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the French Revolution. Yet even these enfranchise­
ments revealed telling fault lines in the revolutionary 
conception of citizenship; the National Assembly, for 
instance, insisted that the Jews must give up their 
particular identity and corporate privileges as Jews in 
order to become French citizens. Since discussions of 
free black and slave rights inevitably involved the slave 
colonies, and since France's colony of Saint Domingue 
(San Domingo) was home to the first successful slave 
revolt in history beginning in 1791, the interest in 
citizenship has also stimulated study of France's 
slave colonies. Because the French Revolution put 
both revolution and modernity on the agenda, it con­
tinually offers rich possibilities for historical and 
theoretical debate. 

See also: Bourgeoisie/Middle Classes, History of; 
Citizenship, Historical Development of; Democracy; 
Democratic Theory; Enlightenment; Freedom/Lib­
erty: Impact on the Social Sciences; Ideology: History 
of the Concept; Nationalism: General; Political Repre­
sentation; Representation: History of the Problem; 
Rousseau, Jean-Jacques (1712- 78); Social Science, the 
Idea of; Socialism: Historical Aspects; Tocqueville, 
Alexis de (1805- 59) 
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Frequentist Inference 

Frequentist Inference 

I . Data , Models, and Inference 

The starting point of a statistical analysis is a set of 
data, for example, of counts or measurements. One 
aim may be simply to study what these data have to tell 
us. If they consist of a set of real numbers we might 
want to see, for example, whether they are small or 
large; tightly concentrated or spread out, whether they 
are stable or tend to increase with time, etc. If they are 
points in the plane we can get an idea of the shape of 
this set of points, for example, whether they cluster 
about a line. The branch of statistics dealing with this 
kind of investigation used to be called descriptive 
statistics, but now goes by the name data analysis or, 
more precisely, exploratory data analysis (EDA), a 
term introduced by Tukey (see Exploratory Data 
Analysis: Univariate Methods. Instead we consider 
how we can quantify the conclusions or decisions 
drawn from an analysis. Frequentist inference requires 
that any quantifying measure be interpretable in terms 
of frequentist probability of events (see Frequentist 
Interpretation of Probability) . That is, we assume the 
data are random quantities produced by some prob­
ability distribution and that something is known about 
this distribution. For example, if we have a set of n 
measurements of some quantity, we may assume that 
these measurements are independently and identically 
distributed. We may stop there or may go further and 
make some assumptions about this common dis­
tribution. 

Statistical analyses based on such assumptions were 
common in the nineteenth century, and isolated 
instances can be found in the eighteenth century; but 
the first general framework was proposed by R. A. 
Fisher (1922) (see Fisher, Ronald A ( 1890- 1962) ). He 
states: 

The object of statistical methods is the reduction of 
data. A quantity of data which usually by its mere bulk 
is incapable of entering the mind, is to be replaced by 
relatively few quantities which shall adequately rep­
resent the whole. 
This object is accomplished by constructing a 
hypothetical infinite population of which the actual 
data are regarded as constituting a random sample. 
The law of distribution of this hypothetical population 
is specified by relatively few parameters, which are 
sufficient to describe it exhaustively in respect of all 
quantities under discussion. 

In modern terminology we might paraphrase this 
proposal by saying that we construct a mathematical 
model, according to which the data are produced by a 
probability distribution assumed to belong to some 
specified parametric family of distributions. 

What are the statistical methods based on these 
models supposed to achieve? Fisher called the aim 
'inductive inference' or 'inductive reasoning,' and 
described it variously as 'learning by experience' and 
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as 'drawing inferences from the particular to the 
general, from consequences to causes' or- using stat­
isticallanguage--'from the sample to the population.' 
'The purpose of inductive reasoning based on em­
pirical observations,' he wrote 'is to improve our 
understanding of the systems from which these obser­
vations are drawn.' 

