Skip to main content

Prediabetes Genes in Pima and Amish

  • Chapter
  • First Online:
Prevention of Type 2 Diabetes
  • 2077 Accesses

Abstract

Type 2 diabetes mellitus has a global distribution, yet its prevalence varies from country to country with the highest rates being reported in developed and developing countries [1–3]. Studies comparing rural vs. urban dwelling, as well as migration studies, indicate that change towards a “Westernized” lifestyle is associated with a dramatic increase in the prevalence rates for this disease [4]. This environmental impact has been documented in urbanized Pacific Island populations and migrant Asian Indians [5–9]. However, among individuals living in a similar environment, genetics has a clear influence on prevalence rates of type 2 diabetes. Different ethnic groups living within the same geographic region often have different prevalence rates of this disease [10]. For example, Latinos are the largest minority population in the United States and have a two to fourfold higher prevalence of diagnosed diabetes as compared to Caucasians [11, 12]. Rates of diabetes also differ between families, where siblings of affected individuals have an increased risk, which again suggests a familial component. Some of the strongest evidence for a genetic basis for type 2 diabetes comes from studies in twin pairs. Both monozygotic and dizygotic twin pairs share equally in a family environment, yet there is a higher concordance rate for type 2 diabetes among monozygotic twins who share 100% of their DNA as compared to dizygotic twins who share on average 50% of their DNA [13, 14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    Article  PubMed  Google Scholar 

  2. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31.

    Article  PubMed  CAS  Google Scholar 

  3. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–7.

    Article  PubMed  CAS  Google Scholar 

  4. Zimmet P. Type 2 (non-insulin-dependent) diabetes—an epidemiological overview. Diabetologia. 1982;22(6):399–411.

    Article  PubMed  CAS  Google Scholar 

  5. Papoz L, Ben Khalifa F, Eschwege E, et al. Diabetes mellitus in Tunisia: description in urban and rural populations. Int J Epidemiol. 1988;17(2):419–22.

    Article  PubMed  CAS  Google Scholar 

  6. Zimmet P. Epidemiology of diabetes and its macrovascular complications in Pacific populations: the medical effects of social progress. Diabetes Care. 1979;2:144–53.

    Article  PubMed  CAS  Google Scholar 

  7. Zimmet P, Taylor R, Parshu R, et al. Prevalence of diabetes and impaired glucose tolerance in the biracial (melanesian and indian) population of Fiji: a rural-urban comparison. Am J Epidemiol. 1983;118:673–88.

    PubMed  CAS  Google Scholar 

  8. Chow CK, Raju PK, Raju R, et al. The prevalence and management of diabetes in rural India. Diabetes Care. 2006;29:1717–8.

    Article  PubMed  Google Scholar 

  9. Garduño-Diaz SD, Khokhar S. Prevalence, risk factors and complications associated with type 2 diabetes in migrant South Asians. Diabetes Metab Res Rev. 2012;28:6–24.

    Article  PubMed  Google Scholar 

  10. McBean AM, Li S, Gilbertson DT, et al. Differences in diabetes prevalence, incidence, and mortality among the elderly of four racial/ethnic groups: Whites, Blacks, Hispanics, and Asians. Diabetes Care. 2004;27(10):2317–24.

    Article  PubMed  Google Scholar 

  11. Stern MP, Gaskill SP, Hazuda HP, et al. Does obesity explain excess prevalence of diabetes among Mexican Americans? Results of the San Antonio Heart Study. Diabetologia. 1983;24(4):272–7.

    Article  PubMed  CAS  Google Scholar 

  12. Baxter J, Hamman RF, Lopez TK, et al. Excess incidence of known non-insulin-dependent diabetes mellitus (NIDDM) in Hispanics compared with non-Hispanic whites in the San Luis Valley, Colorado. Ethn Dis. 1993;3(1):11–21.

    PubMed  CAS  Google Scholar 

  13. Newman B, Selby JV, King MC, et al. Concordance for type II (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia. 1987;30:763–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia. 1992;35:1060–7.

