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Abstract The focus of the growing discipline of behavioral epidemiology (BE) of
infectious diseases is on individual behavior as a key determinant of infection trajec-
tories. This overview departs from the central, but static, role of human behavior in
traditional mathematical models of infection to motivate the importance of including
behavior into epidemiological models. Our aim is threefold. First, we attempt to
motivate the historical and cultural background underpinning the BE revolution,
focusing on the issue of rational opposition to vaccines as a natural endpoint of
the changed relation between man and disease in modern industrialized countries.
Second, we review those contributions, from both mathematical epidemiology and
economics, that forerun the current “epidemic” of studies on BE. Last, we offer
a more detailed overview of the current epidemic phase of BE studies and, still
motivated by the issue of immunization choices, introduce some baseline ideas
and models.

1 Introduction

The severe acute respiratory syndrome coronavirus (SARS-CoV) outbreaks of the
early 2003 yielded worldwide panic. The characteristics of the SARS virus, mainly
transmitted through close contact from person to person [20], brought to everyone’s
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mind, more than HIV/AIDS, the spectrum of a “modern plague,” at risk of being
triggered by historically unprecedented population mobility. The SARS chapter
closed leaving only 8,500 cases worldwide (though 800 deaths), but having given a
sharp demonstration of how effective might be the diffusion of fear in the globalized
world, with the dramatic decline in traveling, tourism, and investments to the Far
East [65].

The SARS outbreaks are only one dramatic example of an endless list. In October
2009, in the middle of the HIN1 crisis, the Italian Public Health System started
advertising a national immunization campaign against the pandemic flu, targeting
21 million individuals with two doses. A few months later, when the Italian
epidemic ended, vaccine coverage was a mere 4.2 % [87], the worse result in HIN1
immunization in Europe.

In 1998 the prestigious medical journal The Lancet reported an apparently highly
circumstantial evidence by Wakefield and coworkers on the striking hypothesis
that measles—mumps—rubella (MMR) vaccination might be causally linked with
autism. Although the Wakefield’s paper was strongly criticized by other scientists
and retracted in 2010 by The Lancet [102], and although its data could not be
replicated by other research groups, in subsequent years UK measles immunization
fell from 92 % to less than 80% in 2003, yielding a protracted marked decline in
herd immunity, ultimately responsible for measles resurgence [60, 78].

What possibly happened with HIN1 immunization in Italy was that individuals
perceived that HIN1 was a mild disease and therefore were not motivated to accept
the risk of vaccine adverse events (VAE) from a vaccine which they also perceived
as being of insufficiently proven safety. We note that it was not important that
the perception was not informed from the best science: what mattered was that
this misperception spread faster than other, more correct perceptions, and it was
ostensibly confirmed by the subsequent course of the epidemic, which was mild
only in comparison to what had been feared based on the early, confused events in
Mexico. So eventually only a small proportion were immunized. What happened
with MMR uptake in the UK was that news reports of the Wakefield study suddenly
raised the perceived risk of VAE, thereby making the perceived utility of vaccination
strongly negative. Especially in the context of very low measles circulation at
the time, many parents therefore decided not to immunize their children. We note
that the perception of measles rarity was “myopic’—rarity was the consequence
of herd immunity generated by 20 years of successful immunization—but this is
not relevant. What matters is that the rumor spread fast, possibly aggravated by
apparently coming from the “best science.”

There are also examples where human behavioral responses played a critical role
in controlling infections. There is little doubt that in the HIV/AIDS catastrophe in
Sub-Saharan Africa (SSA), sexual behavior change has been the key in the Ugandan
success story [1,77], which is currently the major instance of success in the control
of HIV in SSA, and is becoming an effective strategy as well in other SSA settings
such as Zimbabwe where a major HIV epidemic is still ongoing [51,52].

All these examples document how important human behavior might be for
infection spread and for determining the success of public health interventions.
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2 Human Behavior and Epidemiological Modeling

The current mathematical theory of infectious disease transmission was built on
a few cornerstone ideas and models developed during the so-called Golden Age
of theoretical ecology [61, 88, 92]. The most important among such milestones is
the homogeneous mixing SIR (susceptible-infective-recovered) model in its two
variations, for epidemic outbreaks as seasonal influenza and for endemic infections
as measles in large communities in absence of any immunization [3]. In this class
of models, behavior is absent: individuals contact (and infect) each other at random,
as particles of a perfect gas (the so-called law of mass action [28]) and therefore
behavioral influences are ruled out by definition.

