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ASYMPTOTICALLY NONPARAMETRIC INFERENCE: AN ALTERNATIVE 
APPROACH TO LINEAR MODELS1 

BY E. L. LEHMANN2 

University of California, Berkeley 

1. Summary. As an alternative to the standard analysis of variance, pro­
cedures are developed for linear models with several observations per cell which 
are asymptotically distribution-free and whose asymptotic efficiency relative 
to the standard procedures is the same as that of the Wilcoxon test relative to 
Student's t-test. Specific procedures discussed are (i) tests of linear hypotheses, 
(ii) confidence intervals for any contrast, (iii) simultaneous intervals for all 
contrasts. 

2. Introduction. One of the basic problems of statistics is the two-sample 
location problem, which arises in the comparison of two populations. Let 
X1 , · · · , Xm and Y1, · · · , Yn be two samples and suppose that 

(2.1) P{Xi ~ x} = F(x) and P{Yi ~ y} = F(y- A). 

The classical estimate of A is of course Y - X, while the hypothesis H : A = 0 
was tested during the 19th century by referring the test statistic t = (Y - X)/ 
(1/m + 1/n)ls to the normal distribution to get an approximate significance 
level which, for large samples and F with finite second moment, is justified by 
the central limit theorem. 

A new approach to testing-small sample theory-was initiated by Student 
(1908) who conjectured the exact form of the distribution oft for the case that 
F is normal. His conjecture was proved by R. A. Fisher (1923) who went on to 
develop the exact distributions of a number of other test statistics under the 
assumption of normality. (An earlier such derivation had been that of Helmert 
(1876) of the x2-distribution of 82). 

Attention was thus focused on the possibility of exact tests, i.e., tests whose 
significance level could be exactly computed under suitable assumptions, for 
example the assumption of normality. This aspect was further emphasized 
through the development in the 1930's by Neyman and Pearson [18] of a theory 
of optimum tests. Tests were sought which are most powerful in a clearly defined 
parametric model within the class of all similar tests, i.e., tests whose significance 
level is exactly equal to the specified value independent of any nuisance parame­
ters of the model. 

The emphasis on exactness raised the question what to do when the form Of 
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the distribution could not be assumed to be known, and hence no particular 
parametric model could be postulated. In response to this need, nonparametric 
tests were developed, such as the tests proposed by Wilcoxon (1945) (see also 
[13]), whose levels do not depend on the underlying distribution and are there­
fore exact for a broadly non parametric model, for example model (2.1) where F 
is only required to be continuous. 

Such nonparametric tests were regarded rather skeptically at first. Since they 
use only the order relationship between the observations, it seemed obvious that 
these tests discard so much of the information contained in the data that there 
must result a considerable loss of power. However, in this case intuition proved 
unreliable. Work by Pitman (1949) and others showed for example that, asymp­
totically, the Wilcoxon test is about 95.5% efficient in the case of a normal 
distribution3 ; that it is more efficient than the t-test if the normal distribution is 
seriously disturbed by gross errors; and that its asymptotic efficiency relative to 
the t-test is never (i.e., for no F) less than 86.4% but can be arbitrarily high and 
even infinite. 

The Wilcoxon test is thus seen to be superior to the t-test in two respects. 
(i) Its significance level is more robust in that it is exactly equal to the stated 

value for all continuous distributions F. (It has this value also in much more 
general models, which require no assumption of independence of the variables or 
identity of their distribution.) 

(ii) Its power is more robust, particularly against distributions with heavy 
tails. 

Of these two advantages, the second is perhaps the more important. 
If it is only a question of testing the hypothesis~ = 0 in model (2.1), a non­

parametric test such as the Wilcoxon or Normal Scores test would nearly always 
seem preferable to the t-test. The objection is however frequently raised that 
occasions for such isolated tests are rare; that the non parametric tests are not 
adaptable to point estimation, multiple decision problems, etc.; and that they 
are not suitable for a flexible use in linear models such as is provided by the 
standard analysis of variance. 

