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Consider the problem of simultaneously testing null hypotheses 
H 1 , .. . , Hs . The usual approach to dealing with the multiplicity problem is to 
restrict attention to procedures that control the familywise error rate (FWER), 
the probability of even one false rejection. In many applications, particularly 
if s is large, one might be willing to tolerate more than one false rejection 
provided the number of such cases is controlled, thereby increasing the abil
ity of the procedure to detect false null hypotheses. This suggests replacing 
control of the FWER by controlling the probability of k or more false rejec
tions, which we call the k-FWER. We derive both single-step and stepdown 
procedures that control the k-FWER, without making any assumptions con
cerning the dependence structure of the p-values of the individual tests. In 
particular, we derive a stepdown procedure that is quite simple to apply, and 
prove that it cannot be improved without violation of control of the k-FWER. 
We also consider the false discovery proportion (FDP) defined by the number 
of false rejections divided by the total number of rejections (defined to be 0 if 
there are no rejections) . The false discovery rate proposed by Benjamini and 
Hochberg [J. Roy. Statist. Soc. Ser. 8 57 (1995) 289-300} controls E(FDP) . 
Here, we construct methods such that, for any y and a, P{FDP > y}::; a. 
Two stepdown methods are proposed. The first holds under mild conditions 
on the dependence structure of p-values, while the second is more conserva
tive but holds without any dependence assumptions. 

1. Introduction. In this paper, we will consider the general problem of 
simultaneously testing a finite number of null hypotheses Hi, i = 1, ... , s. We 
shall assume that tests for the individual hypotheses are available and the problem 
is how to combine them into a simultaneous test procedure. The easiest approach is 
to disregard the multiplicity and simply test each hypothesis at level a. However, 
with such a procedure the probability of one or more false rejections increases 
with s . When the number of true hypotheses is large, we shall be nearly certain to 
reject some of them. 

A classical approach to dealing with this problem is to restrict attention to 
procedures that control the probability of one or more false rejections. This 
probability is called the familywise error rate (FWER). Here the term "family" 
refers to the collection of hypotheses H1, •• • , Hs that is being considered for joint 
testing. Which tests are to be treated jointly as a family depends on the situation. 
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Once the family has been defined, control of the FWER (at joint level a) 
requires that 

(1) FWER :sa 
for all possible constellations of true and false hypotheses. A quite broad treatment 
of methods that control the FWER is presented in [4]. 

Safeguards against false rejections are of course not the only concern of multiple 
testing procedures. Corresponding to the power of a single test, one must also 
consider the ability of a procedure to detect departures from the hypothesis when 
they do occur. When the number of tests is in the tens or hundreds of thousands, 
control of the FWER at conventional levels becomes so stringent that individual 
departures from the hypothesis have little chance of being detected. For this reason, 
we shall consider an alternative to the FWER that controls false rejections less 
severely and consequently provides better power. 

Specifically, we shall consider the k-FWER, the probability of rejecting at 
least k true null hypotheses. Such an error rate with k > 1 is appropriate when 
one is willing to tolerate one or more false rejections, provided the number of false 
rejections is controlled. 

More formally, suppose data X is available from some model P E Q . A general 
hypothesis H can be viewed as a subset w of n. For testing H; : P E w;, i = 
1, ... , s, let I (P) denote the set of true null hypotheses when P is the true 
probability distribution; that is, i E I (P) if and only if PEw;. Then, the k-FWER, 
which depends on P, is defined to be 

(2) k-FWER =?{reject at least k hypotheses H; with i E I (P)}. 

Control of the k-FWER requires that k-FWER :Sa for all P, that is, 

(3) ?{reject at least k hypotheses H; with i E /(P)} :Sa for all P. 

Evidently, the case k = 1 reduces to control of the usual FWER. 
We will also consider control of the false discovery proportion (FDP), defined 

as the total number of false rejections divided by the total number of rejections 
(and equal to 0 if there are no rejections). Given a user specified value y E (0, 1), 
the measure of error control we wish to control is P { FDP > y} and we derive 
methods where this is bounded by a. 

Recently, there has been a flurry of activity in finding methods that control error 
rates that are less stringent than the FWER, which is no doubt inspired by the 
FDR controlling method of Benjamini and Hochberg [ 1] and applications such as 
genomic studies where s is so large that control of the FWER is too stringent. For 
example, Genovese and Wasserman [3] study asymptotic procedures that control 
the FDP (and the FDR) in the framework of a random effects mixture model. These 
ideas are extended in [9], where in the context of random fields the number of 
null hypotheses is uncountable. Korn, Troendle, McShane and Simon [8] provide 
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methods that control both the k-FWER and FDP; they provide some justification 
for their methods, but they are limited to a multivariate permutation model. 
Alternative methods of control of the k-FWER and FDP are given in van der Laan, 
Dudoit and Pollard [13]; they include both finite sample and asymptotic results. 
Surprisingly, the methods presented here are distinct from the above techniques. 
Our methods are not asymptotic and hold under either mild or no assumptions, as 
long as p-values are available for testing each individual hypothesis. 