This interpretation was criticized by Neyman ( 1961) 
who objected that 'After a conscientious effort to find 
the exact meaning of this term [inductive reasoning] I 
came to the conclusion that, at least in the sense of 
Fisher, the term is empty.' Neyman proposed instead 
that the purpose of statistical analysis is to serve as 
guide to appropriate action; and, in contrast to 
Fisher's inductive reasoning, named it inductive be­
havior (see also Neyman, Jerzy ( 1894-198/ ) ). 

Neyman's point of view was taken up by Wald who 
used it to construct a comprehensive framework for 
statistical decision making (Wald 1950). It involved 
three principal elements 

(a) A family of probability distributions repre­
senting the various possible true situations. 

(b) A set of actions from which it is the statistician's 
task to choose the most appropriate one. 

(c) A loss function which measures the loss resulting 
from any action taken for any of the possible true 
situations. 

Wald's formulation was castigated by Fisher as 
completely inappropriate for scientific work. 'It is 
important,' he wrote (Fisher 1973, p. 106) 'that the 
scientific worker introduces no cost functions for 
faulty decisions. To do so would imply that the 
purposes to which new knowledge was to be put were 
known and capable of evaluation. As workers in 
Science we aim at methods of inference which shall be 
equally convincing to all freely reasoning minds, 
entirely independently of any intentions that might be 
furthered by utilizing the knowledge inferred.' 

While it is difficult not to sympathize with Fisher's 
stress on scientific aims as an alternative to immediate 
utilitarian use, his statements are distressingly vague. 
An effort to be more specific, which still seems rather 
vague, was made by Tukey (1960). For the outcome of 
a nonaction-oriented statistical analysis he proposed 
the term 'conclusion.' Concerning the difference he 
writes: 'Conclusions are established with careful re­
gard to evidence but without regard to consequences 
of specific actions in specific circumstances. Conclu­
sions are withheld until adequate evidence has been 
accumulated.' 

The distinction between Fisher's point of view and 
that of Neyman and Wald, between conclusions and 
decisions, concerns the interpretation of the results of 
a statistical analysis. How those results are reached 
from the given model by means of frequentist inference 
forms the subject of this article. (For the frequentist 
meaning of probability see Frequentist Interpretation 
of Probability.) It includes the derivation of appro­
priate procedures, the comparison of different proc-

edures, investigating the sensitivity of a procedure to 
departures from the assumed model, and the checking 
of the suitability of the model. Another topic of 
interest, considered in Sect. 3.6, is the selection of an 
appropriate model. 

There is an alternative approach to inference which 
can embody both the decision theory aspects of the 
Neyman- Wald approach and Fisher's views on learn­
ing by experience. This is the Bayes approach which 
requires not only the frequentist's specification of a 
family of possible distributions for the observation, 
but also that the distribution of the observation has 
itself been drawn from the specified model according 
to a known probability mechanism. This is coupled 
with the subjective point of view of probability in 
which the chance of an event represents a quantitative 
measure of the observers' odds on the occurrence or 
nonoccurrence of the event. This point of view, though 
attractive, puts a burden on the observer to specify his 
or her state of mind with possibly unreasonable 
precision and, of course, leaves open the issue of the 
generalizability of the conclusions by scientists at 
large (see also Bayesian Statistics). 

The problems of inference have been the subject of 
much discourse among philosophers as well as scien­
tists whose primary interest was not statistics. We 
refer to Keynes (1921), von Mises (1928) and Jeffreys 
(1939) among others. 