In the last 25 years however, thanks to pioneering works aiming to better integrate
models with data [3, 53, 54], mathematical models of infectious diseases have
crossed their traditional biomathematical boundaries to become central supporting
tools for public health decisions, such as determining the duration of travel
restrictions or of school closure during a pandemic event, or the fraction of newborn
to be immunized for a vaccine-preventable infection, as measles. Some of these
models are highly sophisticated both from the computational and data requirements’
viewpoints [5,39,73]. In these models, the importance of human behavior is implicit
in the acknowledged role of social or sexual contact patterns as the key determinant
of the transmission of both close-contact infections, as influenza or measles, and
sexually transmitted infections (STIs), such as HIV/AIDS. In recent years there
have been great advances in the understanding of contact patterns [59, 75, 108],
which made available rich information about, for example, the average number of
persons of different ages an individual encounters in a typical day. This information
is allowing great improvements in model parameterization and validation. However,
the point of behavioral epidemiology lies exactly here: though sophisticated, current
models treat these contact patterns statically, as a universal constant, exactly as in
the simple SIR model. This means that behavior is totally unaffected by the state of
the disease, for example, individuals continue to contact each other however low or
high might be the perceived risk of contracting the infection. As these static contact
patterns refer to normal situations, the ensuing models are unlikely to apply under
stressed conditions as those observed during a dangerous epidemic or a period of
panic raised by a pandemic threat [38]. Similarly, models used to evaluate the impact
of immunization programs treat vaccine uptake as a constant [3], totally unaffected
by individuals’ risk perceptions about the disease and the vaccine, and despite the
fact that it is the degree of acceptance of the public that will ultimately determine the
success of the program unless mandatory policies can be strictly enforced. Clearly,
phenomena such as vaccine scares cannot be captured by treating vaccine coverage
as a fixed, exogenously determined input parameter.

As suggested by the above examples, this postulated static human behavior
is therefore an unrealistic abstraction. Individuals are neither static nor passive:
they can change their social behavior spontaneously in response to a pandemic
threat, can adaptively vaccinate in response to a sequence of seasonal influenza
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epidemics, or can decide not to vaccinate their children after a comparison between
the perceived costs and benefits of a vaccination program, thereby threatening its
success. In modern times, these decision dynamics are facilitated by the power
of modern communication technologies, which allow real-time, selective access
to broadly available information to the extent that certain reliable influenza data
can now be mined from individuals’ search activities on the web during influenza
seasons [49].

The challenging task of modeling, explaining and possibly predicting these
phenomena s the ultimate purpose of the emerging field of behavioral epidemiology
of infectious diseases. As the above examples clearly show, the major novelty
that distinguishes BE from, for instance, traditional biomathematical approaches
or economic approaches in epidemiology (e.g., cost—benefit analyses of public
programs) is the focus on modeling behavioral changes in response to infection
dynamics [44] as a key determinant of infection trajectories, and therefore on the
complex interplay between agents’ decisions, on one hand, and the transmission
and control of infections, on the other hand [38, 44].

3 Behavioral Epidemiology: Why Now?

Later on in this overview, BE is described as currently being in its “epidemic” phase.
A question is then, why right now? We argue that a rich “humus” was supplied by the
current scientific, cultural, and socio-demographical context of industrialized coun-
tries which has dramatically changed the relationship between humans and disease.
In this context, individuals frantically demand “predictability” during a pandemic
event [38] or “rationally” refuse a vaccine—the invention that has protected so
much human life in the last hundred years. In short, technology has turned us from
victims of nature per se to victims of our own actions locked in a feedback loop with
natural forces. This is why it is now that studying BE is important, and we expand
on this in the following paragraphs. Until 1750 the millenary fight between man
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Fig. 1 (continued) (upper left panel) Thucydides, who described with many details the plague
outbreak that frightened Athens during 430-429 BC and resulted in significant socioeconomic
reactions. The etiological agent is still unknown; (upper right) Giovanni Boccaccio, whose
Decameron (written between 1351 and 1353) supplied a dramatic description of the devastating
impact of the Black Death passed through Florence in 1350. The book is the story of ten young
people (seven women and three men) who flee from the devastated Florence and self-quarantine
(an early example of social distancing) into a villa in the countryside, where they pass time
telling stories. (bottom left) Daniel Defoe, who was five years old when the bubonic plague struck
London in 1665, which he subsequently described in his Journal of the Plague Year. (bottom right)
collection of dead bodies during the outbreak of bubonic plague in Milan, described in Manzoni’s
“The Betrothed.” In Chap. 22 he underlies the possibly devastating role played the great procession
authorized by the Cardinal of Milan, Federico Borromeo, ironically undertaken to invoke God’s
favor
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and disease—the third horseman of the Apocalypse—is the story of a long-lasting
unperturbed ecological equilibrium. During this fight human behavioral responses to
infectious disease threats always took place, as is documented by the great writers,
from the Athens’ “plague” described by Thucydides, to the Black Death whose visit
to Florence was immortalized by Giovanni Boccaccio in the “Decameron,” to the
seventeenth-century plague described by Daniel Defoe and Samuel Pepys, and two
centuries later on by Alessandro Manzoni (Fig. 1). However, most these responses
are reported by historians as taking place at the community level (e.g., enforcing
quarantine of sick individuals and also of goods [97], or closing the city gates,’
and mass migrations—especially by rich people—toward the country?), so that
individual actions, though reported, were usually perceived as minor and passive.
Most of all these actions, collective or individual, were lacking any scientific basis.3
Most importantly, these actions were unable to mitigate plague epidemics or to
perturb the ecological equilibrium between man and disease: infectious diseases
continued to impose a major and intractable health burden on populations worldwide
for several millenniums.