    Article  PubMed  CAS  Google Scholar 

  15. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  PubMed  CAS  Google Scholar 

  16. Hu FB. Globalization of diabetes: the role of diet, lifestyle and genes. Diabetes Care. 2011;34:1249–57.

    Article  PubMed  Google Scholar 

  17. Wardle J, Carnell S, Haworth CMA, et al. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr. 2008;87:398–404.

    PubMed  CAS  Google Scholar 

  18. Stunkard AJ, Sorensen TI, Hanis C, et al. An adoption study of human obesity. N Engl J Med. 1986;314(4):193–8.

    Article  PubMed  CAS  Google Scholar 

  19. Segal NL, Allison DB. Twins and virtual twins: bases of relative body weight revisited. Int J Obes Relat Metab Disord. 2002;26(4):437–41.

    Article  PubMed  CAS  Google Scholar 

  20. Amed S, Daneman D, Mahmud FH, et al. Type 2 diabetes in children and adolescents. Expert Rev Cardiovasc Ther. 2010;8:393–406.

    Article  PubMed  Google Scholar 

  21. Wareham NJ, Franks PW, Harding AH. Establishing the role of gene-environment interactions in the etiology of type 2 diabetes. Endocrinol Metab Clin North Am. 2002;31:553–66.

    Article  PubMed  CAS  Google Scholar 

  22. Ravussin E, Valencia ME, Esparza J, et al. Effects of a traditional lifestyle on obesity in Pima Indians. Diabetes Care. 1994;17(9):1067–74.

    Article  PubMed  CAS  Google Scholar 

  23. Yamagata K, Furuta H, Oda N, et al. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature. 1996;384:458–60.

    Article  PubMed  CAS  Google Scholar 

  24. Vionnet N, Stoffel M, Takeda J, et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature. 1992;23:721–2.

    Article  Google Scholar 

  25. Malecki MT, Jhala US, Antonellis A, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999;23:323–8.

    Article  PubMed  CAS  Google Scholar 

  26. Stoffers DA, Ferrer J, Clarke WL, et al. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat Genet. 1997;17:138–9.

    Article  PubMed  CAS  Google Scholar 

  27. Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17:384–5.

    Article  PubMed  CAS  Google Scholar 

  28. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature. 1996;384:455–8.

    Article  PubMed  CAS  Google Scholar 

  29. Flanagan SE, Clauin S, Bellanne-Chantelot C, et al. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat. 2009;30(2):170–80.

    Article  PubMed  CAS  Google Scholar 

  30. van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W, et al. Mutation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992;1:368–71.

    Article  PubMed  Google Scholar 

  31. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab. 2008;4(4):200–13.

    Article  PubMed  CAS  Google Scholar 

  32. Beamer BA, Yen C-J, Andersen RE, et al. Association of the Pro12Ala variant in the peroxisome proliferator-activated receptor-γ2 gene with obesity in two Caucasian populations. Diabetes. 1998;47:1806–8.

    Article  PubMed  CAS  Google Scholar 

  33. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPAR gamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26(1):76–80.

    Article  PubMed  CAS  Google Scholar 

  34. Gloyn AL, Weeden MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568–72.

    Article  PubMed  CAS  Google Scholar 

  35. Lander ES, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  PubMed  CAS  Google Scholar 

  36. Venter JC, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    Article  PubMed  CAS  Google Scholar 

  37. The International HapMap Consortium. The international HapMap project. Nature. 2003;426:789–96.

    Article  CAS  Google Scholar 

  38. Frazer KA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61.

    Article  PubMed  CAS  Google Scholar 

  39. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881–5.

    Article  PubMed  CAS  Google Scholar 

  40. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5.

    Article  PubMed  CAS  Google Scholar 

  41. Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.

    Article  PubMed  CAS  Google Scholar 

  42. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5.

    Article  PubMed  CAS  Google Scholar 

  43. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41.

    Article  PubMed  CAS  Google Scholar 

  44. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320–3.

    Article  PubMed  CAS  Google Scholar 

  45. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med. 2007;85(7):777–82.