Before describing methods that provide control of the k-FWER and FDP, we 
first recall the notion of a p-value, since multiple testing methods are often 
described by the p-values of the individual tests. Consider a single null hypothesis 
H: P E w. Assume a family of tests of H, indexed by a, with level a rejection 
regions Sa satisfying 

(4) P{X E Sa} :5 a for all 0 < a < 1 , P E w, 

and 

(5) whenever a < a'. 

Then the p-value is defined by 

(6) p = p(X) = inf{a: X E Sa}. 

The important property of a p-value that will be used later is the following. 

(7) 

(8) 

LEMMA 1 . 1. Assume p is defined as above. 

(i) If P E w, then 

P{p :5 u} :5 u. 

(ii) Furthermore, 

P{p :5 u};:: P{X E Su}. 

Therefore, if the Sa are such that equality holds in (4), then p is uniformly 
distributed on (0, 1) when P E w. 

PROOF. Assume P E w. To prove (i), note that the event {p :5 u} implies 
{X E Su+s} for any small£ > 0. Therefore, 

P{p :5 u} :5 P{X E Su+d :5 u + £ 

by assumption (4). Now let £ ---+ 0. To prove (ii), the event {X E Su} implies 
{p :5 u}, and so (8) follows. 0 

Two classic procedures that control the FWER are the Bonferroni procedure 
and the Holm procedure. The Bonferroni procedure rejects Hi if its corresponding 
p-value satisfies Pi :5 a j s. Assuming Pi satisfies 

(9) P {p; :5 u} :5 u for any u E (0, I) and any P E w;, 
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the Bonferroni procedure provides strong control of the FWER. Unfortunately, 
the ability of the Bonferroni procedure to detect cases in which Hi is false will 
typically be very low since Hi is tested at level a Is which-particularly if s is 
large-is orders smaller than the conventional a levels. 

For this reason procedures are prized for which the levels of the individual tests 
are increased over a Is without an increase in the FWER. It turns out that such a 
procedure due to Holm [5] is available under the present minimal assumptions. 

The Holm procedure can conveniently be stated in terms of the p-values 
PI, ... , Ps of the s individual tests. Let the ordered p-values be denoted by 
PCI)::; · · ·::; P(s)• and the associated hypotheses by H(l) .... , Hcs)· Then the Holm 
procedure is defined stepwise as follows: 

Step 0. Let k = 0. 

Step 1. If Pck+l) > al(s- k), go to step 2. Otherwise set k = k + 1 and repeat 
step 1. 

Step 2. Reject H(J) for j ::; k and accept Hen for j > k. 

The Bonferroni method is an example of a single-step procedure, meaning any 
null hypothesis is rejected if its corresponding p-value is less than or equal to a 
common cutoff value (which in the Bonferroni case is als). The Holm procedure 
is a special case of a class of stepdown procedures, which we now briefly describe. 
Let 

(10) 

be constants. If PC!) > a1, reject no null hypotheses. Otherwise, if 

(11) 

reject hypotheses H(t), ... , Her) where the largest r satisfying (11) is used. That 
is, a stepdown procedure starts with the most significant p-value and continues 
rejecting hypotheses as long as their corresponding p-values are small. The Holm 
procedure uses ai = al(s- i + 1). 

2. Control of the k-FWER. The usual Bonferroni procedure compares each 
p-value Pi with als. Control of the k-FWER allows one to increase als to kals, 
and thereby greatly increase the ability to detect false hypotheses. That such a 
simple modification results in control of the k-FWER is seen in the following 
result. 

THEOREM 2.1 . For testing Hi : P E Wi, i = 1, ... , s, suppose Pi satisfies (9). 
Consider the procedure that rejects any Hi for which Pi ::; ka Is. 
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(i) This procedure controls the k-FWER, so that (3) holds. Equivalently, if each 
ofthe hypotheses is tested at level kajs, then the k-FWER is controlled. 

(ii) For this procedure, the inequality (3) is sharp in the sense that there exists 
a joint distribution for (PI, ... , Ps) for which equality is attained in (3). 