During the last two centuries, however, thanks to the sanitation revolution (such
as potable water) and to medical discoveries (such as vaccines), humanity has
attained amazing achievements in the control of infectious diseases and reduction in
associated mortality. These achievements have perturbed the equilibrium between
humans and disease, yielding that epochal change in the casual composition of
mortality from infectious (and nutritional) diseases to chronic degenerative ones
known as the “epidemiological transition” [76, 96, 103]. The epidemiological
transition has been a major determinant of the huge progress in survival and
health in industrialized countries, where life expectancy increased from 25 to
30years in preindustrial societies to more than 80 years in the current period

'In Rome, during the seventeenth-century plague special additional walls were built around the
city [97].

2As S. Pepys wrote during the London Plague: “I find all the town almost going out of town, the
coaches and wagons being all full of people going into the country,” as reported by [97]. The same
paper also reports that the parish of Covent Garden, London, wrote “all the gentry and better sort
of tradesmen being gone.”

3For example, based on historical documents, Manzoni describes in his masterpiece novel
The Betrothed the behavioral changes of the citizens of Milan, during the plague in 1629, mainly
due to their fear of the “poisoners”: imaginary villains that were thought to voluntarily spread the
disease through mysterious ointments causing the disease. In particular, Manzoni describes as the
epidemic peak following a procession against the plague is not attributed to the crowding during
the procession nor to “the infinite multiplication of random contacts” (note the surprising accuracy
of Manzoni’s language in describing the contagion process, despite this phrase has been written
in 1827). The most of people attributed, indeed, the peak to the poisoners, who would have had an
easier task, in the crowd of the procession, in diffusing their evil ointments in order to accomplish
their “impious plan.”
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[69, 103], which in turn triggered fertility decline, the escape from Malthusian
traps, and eventually, in a virtuous circle, sustained economic development [14,45].
Further advances with vaccines, such as vaccines that protect against oncogenic
viruses such as HBV and HPV, are making a reality out of previously utopian
conceptions of life in a future world free from infectious diseases [22].

This amazing success against infectious diseases and their associated mortality
in the industrialized world, and the ensuing huge increase in the value of human
life in current low-mortality/low-fertility societies, is however changing the rela-
tion between man and infection. What was the rule in the ancient demographic
regime—Ilosing 50 % of children before age 15 as a consequence of infections and
malnutrition [69]—has been completely reversed in today’s small, highly educated
postindustrial families.

There are several evidences of this changed attitude, and surely the main one
is represented by the increasing frequency of episodes of oppositions to vaccines
[47,70,78], the single invention that possibly more than other has contributed to the
changed relation between man and infection.

The history of immunization in the western world has always been characterized,
already since the introduction of smallpox vaccine, by phases of declining uptake.
However, most of this historical opposition to vaccination is thought to be due
to conscientious, religious, or philosophical reasons [90]* In contrast, current
societies are gradually facing the more complex challenge of rational opposition
to vaccines [8,9, 31, 33].5 Consider the example of an infection that is preventable
by childhood immunization, as measles, for which we assume there are only two
options, i.e., vaccinating or not vaccinating at birth. By rational opposition we mean,
under voluntary vaccination, the parents’ choice not to vaccinate children after a
comparison between the perceived benefit and cost of vaccination.