It is the purpose of the present paper to describe procedures possessing this 
flexibility and enjoying the above property (ii), of nonparametric methods 
although unfortunately not property (i). The approach is here developed only 
for linear models in which there are several observations per cell. The significance 
level, confidence level, or other probabilities to be controlled, have their nominal 
values asymptotically as the numbers of observations in all cells become large; 
the procedures are therefore asymptotically distribution-free. They are in this 
sense comparable to the corresponding classical procedures. While the latter are 
"exact" under the assumption of normality, this assumption is of course never 
exactly fulfilled and in particular is likely to be disturbed by gross errors. In 

3 The exact values obtained by Klotz (1963) for the one-sample problem in the normal 
case for sample sizes 5 to 10 are even slightly higher. 
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practice, the clMsical procedures therefore also have the correct levels only 
asymptotically. 

For some special linear hypotheses, nonparametric tests have been proposed 
by Friedman (1937), Durbin (1951), Kruskal and Wallis (1952), Benard and 
Van Elteren (1953), Hodges and Lehmann (1962), and others. This type of test 
seems however not applicable to many of the standard problems such M, for 
example, that of testing for the absence of interactions in a two-way layout. A 
general elMs of nonparametric procedures, applicable to a variety of linear 
hypotheses, hru3 been proposed by Mood (1950) and Brown and Mood (1951). 
In the particular cMe of the c-sample problem, the Mymptotic efficiency of the 
Brown-Mood median test relative to the classical F-test hM been shown by 
Andrews (1954) to be the same as that of the sign test relative to Student's 
t-test in the one-sample problem. (For other efficiency results concerning the 
Brown-Mood tests see Bhapkar (1963)). In contrast, the procedures proposed 
here have the same asymptotic efficiency relative to the classical procedures M 
the Wilcoxon test hM relative to the t-test. 

3. Linear models with several observations per cell. Let the observable 
random variables be Xia, and suppose they are of the form 

(3.1) (a = 1 · · · n · · i = 1 · · · c) 
' ' t ' ' ) 

where the U's are independently distributed with common distribution F having 
density J, and the rs are unknown constants. Let 

(3.2) 

bethemedianofthen,n;differencesXia- X;p (a= 1, · · · ,ni ;~ = 1, · · · ,n;), 
and let 

(3.3) 

where Yi. = L Yi;/c . It was shown in [15] that for ni = PiN and N tending to 
infinity, the variables N 1[Zic - (~i - ~c)] have a limiting normal distribution 
with zero means and covariance matrix 2; = (O'i;) where 

(3.4) 

Also for any i and j 

(3.5) 

O'ii = 1~ (~ + ~) /[J /(x) dxJ 

O'if = 1;Pc/ (J /(x) dx Y 
for all i,j <c. 

Consider now instead the statistics Tii = Xi· - X; . . The variables 
~[Tic - (~i - ~c)] are Mymptotically normally distributed with zero means 
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and covariance matrix ~,, which is related to ~ through 

(3.6) ~, = k2~ 

withe= 12u2[f /(x) dx]2• Also of course, NtT•; = Nt(T.c- T;c). 
These facts may be summarized in 
THEOREM 1. The matrices with elements kNi[z.; - (~• - ~;)] and N![T.1 

(~i - ~;)] respectively, have the same limiting distribution. 
The parallel notation in the definitions of the statistics Z ii and T ii , frequently 

makes it easy to write down the estimates, tests, etc. based on the Z's simply by 
substituting in the corresponding classical procedures. However, in one respect 
the parallel notation is deceptive. The averaging indicated by a dot in X,. is 
over the ni observations in the ith cell; the corresponding average in Yi. , on the 
other hand, is taken over the c cells. This difference sometimes leads to certain 
dissimilarities in the notation as for instance in the example of Section 4 below. 

A principal purpose in introducing the estimates Y.; is to provide protection 
against the possibility of gross errors. It should be pointed out in this connection 
that for ni = n; = 2, Y.3 coincides with the usual estimate T•; = Xi. - X;. and 
hence does not provide such protection. More generally, little protection is 
afforded by Yi; unless at least both ni ~ .3 and n 3 ~ 3. 