PROOF. (i) Fix any P and suppose Hi with i E I = I (P) are true and the 
remainder false, with I I I denoting the cardinality of I. Let N be the number of 
false rejections. Then, by Markov's inequality, 

E(N) E[ LiEI(P) /{pi~ kajs}] " P{pi ~ kajs} 
P{N > k} < -- = = '--' 

- - k k iEI(P) k 

" kajs a 
~ L -- = I/(P)I- ~a. 

iE/(P) k S 

To prove (ii), consider the following construction. Pick k indices at random 
without replacement from { 1, ... , s}. Call them J. Given i E J, let Pi = V 1, where 
V1 is uniform on (0, kjs), that is, V1 ""'V(O, kjs). Given i ~ J, let Pi= V2, where 
V2 is independent of V1 and V2'"" V(kjs, 1). Then, unconditionally, 

Pi""' ~v(o, ~) + (1- ~)v(~. 1) '""vco, 1). 

Indeed, if u ~ k/ s, 

~ k u 
P{pi ~ u} = P{i E J} · P{VI ~ u} = ~ · kjs = u 

and if u?:.. kjs, 

P{pi ~ u} = P{i E J} · 1 + P{i ~ J} · P{V2 ~ u} = ~ + (1- ~). u- kjs = u . 
s s 1- kjs 

Now exactly k of the Pi are less than or equal to kjs by construction. The prob
ability that these are all less than or equal to akjs is 

P{vl ~ ak} = akjs =a. 0 
s kjs 

As is the case for the Bonferroni method, the above single-stage procedure can 
be strengthened by a Holm type of improvement. Consider the stepdown procedure 
described in ( 11 ), where now we specifically consider 

l ka 
' s 

ai= 
ka 

i ~ k, 
(12) 

i > k. 
s+k-i' 

Of course, the ai depend on s and k, but we suppress this dependence in the 
notation. 
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THEOREM 2.2. For testing H;: P E w;, i = 1, ... , s, suppose p; satisfies (9). 
The stepdown procedure described in (11) with a; given by (12) controls the 
k-FWER, that is, (3) holds. 

PROOF. Fix any P and let I (P) be the indices of the true null hypotheses. 
Assume I I ( P) I ::: k or there is nothing to prove. Order the p-values corresponding 
to the I/ (P)I true null hypotheses; call them 

q(l) ::5 ... ::5 qil(P)i· 

Let j be the smallest (random) index satisfying P(j) = q(k)· so 

(13) k ::5 j ::ss -1/(P)I +k 

because the largest possible index j occurs when all the smallest p-values 
correspond to the s -1/(P)I false null hypotheses and the next I/(P)I p-values 
correspond to the true null hypotheses. So P(j) = q(k) . Then our generalized Holm 
procedure commits at least k false rejections if and only if 

P(l) ::5 a]' 

which certainly implies that 

.. . ' 

A A ka 
q(k) = P(j) ::5 a J = + k . s -} 

But by (13), 

ka ka 
---<--
s + k- j - ll(P)I 

So the probability of at least k false rejections is bounded above by 

{

A ka } 
P q<k)::Sil(P)I. 

By Theorem 2.l(i) the chance that the kth largest among I (P) p-values is less 
than or equal to kalll (P)I is less than or equal to a. 0 

REMARK 2.1. Evidently, one can always reject the hypotheses corresponding 
to the smallest k - 1 p-values without violating control of the k-FWER. 
However, it seems counterintuitive to consider a stepdown procedure whose 
corresponding a; are not monotone nondecreasing. In addition, automatic rejection 
of k - 1 hypotheses, regardless of the data, appears at the very least a little 
too optimistic. To ensure monotonicity, our stepdown procedure uses a; = ka Is. 
Even if we were to adopt the more optimistic strategy of always rejecting the 
hypotheses corresponding to the first k - 1 hypotheses, we could still only reject k 
or more hypotheses if P<k) ::5 ka Is, which is also true for the specific procedure of 
Theorem 2.2. 
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REMARK 2.2. If the p-values have discrete distributions, it is possible that 
there may be ties among them. However, the proof remains valid regardless of 
how tied p-values are ordered because monotonicity of the a; ensures that all 
hypotheses with a common tied p-value will be rejected if any of them are rejected. 

The question naturally arises whether it is possible to improve the procedure 
further by increasing the critical values a 1, a2, ... without violating control of the 
k-FWER (3). By the previous remark we can always increase a; to 1 for i < k. 
A more interesting question is whether we can increase a; for i 2: k. We will show 
that this is not possible by exhibiting for each i 2: k a joint distribution of the 
p-values for which 

(14) P{P(1) "S a1, P(2) "S a2, .. . , P(i-1) "S a;-1, P(i) "S ai} =a. 

Moreover, changing a; to {3; > a; results in the right-hand side being greater 
than a. Thus, with i 2: k, one cannot increase a; without violating the k-FWER. 
Then, having picked a1, ... , ak, .. . , a; _ 1, the largest possible choice for a; is as 
stated in the algorithm. 