The cost of vaccination can be conceived of as the perceived risk of suffering
some vaccine-associated adverse event (VAE). In the simplest case this can be
taken as a constant (e.g., as in [8]), though individuals’ perceptions about a given
vaccine are possibly affected by perceptions about other vaccines as well. On the
other hand the perceived benefit of vaccination can be estimated by the perceived
risk of suffering death (or serious morbidity) from the disease, which can in turn
be estimated as the product of some measure of the current perceived risk of
acquiring infection, i.e., the force of infection, and the conditional probability of
death, as a consequence of infection. European data suggest that, due to improved
nutrition and sanitation, the probability of death following infection from measles
and other childhood infections fell off at least two orders of magnitude from

4We shortly mention that there are also a number of a priori opposers to vaccinations, who
irrationally believe that vaccines are a sort of Manzoni’s “ointments.” Quite interestingly, this
observation is in line with the fact that some anti-vaccination arguments remained unchanged since
the Jenner’s times [107].

3 Although out of the aims of this work, we remark here that the partisans of most extreme
anti-vaccination positions are very able in spreading their ideas through the World Wide Web [107],
so that WWW 2.0 might represent not only an opportunity but also a challenge for vaccination
decisions [12]. This topic, in particular, is worthwhile to be studied in the future.
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1860 to 1950 [34, 35], i.e., prior to when most immunization began. As for the
risk of infection, the simple endemic SIR model with immunization at birth [3]
suggests that for highly transmissible infection as measles, with a basic reproduction
number about 15, a vaccine uptake of approximately 90 %, as was typical in many
European countries during the last two decades, would create strong herd immunity
by decreasing both the endemic prevalence and the risk of infection by about
30 times compared to the case of no vaccination. This straightforwardly yields
the perception that the infection is no longer circulating. These numbers suggest
that sanitation progress and mass immunization, two major factors underlying the
changed relation between humans and their diseases, are now acting as “killers” of
the perceived rewards of immunization [33]. In simple words it is the vaccine’s
success in controlling infections that promotes “rational” opposition, leading to
declining vaccine coverage and potentially to infection reemergence.

The modeling of vaccination choices and rational opposition is currently a
major topic of investigation in BE [8-10, 13,29-33,72, 85, 86]. Details about how
vaccination choices can be incorporated into transmission models to capture the
emergent population-level implications of vaccinating behavior will be presented in
Sect. 5 of this overview.

4 Incubation of BE: Mathematical Forerunners, HIV/AIDS,
and the Free-Rider Problem

The first mathematical epidemiology papers incorporating behavioral concepts
date back to the end of the 1970s and were mainly motivated by mathematical
questions, i.e., investigating extensions of the basic SIR model including nonlinear
forces of infection. The first among such efforts [19] investigated the effects
of a prevalence-dependent [44] contact rate, i.e., a contact rate reacting to the
(perceived) prevalence of infective individuals, on the epidemic SIR model. To our
knowledge, this is the first study including the concept of social distancing in
epidemic modeling. Extensions of these ideas to endemic infections were developed
shortly thereafter [67, 68].

However, the first great impulse to the development of behavioral epidemiology
as a discipline was provided by the HIV/AIDS threat, beginning in the 1980s.
The combination of a long incubation period, with difficult and costly treatment,
and the lack of a vaccine have made instilling preventive behavior through the
dissemination of information on risky behavior with respect to sexual or intravenous
drug use the main control strategy, especially in poor resource settings.

In a situation almost completely lacking reliable data on individuals’ responses
to the spread of epidemics, mathematical modeling has rapidly become the main
tool for understanding the effects of behavior change on HIV trajectories. The
first contribution is [91], where the effects of switching from high to low risk
behavior on the epidemic threshold parameter were investigated by a two-group
model with preferred mixing, subsequently extended in [66], and estimated in [99].
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In [15] data on HIV/AIDS in San Francisco are used to provide a model-based
estimate of the decline in at-risk behavior required to eliminate, even in presence of
a vaccine, the infection. The first warning on the possibility that a protective vaccine
increases epidemic severity by raising at-risk behavior is also put forth. Several
papers have used simple models to investigate the static and dynamic effects of
various forms of behavioral responses including prevalence-dependent recruitment
into the at-risk population and reducing contact rates after screening or treatment
[50,56, 105, 106]. The effects of prevalence-dependent sexual mixing patterns were
investigated in [58]. A first attempt to integrate optimal choices of sexual partners
into HIV transmission models is [64]. These are pioneering works of an endless list.

