Validity of the bounds for a class of models. We consider semi-
parametric models with the following structure:

(3.1) P- JyP, P,cP,., Vm,

m+1
m=1

and P,, regular parametric. That is, we can write
P, = {P(o,,"m): 00,7 =(N,--.sMg_1), With d = d(m)

andn; € E;,j =1,...,d — 1, E;, ® open subsets of R}.

1. P<xu.

2. The maps (6,7™) = P, ,m,
P,., m’ > m, then the first d(m) coordinates of n™ agree with n™.

3. The maps (6, n™) — s(6,7™) = (dP, ,m/du)/* € Ly(u) are continuously
Fréchet differentiable with derivative s(8,7™) = ($,...,$,X0,7™), §; €
Ly(p), j=1,...,d.

4. The information matrix,

m, are 1-1 for all m. Further,if PP, =P, N

10,07 = 4] fs.5,00") du| = [Bymlid (0,07 g
dxd

is nonsingular for all (8, n™), where (8, n™) = 2(s/sX8, n™) is the deriva-
tive of the log likelihood.

In words, every member of P belongs to a nice parametric model whose
dimension d can, however, be arbitrarily large. A moment’s thought will show
that most if not all semiparametric models proposed in the literature can be
thought of as the closures (for weak convergence) of such P. For example, the
symmetric location model {P: P is absolutely continuous on R, symmetric
about some 6 € R} is the closure of P as in (3.1), where P, ,~), for example,
has

log pig,umy(x) = k(x - 6,7™),
where

d-1
R'(x,n™) = L ml(lxl < by,),
E=1

where d = 2™ + 1, b,,, = mk2 ™", k =1,...,d — 1. That is, we assume that
the log density of X — 6 is a symmetric quadratic spline with knots at +b,,,,
which is constant for |x| > m. Such models have been considered by Faraway
(1987) and Stone (1986) among others. It is well known [see Le Cam (1956)
and Bickel (1982)] that there exist estimates 6,,,,, 7,,, Which are efficient on
P,.. In particular, '

n
(32) émn - 90 = n_l Z l’Om(Xz) + OPc(n_l/z)’
i=1
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where
bom=—""—"73
2 s
and
s =8, — (s,|[$4,---»84])s

[I(k|L) denotes the projection of & € L,(u) on the closed linear subspace L in

the Ly(u) norm, |-|, and [$,,...,$,] is the linear span of {s,,...,s,}.
fimn — Mo has a similar expansion but we can only note that
(33) ﬁmn Mo = OPo(n_l/z)'

These relations hold for each m fixed, all P, € P,,, as n — . Frequently, we
achieve (3.2) and (3.3) using the maximum likelihood estimates of 6, ™ under
P,.Forany P P, let n = (ny,...,n4p)), and d(P) is the smallest m such
that P € P,,. For the model P, the information bound in estimating 6 at
P, =P, ., is given by

"I_I(Po;B) = %”'él - H||(s'1|§:2(90, ”Io))”_za
where
£5(84,my) = closure of the linear span of {$,(69, M), .., 8,(60,7M0),---}.

Here, for m > m(P,), we consider P, as a member of P, , i.e., corresponding
to (8, ng") such that Py =P,
Suppose I(P,;0) > 0 for all P0 € P. Let
(34) 1(90, No) = 23_1(00s 10)(81(80, m0) — TL($1(8,, ﬂo)lfz(oo; 10)) /I(Py; 8))
be the efficient influence function for estimating 6 in P at P; i depends on
(00, T]o).

THEOREM 4. Suppose that if Py, ,m) € P, 0, = 0o, 1" = ng’, then

(3.5) (0|56, m77)) > 11(v142(005 m0))
for all v € Ly(n) and

(3.6) limksup || 1(6,,m") ||m < o,
where || - ||, is the sup norm.

Then there exists 6, such that,
n

B,=06,+n"" Z o( X)) +op(n7V%),

where [ = [(84,1,)-
Moreover, the 6, are at least locally regular. That is, for all P, € P,

{P:|r]<1}is a regular parametric submodel of P, 7, = O(n~'/2), we have
L, (nl/ 2((9 — 6(P, )) tending to a limit law mdependent of {P,}.
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The construction is essentially to pick the lowest dimensional submodel P,
which is close enough to the empmcal distribution, then treat 7, as ﬁxed
compute the efficient estimate 7, , of 1, in that model and then ‘solve the
equation;”’

(3.7 Y [(6,%,,,) = 0.
i=1

The resulting estimate is well behaved if P € P. However, if P € P — P, we
necessarily have 7, — © and no guarantee that the solution of (3.7) is even
consistent, much less efficient. In fact, the examples of the previous section
make it clear that there is no hope for such a general consistency theorem. The
question remains whether one can formulate reasonable conditions on the
structure of / and the behaviour of the distance in suitable metrics P,, and
members of P — P as a function of m which yield the validity of the informa-
tion bounds for members of P. An attempt in this direction is the work of
Severini and Wong (1987). However, we do not pursue this, in part, because we
believe that the checking of any such conditions in models of interest will be at
least as difficult as the construction of efficient estimates by one of a number of
heuristic methods which have been developed—see BKRW, Chapter 7 for a
discussion.