    Article  PubMed  CAS  Google Scholar 

  46. Guo T, Traurig M, Muller YL, et al. TCF7L2 is not a susceptibility gene for type 2 diabetes in Pima Indians. Diabetes. 2007;56:3082–8.

    Article  PubMed  CAS  Google Scholar 

  47. Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40(5):638–45.

    Article  PubMed  CAS  Google Scholar 

  48. Wheeler E, Barroso I. Genome-wide association studies and type 2 diabetes. Brief Funct Genomics. 2011;10:52–60.

    Article  PubMed  CAS  Google Scholar 

  49. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Eng J Med. 2010;363:2339–50.

    Article  CAS  Google Scholar 

  50. Kristiansson K, Naukkarinen J, Peltonen L. Isolated populations and complex gene identification. Genome Biol. 2008;9:109.

    Article  PubMed  CAS  Google Scholar 

  51. Baier LJ, Hanson RL. Genetic studies of the etiology of type 2 diabetes mellitus in Pima Indians: hunting for pieces to a complicated puzzle. Diabetes. 2004;53:1181–6.

    Article  PubMed  CAS  Google Scholar 

  52. Groop L, Forsblom C, Lehtovirta M, et al. Metabolic consequences of a family history of NIDDM (the Botnia Study): evidence for sex-specific parental effects. Diabetes. 1996;45:1585–93.

    Article  PubMed  CAS  Google Scholar 

  53. Love-Gregory LD, Wasson J, Ma J, et al. A common polymorphism in the upstream promoter region of the hepatocyte nuclear factor-4 alpha gene on chromosome 20q is associated with type 2 diabetes and appears to contribute to the evidence for linkage in an Ashkenazi Jewish population. Diabetes. 2004;53(4):1134–40.

    Article  PubMed  CAS  Google Scholar 

  54. Hsueh WC, Mitchell BD, Aburomia R, et al. Diabetes in the Old Order Amish: characterization and heritability analysis of the Amish Family Diabetes Study. Diabetes Care. 2000;23(5):595–601.

    Article  PubMed  CAS  Google Scholar 

  55. Tataranni PA, Bogardus C. Metabolic abnormalities in the development of type 2 diabetes mellitus. In: LeRoith D, Taylor SI, Olefsky JM, editors. Diabetes mellitus. A fundamental and clinical text. Philadelphia: Lippincott Williams & Wilkins; 2004. p. 797–807.

    Google Scholar 

  56. West KM, Kalbfleisch JM. Influence of nutritional factors on prevalence of diabetes. Diabetes. 1971;20:99.

    PubMed  CAS  Google Scholar 

  57. Hartz AJ, Rupley DC, Rimm AA. The association of girth measurements with disease in 32,856 women. Am J Epidemiol. 1984;119:71.

    PubMed  CAS  Google Scholar 

  58. Wannamethee SG, Shaper AG. Weight change and duration of overweight and obesity in the incidence of type 2 diabetes. Diabetes Care. 1999;22:1266–72.

    Article  PubMed  CAS  Google Scholar 

  59. Everhart JE, Pettitt DJ, Bennett PH, et al. Duration of obesity increases the incidence of NIDDM. Diabetes. 1992;41(2):235–40.

    Article  PubMed  CAS  Google Scholar 

  60. Sakul H, Pratley R, Cardon L, et al. Familiality of physical and metabolic characteristics that predict the development of non-insulin-dependent diabetes mellitus in Pima Indians. Hum Genet. 1997;60(3):651–6.

    CAS  Google Scholar 

  61. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237:E214–23.

    PubMed  CAS  Google Scholar 

  62. DeFronzo RA. Lilly Lecture 1987. The triumvirate: B-cell, muscle, liver: a collusion responsible for type 2 diabetes. Diabetes. 1988;637:667.

    Google Scholar 

  63. Warram JH, Martin BC, Krolewski AS, et al. Slow glucose removal and hyperinsulinemia precede the development of type 2 diabetes in the offspring of diabetic parents. Ann Intern Med. 1990;113:909.