A problem in discussing frequentist inference is 
that, while distinctions such as those between Fisher, 
Neyman, and Wald are required in order to formulate 
the goals of theory, they are artificial in practice. Even 
in scientific inquiry the cost of initiating extensive 
further investigation on the basis of weak evidence has 
to be kept in mind. On the other hand, the most 
interesting consequences may not be foreseen and the 
costs of actions difficult to quantify. Is foisting a 
slightly better-than-average drug with serious side 
effects on most patients better than doing nothing? 
What if the drug turns out to have major benefits for 
a small group of patients not represented in the 
original clinical trial of the drug? A chemist, E. B. 
Wilson (1952), after considering the work of the 
thinkers we mention, pleads eloquently, 'There is a 
great need for further work on the subject of scientific 
inference. To be fruitful it should be carried out by 
critical original minds who are not only well-versed in 
philosophy but also familiar with the way scientists 
actually work (and not just with the way some of them 
say they work).' 

Wilson concludes pessimistically: 'Unfortunately 
the practical nonexistence of such people almost 
suggests that the qualities of mind required by a good 
philosopher and those needed by a working scientist 
are incompatible.' 

In what follows we 
(a) begin, for illustrative purposes, by describing a 

few simple models that have arisen from a frequentist 
point of view (Sect. 2), and 
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(b) discuss by example the principal frequentist 
inference procedures (hypothesis testing, point es­
timation, confidence regions, prediction, and model 
selection) (Sect. 3). 

We use the term frequentist inference if all probabi­
lities involved (such as significance level, power, and 
coefficient) are interpreted as frequentist probabilities 
in the sense of the article (Frequentist Interpretation of 
Probability). In particular, the assertion that the value 
of such a probability is p then means that in a large 
number of independent cases with probability p of 
some outcome, we expect the outcome to occur with a 
frequency close top. In this connection it is important 
to realize that there is no need for these situations to be 
at all like each other, as long as the probability pis the 
same in each (see Neyman 1937). 

2. Some Simple Models 

Frequentist models are characterized by two principal 
features. 

(a) The variability of the data. If the observations 
were repeated , different values would be obtained. 
This variability is represented in the model by postulat­
ing that the data are generated by a probability 
distribution. 

(b) The unknown aspect of the situation which the 
statistical investigation is to elucidate. This unknown 
feature is represented in the model by the fact that the 
probability distribution of the observations is assumed 
to be only partially known. 

These two features are seen clearly in the following 
model, which was mentioned briefly in the preceding 
section. 

Example 1. (Error-measurement model) If XP ... , X,. 
denote n measurements of an unknown quantity B, 
this model can be written as 

x, = O+E,. (I) 

Here 0 represents the unknown quantity we wish to 
estimate or test. The errors E, are the source of the 
variability of the observations. This frequency model 
assumes that, in a replication of the situation, the 
unknown value of 0 would be the same but that thee's 
would take on different values. The most common 
assumption concerning their variability is that they are 
independent random variables with a common dis­
tribution with mean zero . This distribution may be 
assumed to be known. More usually it too embodies 
some unknown features; for example, its form may be 
known but it may contain an unknown scale para­
meter. 

Simpson and others toward the middle of the 
eighteenth century considered various possible forms 
for this distribution; but by the early nineteenth 
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century it was agreed generally that the most suitable 
distribution of such measurement errors, in most cases, 
was the normal. The basis for this belief was the 
hypothesis of 'elementary errors,' which assumes that 
observational errors are the sum of a large number of 
small, elementary errors; and, by the Central Limit 
Theorem, are therefore approximately normally distri­
buted. 

If the ~: ' s in (I) are assumed to be independently 
normally distributed with the mean 0 and variance a 2, 

the model (I) is equivalent to assuming that 

XP"'' X,. are independent N(O, a'). (2) 

Example 2 (Normal one-sample model) Model (2) 
arises also in contexts quite different from the 
measurement situation described above. Suppose X is 
some numerical characteristic of a person such as 
height, weight, blood pressure, intelligence, etc., or of 
an animal, plant or manufactured product. However, 
this time we are not taking several observations X, 
on the same subject but one observation each on differ­
ent subjects drawn at random from a population 
which, in the model, we shall assume to be infinitely 
large. In this setting 0 is the mean value of X in the 
population, and (2) is called the normal one-sample 
model. (The measurement situation can be viewed as 
a special case if one considers the n measurements 
actually taken as a sample from an essentially infinite 
number of measurements that could be taken.) 