THEOREM 2.3. (i) Let the a; be given in (12). For any i 2: k there exists a joint 
distribution for P1, ... , Ps such that s + k - i of the p; are uniformly distributed 
on (0, 1) and (14) holds. 

(ii) For testing H; : P E w;, i = 1, . .. , s, suppose p; satisfies (9). For the 
stepdown procedure (11) with a; given in (12), one cannot increase even one of 
the constants a; (fori 2: k) without violating the k-FWER. 

Before proving the theorem, we make use of the following lemma. 

LEMMA 2.1 . Fix k, u and constants 0 < fJI S fJ2 S · · · S fJk S u. Assume for 
every j = 2, . . . , k, 

j ({3 j - f3 j- 1 ) < 1. 
{3j -

(15) 

Then there exists a ;oznt distribution for (qi, ... , qk) satisfying the q; are 
marginally uniform on (0, u) such that the ordered values q(l) S · · · S q(k) satisfy 

(16) 

PROOF. The proof is by induction on k. The result clearly holds for k = 1. 
With probability fJkfu we will construct (qt, . .. , qk) equal to ({it, ... , i/k), where 
ij; ·"' U (0, fJk) for i = 1, . .. , k and such that their ordered values ij(l) S · · · S ij(k) 
satisfy 

(17) p { q(l) "S fJ1, · · · , q(k) "S {Jk} = 1. 
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But, with probability 1 - fhfu, construct the ijj to be conditionally distributed as 
U (f3k, u). Then unconditionally the q j satisfy ( 16) and are marginally distributed 
as U(O, u). So it suffices to construct the ijj satisfying ijj "'U(O, f3k) and (17). 

Let f3o = 0 and fori= 1, ... , k let£;= {(f3;-J, {3d} and p; = {3;- f3i-l· First 
construct Y1, ... , Yk-1, each taking values in (0, f3k- I] such that their ordered 
values Ycl) .:5 · · · .:5 Y(k-1) satisfy 

(18) P{Y(I) .:5 f3J, ... , Yck-1) .:5 f3k-d = 1 

andY; is uniform on (0, f3k-d· This is possible by the inductive hypothesis, since 
we can assume the result holds for k - 1 as long as f3t, ... , f3k and u satisfy the 
stated conditions; in particular, we apply the result with u = f3k-l· Next, let Yk be 
uniform on £; with probability 8 p; fori = 1, ... , k- 1 and let it be uniform on Ek 
with probability 1 - 8f3k-1, where e satisfies 

(19) 8 = _1_[1 _ k(f3k- f3k-I)J. 
f3k-l f3k 

Finally, let ii.1, ... , ii.k be a random permutation of Y1, ... , Yk. Because of (18) and 
the fact that Yk .:5 f3k, the ordered values of Y1 , ... , Yk and hence the ordered values 
of ii.1, ... , ii.k satisfy ( 17). Furthermore, it is easy to check that ij; falls in E j with 
probability p j and so ij; is U (0, f3k ). Indeed, if j < k, the probability that ij; falls 
in E j, conditional on ij; not being equal to Yk. is pi/ f3k-l and is 8 p; in the latter 
case, which unconditionally is 

k- 1 Pi 1 
-k- . f3k-l + k8Pi = p;, 

and similarly for the probability that q; falls in Ek. The only detail that remains 
is to note that this construction with 8 defined in (19) is possible only if 8 p; and 
1- 8f3k - I are all values in (0, 1). But 

1 - Llf3 = k(f3k - f3k- I) 
u k-1 ' 

f3k 

which is certainly~ 0 since f3k ::::_ f3k-I· It is also .:5 1 by the assumption (15). Also, 

8p; =__f.!_. [1- k(f3k- f3k-d]. 
f3k-l f3k 

But the first factor pi/ f3k-l is in (0, 1) as is the latter by the above, and so the 
product is in (0, 1). D 

PROOF OF THEOREM 2.3. The case i = k follows from the construction 
in the proof of Theorem 2.1. Let the first i - k of the p j be identically equal 
to 0. (Actually, rather than point mass at 0, any distribution supported on [0, a 1) 

will do.) For the remaining s' = s + k- i p-values pj. j = i - k + 1, ... , s, 
randomly choose k indices from i - k + 1, ... , s. The k that are chosen will be 
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marginally U (0, k Is') and have a joint distribution which will be specified below; 
the remaining s - i can be taken to be distributed as U (k Is', 1). 