    PubMed  CAS  Google Scholar 

  64. Bunt JC, Krakoff J, Ortega E, et al. Acute insulin response is an independent predictor of type 2 diabetes mellitus in individuals with both normal fasting and 2-h plasma glucose concentrations. Diabetes Metab Res Rev. 2007;23(4):304–10.

    Article  PubMed  CAS  Google Scholar 

  65. DeFronzo RA, Ferrannini E. The pathogenesis of non-insulin—dependent diabetes: an update. Medicine (Baltimore). 1982;62:125.

    Google Scholar 

  66. Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. Clin Invest. 1999;104(6):787–94.

    Article  CAS  Google Scholar 

  67. Williams RC, Steinberg AG, Knowler WC, et al. Gm 3;5,13,14 and stated-admixture: independent estimates of admixture in American Indians. Am J Hum Genet. 1986;39(3):409–13.

    PubMed  CAS  Google Scholar 

  68. Knowler WC, Pettitt DJ, Saad MF, et al. Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev. 2009;6:1–27.

    Article  Google Scholar 

  69. Hrdlicka A. The Bureau of American Ethnology: physiological and medical observations among the Indians of Southwestern United States and Northern Mexico. Washington, DC: U.S. Government Printing Office; 1908 (Bulletin 34:1–347).

    Google Scholar 

  70. Russell F. The Pima Indians. In Twenty-Sixth Annual Report of the Bureau of American Ethnology to Secretary of Smithsonian Institution. Washington, DC: U.S. Government Printing Office; 1908. p. 3–389.

    Google Scholar 

  71. Joslin EP. The universality of diabetes. JAMA. 1940;115:2033–8.

    Article  Google Scholar 

  72. Knowler WC, Bennett PH, Hamman RF, Miller M. Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am J Epidemiol. 1978;108:497–505.

    PubMed  CAS  Google Scholar 

  73. World Health Organization. Report of a WHO Study Group: Diabetes Mellitus. Geneva, World Health Org; 1985 (Tech. Rep. Ser., no. 727).

    Google Scholar 

  74. Knowler WC, Bennett PH, Hamman RF, Miller M. Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am J Epidemiol. 1978;108(6):497–505.

    PubMed  CAS  Google Scholar 

  75. Schulz LO, Bennett PH, Ravussin E, Kidd JR, Kidd KK, Esparza J, et al. Effects of traditional and western environments on prevalence of type 2 diabetes in Pima Indians in Mexico and the U.S. Diabetes Care. 2006;29:1866–971.

    Article  PubMed  Google Scholar 

  76. Ogden CL, Carroll MD, Curtin LR, et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295:1549–55.

    Article  PubMed  CAS  Google Scholar 

  77. Pavkov ME, Hanson RL, Knowler WC, et al. Changing patterns of type 2 diabetes incidence among Pima Indians. Diabetes Care. 2007;30:1758–63.

    Article  PubMed  Google Scholar 

  78. Dabelea D, Hanson RL, Bennett PH, et al. Increasing prevalence of type II diabetes in American Indian children. Diabetologia. 1998;41:904–10.

    Article  PubMed  CAS  Google Scholar 

  79. Savage PJ, Bennett PH, Senter RG, et al. High prevalence of diabetes in young Pima Indians. Diabetes. 1979;28:937–42.

    Article  PubMed  CAS  Google Scholar 

  80. Baier LJ, Permana PA, Traurig M, et al. Mutations in the genes for hepatocyte nuclear factor (HNF)-1alpha, -4alpha, -1beta, and -3beta; the dimerization cofactor of HNF-1; and insulin promoter factor 1 are not common causes of early-onset type 2 diabetes in Pima Indians. Diabetes Care. 2000;23(3):302–4.

    Article  PubMed  CAS  Google Scholar 

  81. Dabalea D, Palmer JP, Bennett PH, et al. Absence of glutamic acid decarboxylase antibodies in Pima Indian children with diabetes mellitus. Diabetologia. 1999;2:1265–6.

    Google Scholar 

  82. Hanson RL, Elston RC, Pettitt DJ, et al. Segregation analysis of non-insulin-dependent diabetes mellitus in Pima Indians: evidence for a major-gene effect. Am J Hum Genet. 1995;57(1):160–70.