In these applications the assumption of normality is 
frequently made even though it is often not suitable 
and each situation ought to be considered in its own 
right. Often normality can be brought closer by 
applying it not to the observations X, themselves but 
to some transformation T(XJ In other cases the 
normal model (2) is replaced by the more general 
model 

X, ... , X,. are independently distributed 

according to F(x - 0) (3) 

where F has mean zero and otherwise is arbitrary, or 
where it is assumed to bean arbitrary distribution that is 
symmetric about zero. Some smoothness conditions 
may also be imposed; for example, that Fhas a density 
f 

Example 3. (Linear Model) Large areas of statistical 
methodology are based on the following extension of 
(1), due to Gauss (1809) and known as the linear 
model 

p 

X, = '[Jl;z,;+e, (i = I, ... , n) (4) 
j -1 
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where the z' s are known constants (sometimes called ex­
plana tory variables) and the P's unknown parameters. 
The ~:' s are the observational errors as before and are 
assumed to have expectation zero. 

Examples of (4) abound. Here are a few . 
(a) The measurement model (I) is the special case of 

(4)withp= l , z,2 = I andp, =0. 
(b) The two-sample problem with n 1 +n2 in-

dependent variables X~> ... , X, : N(O" a 2) and 
X, ,+" .. . , X, ,H<,: N(02 , a 2) corresponds top= 2, 

z11 = · · = z, .. = I, z1, ,+1 = .. · = z1,,+,, = 0, 

(5) 

and 

(6) 

(c) The k-sample model is defined analogously. The 
two-way layout without interactions assumes that the 
variablesX,1k(k = i , ... ,n,;; i= l , .. . , a;j= l, .. . , b)are 
independent normal with common variance a 2 and 
with means 

(7) 

The k-sample model and the two-way layout are the 
simplest cases of analysis of variance models. 

Another important class of examples of (4) are 
models for regression. The simplest case is 

(d) Simple linear regression, given by 

X, = a:+Pt,+e, (8) 

where the t's are known constants, and a: andPunknown 
parameters. 

This is a special case of 
(e) Polynomial regression, with 

X, =/(t,)+ e, (9) 

where f is a polynomial (for example, quadratic) of 
known degree and with unknown coefficients. 

Other functions J, of course, are also possible. 
A modification of (4) that is sometimes suitable is to 
have some of the z's random. For example (7) in some 
situations is replaced by 

X,;,= tl+A ,+ P;+e,j.I-P; = O) (10) 

where the A's are unobservable random variables 
assumed to be independent N(O, a~) and independent 
of e. For more, see Linear Hypothesis. 

When the distribution of the observational errors 
thee's in (I) and (4) is specified, the models considered 
so far are parametric, that is, they can be smoothly 
parameterized by Euclidean labels. Models such as (3) 
with the distributional form of errors unspecified up to 

symmetry are semi parametric. Non parametric models 
are ones in which as little is assumed as possible. 

Example 4. (Nonparametric regression) This model is 
suitable in situations where, on each member of a 
sample of size n from some population, we observe 
not only a response Y but also observe characteristics 
(covariates) Z = (Z~> ... , Zk) . For example, Y might 
be the income of a randomly sampled individual, z, 
might be age, Z 2 educational level, etc. Of principal 
interest here is the average relation between Y and Z 

E(YIZ, = Zp ... , zk = zk) = m(z, ... , z.). (II) 

If we assume nothing about the form of m, then 
subject to the assumptions that El Yl < oo and that 
(Y1, Z1) , ... , (Y,, Z,) are independent and identically 
distributed, this model is completely general since we 
can always write 

Y, = m(Z11 , ... , z,.)+e, 

where E(e,IZ,) = 0. Note that if we assume 

k 

m(z., .. . , z.) = '[.P1z1, 

j -1 

(12) 

then, given z, = z, (i = I, .. . , n) we are back in the 
linear model (4). 