Let q1, . .. , qk denote the k observations that are marginally U (0, kl s'). We 
need to specify the joint distribution of q1, . . . , qk so that their ordered values 
tl(l) :'S · · · :'S q(k) satisfy 

(20) P{q(l) ::Sai-k+l,q(2) ::Sai-k+2· . . . ,tJ(k) ::Sa;} =a 

(because q(j) = PU+i-k) for j = 1, ... , k) . So the problem reduces to constructing 
a joint distribution for (qJ , . .. , qk) satisfying (20) subject to the constraint that qj 
is marginally distributed as U(O, kls') . To do this, apply Lemma 2.1 with u = kls' 
and f3 j = a; -k+ j . We need to verify the conditions of the lemma, which reduces 
to showing 

j(ai-k+j -ai-k+j-1) -------''----------"-- < I 
ai-k+ j -

(21) 

for i ::=::: k (and s and k fixed). But, if i - k + j - I :=s k, then the left-hand side 
of (21) is 0; otherwise it is easily seen to simplify to 

(22) 2kj . . :'S ~ . :'S kls, s+ - z-; s+ -; 
where the first inequality holds because i ::=::: k and the second because j :=s k. 
But k Is :=s 1 and so the conditions of the lemma are satisfied. Therefore, we can 
conclude that the left-hand side of (20) is given by 

f3k a; 
-----a 
u - kls'- ' 

and (i) is proved. 
To prove (ii), the construction used in (i) can be used even if a; is replaced by 

a; > a ; , as long as such a switch still allows one to appeal to the lemma. However, 
the same argument works as long as a; does not get bigger than s I k ·a;, so that the 
argument leading to (22) being less than or equal to l still applies. For such an a;, 
the argument for (i) then shows that, if the left-hand side of (14) has a; replaced 
by ca; for some 1 < c < s I k, then the right -hand side of (14) will be ca > a, 
which would violate control of the k-FWER. 0 

3. Control of the false discovery proportion. The number k of false 
rejections that one is willing to tolerate will often increase with the number 
of hypotheses rejected. So it might be of interest to control not the number of 
false rejections (sometimes called false discoveries) but the proportion of false 
discoveries. Specifically, let the false discovery proportion (FDP) be defined by 

(23) l Number of false rejections 

FDP = . Total number of rejections' 

0, 

if the denominator 
is greater than 0, 

if there are no rejections. 
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Thus FDP is the proportion of rejected hypotheses that are rejected erroneously. 
When none of the hypotheses is rejected, both numerator and denominator of that 
proportion are 0; since in particular there are no false rejections, the FDP is then 
defined to be 0. 

Benjamini and Hochberg [ 1] proposed to replace control of the FWER by 
control of the false discovery rate (FDR), defined as 

(24) FDR = E(FDP). 

The FDR has gained wide acceptance in both theory and practice, largely because 
Benjamini and Hochberg proposed a simple stepup procedure to control the FDR. 
Unlike control of the k-FWER, however, their procedure is not valid without 
assumptions on the dependence structure of the p-values. Their original paper 
assumed the very strong assumption of independence of p-values, but this has 
been weakened to include certain types of dependence; see [2]. In any case, control 
of the FDR does not prohibit the FDP from varying, even if its average value is 
bounded. Instead, we consider an alternative measure of control that guarantees the 
FDP is bounded, at least with prescribed probability. That is, for a given y and a 
in (0, 1), we require 

(25) P{FDP > y}:::: a. 

To develop a stepdown procedure satisfying (25), let F denote the number of 
false rejections. At step i, having rejected i - I hypotheses, we want to guarantee 
F I i :::: y, that is, F :::: LY i J, where Lx J is the greatest integer less than or equal 
to x. So, if k = Lyij + 1, then F::;: k should have probability no greater than a; 
that is, we must control the number of false rejections to be less than or equal 
to k. Therefore, we use the stepdown constant a; with this choice of k (which now 
depends on i); that is, 

(Lyij + l)a 
a · -------------
1- s + LyiJ + 1- i' 

(26) 

We give two results that show the stepdown procedure with this choice 
of a; satisfies (25). Unfortunately, like FDR control, some assumptions on the 
dependence of p-values are required, at least by our method of proof. Later, we 
will modify the method so we can dispense with the dependence assumptions. As 
before, PI, ... , Ps denotes the p-values of the individual tests. Also, let q1, ... , q111 
denote the p-values corresponding to the Ill= ll(P)I true null hypotheses. So 
qi = p ji, where h, . . . , jill correspond to the indices of the true null hypotheses. 
Also, let TJ, ... , rs-111 denote the p-values of the false null hypotheses. Consider 
the following condition: for any i = 1, ... , I I I, 

(27) 

that is, conditional on the observed p-values of the false null hypotheses, a p-value 
corresponding to a true null hypothesis is (conditionally) dominated by the 
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uniform distribution, as it is unconditionally in the sense of (7). No assumption 
is made regarding the unconditional (or conditional) dependence structure of 
the true p-values, nor is there made any explicit assumption regarding the joint 
structure of the p-values corresponding to false hypotheses, other than the basic 
assumption (27). So, for example, if the p-values corresponding to true null 
hypotheses are independent of the false ones, but have arbitrary joint dependence 
within the group of true null hypotheses, the above assumption holds. 