In parallel to the explosion of studies on behavior change in relation to
HIV/AIDS, the first studies on vaccinating behavior appeared. In a seminal epi-
demiological paper, Fine and Clarkson [40] compare the different perspectives of the
individual and the public good toward immunization and supply the first formulation
of the result that under voluntary vaccination, rational individuals’ decisions would
most often yield a lower vaccine uptake than is optimal for the community as
a whole. This result remained essentially unnoticed to epidemiological modelers
until recent times and was independently rediscovered later by economists as well,
but in relation to the debate between free market and compulsory immunization
formulated as a free-rider problem. Immunization against a communicable infection
by a vaccine that protects against infection has a twofold protective effect: a direct
one for those who are immunized and an indirect one for those who are not,
due to the reduced circulation of the virus in the community which reduces the
risk of acquiring infection for those non-immunized. Free-riding arises when some
individuals take advantage of this indirect protection (herd immunity) created by
those who choose to be vaccinated, to avoid immunization and its related costs.
In [18] the conditions under which free-riding can be overcome without compulsory
vaccination, through taxes or subsidies, are investigated, while [41] departs from
the problem investigated in [18] and shows that in a special case of SI infections
the market and the government optimal solutions may be identical. Geoffard and
Philipson [48] use an SIR model for a childhood infection with vaccine uptake
dependent upon infection prevalence as a measure of perceived risk of infection, as
empirically supported by analyses in [80], to offer the first proof of the supposed
impossibility of eliminating infection under voluntary vaccination. The simple
argument is that a successful immunization program will strongly reduce infection
prevalence and therefore also reduce the perceived risk of disease, thereby killing
the vaccine demand. These works formed the “humus” for the current outbreak of
BE studies, discussed in the next section.

5 The “Epidemic Phase” of Behavioral Epidemiology

Behavioral epidemiology is arguably in an “epidemic phase,” with many dozens
of publications in the area in the past decade [2,4,6-11,13,16,17,21,23-27,29—
33,36,37,42-44,46,62,63,72,79, 81-86, 89, 93-95, 101, 104, 109]. This attention
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has come primarily from biomathematicians and theoretical biologists, for whom
an interest in behavioral epidemiology comes naturally due to their long-standing
involvement in both mathematical epidemiology [53] and evolutionary game theory
[71]. It is also possible that the MMR vaccine scare of the late 1990s and the oral
polio vaccine (OPV) scare early in the twenty-first century contributed to this surge
of interest [57].

Some of this development has been described in recent review papers [13,44,63].
Here, we provide a broad overview of the behavioral epidemiology literature in the
past ten years, starting with a discussion of the broad range of approaches that have
been adopted.

5.1 Model Taxonomy

Funk et al. suggest that the literature can be classified in terms of (1) source of
information used by decision-makers, (2) type of information used by decision-
makers, and (3) effect of behavioral change [44]. For example, decision-makers may
either base their decisions on global sources of information available to everyone
(television, World Wide Web) [7,8, 11, 21, 24,27, 31, 32,37,46, 62, 86, 101, 104],
or they may base their decisions on local sources available only to a subset
of the population (such as information passed through word of mouth between
acquaintances) [4, 36,37,43,79, 89,93, 109]. Likewise, decision-makers may base
their decisions on perfect knowledge of disease prevalence [4, 7,9, 11, 21, 27,
31,32,46,79, 86, 93, 104, 109], and/or they may base their decisions on sources
completely independent from prevalence or base only loosely on prevalence, such
as peer opinions or faulty media representations [8, 24, 36, 37, 43, 62, 89, 101].
Finally, the effect of behavioral change may be to change individual disease states
[7-9,11,21,24,31,32,36,46,79, 86,89, 104], model parameters [4, 27, 37, 43, 62,
101] or contact structure [37, 84,93, 109].

One could also distinguish the literature by the intervention concerned. For in-
stance, the majority of papers are specifically concerned with vaccinating behavior,
although some papers are concerned with social distancing [43, 84, 93, 109] or
antiviral drugs [100]. Some models are intended for specific diseases, such as
influenza [17,46,94, 104], smallpox [6, 11,27], or human papillomavirus [7], while
many models are intended to be more general [8,9,16,21,36,43,72,86,93].