In order to identify min (12) we need to make some 
assumptions, for instance that m is continuous. 

An important method for constructing more com­
plex models from simpler ones is that of hierarchical 
models. As exemplified in (10), such models often 
contain unobservable random variables which are 
themselves of interest. 

From this point of view Bayes models can be 
considered as two-stage hierarchical models in which 
the first stage is a frequentist model involving unobserv­
able parameters for which the Bayes model specifies a 
distribution as a second stage. If the frequentist model 
is itself hierarchical, a last stage is added when the 
model is Bayesianized. To this difference- that the 
unknown parameters of the frequentist model become 
unobservable random variables in the corresponding 
Bayes model of course, is added the difference in 
interpretation of the probabilities involved as fre­
quentist or subjective. 

3. Inference Methods 

As indicated in Sect. I linked closely with the frequen­
tist paradigm is that of decision theory. The principal 
types of problems considered in that framework are 

(a) hypothesis testing, 
(b) point estimation, 
(c) confidence regions, 
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(d) prediction, 
(e) model selection. 

We shall discuss these in the above order. 

3.1 Hypothesis Testing 

Wald's decision theory grew out of the Neyman­
Pearson theory of hypothesis testing (Neyman and 
Pearson 1933) which the authors formulated as 
choosing between two decisions, whether a prespeci­
fied statement (the hypothesis H) about the distri­
bution P generating the data is or is not correct. If 
0E0 parameterizes the model, this is equivalent to 
determining whether H:OE00 or the alternative 
K:OE01 is true. 

This formulation is satisfactory in many practical 
contexts such as occur, for example, in medicine, 
agriculture, or industry. For instance, in Example 3(b) 
the two samples may correspond to control and 
treatment groups of patients. In Example 3(b) the 
assumption of normality is made, and implicitly that 
of an additive treatment effect measured by the 
difference 02 -01. The hypothesis to be tested is usually 
formulated as H: 02 ,;;; 01; i.e., that the treatment has 
no beneficial effect. The alternative K: 02 > 01 claims 
the existence of a beneficial effect. 

The test for this problem is a test function t5 which 
takes on the values J(x) = 0 or J(x) = I for the sample 
points x for which we decide to accept or reject H. The 
performance of such a test is measured by the 
probabilities of 

(a) Type I errors- rejecting H when His true, and 
(b) Type II errors- accepting H when His false, 
that is, by the probabilities 

P0[b(x) = I) when 0E00 and 

P,[J(x) =OJ when 0E0 1• (13) 

The test t5 is required to satisfy the condition 

P0(Type I error),;;; !X for all 0E00 . (14) 

where the level Ct. of the test is preassigned (usually as 
0.05 or 0.01) as the maximum probability of false 
rejection to be tolerated. Subject to (14) we look for 
tests t5 which make P0 (Type II error) as small as 
possible. 

This formulation is meaningful if it is possible to 
distinguish sharply between hypothesis and alterna­
tives, between those 0-values for which rejection of H 
is clearly desirable or undesirable . In Example 3(b), 
for instance, we can specify that only beneficial effects 
exceeding ea (for some given e > 0) are of interest. 
Such a distinction is often possible in the contexts we 
have mentioned. 

The Neyman- Pearson formulation of hypothesis 
testing in terms of the two types of error works well 
when we have clear definitions of both the hypothesis 
and the alternatives. In scientific contexts it is often the 

Frequentist Inference 

case that the hypothesis is clear but the alternatives are 
vague. It is then the unlikelihood of observations that 
would be surprising if the hypothesis were true (but 
less so if the vaguely entertained alternatives were 
valid) which takes on particular significance. It is still 
necessary to define a test statistic Tand to suppose the 
hypothesis is rejected when its values are sufficiently 
large, since such values would be surprising if H were 
true but not if H were false. Then the probability of 
observing values greater than or equal to the observed 
value ofT is the p-value or significance probability of 
the hypothesis. If it is sufficiently small, it draws 
attention to anomalies not expected under H. The 
calculation of such probabilities is central to science. 
However, whether such attention should be followed 
by action as assumed in the Neyman-Pearson theory 
depends on extraneous considerations. 