THEOREM 3.1 . Assume condition (27). Then the stepdown procedure with a; 
given by (26) controls the FDP in the sense of (25). 

PROOF. Assume the number of true null hypotheses is I/(P)I > 0 (or there is 
nothing to prove) and the number of false null hypotheses is f = s- II (P)I. The 
argument is conditional on the {r; }. Let 

1\1) s: ;(2) s: ... s: i\n 

denote the ordered values of the r; and similarly for the q;. Let ao = 0 and 
defineR; to be the number of r; in the interval (a;-J, ai]. (Actually, assume R, 
includes the value 0 as well.) Given the values of h, ... , P. f , it may be impossible 
to have FDP > y, that is, 

P{FDP >yiP.,, .. . , rf} = 0. 

Otherwise, let j = j (r1 , . . . , P. f) be defined as 

j =min\m:m- i:,R; > myj . 
t = l 

(28) 

To interpret this, given the p-values of the false hypotheses, j is the smallest 
critical index (depending only on the r;) where it is possible to have FDP > y , 
except whenever there are several p-values within an interval (a;-1 , a;) we 
consider the index of the largest one. The point of the construction is that if the 
stepdown procedure stops at an index m < j, then m - Li R; / m S: y and so 
FDP S: y . On the other hand, if the event FDP > y occurs, then there must be 
a rejection of a true null hypothesis at step j. 

For example, if s = 100, f = 5 and y = 0.1, then if all five of the r; are less 
than a1, then we define j = 6 even though the smallest true p-value could be the 
smallest among the 100. So the FDP could be greater than 0.1 after the first step 
of the algorithm if q(l ) < T(l) • but even if this is the case, we then know we will 
reject at least six total hypotheses. So the important point here is that, given such 
a configuration of {r;}, in order for FDP to be greater than 0.1 , it must be the case 
that we reject a true null hypothesis at step 6. 
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Note that, with j so defined, Rj = 0. For if L-{=1 R; = j- k with k/j > y and 
Rj > 0, then 

j-1 

L R; = j- k- Rj ~ j- 1- k 
i=1 

and k I (j - 1) > y, so that m = j - 1 satisfies the criterion. Furthermore, we also 

have L-{=1 R; = j - k (so not < j - k), where kj j > y, because if L.{=1 R; < 
j - k ~ j - 1 - k say, then kf(j - 1) > y if kjj > y and so j can again be 
reduced to j - 1. 

In addition, at the index j it must be the case that 

j 

k = k(j) = j- L R; = 1 + LY j J. 
i=l 

But k > y j implies k :=:: LY jJ + 1. But if k > LY j J + 1, then k - 1 :=:: LY jJ + 1 and 
so 

k-1 LyJJ+1 
-.-1::: . 1 >y, 
}- }-

the last equality trivially following from 1 + LY j J :=:: y j > y (j - 1). 
We can now complete the argument. At the index j we must have k = 

j - '£{= 1 R; = 1 + LY j J of the CJi being ~a j. But from Theorem 2.1 (applied 
conditional on the r; ), 

P{at least k(j) of the q; ~a j lr1, ... ,? f} 

lllaj 
<--
- k(j) 

lli(LyJJ + 1)a Ilia 
-----------------------------
k(j)(s + LY j J + 1 - j) s + LY j J + 1 - j 

But Ill ~ s- L-{=1 R; = s- j + k, so the above probability is less than or equal 
to 

s-j+k 
---------- ·a =a. 
s + LyJJ + 1- J 

Therefore, 

P{FDP > ylr1, ... , rf} ~a, 

which of course implies P{FDP > y} ~a. 0 

Next, we prove the same stepdown procedure controls the FDP in the sense 
of (25) under an alternative assumption. Here, the assumption only involves the 
dependence of the p-values corresponding to true null hypotheses. 
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THEOREM 3.2. Consider testing s null hypotheses, with Ill of them true. 
Let q(l) ::; · · · ::; q( lll) denote their corresponding ordered p-values. Set M = 
min(Lysj + 1, Ill). 