_ Proor. Let dy be the Kolmogorov distance between distributions. Let
00> Nmp b€ as in (3.2) and (3.3) and let

P, be the corresponding member of P,,.

Let 1, be the first m such that d(P,,, P,) < s, where ¢, — 0, n'/2%, — «,
P, is the empirical distribution. Ev1dently, 1f mo = m(Pg ),

Py[r, = m,] - 1.
Moreover, 15,;1" o (émm Tim,n) = (80, M) + O, (n~1/?. Therefore, by (3.5),

- R - 2
(3.8) f(l(ﬂmnm o) = 1(6,,m,)) s%(6,,m,) du = 0, (1),
for all sequences P, ,,€ P, with |6, — 8, = o(n=%), |n, — nol =
O(n—1/2)
Moreover, using (3.6), we see that,

J1On 5,)8%(8, m) dia
= 218, Ay ) (585 M) = 8(8rs A1) 8 (s Bimyn) At
N 2
(3.9) + Opo("s(on’nn) - 5(0,, Wm,,n)" )
= 2fi(0n? ﬁmon)(é2(0n’ ﬁmon)3 e s.mo(om7 ﬁmon))
X(nn - ﬁmon),s(én’ ﬁmon) dl“

A N 2
+ 0,15 = imgnl) + Op (158> m) = (8 Amen) )
The first term on the right in (3.9) is 0 by (3.4). The last two terms are
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op{n~'/%) by (3.2) and (3.3), so

(3.10) JT(8s7,)5%(0,sm,) e = 0, (n1/2).

Together, (3.8) and (3.10) yield the existence of é,,——see Klassen (1987), for
example. O

Thus the 8, are at least locally regular and n'/%(8, — 6,) is asymptotically
normal (0, I~ '(P,;9)), i.e., achieves the information bound.

Note. (1) Conditions (3.5) and (3.6) are trivially satisfied by the symmet-
ric location example. Condition (3.6) can be interpreted as a robustness
condition for efficient estimates in P,,. That is, on the model P,,, efficient
influence functions are bounded and bounded uniformly in small Hellinger
neighbourhoods of any P.

(2) It is easy to check that if in the model of Engle, Granger, Rice and Weiss
we, for instance, let P,, be such that #(Z) and log P(W = 1|Z) are repre-
sentable as splines with d(m) knots, condition (3.5) is satisfied. Although
condition (3.6) fails for ¢ Gaussian, { is of the form & times functions which
are uniformly || - ||, bounded and (3.7) continues to hold.

(3) A further peculiarity of these models is that, if we only consider the.
asymptotic behaviour of 5n at fixed (6, ), it is asymptotically inadmissible.
However, when we consider its behaviour over ‘“contiguous” neighbourhoods
in P, it is uniquely asymptotically minimax. More precisely, let {P,, |¢| < 1} be
a regular parametric submodel of P passing through P, = P, ) Correspond-
ing to this model is its score function at (6, n,) given by (say) sg'v, where
v € £5(84,m,). Consider 6 = érh,,n' By Le Cam’s third lemma, if 6, = 6,(¢) =
6(P,,-12), m, = 1,(¢) = n(P,,-1,2), then

(3.11) L(,,m,,n)\/z(é -6,) - N(2tfvs;‘ du, L||s# ||‘2).
On the other hand, by the same argument,

Lo, nyVn (6 = 6,) = N(0, I"'(Py;6)).
Now,

(P43 6) = 1[[é, = TI(,1¢,(80,m0))

2
sl
<0
4 A
So, at (8, my), i.e., ¢ = 0, both e 6,) and Vrn (9 — 6,) are asymptotically
normal with mean 0 and the asymptotic variance of Vn 6 is smaller than that

of . However, evidently, on each parametric submodel, for any bounded
bowl-shaped loss function /,

limMinf lin;infsup{E((,n(t),,,"(t»l(n1/2(5 - Bn)): ¢ < Mn‘l/z} = sgpl(d),

higher than the comparable asymptotic minimax risk for 6.
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This is a superefficiency phenomenon. The estimator b is, in view of (3.11),
not locally regular, ie., the limit of L(gmnn)(x/; (6 — 6,)) is not independent
of ¢.
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