The Bayesian approach to testing assigns prior 
probabilities to hypothesis and alternative and calcu­
lates the ratio of posterior probabilities, the Bayes 
factor, as a measure of evidence in favor of or against 
the hypothesis rather than the significant probability. 
This approach is very attractive in providing exactly 
what everyone wants: the probability of the hypothesis 
being true, given the data. However, this probability 
depends on the prior probability distribution assigned 
to the parameters; and these priors can overwhelm 
strong opposite data evidence. Disparate priors can 
result in conflicting conclusions based on the same 
data by analysts holding different prior opinions (see 
also Hypothesis Testing in Statistics) . 

3.2 Point Estimation 

The decision-oriented point of view of Neyman and 
Pearson led to the full-fledged decision theory of 
Wald, based on assigning losses to the consequences of 
inappropriate decisions. Perhaps the most successful 
example of this approach is point estimation (for 
which the idea of loss functions had already been 
discussed by Gauss and Laplace). 

The prototypical estimation problem is that of 
estimating an unknown physical constant subject to 
measurement error discussed in Example I . The loss 
function most commonly considered is squared error 
leading to its expected value, the mean squared error 
(MSE), as its risk. The standard assumption of 
independent normal errors with mean zero and com­
mon variance implies that the sample mean X is the 
appropriate estimator according to a number of 
different criteria. 

(a) Minimax. This is a worst case analysis in which 
the maximum risk is minimized. 

(b) Uniform minimum variance unbiased. An es­
timator of (} is said to be unbiased if its 
expectation is equal to 0. For unbiased estimators the 
MSE is equal to the variance; and, in the present case, 
X minimizes the variance among all unbiased esti­
mators. 
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(c) Maximum likelihood (ML) . This is a non­
decision-theoretic approach based on the likelihood 
the density of the data viewed as a function of the 
parameter. Fisher considered the likelihood of an 
observation as a measure of support for the different O­
va lues that might have generated it and proposed the 
0-value maximizing it as an appropriate estimator of 0. 
When a uniform prior distribution can be placed on 
the parameter, the ML estimator is just the mode of 
the posterior distribution. However, when 0 ranges 
over the infinite line (as is the case in the measurement 
model and many others), no uniform probability 
distribution for 0 exists; and only an 'improper Bayes' 
interpretation is then possible. 

The ML principle is popular for a number of reasons 
(a) general applicability, 
(b) invariance under reparameterization, 
(c)in cases such as Example 2, where meaning can be 

attached to 'large sample sizes,' the method is approxi­
mately optimal, 

(d) in many standard cases it leads to explicit 
solutions. 

However, there are examples in which the resulting 
estimators are completely misleading, (LeCam 1990, 
Ferguson 1996). In particular, ML is either not 
applicable or can lead to very poor results in many 
non- and semiparametric models such as Example 4. 
For a general discussion of different approaches to 
estimation see, for example, Bickel and Doksum 
(2000), Lechmann and Casella (1998). 

The assumption of joint normality of the data, for 
instance in Examples 1- 3, is often seriously in doubt. 
In such cases robustness criteria are invoked and lead 
to alternatives to the linear procedures appropriate for 
normally distributed data. For example, the median 
rather than the mean (or some intermediate trimmed 
mean) might be used in Example I , and minimum L 1 

(least absolute values) rather than L 2 (least squares) 
estimators in Example 3. For an extended discussion 
of robustness see Hampel eta!. (1986) and Staudte and 
Sheather (1990). 