(i) For the stepdown procedure with a; given by (26), 

(29) P{FDP> y} :< PtQrq(i) :<;;Ill 
(ii) Therefore, if the joint distribution of the p-values of the true null hypotheses 

satisfies Simes inequality, that is, 

p { { q(l) ::: I~ I} u { q(2)::: ~~} u ... u {q(lll) ::: ct}} ::: ct, 

then P{FDP > y}::; ct . 

PROOF. Let j be the smallest (random) index where the FDP exceeds y for 
the first time at step j; that is, the number of false rejections corresponding to the 
first j - 1 rejections divided by j exceeds y for the first time at j. If j is such that 
y j < 1, then FDP > y at step j implies P(j) ::; a j. But this implies 

A ct ct 
q< I) < ct . - < -

- 1 - s+l-j -Ill ' 

because the number of true null hypotheses I I I necessarily satisfies I I I ::; s -
(j - 1) for such a j . 

Similarly, if j is such that 1 ::; y j < 2, then we must have P(i) ::; ct; and 
P(j) :::a j for some i < j, where i, j correspond to true null hypotheses. But for 
such a j, aj = 2aj(s + 2- j), and so we must have q(2)::; 2aj(s- j + 2) . But, 
by definition of j, we must have Ill::; s- (j- 2) and so q(2)::; 2ct/lll . 

Continuing in this way, if m- 1 ::; y j < m, the event FDP > y at step j implies 
q(m)::; mct/111. The largest value of j is of courses and so the largest possible m 
is LY s J + 1. Also, we cannot have m > I I 1- So, with M as in the statement of the 
theorem, 

M 

P{FDP> y}::; E P{q(m)::; ~~ ,m -1::; yj <m} 

::: fp!0{q(i)::; i;},m-l:::;yj<mJ 
m=i z=t I I 

Part (ii) follows trivially. 0 
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In fact, there are many joint distributions of positively dependent variables for 
which Simes inequality is known to hold. In particular, Sarkar and Chang [ll] 
and Sarkar [10] have shown that the Simes inequality holds for the family 
of distributions which is characterized by the multivariate positive of order 2 
condition, as well as some other important distributions. 

Theorem 3.2 points toward a method that controls the FDP without any 
dependence assumptions. One simply needs to bound the right-hand side of (29). 
In fact, Hommel [6] has shown that 

p U q(i) :=:: !.!:_ :=::a L -:-· 1111{ · }j llll 

i=l Ill i=I z 

This suggests we replace a by a(I:l~ 1 (1/ i))- 1. But of course Ill is unknown. So 
one possibility is to bound Ill by s, which then results in replacing a by ajC5 , 

where 

j 

(30) CJ = L(lfi). 
i=l 

As is well known, Cs ~ log(s + 0 .5) + {E, with {E ~ 0.5772156649 known as 
Euler's constant. Clearly, changing a in this way is much too conservative and 
results in a much less powerful method. However, notice in (29) that we really 
only need to bound the union over M:::: Lys + lJ events. Therefore, we need to 
slightly generalize the inequality by Hommel [6], which is done in the following 
lemma. 

LEMMA 3 .1 . Suppose PI, ... , p1 are p-values in the sense that P {p; :S u} :=:: u 
for all i and u in (0, 1). Let their ordered values be P(l) :=:: · · · :=:: P<t)· Let 
0 = f3o :=:: f3I :=:: f32 :S · · · :S f3m :=:: 1 for some m :=:: t. 

(i) Then 
m 

(31) P{ {PCI) :S f3I} U {P(2) :'S f32} U · · · U {P(m) :'S f3m}} :S t L(f3; - f3;-J)/ i. 
i=I 

(ii) As long as the right-hand side of (31) is less than or equal to 1, the bound 
is sharp in the sense that there exists a joint distribution for the p-values for which 
the inequality is an equality. 

PROOF. Let J be the smallest (random) index j among 1 :=:: j :=:: m for which 
P(J) :=:: f3J; define J to bet+ 1 if P(J) > f3J for alii:=:: j :=:: m. Let fh = P{J = k}. 
Then the left-hand side of (31) is equal to 

PI Gu =k}J = t(h, 
k=I k=l 
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since the events {1 = k} are disjoint. We wish to bound Lk fh. For any 1 ~ j ~ m, 

j 

L 1 1{1 = k} = 1 1{1 ~ j} ~ SJ, 
k=1 

where S j is the number of p-values ~ f3 j . Taking expectations yields 

j 

(32) l:kth ~ t/3j. j = 1, ... ,m. 
k=1 

For j = 1, .. . , m - l, multiply both sides of (32) by 1/[j (j + 1)], and for j = m, 
multiply both sides by 1/m; then sum over j to yield 

m-1 1 j 1 m m-1 t/3j tf3m 
I: I:kth+- Lkfh <I: + -. 
)=1 j(j + 1) k=1 m k=1 - )=1 j(j + 1) m 

(33) 

By changing the order of summation, the left-hand side of (33) becomes 

'I:1 kfh(~- _!_) + _!_ fkek = fek. 
k=l k m m k=l k=1 

The right-hand side of (33) is easily seen to be the right-hand side of (31) and (i) 
follows. 