    PubMed  CAS  Google Scholar 

  83. Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med. 1993;329(27):1988–92.

    Article  PubMed  CAS  Google Scholar 

  84. Hsueh W-C, Mitchell BD, Aburomia R, et al. Diabetes in the old Order Amish: characterization and heritability of the Amish Family Diabetes Study. Diabetes Care. 2000;23(5):595–601.

    Article  PubMed  CAS  Google Scholar 

  85. Cross HE. Population studies and the old Order Amish. Nature. 1976;262:17–20.

    Article  PubMed  CAS  Google Scholar 

  86. Church Directory of the Lancaster County Amish. In association with Katie Beiler. Gordonsville, PA: Pequea publishers. 1996;1:320pp, 2:322pp.

    Google Scholar 

  87. McKusick VA. Medical genetic studies of the Amish. Baltimore, MD: Johns Hopkins University; 1978.

    Google Scholar 

  88. Khoury MJ, Cohen BH, Diamond EL, et al. Inbreeding and prereproductive mortality in the Old Order Amish. I. Genealogic epidemiology of inbreeding. Am J Epidemiol. 1987;125:453–61.

    PubMed  CAS  Google Scholar 

  89. Snitker S, Mitchell BD, Shuldiner AR. Physical activity and prevention of type 2 diabetes. Lancet. 2003;361:87–8.

    Article  PubMed  Google Scholar 

  90. Damcott CM, Pollin T, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes. 2006;55:2654–9.

    Article  PubMed  CAS  Google Scholar 

  91. Damcott CM, Hoppman N, Ott SH, et al. Polymorphisms in both promoters of hepatocyte nuclear factor 4-a are associated with type 2 diabetes in the Amish. Diabetes. 2004;53:3337–41.

    Article  PubMed  CAS  Google Scholar 

  92. Rampersaud E, Damcott CM, Fu M, et al. Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish. Diabetes. 2007;56:3053–62.

    Article  PubMed  CAS  Google Scholar 

  93. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  PubMed  CAS  Google Scholar 

  94. Muller Y-L, Bogardus C, Beamer BA, et al. A functional variant in the PPARã2 promoter is associated with predictors of obesity and type II diabetes. Diabetes. 2003;52:1864–71.

    Article  PubMed  Google Scholar 

  95. Rong R, Hanson RL, Ortiz D, et al. Association analysis of FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, OC387761 and CDKN2B with type 2 diabetes and pre-diabetic traits in Pima Indians. Diabetes. 2009;58:478–88.

    Article  PubMed  CAS  Google Scholar 

  96. Muller YL, Hanson RL, Bian L, et al. Functional variants in MBL2 are associated with type 2 diabetes and pre-diabetic traits in Pima Indians and the Old Order Amish. Diabetes. 2010;59:2080–5.

    Article  PubMed  CAS  Google Scholar 

  97. Bian L, Hanson RL, Ossowski V, et al. Variants in ASK1 are associated with skeletal muscle mRNA expression, in vivo insulin resistance, and type 2 diabetes in Pima Indians. Diabetes. 2010;59:1276–82.

    Article  PubMed  CAS  Google Scholar 

  98. Williams RC, Muller YL, Knowler WC, et al. HLA-DRB1 reduces the risk of type 2 diabetes mellitus by increased insulin secretion. Diabetologia. 2011;54:1684–92.

    Article  PubMed  CAS  Google Scholar 

  99. Bian L, Muller YL, Ma L, et al. Variants in the acyl-coenzyme A dehydrogenase 10 (ACAD10) gene are associated with type 2 diabetes, insulin resistance and decreased lipid oxidation in Pima Indians. Diabetologia. 2010;53:1349–53.

    Article  PubMed  CAS  Google Scholar 

  100. Ma L, Hanson RL, Que LN, et al. PCLO variants are nominally associated with early onset type 2 diabetes and insulin resistance in Pima Indians. Diabetes. 2008;57:3156–60.