33 Bayes Estimation 

Still another principle is that of Bayes estimation, i.e. , 
minimizing the expected risk under a prior distribution 
n of the parameter 0. Since this is the same as 
minimizing the average risk, averaged with respect to 
the weight-function n, such estimators are of interest 
both from a Bayesian and a frequentist point of view. 
For estimating a real-valued parameter g(O) with data 
X and squared error loss, the Bayes estimator is 

E[g(O)IX] (IS) 

the mean of the posterior distribution of g(O) given X. 
Bayes estimators are essentially never unbiased 

(Girshick and Savage 1951) since they naturally 'pull' 

the estimator toward one's prior opinion, the prior 
mean of g(O). For example, in the one-sample model of 
Example 2. If n is normal (Jl., r 2), the Bayes estimator 
IS 

-+- -+-( nX Jl.)/(n I) 
a2 r 2 a 2 r 2 • 

(16) 

Frequentist and Bayes inference generally merge for 
large sample sizes since the data then wash out the 
influence of the prior distribution (provided the prior 
does not exclude parts of the sample space); see, for 
example, Blackwell and Dubins (1962). 

In estimation even more can be said. If the prior 
distribution is locally uniform, Bayes estimators are 
asymptotically optimal in a frequentist sense by the 
Bernstein- von Mises theorem (see, for example, 
Lehmann and Casella 1998, Bickel and Doksum 2000). 
This is, however, a limit result; in practice, the effect of 
a strong prior often persists even for substantial 
sample sizes. 

Both aspects can be illustrated by the Bayes es­
timator (16). For fixed Jl., the difference of this 
estimator from Xis of the order 1/m'. For fixed r 2, it 
is accordingly of the order 1/n, while the difference of 
both estimators from() is of the order 1/vn. On the 
other hand, the convergence of (16) can become 
arbitrarily slow if r 2 -> 0 as n-> oo . The basic message 
is that optimal frequentist estimators are appropriate 
for Bayesian problems and vice versa. 

For the sake of simplicity, we have here focused 
attention to the estimation of real-valued parameters. 
Of course, estimation problems arise also for multi­
variate parameters (for instance, in Example 3) and for 
function-valued parameters such as the function m in 
Example 4 or in the estimation of an unknown density. 
Squared error loss is then replaced by summed or 
integrated MSEs. However, the univariate and multi­
variate situations present unexpected differences. For 
example, the typically unique minimax estimator of 
the univariate case is replaced by an infinite set of 
minimax estimators; and among these the natural 
extension of the classical univariate estimator is no 
longer optimal (Stein 1956). 

Point estimates by themselves are hardly ever 
sufficient . Typically one also requires an idea of the 
error committed in using the estimator; that is, an 
estimate of the MSE. This is again the problem of 
estimating a parameter, and there is little to add. 
However, interpretation of the estimated measure of 
error is often difficult. It is clarified by the concept of 
confidence estimation, which we take up next. 

3.4 Confidence Regions 

When estimating 0 in the measurement error model of 
Example I , it is customary to indicate the reliability of 
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the estimate X by attaching to it the error estimate 
±S/Vn with S' = ~(X,-X)2j(n - 1) as a proxy for 
± rJ I Vii. In the case of normal errors with mean zero. 

P11 [ X- ~ ,;; 0 ,;; X+~ ] = 0.67 for all 0. 

( 17) 

If rJ is known, (17) provides intervals of fixed length 
(and with random midpoints) which, in many repeti­
tions of the experiment of taking n measurements, will 
'cover' the true 0 67 percent of the time whatever are 
the true values of 0 and rJ. The intervals (17) are 
confidence intervals for 0 with confidence coefficient 
0.67. 

In practice, rJ is usually unknown. We can then 
obtain confidence intervals for 0 by replacing rJ by its 
estimatorS. If t. is the 100(1 - rx/2) percent point of 
the /-distribution with n - I degrees of freedom, the 
intervals 

cover the true 0 with probability 1- rx so that the 
statement (18) is correct about 100(1-rx) percent of 
the time. The length of the intervals is no longer fixed 
but random, its length tending to increase as the 
accuracy of the observations (the inverse of which is 
measured by rJ and estimated by S) decreases. 

In general, in estimating a parameter 0 taking values 
in an arbitrary space 0 , a 100 (1 - rx) percent confi­
dence region for 0 is a random subset C(X) of 0, 
depending on the data with the property that 

P[OEC(X)];;, 1-rx (19) 

for all probability distribution P in the model. Here 
the region C(X) can, for example, be an interval as 
above, an ellipse as in the Scheffe regions for the 
parameters of the linear model in Example 3, or a 
'band' about an unknown distribution function. 

Confidence regions can be viewed as simultaneously 
making statements about the acceptability of a family 
of hypotheses (see Lehmann 1986). In particular, they 
provide a measure of the acceptability of the alterna­
tives. A 95 percent confidence interval for the treat­
ment effect of Example 3(b), for instance, which 
includes zero, tells us not only that the null hypothesis 
is accepted at the 5 percent level but also specifies all 
alternatives to the null hypothesis which are accepted 
at that level. An interval which does not contain zero 
but to which zero is close suggests that although we 
have seen something that is surprising under the null 
hypothesis, the data are consistent with alternatives 
that do not differ materially from zero. 

The interpretation of confidence regions is concep­
tually difficult because the probability statements refer 
not to any random variation of the parameter, which, 
although unknown, is considered fixed, but to that of 

Frequentist Inference 

the data-dependent region. In contrast, a Bayesian 
analysis views 0 as random and constructs credible 
regions C*(X) such that the posterior probability of 0 
falling into C*(X) is ;;, 1-rx. This is just the kind of 
conclusion one would like to make; but, as in the case 
of testing, tends to be strongly influenced by assump­
tions concerning the prior. 

Again, as in point estimation, Bayes regions derived 
on the basis of optimality criteria of size (length, 
volume, etc.) for large sample sizes agree approxi­
mately with frequentist confidence regions satisfying 
minimax size properties subject to fixed probability of 
coverage (see also Estimation: Point and Interval) . 

3.5 Prediction 

This is the part of freq uentist inference that is closest 
to the Bayesian approach and that fits least well into 
the decision-theoretic framework. Typically we are 
given a sample from a population of the form (Z,, Y,), 
i = 1, ... , n where Z, is a vector of predictors. Using 
this sample (which provides information concerning 
the relationship of Z and Y) and a new z.+l we wish to 
predict the unobserved Y.+ 1• The predictor of Y•+I is a 
function 

b(Z; Z" Y" ... , z., Y,) = J(Z) 

such that J(Z,.+1) is used to predict Y.,+ 1• In the 
continuous case (regression), the classical measure of 
loss resulting from incorrect prediction is squared 
error, 

[Y.+l -Jcz .. +l)J2. 

On the other hand, in the case of categorical 
variables taking on values { 1, .. . , k}(classification), the 
s,tandard loss function takes on the value 0 if Y,.+ 1 = 
b(Z.,+1) and I otherwise. Prediction has the attractive 
feature that it allows non parametric estimates of error 
since for any procedure we can compute its per­
formance by applying it to the training ,sample on 
which it was built, for instance, (1/n)~;'jb(Z,)- Y)2 • 

This measure typically underestimates error, but 
techniques such as cross validation can be used to 
adjust it. 

3.6 Model Selection 

An important aspect of a frequentist analysis is the 
specification of a model. As an illustration, consider 
Example 3(e) where the regression function is assumed 
to be well approximated by a polynomial. Suppose the 
errors are normally distributed with zero mean and 
common variance. To complete the specification of the 
model, it is then necessary to decide on the degree d of 
the polynomial. With classical (least squares) pre­
diction methods, the variance of the prediction error 
increases and its bias decreases with d. On a frequentist 
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