Let us now see how the estimates Zi; of (~i - ~;) can be used to obtain large 
sample tests of linear hypotheses concerning contrasts in the model (3.1). Con­
sider first the classical test. IfF were normal with known u, attention could be 
restricted to the statistics Xi. = ~i + u •. . A linear hypothesis H specifies that 
the vector (~1, · · · , ~c) of means of (X1. , · · · , X c.) lies in a (c - r )-dimensional 
linear subspace II"' of c-space. The test is based on the statistic 

(3.7) L ni(X •. - ~i) 2/u2 

where (~1 , · · · , ~c) is the projection of (X1. , · · · , X c.) on II"' . 
Under H, the statistic (3.7) has a x2-distribution with r degrees of freedom if 

F is normal, and has this as limiting distribution for any F with finite variance. 
Let 

(3 .8) 
c-1 

x •. - ~i = L a.;(X;. - Xc.), 
i=1 

so that (3.7) may be written as 

(3.9) 

From (3.8) it follows that 

(3.10) L ai;(~c- ~;) = 0 for all (~1, ···,~c) t: II"', 

and hence from Theorem 1 that the statistics ~L a.;T;c (i = 1, · · · , c - 1) 
under H have the same joint limiting distribution as the statistics kNiL a.;Z;c . 
Since (3.9) has a x2-distribution with r degrees of freedom under H, we have 
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therefore shown that the limiting distribution under H of 

(3.11) e L ni(L aii Zi;) 2/(i = 12 (! l<x) dx y L ni(L aii Zi;) 2 

is l with r degrees of freedom. The statistic L ni ( L ai;Z ii) 2 can be obtained 
very simply from the classical statistic L ni (Xi. - ~i) 2• The latter is a quadratic 
form in the variables (X1. , • • • , Xc.) and it is only necessary to replace these 
by the variables (Y1. , · · · , Yc.), as is illustrated in Section 4 below. 

It has been tacitly assumed in the above argument that i < oo and 

( 3.12) J lCx) dx < oo. 

Actually, the latter assumption alone is enough to insure the result; for it follows 
from (3.4) and (3.5) that the joint limiting distribution of the variables kNi 
· [Zi;- (~i - ~;)]is the same as the distribution of~[ (X:. - x;.) - (~•- ~;)] 
where the variables x:"' are independently normally distributed with mean ~ . and 
unit variance. Assumption (3.12) clearly holds whenever the density jis bounded. 

The quantity (3.11) is not yet a usable test statistic since it depends on the 
unknown quantity I l (x) dx. The following are two ways out of this difficulty. 

(i) Let TN be any consistent estimate of 1/ I l (x) dx as the sample sizes ni 
tend to infinity. Then the test statistic 

(3.13) 

under H has a limiting x2 -distribution with r degrees of freedom. The rejection 
region W > C, where Cis the 100a upper percentage point of the i-distribution 
with r degrees of freedom, therefore provides a large-sample level a test of H. 

Two such consistent estimates are provided in the paper following the present 
one. If T<il denotes the estimate (15) of that paper based on the observations 
from the ith cell, one may take for TN the average L: T<iJ/c. Alternatively if 
T<i.il is the estimate (9) of the succeeding paper based on the observations from 
the ith and jth cell, one may take for TN the average of the T<i,iJ,s. 

(ii) In many cases, it is possible to obtain a quadratic form, say Q1
, which is 

asymptotically independent of Q = L: n i (L a.;Zi;) 2, and which after multipli­
cation with 12 <f l (x) dx) 2 is asymptotically distributed as x2 with, say, r1 

degrees of freedom, regardless of whether the hypothesis being tested is true or 
not. The statistic 

(3.14) I Q II I W = /r + Q r 

under H then has a limiting F distribution with r and r' degrees of freedom and 
hence provides a large-sample test of H. 

Such quadratic forms will be available whenever all the contrasts in a sub­
space of the full contrast space may be assumed to be zero. If, for example, in a 
two-way layout it is assumed that the interactions are zero, the quadratic form 
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that would have been appropriate for testing the hypothesis that the interac­
tions are zero could be used for Q'. 