    Article  PubMed  CAS  Google Scholar 

  101. Muller YL, Hanson RL, Zimmerman C, et al. Variants in the Cav2.3 (α1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes. 2007;56:3089–94.

    Article  PubMed  CAS  Google Scholar 

  102. Traurig M, Hanson RL, Kobes S, et al. Protein tyrosine phosphatase 1B gene is not a major susceptibility gene for type 2 diabetes mellitus or obesity among Pima Indians. Diabetologia. 2007;50:985–9.

    Article  PubMed  CAS  Google Scholar 

  103. Ma L, Hanson RL, Que LN, et al. Variants in ARHGEF11, a candidate gene for the linkage to type 2 diabetes mellitus on chromosome 1q, are nominally associated with insulin resistance and type 2 diabetes mellitus in Pima Indians. Diabetes. 2007;56:1454–9.

    Article  PubMed  CAS  Google Scholar 

  104. Fu M, Sabra MM, Damcott C, et al. Evidence that Rho guanine nucleotide exchange factor 11 (ARHGEF11) on 1q21 is a type 2 diabetes susceptibility gene in the Old Order Amish. Diabetes. 2007;56:1363–8.

    Article  PubMed  CAS  Google Scholar 

  105. Guo Y, Traurig M, Ma L, et al. A CHRM3 gene variation is associated with decreased acute insulin secretion and increased risk for early onset type 2 diabetes mellitus in Pima Indians. Diabetes. 2006;55:3625–9.

    Article  PubMed  CAS  Google Scholar 

  106. Kovacs P, Stumvoll M, Bogardus C, et al. A functional Tyr1306Cys variant in LARG is associated with increased insulin action in vivo. Diabetes. 2006;55:1497–505.

    Article  PubMed  CAS  Google Scholar 

  107. Kovacs P, Hanson R, Lee Y-H, et al. The role of insulin receptor substrate-1 gene (IRS1) in type 2 diabetes mellitus in Pima Indians. Diabetes. 2003;52:3005–9.

    Article  PubMed  CAS  Google Scholar 

  108. Ma L, Traurig MT, Hanson RL, et al. Evaluation of A2BP1 as an obesity gene. Diabetes. 2010;59:2837–45.

    Article  PubMed  CAS  Google Scholar 

  109. Rampersaud E, Mitchell BD, Pollin TI, et al. Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch Intern Med. 2008;168(16):1791–7.

    Article  PubMed  Google Scholar 

  110. Damcott CM, Pollin TI, Reinhart LJ, et al. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes. 2006;55(9):2654–9.

    Article  PubMed  CAS  Google Scholar 

  111. Traurig M, Mack J, Hanson RL, et al. Common variation in SIM1 is reproducibly associated with body mass index in Pima Indians. Diabetes. 2009;58:1682–9.

    Article  PubMed  CAS  Google Scholar 

  112. Florez JC. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia. 2008;51(7):1100–10.

    Article  PubMed  CAS  Google Scholar 

  113. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    Article  PubMed  CAS  Google Scholar 

  114. Evan E, Eichler EE, Flint J, et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010;11:446–50.

    Article  CAS  Google Scholar 

  115. Park KS. The search for genetic risk factors of type 2 diabetes mellitus. Diabetes Metab J. 2011;35(1):12–22.

    Article  PubMed  Google Scholar 

  116. Scherer SW, et al. Challenges and standards in integrating surveys of structural variation. Nat Genet. 2007;39(Suppl):S7–15.

    Article  PubMed  CAS  Google Scholar 

  117. Itsara A, et al. Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet. 2009;84:148–61.

    Article  PubMed  CAS  Google Scholar 

  118. Wellcome Trust Case Control Consortium, Craddock N, Hurles ME, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464(7289):713–20.

    Article  PubMed  CAS  Google Scholar 

  119. Kong A, et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462:868–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie J. Baier PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baier, L.J. (2012). Prediabetes Genes in Pima and Amish. In: LeRoith, D. (eds) Prevention of Type 2 Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3314-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3314-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3313-2

  • Online ISBN: 978-1-4614-3314-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics