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ASYMPTOTICALLY NONPARAMETRIC INFERENCE IN SOME 
LINEAR MODELS WITH ONE OBSERVATION PER CELV 

BY E. L. LEHMANN 

University of California, Berkeley 

1. Introduction and summary. In [5] and [6] the author proposed point 
estimates, tests and confidence procedures for the parameters in a linear model, 
which have the same asymptotic efficiency (relative to the corresponding classical 
methods) as the Wilcoxon test has relative to the t-test. Here, "asymptotic" 
refers to the case that the numbers of observations per cell tend to infinity; in 
practice, they should presumably be at least equal to four. 

In the present paper, we shall consider experiments with only one observation 
per cell. It then of course becomes necessary to impose some restrictions on the 
parameters of the model. We shall suppose that an experiment, concerned with 
various factors at several levels, is replicated at different levels of a nuisance 
factor (i.e. in different "blocks") and that this nuisance factor does not interact 
with the factors of interest. N onparametric procedures for this situation were 
considered earlier by Friedman (1937) and in [3], where, however, only tests 
were proposed for the hypothesis of no effect of the factors of interest. In the 
present paper we shall be concerned primarily with estimating arbitrary con­
trasts in the factors of interest, and also with the problem of testing such con­
trasts. 

Let us assume for the observations Xia(i = 1, · · · , c; a = 1, · · · , N) the 
model 

( 1.1) X ia = JJ + ~i + P.a + U ia ( L ~i = L P.a = 0) 

where the fs are the parameters of interest, the p.'s are the effects of the nuisance 
factor (or factors), and the U's are independently distributed according to a 
common continuous distribution F. Except for the assumption of equal sample 
sizes, this agrees with the model of [5] and [6] when the p.'s are assumed to be 
zero. We shall be interested in inference methods concerning the fs, and their 
asymptotic properties as N ~ ctJ • 

2. Estimation of a single contrast. Let 0 = Lci~i(LCi = 0) be any contrast 
in the fs, and let v a = L ciXia . Then vl ' ... ' v N are independently, iden­
tically distributed; let their common distribution function be Gc. A possible 
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estimate of 0 is that proposed in [4], namely 

(2.1) med [HVa + VB)] 

where the median is taken over all a ~ {3. Suppose that Gc is symmetric (as will 
of course in particular be the case when F is symmetric). It then follows from 
the results of [4] that this estimate is symmetric about 0, and that its asymptotic 
efficiency relative to the classical estimate 1: c.x •. (with x •. = 1: X,a/N) is 
12r~( f g!(x) dx) 2 where gc is the density and r~ the variance of Gc. This effi­
ciency is therefore always 6; .864 and is 3/'11' when F (and hence Gc) is normal. 

As in [5], the estimates (2.1) for different contrasts are incompatible, and it 
may be desirable to replace them by a mutually compatible system. Such a 
system can, as in [5], be based on the estimates of the differences ~i- ~;which by 
specialization of (2.1) are given by 

(2.2) Y,; = med [!(X,a - X;a + X,p - X;p)]. 

We shall denote the common distribution of the difference X,a - X;p of any 
two X's by G, and note that G is symmetric without any assumption about F. 
As basis for a discussion of a compatible set of estimates based on the Y's we 
require the joint asymptotic distribution of' the Y's, which is given by the follow­
ing theorem. 

THEOREM 1. If the density g of G satisfies the regularity conditions of Lemma 3( a) 
of [2], the joint limiting distribution of the random variables Y.,- is the (~)-variate 
normal distribution with zero mean and covariance matrix ~* = (ui;,kz) where the 
variances are given by 

(2.3) CTif,ii = 1/12(J l(x) dx) 2 

and the covariances by 

(2.4) 

and where 

CTij,kl = 0, 

= [X(F) - l]/(J g\x) dx) 2, 

= [t- X(F)l/(J l(x) dx) 2, 

for all i, j 

if i, j, k, l are distinct, 

if 

if 

i = k or j = l, 

i = l or j = k, 

(2.5) X(F) = P(Xl < x2 + Xa- x4 and xl <XII+ X&- X7), 

X1 , · · · , X7 being independent random variables with distribution F. 
PROOF. Let (~) u<i,) be equal to the number of pairs (a, /3) with a < f3 and 

such that 

X;a - Xia + X;p - X,p > 2a,;/~, 
and let Q* denote the (~)-variate normal distribution with zero mean and 
covariance matrix ~*. Then the argument leading to (10.3) of [4] and used in 
proving Theorem 4 of [5], shows that 
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(2.6) 
lim P{N'[Yi; - (~; - ~;)] ~ a;; for all 1 ~ i < j ~ c} 

= lim Po{N1[Uc.:;J - ~] ~ 0 for all 1 ~ i < j ~ c}, 

where Po indicates that the probability is being computed under the assumption 

~1 = · · · = ~c • 

To evaluate the right hand side of (2.6) we shall use the fact that the theorem 
on U-statistics stated in the appendix of [5] holds if in Part (iii) the distributions 
F, G, H, · · · are independent of N but instead the functions q,<iJ depend on N, 
provided only these functions are uniformly bounded. 

Let X a = (XIa , · · · , Xca) and define 

if X;a - X.:a + XjfJ - X;fJ > 2a.:;/Ni 

=0 

Then the quantities! defined in the appendix of [5] are given by 

ti/il = Cov [¢1iil(XI, X2), q,]/il(XI, Xa)] 

which tends to r(ij) = -fi, while ti:j,kl) tends to 

r<if,kl) = 0 if i, j, k, l 

= X(F) - i if i = k 

= i - X(F) if i = l 

otherwise. 

are distinct 

or j=l 

or j = k. 

Hence, if we put e1iiJ = EU<i1\ it follows that the variables N;( u<.:;J - e]/il) 

have a joint normal limiting distribution with zero mean and covariance matrix 
(u;;,~cz) = 4(fc;;,k!J). Now 

( i j) i eN = P{X;1 - X;1 + X;2 - X;2 > 2a;;/N} 

and a standard argument shows that 

Nt(~- e1ij)) -t 2a;; f lCx) dx. 

This proves that the right hand side or (2.6) tends to 

Q(2ai2 f l(x) dx, 2aia f r/(x) dx, ···, 2ac-Ic f l(x) dx) 

where Q is the CD-variate normal distribution with zero mean and covariance 
matrix (u.:;.~cz), and the assertion of the theorem follows. 

In the above argument it was tacitly assumed that the covariance matrix ~* 
is non-singular as is typically the case. Should there exist cases in which ~* is 
singular, the argument could be modified along the lines of the proof of Theorem 2 
of [5]. 

For all that follows it is essential to have some knowledge regarding the 
quantity X(F) defined by (2.5). We therefore prove next the following inequali­
ties. 

THEOREM 2. For all distributions F we have 

(2.7) 
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PROOF. 

(i) The left inequality is a consequence of the following more general one. 
Let XI' x2' YI' y2 be independently distributed, the X's with distribution Fx 
and the Y's with distribution F Y , then 

(2.8) P(XI < YI and XI < Y2) ~ P(X1 < Y1 and X2 < Y2). 

This follows immediately from the fact that the inequality (2.8) is equivalent to 

f [1 - Fy(x)]2 dFx(x) ~ If [1 - Fy(x)] dFx(x)} 2 

which is a consequence of the Schwarz' inequality. Identifying the left hand side 
of (2.8) with that of (2.5) with Y1 = X2 + Xa- X. and Y2 = Xo + Xs - X1, 
we find that the left hand side of (2.5) is ~ [P(X1 + X4 < X 2 + X3)]2 = i, as 
was to be proved. 

(ii) To prove the right inequality, consider the covariance matrix defined by 
(2.3) and (2.4) for the random variables Y12, Y1a, Y23. Putting 'Y = 
3[4>-(F) - 1], the determinant of this matrix is seen to be proportional to 
(1 + 'Y /( 1 - 2'}'). This can be nonnegative only if either 'Y = -1 and hence 
>. = i, which is ruled out by (i), or if 'Y ~ ~ and hence >. ~ --i-4, as was to be 
proved. 

Three values of A (F) are 

(2.9) 
F 

'A(F) 
Normal 

.2902 
Rectangular 

.2909 
Cauchy 
.2879 

These values are all only slightly below the upper bound --i-4 = .2917. 

3. A compatible set of estimates for all contrasts. We have seen above (in 
the proof of (ii) of Theorem 2) that for any distribution F with >.(F) ;;z!£ --i-4, the 
joint limiting distribution of the three random variables 

(3.1) 

is nondefenerate. In particular, the variables therefore do not satisfy the con­
dition N ( Yi; + Y;k + Yki) ~ 0 in probability. They are thus not only incom­
patible but even asymptotically incompatible in the sense of [5]. As in [5], we may 
wish to replace the incompatible estimates Yi; of ~i - ~; by the compatible 
estimates 

(3.2) 

where the dot as usual denotes averaging with respect to the indicated subscript. 
It follows from the asymptotic incompatibility of the Y's that in contrast to the 
corresponding result of [5], the Z's and the Y's are not asymptotically equivalent. 
In the present section, we shall investigate the asymptotic behaviour of the Z's 
and in particular shall prove that asymptotically the Z's are at least as efficient 
as the Y's for all distributions F. 

LEMMA 1. If the covariance matrix of the variables N1Y;; is given by (2.3) and 
(2.4), and if we put 
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2 
= uo' 

(3.4) u~ = [(c - 1)/c2]h\ + (c - 2)[X(F) - l]}j[f l(x) dx] 2 

and 

(3.5) p = -1/(c- 1). 

PRooF. An easy calculation shows that 

Var (N'Y;.) = (c - 1)c-2 [Var (N'Y;;) + (c - 2) Cov (N'Yi;, N'Y.k)] 

and (3.4) follows by substituting from (2.3) and (2.4). Equation (3.5) is a 
consequence of the fact that L Y; = 0 and the joint distribution of 
( Y1. , · · · , Yc.) is symmetric. 

THEOREM 3. Suppose that the density g of G satisfies the regularity conditions of 
Lemma 3a of [2]. Then the set of random variables 

(3.6) N'[Zic - (~i - ~c)], i = 1, · · · , C - 1 

is asymptotically (as N ~ oo ) normally distributed with mean zero and covariance 
matrix~ = (u;;), 

(3.7) u;; = 2u~(l - p), Ui; = u~(l - p) 

where u~ and pare given by (3.4) and (3.5). 
PRooF. Since the z.c are linear functions of the Y's, joint asymptotic normality 

follows from Theorem 1. That tlie covariance of the limiting distribution is 
given by (3.7), is an immediate consequence of Lemma 1. 

We are now in position to compute the asymptotic efficiency e* of Z 1; relative 
to Yi; (in the sense of reciprocal of the ratio of the asymptotic variances). 

THEOREM 4. The efficiency e* is given by 

(3.8) e:(c) = c/24{!\ + (c- 2)[X(F) - ill 
and is ~ 1 (i.e. Z <i is at least as efficient as Y ii) for all F. 

PRoOF. Formula (3.8) follows directly from (2.3) and (3.7). For c = 2, the 
quantity (3.8) is equal to 1, as it should be since in this case Y;; = Z;;. For 
c > 2, (3.8) is seen to be~ 1 since X( F) ~ i-l;. 

For any fixed X < i-l;, the efficiency e:(c) is an increasing function of c, and 
for X < x', we have e: (c) > e: (c) for all c > 2. For the values of X found in 
(2.9), the variation in e* with changing cis seen to be slight. In the normal case, 
for example, e* increases from e*(3) = 1.012 toe*( oo) = 1.036. For the asymp­
totic efficiency e' of Z;; relative to the classical estimate X,. - X;. , given by 

e' = 12r2 ( f l(x) dx) 2c/24{-fi + (c - 2)[X(F) - i]}, 

we have of course a corresponding increase. In particular, in the normal case, 
we find for e' the values 

c 
I e 

3 
.9664 

5 
.9755 

10 00 

. 9826 .9893 . 
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The efficiency result stated in Theorem 4 holds not only for the estimation of 
the difference ~. - ~i but immediately generalizes to the estimation of any con­
trast 8 = L c;~; = L L d;i(~;- ~;). 

CoROLLARY 1. Let lh be the estimate of 8 defined by (2.1) and 82 the estimate 
L L d,,.( Y ;. - Y ,.. ) . Then the asymptotic efficiency e * of 82 relative to 81 is given 
by (3.8) 

PROOF. Let e' and e denote the asymptotic efficiency of 82 relative to the classi­
cal estimate 8o = L L d;;(X;. - Xi.) and of 81 relative to 8o respectively. 
Then it was seen in Section 2 that e(F) = 12T2 ( f l<x) dx) 2, independent of the 
coefficient vector c = ( Ct ' C2 ' ••• ) • On the other hand, since the covariance 
matrix of the asymptotic distribution of the Z's is proportional to that of the 
classical estimates X,. - X,.. , e' is independent of c. Thus e* = e' /e is also inde­
pendent of cas was to be proved. 

4. Tests and confidence procedures. So far, we have discussed only the 
problem of estimating contrasts of the fs. The corresponding testing and confi­
dence problems can now be treated quite similarly to their treatment in [6]. 
Analogously to (3.9) of (6], the classical test of H: (~I, · · · , ~c) E 11'w concerning 
contrasts of the rs, is based on the statistic N L (X;. - ~;) 2/u2 where 11'w is a 
(c - r)-dimensional subspace of c-space and where al' ... ' ~c) is the pro­
jection of (XI., · · · , Xc.) on 11'w. This statistic can be written in the form 
N L [L a,,.(X;. - Xc.)] 2/u2, and under H has a limiting x2 distribution with r 
degrees of freedom. It then follows as in [6] that under H 

N L ( L a;;Z;;) 2/u~ 

(4.1) 12c2 (J g2(x) dx) 2N L ( L a;;Z;;) 2/ 

(c - 1){1 + 12(c - 2)[X(F) - !]} 

also has a limiting x2-distribution with r degrees of freedom. 
We can now apply either of the approaches (i) or (ii) of Section 3 of [6]. 
(i) Since the variables (X, .. - X; .. ) - (~; - ~;) constitute a sample from 

the symmetric distribution G, the estimate ( 15) of [7] is a consistent estimate of 
1/ J l(x) dx. If we denote this estimate by T,,., we can replace the unknown 
quantity f g2(x) dx in (4.1) by the average of the T;/s without changing the 
asymptotic distribution of the statistic. Clearly, it is necessary also to replace 
the unknown X(F) by a consistent estimate. Such an estimate, which incidentally 
is unbiased, is obtained by considering for each sextuple ( i, j, j'; a, {3, 13') whether 
or not the simultaneous inequalities 

are satisfied. The proportion of cases in which these inequalities hold is the desired 
estimate. The total number of sextuples will typically be very large, and one may 
be satisfied with basing this estimate on a subset. 

(ii) Suppose that all contrasts in a subspace of the es-of dimension r', 
say-are zero. Let Q" be the quadratic form N L [La~,.( X;. - Xc.)] 2 appropri-
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ate in the classical analysis of variance for testing the hypothesis that these 
contrasts are indeed zero, and let Q' be obtained from Q" by substituting Z;f for 
Xi . -X; .. Then 

( 4.2) 

has, under H, a limiting F-distribution with rand r' degrees of freedom. 
As in Section 5 of [6], it is easily seen that the asymptotic efficiency of the test 

discussed above under (i) relative to the classical F-test is the efficiency e* given 
by ( 3.8) and that the corresponding efficiency of the test based on ( 4.2) tends to 
e * as r' tends to infinity. 

The method suggested in [6] for getting additional degrees of freedom for the 
quadratic form Q' by introducing spurious further parameters and then testing 
that they are zero, leads to difficulties in the present situation since it changes the 
dimensionality c of the space of parameters of interest and hence the factor 
1 + 12(c- 2)(X- t) in (4.1). 

Let us now illustrate the test based on ( 4.2). Suppose that in each of N blocks, 
we have a two-way layout, with one observation per cell; that both factors of the 
layout are of interest but not the block effect; and that we may assume all three 
factors to be additive. Changing slightly the notation of ( 1.2), we may then 
write 

(4.3) Xiia='Y+~•+t;+.u .. i= 1, ··· ,a;j= 1, ··· ,b; a= 1, ··· ,N 

where L ~. = L S"i = L .Ua = 0. From (2.2) we get 

( 4.4) 

and Z;;.kz = Y;; .. - YkZ·· . Substituting the Y's for the X's in the formulae 
~; = Xi·· - X ... , fi = X .;. - X ... giving the classical estimates, we find 

(4.5) ~. = Y; ... - Y .... , f; = Y·i·· - Y .... 

where actually Y .. .. = 0. If the interactions 'Y>i had not been assumed to be zero, 
their estimates would be 'Yii = Y;i .. - Y; ... - Y.f .. + Y .... . 