Other such quadratic forms can be obtained by dividing the observations in 
each cell into two groups (say, at random, with the sizes of the subgroups equal 
or differing by one). For the ith cell one may then set up the spurious hypothesis 
Hi that there is no difference in location between the distributions of the obser­
vations in the two subgroups. Let the variables in the two subgroups of the ith 
cell be denoted by x:j (j = 1, ... 'n~) and xrk (k = 1, ... 'n7) with 
n: + n7 = ni. Then the test statistic appropriate for H, is 

(3.15) 

where Y~ = med (Y:; - Y7k). On multiplication with 12 (J f(x) dx) 2, Qi has a 
limiting x2 -distribution with one degree of freedom. Furthermore, Q1 , • • • , Q. 
are asymptotically independent of each other, and of Q and of Q'. If the sample 
sizes ni are sufficiently large for this method to be applicable ( ~ 6 to make the 
half-group size ~3, and preferable ~8 so that the i-approximation is based on 
half-group sizes ~4), then Ql + · · · + Q. provides a quadratic form with c 
degrees of freedom, which may be added to the form Q' suggested above or be 
used in its place if 6_ , • • • , ~. are completely unknown. 

The above suggestion of dividing the observations in each cell into two groups 
was based on the assumption, corresponding to typical practice, that the number 
of observations per cell is not very large. Of course, if many observations are 
available for a cell, they can be divided into more than two subgroups, with a 
corresponding gain in degrees of freedom for the resulting quadrating form. In 
fact, suppose that the observations in the ith cell are divided into ki + 1 sub­
groups, and let Qi be the quadratic form appropriate for testing the hypothesis 
Hi that there is no difference in location between the distributions of the observa­
tions in these subgroups. Then the same asymptotic results (as the numbers of 
observations in all subgroups become large) hold as in the case of two subgroups 
with the only exception that the limiting x2-distribution of Qi now has ki degrees 
of freedom, and that of L Qi therefore L ki degrees of freedom. 

The approach of this section also leads to large-sample confidence sets for any 
contrast or set of contrasts. Consider for example a single contrast 

(3.16) 

The standard acceptance region of the hypothesis 0 = Oo (for known u) is 
I L L dii (Xi· - Xi·) - Ool/ u ( L c~/ni) i ~ C and the associated confidence 
statement 

has limiting probability 1 - a. By Theorem 1, the statement 
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also has limiting probability 1 - a. Substituting the consistent estimate TN of 
1/ f l (x) dx, we therefore get the asymptotic confidence intervals at level 1 - a 

L L di;(Yi.- Y;. ) - [C/(12N/T~)'HL (c~jp,)]* ~ 0 

(3 .18) ""' ""' 2 ! ""' 2 ! 
~ LJ LJ dii(Y.:. - Y;.) + [C/ (12N/TN) ][LJ (c;/p.:)]. 

Alternatively, let Q' be a quadratic form which is asymptotically independent 
of L Ld.:;(Y.:. - Y; . ) and which on multiplication by 12{fl(x) dx) 2 is 
asymptotically distributed as x2 with r' degrees of freedom .. Then 

~[L L d.:; (Y;. - Y;.) - Oo]/ (L c7/ p.:) 1 -7- (Q'jr') 1 

is asymptotically distributed as Student's t with r' degrees of freedom. Hence 
if C is the critical value for a two-sided t-test at level a, 

(3.19) 

will provide another set of asymptotic confidence intervals for 0 at level 1 - a. 

In exactly the same manner, one can obtain simultaneous approximate confi­
dence statements based on the Y's for all contrasts, analogous to Scheffe's 
S-method. For let C' be determined so that the limiting probability is 1 - a 
that (3.18) holds for all matrices (d.:;) when Cis replaced by c'. Then it follows 
as before that the limiting probability is 1 - a, that (3.18) will hold for all 
matrices (d.:;), and hence for all contrasts 8, when Cis replaced by c'. The same 
remark applies of course to the intervals (3.19). 