Earlier models in behavioral epidemiology tended to be either mechanistic with
respect to transmission and phenomenological with respect to behavior [19] or
mechanistic with respect to behavior and phenomenological with respect to trans-
mission [40], whereas more recent models represent both behavior and transmission
mechanistically. If mechanistic with respect to both, they have sometimes been
termed “behavior-prevalence” or “behavior-incidence” models, because the full
mechanistic model is formed by coupling two independent mechanistic submodels,
one for behavior and one for transmission [13, 63].
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Mechanistic transmission models are often deterministic compartmental models,
although there is also a distinct subset of the literature concerned with contact
networks [26, 42, 43,79, 93, 109]. Likewise, mechanistic behavioral models may
be based on theory about behavior or perception stemming from psychology
[4, 8, 16, 24, 26, 27, 29, 42, 43, 79, 93], and/or some of these approaches may
be specifically game theoretical, assuming that individuals act to rationally optimize
their own payoffs [9,11,72,83,84,86,94]. In the next two sections, we describe two
examples of behavior-incidence models, the first of which represents a game
theoretical approach to behavioral epidemiology.

5.2 A Game Theoretical Example

Game theoretical approaches specify a game that entails strategic interactions
between individuals, and identify the Nash equilibrium of the game. When each
player is playing their Nash equilibrium strategy, no player can obtain a higher
payoff by switching to another strategy. Therefore, a population at the Nash
equilibrium is expected to remain there. We note that one can furthermore define
a convergently stable Nash equilibrium, meaning that a population whose initial
conditions place it away from the Nash equilibrium will eventually converge to the
Nash equilibrium and stay there [9]. Many behavioral epidemiological approaches
are akin to game theory, in that they describe scenarios where strategic interactions
exist and they specify payoffs [40, 43,79, 93], but strictly speaking they are not
game theoretical unless they specify a game and identify its Nash equilibria (or its
evolutionarily stable states [71] or similar such solutions).

5.2.1 Model Description

An example of an approach to behavioral epidemiology that combines a game
theoretical model of human behavior with a mechanistic disease transmission
model is the simple vaccination game for pediatric infectious diseases, appearing
in [9]. This game captures many of the basic features of mechanistic approaches to
behavioral epidemiology modeling. We explain the game and its Nash equilibrium
intuitively as follows. The game is a population game where individuals play
against the outcome of the average behavior of the population. Individuals can
either vaccinate or not vaccinate. The payoff to vaccinate is —r,, where r, is
the vaccine cost, i.e., the perceived probability of complications due to vaccine
(the payoff is negative because maximizing payoff is the same as minimizing
adverse health impacts). The parameter r, could equally well be interpreted as being
the financial costs plus monetized health costs due to complications. This payoff
function implies that the vaccine is perfectly efficacious, because the individual only
pays the one-time cost r, upon vaccinating and never any infection cost. The payoff
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not to vaccinate is —r;(p), where 7m(p) is the perceived lifetime probability that
a nonvaccinator becomes infected if the vaccine coverage in the population is p
and r; is the perceived probability of significant morbidity if a nonvaccinator ends
up getting infected. We suppose that 7(p) is strictly decreasing in p and that
7T (perie) = 0 for some perie < 1, due to herd immunity. We allow individuals to adopt
a mixed strategy to vaccinate with probability P, where 0 < P < 1. At a steady-state
equilibrium in a population where everyone is playing P, we note that p = P.

5.2.2 Finding the Nash Equilibrium

Suppose first that r, > r;7(0), such that the cost to vaccinate exceeds the cost not
to vaccinate, even if no one else is vaccinating and hence the infectious disease is
rampant. Then P* = 0 is the Nash equilibrium: suppose that everyone is playing
P* = 0; then, a small group considering switching to a strategy Q > P* would, as
a result of their actions, increase the vaccine coverage slightly; this would decrease
the probability that nonvaccinators are infected since 7(p) < w(0) for all p > 0,
and meanwhile, the payoff to vaccinate would remain unchanged; thus, by starting
to vaccinate with a higher probability, the small group would only worsen their
payoff by changing strategies; as a result, there is no incentive for anyone to start
vaccinating and so P* = 0 is the Nash equilibrium when r, > r;7(0).

Now suppose that r, < r;7(0). In this case, the Nash equilibrium occurs at P*
such that the payoff to vaccinate equals the payoff not to vaccinate, i.e., —r, =
—riw(p*) (where P* = p*). The reason for this lies in the fact that 7(p) must be
strictly decreasing in p. Suppose in a population where everyone is playing P*
a small group of individuals considers playing Q > P*. This would increase the
overall vaccine coverage in the population slightly, meaning that the probability that
a nonvaccinator is infected would be lower, meaning that the payoff not to vaccinate
now exceeds the payoff to vaccinate. As a result, the small group would only receive
a lower payoff if they switched to Q > P* and, if they are rational, would probably
decide against that option. Similarly, at P*, there is no incentive for anyone to start
vaccinating with probability Q < P*. Hence, we expect that a population existing at
P* would stay at P*, where P* satisfies —r, = —r;(P").