To prove (ii), we construct PI, ... , p1 as follows. Let U; be uniform in /; and 
let Um+l be uniform in (f3m, 1). Let p be equal to the right-hand side of (31), 
assumed less than or equal to 1. Let n 1, ... , n m be probabilities summing to 1, 
with n; ex ( {3; - {3; _ 1 ) I i . Then, with probability n; p, randomly pick i indices and 
let those p-values be equal to U;, and the remaining t- i p-values equal to Um+J· 
With the remaining probability 1 - p, let all p-values be equal to Um+l· With this 
construction it is easily checked that p; is uniform on (0, 1) and the left-hand side 
of (31) is equal to the right-hand side of (31). 0 

Theorem 3.2 and Lemma 3.1 now lead to the following result. 

THEOREM 3. 3. For testing H; : P E w;, i = 1, ... , s, suppose p; satisfies (9). 
Consider the stepdown procedure with constants a;= a;/C(LysJ+1)· where a; is 
given by (26) and Cj is defined by (30). Then P{FDP > y} ~a. 

PROOF. By Theorem 3.2(i), P{FDP > y} is bounded by the right-hand side 
of (29) with a replaced by afCLysJ+l• which is further bounded by the same 
expression with M replaced by LY s J + 1. Then apply Lemma 3.1 with t = I I I 
and /3; = iaj(CLysJ+Jill) . 0 

It is of interest to compare control of the FDP with control of the FDR. Some 
obvious connections between methods that control the FDP in the sense of (25) 
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and methods that control its expected value, the FDR, can be made. Indeed, for 
any random variable X on [0, 1], we have 

E(X) = E(X!X:::; y)P{X:::; y} + E(X!X > y)P{X > y} 

::;yP{X::;y}+P{X>y}, 

which leads to 

E(X)- y E(X) 
----:::; P{X > y}:::; --, 

1-y y 
(34) 

with the last inequality just Markov's inequality. Applying this to X= FDP, we 
see that, if a method controls the FDR at level q, then it controls the FDP in the 
sense P{FDP > y}:::: qjy . Obviously, this is very crude because if q andy are 
both small, the ratio can be quite large. The first inequality in (34) says that if 
the FDP is controlled in the sense of (25), then the FDR is controlled at level 
a ( 1 - y) + y, which is greater than or equal to a but typically only slightly. These 
crude arguments suggest that control of the FDP is perhaps more stringent than 
control of the FDR. 

The comparison of actual methods, however, is complicated by the fact that the 
FDR controlling procedure of Benjamini and Hochberg [1] is a stepup procedure, 
but we have only considered stepdown procedures. It is interesting to note that, 
in order to make our procedure work without any dependence assumptions, we 
needed to change a to afCLysJ+l · Benjamini and Yekutieli [2] show that the 
Benjamini-Hochberg procedure that controls the FDR at level q can also work 
without dependence assumptions, if you replace q by q I C s. Clearly, this is a more 
drastic change since Cs is typically much larger than CLysJ+ l· Such connections 
need to be explored more fully. 

4. Conclusions. We have seen that a very simple stepdown procedure is 
available to control the k-FWER under absolutely no assumptions on the 
dependence structure of the p-values. Furthermore, control of the k-FWER 
provides a measure of control for the actual number of false rejections, while 
the number of false rejections in the case of the FDR can vary widely. We have 
also considered two stepdown methods that control the FDP in the sense of (25). 
The first method provides control under very reasonable types of dependence 
assumptions, while the second holds in general. 
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Thanks to Wenge Guo for pointing out an error in an earlier version. 

After the revision and acceptance of this paper, we became aware of the work 
by Hommel and Hoffman [7] which has much overlap with the results in Section 2, 
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and we'd like to thank Helmut Pinner for pointing out this oversight. In particular, 
Hommel and Hoffman [7] provide Theorem 2.1 (i) with proof, Theorem 2.2 (stated 
but no proof) and a weaker version of Theorem 2.3(ii) (stated but no proof). They 
attribute the idea of controlling the number of false hypotheses to Victor [ 14 ], who 
also suggested control of the FDP. However, Hommel and Hoffman did not further 
discuss control of the FDP as they "could not find suitable procedures satisfying 
this criterion." As far as we know, the three theorems in Section 3 which address 
control of the FDP are new. 
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