4. An example. As an illustration, consider a two-way layout with n observa­
tions per cell. With a slight change of notation, let the observable variables be 
denoted by 

(4.1) (i = 1 · · · a· J. = 1 · · · b · a = 1 · · · n) ' ' ' ' ' ' ' ' ' 
where the U's are independently and identically distributed. In the usual de­
composition into main effects and interactions, let 

(4.2) ~.j = J.l. + a.: + /3; + 'Yii c:L: a.: = L: /3; = L: 'Yii = L: 'Yii = o) 
i j i j 

and let Y.:;kz = med (Xkz~ - X.:;a) be the median of all differences between ob­
servations in the klth and ijth cell. Then the adjusted estimates of the a's, {3's 
and 'Y's are 

(4.3) 
S; = Y.; .. - Y .... 

1•; = Y.:; .. - Y, ... - Y.; .. + Y .. .. , 

where actually Y.. .. = 0. Let TN be the estimate of 1/ f l (x) dx which is dis­
cussed in the preceding section. Using method (i) above, we can then base a 
test of the hypothesis H : a1 = · · · = aa = 0 on the statistic W = 

12bn L (Y i·.. - Y .. .. ) 2/ T~ which under H has asymptotically a i -distribution 
with a - 1 degrees of freedom. If C is the upper 100 a-percentage point of this 
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distribution, the rejection region W ~ C will provide an asymptotically distri­
bution-free test of H. 

Corresponding confidence sets of the a's can be based on the acceptance region 
12bnL (Y •. .. - Y .... - a~) 2/T1 ~ C of the hypothesis a1 = a~, · · · , aa = a~. 
The resulting confidence sets for ( a1 , · · • , aa) are the intersections of the hyper­
spheres 

(4.4) 

with the hyperplanes 

(4.5) La,= 0. 

In an exactly analogous manner we obtain tests of hypotheses specifying the 
(j's or 'Y's, or confidence sets for these parameters. The sums of squares on which 
the test statistics are based, are the terms of a decomposition, exactly analogous 
to the usual one in the analysis of variance of a two-way layout, namely 

(4.6) 
L L (Yii·· - Y .... )2 = L L (Yii· · - Y •... - Y.j .. + Y .... ) 2 

Note that this is the decomposition corresponding to that of analysis of variance 
when the variance is known, since we take the Y,1 .. as our basic variables, the 
averaging over the cells being required for robustness and forming the basis of 
the large-sample theory. 

Instead of (i), we may also use method (ii) above, where however the only 
available quadratic form for the denominator of (3.14) is Ql + · · · + Qc with 
Q. defined by (3.15). The changes which this modification requires in the tests 
and confidence procedures are obvious. 

The situation is somewhat different if one is willing to assume the 'Y's to be 
zero. The estimates &, and S1 are then still given by (4.3). However, for the 
quadratic form Q' one may now take 

(4.7) Q' = nL L '9L = nL L (Yii·· - Yi··· - Y.J .. + Y .... / 

with (a- 1) (b- 1) degrees of freedom. A test of the hypothesis H: a1 = · · · = 
aa = 0 is then given by the rejection region 

(4.8) Qj(a- 1) + Q'j(a- 1)(b- 1) > C 

where Q = bnL (Yi··· - Y .... )2 and Q' is given by (4.7), and where Cis the 
lOOa% upper percentage point of the F-distribution with (a - 1) and (a - 1) 
(b - 1) degrees of freedom. 

The analogy between the test proposed here and the corresponding classical 
test becomes even closer if instead of with Model I we are concerned with a 
Model II analysis. Suppose that ~ii, instead of by (4.2), is given by 

(4.9) 
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where the A's and B's are jointly independent random variables, independent of 
the U's, the A's having common distribution G A and the B's common distribution 
GB, say. The test (4.8) is then clearly still (asymptotically) valid for testing 
the hypothesis that G A is concentrated on a single point, and it is exactly analo­
gous to the corresponding classical test. 

As an illustration of the above procedures, consider the two-way layout from 
Brownlee (1960) p. 379 with a = 2, b = 3 and n = 4, used as an example in 
[15]. Suppose that the interactions can be assumed to be zero and that we wish 
to test the hypothesis a1 = a2 = 0 in the model given by (4.1) and (4.2), or the 
hypothesis that G A is concentrated on a single point in model ( 4.9). In [15] the 
following estimates were obtained for the a's, {3's and 'Y's. 