It is also possible to show that P* is unique and locally convergently stable
and that p* < pe, such that the Nash equilibrium coverage is always below the
threshold coverage at which the infection would be completely eliminated from
the population. Because self-interested behavior thereby precludes eradication of
a vaccine-preventable infection, this can be interpreted as a form of “free-riding,”
or equivalently, policy resistance [98]. Free-riding is a common prediction of
behavioral epidemiological models, although exceptions occur (e.g., see [79, 94]).
Much work in behavioral epidemiology is concerned with the extent of free-riding
behavior and conditions for its emergence.
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5.2.3 Introducing a Mechanistic Disease Transmission Model

By introducing a compartmental model such as the susceptible-infectious-recovered
(SIR) model with births and deaths, it becomes possible to specify a function form
for m(p) and thus make quantitative predictions of the Nash equilibrium coverage.
The SIR model equations are

ds
ZZH(l—P)—ﬁSI—H& )]
dl
— = BSI—vyl—ul 2
7 = BSI=vI—ul, 2)
dR
EZHP‘H’I—HRa (3)

where S is the proportion of the population that is susceptible, / is the proportion
infectious, R is the proportion recovered, u is the mean birth and death rate,
is the mean transmission rate, 1/v is the mean infectious period, and p is the
vaccine coverage (assuming, for simplicity, that individuals are never infected
before being vaccinated) [53]. From the equilibrium solutions of these equations we
can determine 7(p) and thus p* from —r, = —r;m(p*). For the pediatric infectious
disease vaccination game using (1)—(3), the Nash equilibrium coverage p* when
ry < rim(0) is:
1
%

r=l Ro(1—=ry/ri)’ @
suggesting that Nash equilibrium vaccine coverage in a population attempting to
optimize their own health-related payoff is higher when the basic reproduction
number Ry is higher, when r, is lower or when r; is higher.

5.3 An Example Based on Imitation Processes

A contrasting, non-game theoretical approach appears in [8, 10]. In order to achieve
the dynamic description required to capture temporally extended phenomena such
as vaccine scares, the SIR equations with birth and death are modified by replacing
a constant vaccine coverage p by a potentially time-varying vaccine coverage x,
where x is determined by a differential equation capturing how individuals learn
their strategic behaviors from others:

ds
B w1 psi—us. 5)
A Bst—yi— i, (©)

di
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dR

—_ = I — UR 7
o = Mx+vI— R, 7
% = kx(1 —x)[—r,+riml]. (8)

In these equations, all parameters and variables are as in Sect. 5.3, except x is the
proportion of the population favoring vaccination at time ¢, m is the sensitivity of
individuals to prevalence I (where higher values of m mean that individuals perceive
the disease as more harmful), and k quantities are the combined rate at which
individuals sample others and probability of switching strategies if they find that
others are receiving a higher payoff for playing the other strategy. The probability
of switching strategies is proportional to the difference in the vaccinator payoff,
—ry, and the nonvaccinator payoff, —r;ml. Individuals do not know their lifetime
probability of being infected, but rather adopt a “rule of thumb” that the cost
of not vaccinating is proportional to the current disease incidence I, hence the
nonvaccinator payoff —r;ml. Since R = 1 —§ — I, we note that equation (7) can
be dropped.

The analysis of [8] is not really game theoretical because the Nash equilibria
were not identified and the focus was on dynamics away from equilibrium. This
type of approach has been described as a game dynamic approach, since it describes
how populations may evolve over time toward, or away from, Nash equilibria
[55]. However, the model equations (5)—(8) nonetheless describe a situation where
strategic interactions exist due to the feedbacks between vaccinating behavior and
disease prevalence. And, in principle, connections exist and can be made between
the equilibria of the model equations and Nash equilibria of the underlying game.
For example, Lyapunov stable or asymptotically stable equilibria of the model
equations can also be Nash equilibria under certain conditions [55].

Equations (5)—(8) exhibit a broad range of behavior, including a disease-free
equilibrium where no one vaccinates (I = x = 0), a disease-free equilibrium where
everyone vaccinates (I = 0, x = 1), an endemic equilibrium where a fixed proportion
of the population vaccinates (I > 0, x > 0), an endemic equilibrium where no one
vaccinates ( > 0, x = 0), and a stable limit cycle where x and / oscillate indefinitely
(see Fig.2) [74]. However, as before, because of free-riding behavior, vaccine
coverage x never reaches the level p.,; that enables elimination of the infection.
Variants of this model have been shown to provide parsimonious explanations of
vaccine coverage and case notification data from vaccine scares in England and
Wales, and in the deterministic regime the model also appears to have predictive
power [10].