For testing the hypothesis H: ~1 = · · · = ~a = 0, we can then use the test 
statistic 

bN L aU (a - 1) + N L L 'Y~i/ (a - 1) ( b - 1) 

which under H has a limiting F~distribution with a - 1 and (a - 1)(b - 1) 
degrees of freedom. 

The classical test of H: ( ~1 , • • • , ~c) e II., is the same whether the block 
effects .ua in ( 1.1) are known to be zero as was assumed in [6] or whether 
they are unknown. It follows that the quadratic form N L ( 2: a,fZ;;) 2 

= N L L a;;(Y;. - Yf.) 2 is also formally the same in both cases. Actu­
ally, the two statistics are of course different since Y ;; is defined by ( 2.2) 
in the present case but as med (X; .. - X 1s) or as med .. ;;;p [!(X; .. + X;p)] 
med-r!>a [t(Xi'Y + Xi.;)] in [6]. 



572

NONPARAMETRIC INFERENCE IN LINEAR MODELS 

Since the asymptotic efficiency e* = e*(F) of the present procedures has been 
shown to be uniformly higher than the efficiency e = e(F) of the procedures 
proposed in [6], it is of course tempting to apply the procedures of the present 
paper also in the case where the f.La's are zero. The only disadvantages of this 
approach appear to be (a) the restriction to equal sample sizes, (b) the difficulty 
in using possible additional degrees of freedom for Q'. 

6. Several observations per cell. If instead of just one observation we had 
many observations in each cell, the fs and f.L 1S could be estimated or tested by 
the methods of [5] and [6]. We shall here consider the case where there are only 
few, perhaps two or three, observations in each cell and where again we are con­
cerned only with the fs. Let the observations be denoted by 

( 5.1 ) 

where i = 1, · · · , a; a = 1, · · · , N; r = 1, · · · , ma. The numbers of observa­
tions in different cells of the same block must therefore be equal but they may 
differ from block to block. 

With the Xiar defined by (5.1), theN' = L ma differences (Xiar - X;ar) 
- (~ ; - ~;) constitute a sample from the distribution G. If we denote the N' 
differences Xiar - X;ar by D~(f3 = 1, · · · ; N') and define Yi; = med~;;;~' [!(D~ 
+ Dw)] and Z ;; = Y;. - Y;. , the asymptotic theory established in Sections 2 
and 3 applies with N' in place of N. 

This method has an unattractive feature, the random pairing of the observa­
tions in the iath and jath cell. Such pairing seems not to make the best possible 
use of the data since it does not utilize all possible differences between observa­
tions in the two cells. We shall however now show that the asymptotic efficiency 
of the proposed procedure relative to the classical procedure is as before given 
by e*. This is in fact immediately seen by noting that both the present estimate 
Y;; and the classical estimate X ; ... - X; ... of ~i - ~; (and their distributions) 
are unchanged if the quantity f.La in (5.1) is replaced by f.Lar. The earlier effi­
ciency results therefore apply with N' instead of N, and since they do not in­
volve the sample size, this establishes the desired result. 

One might expect that the efficiency loss due to random pairing would become 
serious as the number of observations per cell increases. This seems however not 
to be the case. For consider the case of a single block with a large number of 
observations in each cell. If the observations in the ith cell are denoted by 
X;r(r = 1, · · · , m), pairing leads to the differences X ;r - X;r, and the estimate 
Yi; = med [!(X;r - X;r + X;, - X;.)] of~ ; - ~;.The asymptotic efficiency of 
this as m- co is e = 12r2 ( J g\x) dx) 2• 

It was assumed above that the numbers of observations in different cells of 
the same block must be equal. What should be done if, for example, in a given 
block it was intended to have two observations per cell, but the second observa­
tion in one of the cells is missing? A simple possibility, which presumably would 
not seriously affect the performance, consists in simply duplicating the single 
observation and proceeding as before. 
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