Estimates (4.3) 
Classical esti­

mates 

f3t f3a 

2 .50 -17.54 1.29 16.25 

2.54 -17.17 1.08 16 .08 

-·29 -1 .79 2.08 

-.67 -1.67 2.33 

We thus get the following decomposition of 2: 2: (Yii·· - Y .... )2 and 
2: 2: cxij· - x ... )2• 

·bn L d~/(a - 1) an I: PV<b- 1) n LL .Y~;/(a- 1)(b- 1) 

Decomposition (4.5) 150.00 2293.51 30.46 
Classical Analysis of 

Variance 154.84 2218.17 34.67 

In this example, the number of observations per cell is too small for use of the 
quadratic forms (3.15). Using therefore the test (4.8), we find the significance 
probability to be .16. For the corresponding classical test in model (4.9), the 
significance probability is .17; on the other hand, for the classical test in model 
(4.1), where in the denominator one can use the residual sum of squares, we find 
the significance probability to be .39. 

6. Asymptotic efficiency. Let us now determine the asymptotic efficiency of 
the test W > C with W given by (3.13). Suppose that the classical statistic 
(3.7) is based on n~ = pfl' (i = 1, · · · , c) observations X~ .. , while (3.13) and 
(3.14) continue to be based on ni = PiN observations X ia, both the X~ .. and 
Xia being given by (3.1). Then if T~ 1 = X~. - X~., it follows from Theorem 1 
that the matrices with elements 

respectively, have the same limiting distribution. 
Consider now the linear hypothesis H of Section 3. By (3.10) the null distri­

bution of the test criteria (3.13) and (3.7) may be computed for ~1 = · · · = 
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~c = 0, so that under H the matrices with elements k~Z .. 1 and (N')tT~ 1 have 
the same limiting distribution. As usual, we shall compare the power of the two 
tests against a sequence of alternatives KN whose difference from His of the order 
1/Nt. Because of (3.10), we may assume without loss of generality that the 
vectors C~1 , · · · , ~c) = (~iN>, · · · , ~~N>) of KN satisfy 

(5.2) ~~N> - ~)N> = (bi - bi)/N! + 0 (1/N1). 

If Zf1 = Zi1 - (~i - ~i) and Tf1 = T~ 1 - (~i - ~J), we then have kN'Zii = 
k~Zt1 + k(bi - b1) + o(1) and (N') 1T~1 = (N')1Tf1 + (N'jN) 1(bi - b1) 

+ (N')'o(1/Nt). It follows from the asymptotic equivalence of the matrices 
(5.1), that the matrices with elements 

(5.3) kN .. z d (N') 1T,'· 1· • ii an 

have the same limit distribution under KN provided N' = g (N) is determined 
in such a way that 

(5.4) N'jN ~ e as N ~ oo. 

If (5.4) holds, the two test statistics therefore have the same limit distribution 
under KN and hence have the same limiting power against these alternatives. 
This shows that e is the Pitman efficiency of the test based on (3.13) relative 
to the classical test based on (3.7), or to the corresponding test with u replaced 
by S. This is of course also the asymptotic efficiency of the test based on (3.14), 
provided each cell is divided into sufficiently many subgroups so that the num­
ber of degrees of freedom r' of Q' tends to infinity with the sample sizes. 

To discuss the efficiency of the confidence intervals (3.18) we may use the 
relationship between the power of a test and the probability of false parameter 
values being covered by the associated confidence sets. From this relationship it 
follows that k2 is also the asymptotic efficiency of the confidence intervals (3.18) 
relative to the intervals (3.17) in the following sense. The intervals (3.18) based 
on N' observations have the same limiting probability of covering values o<N> of 
the contrast differing from the true value by a term of order 1/~, i.e., of the 
form o<N> = () + D./N! + o (1/~), provided (5.4) holds. Again, the result is un­
changed if in (3.17) the standard deviation u is replaced by a consistent esti­
mateS. 