5.4 A Prevalence-Based Modeling Example

A contrasting approach appears in [31]. In order to achieve the dynamic description
required to capture temporally extended phenomena such as changing levels of
vaccine coverage over time, many approaches augment a compartmental model
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Fig. 2 The k-w parameter 6000
plane illustrating dynamics of
model described by (5)—(8).
K =kr, and @ = mri/r,. I: 5000 -
stable endemic, pure -
nonvaccinator equilibrium. II: 4000
stable endemic, partially e
vaccinating equilibrium. III:
stable limit cycle. Other 3000 [
parameters are % = 10, L
1/y =10 days,
1/u = 50 years. Figure 2000
reproduced from [8] I )
1000 1 L i 1 i L L
0 0.0005 0.0010 0.0015 0.0020

K

by replacing a constant vaccine coverage by an information dependent, potentially
time-varying vaccine coverage that captures how individuals make vaccinating
decisions according to information about incidence or prevalence of infection:

ds
o = H(1=pM))—uS—B)SL, )
dl
= = BOSI=(u+n1, (10)
dR
— =V~ uR, (11)
du
oy = Hp(M)—pU. (12)

Here, S, I, R, p, B(¢) and u are as in Sect. 5.3 except 8 is potentially time-varying.
U is the proportion of vaccinated individuals and M is an information variable
governing the signal available to individuals as a function of prevalence or incidence
of infection. Since R =1 — S —I— U, we note that equation (7) can be dropped.

Rather than taking p from game theoretical considerations, in this approach,
p = p(M) where M depends directly on current or past states of the disease in the
population. When depending on current states, the authors explore three possibilities
for M:

e M = of3SI: information governing vaccinating behavior depends on the current
incidence, where ¢ is a reporting rate.

* M = kI: information governing vaccinating behavior depends on the current
prevalence, where k is a parameter subsuming aspects such as pathogenicity [8].

o M=ofI/(u+ofI): information governing vaccinating behavior is a saturating
function of current incidence [86].
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In comparison, M can also depend on past states, such as according to
© M(r)= [ 8(S(7).1()K(t - T)d,

where K governs memory decay. The parameter p can in turn depend upon M
according to a constant term p plus a saturating Michaelis—-Menten function p; (M),
for example:

cM
DM+1°

Strictly speaking, the analysis of [31] is not game theoretical because Nash
equilibria are not identified. However, this type of approach might potentially be
described as a game dynamic approach, since it may describe how populations
may evolve over time toward, or away from, Nash equilibria [55]. The model
equations (5)—(8) nonetheless describe a situation where strategic interactions exist
due to the feedbacks between vaccinating behavior and disease prevalence. And, in
principle, connections exist and can be made between the equilibria of the model
equations and Nash equilibria of the underlying game. For example, Lyapunov
stable or asymptotically stable equilibria of the model equations can also be Nash
equilibria under certain conditions [55].

Equations (5)—(8) exhibit a broad range of behavior, including fixed points and
stable limit cycles where vaccine uptake and disease prevalence oscillate over
time in a “boom-bust” cycle, even when memory decays exponentially. Hence, as
a result of information-dependent vaccination, the globally asymptotically stable
endemic equilibrium of the basic SIR equations is often destabilized. Moreover, as
in Sect.5.3, for pg sufficiently small, vaccine coverage p can never be sustained
at the level p.;; that enables elimination of the infection because of “free-riding
behavior” or equivalently “rational exemption.” Under some assumptions, it is also
possible to derive an expression for the classic interepidemic interval in the presence
of information-dependent vaccination [31].

p(M) = po+pi1(M) = po+ (13)

6 Concluding Comments

The growth in the behavioral epidemiology literature has been significant, but what
will be required for this “epidemic” to become an “endemic?” In order that this
approach becomes an established part of applied mathematics and theoretical biol-
ogy, we suggest that one potential future course for these models involves greater
realism in how behavior is captured in the models, greater realism in transmission
processes, and closer integration of models and data [7, 10, 38, 46, 82, 94]. Other
answers to this question will appear in the following pages, and these directions
by no means exhaust how the field can be further developed. Incorporating greater
realism in transmission processes should come easily to the mathematical epidemi-
ologists; however, incorporating greater realism into models of vaccinating behavior
will require closer collaboration with psychologists, sociologists, epidemiologists,
and economists.
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