Some authors prefer to measure the accuracy of confidence intervals by their 
length rather than by the probability of covering false values. (For a discussion 
of this issue see Pratt [20], [21] and Madansky [16].) The length of the intervals 
(3.18) based on N observations is 

(5.5) L = 2C(L c;/Pi)'/ (12NT~) 1 

while that of the intervals (3.17), based on N' observations and with u replaced 
by S, is 

(5.6) 
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The ratio L' I L tends in probability to k (N IN')'· Thus, if N' = N, k2 is the 
efficiency of the intervals (3.18) to the intervals (3.17) in the sense that it is 
the limit of the ratio of the squares of the lengths of the intervals. Alternatively, 
it is the efficiency in the sense that if the intervals are based on k .2:: p;N an 
L p;N observations respectively, then the limiting ratio of the length is 1. 

A third approach to the comparison of two sets of confidence intervals can be 
based on a definition of accuracy suggested by Wolfowitz (1950). If (fh, Ou) 
are confidence intervals for a parameter 8, W olfowitz proposed as a measure of 
accuracy the quantity 

(5.7) 

Let us denote by ( 8 LX , Oux) and ( 8 LY , Ouy) the confidence intervals for () de­
fined by (3.17) and (3.18) respectively. Then N 1 (OLX - 8) has a limiting normal 
distribution with mean and variance 'Y = CO' (L c~l p;)l and / = il:: cUp; and 
thedifference D = N![(Oux- 8)- (OLx- O)]tendstoX = 2CO'(LcUp;)t. 
(If in (3.18) q is replaced by S, the differenceD tends to X in probability.) By 
Theorem 1, N' (OLY - 8) then has a normal limiting distribution with mean 'Yik 
and variance r2lk2, and the differenceN'[(Ouy- 8) - (OLY- 8)] tendsinproba­
bility to Xlk. Suppose now that the intervals (OLx, Oux) are based on N' observa­
tions where N' IN -7 k2 as N -7 oo . Then it is easily seen that the quantities 
NW (8; ()LX, Oux) and NW (8; OLY , 8uy) have the same limit distribution, so that 
again k2 appears as a reasonable measure of asymptotic efficienGy. The same 
result clearly holds for more general measures of accuracy. 

In a similar sense, the comparison of the two methods for simultaneous esti­
mation of several contrasts also leads to efficiency e. As an illustration consider 
the confidence spheres for the effects Ca1 , · · · , ac) discussed in Section 4. If 
accuracy is measured by the probability of covering false values, it follows of 
course from the corresponding result for tests that the asymptotic efficiency of 
the spheres given by ( 4.4) and ( 4.5) relative to the classical spheres is k 2• 

An alternative comparison is in terms of the volumes of the spheres. The 
spheres defined by (4.4) and (4.5) are centered at the point (Yl·· · - Y .... , · · · , 
Yc ··· - Y .... ) and the square of their radius is R 2 = Cl12bnT~. On the other 
hand, the standard confidence spheres are centered on the point (Xl· · - X ... , 
· · · , Xc· · - X ... ) and the square of their radius is R'2 = CS2Ibn' if the number 
of observations per cell is n'. It follows that if n' is determined so that n'ln -7 e 
as n -7 oo, the ratio of the volumes of the two spheres tends to 1. 

In analogy to (5.7), one might measure the accuracy of the confidence spheres 
by 

(5.8) 
W = a[min squared distance of (a1, · · · , ac) from the sphere] 

+ b[max squared distance of (a1 , • • • , ac) from the sphere]. 

Then NW is a function of NtR and Nt (a - a) where R is the radius and a = 
(&1 , • • • , &c) the center of the sphere. From this it is easily seen as before that 
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NW has the same limit distribution for the spheres defined by (4.5) and (4.6) 
and based on N observations, as for the standard spheres based on N' observa­
tions when N' IN ~ k2• 

Finally, for Scheffe's method of judging all contrasts the comparison may be 
made, as suggested in [12], in terrns of the lengths of the corresponding intervals. 
Since these are given for all contrasts by (5.5) and (5.6), the remarks made in 
this connection for a single contrast also apply to the present case. 

Throughout the present paper, the procedures have been based on the two­
sample estimates of contrasts discussed in Sections 2 to 4 of [15]. Instead, they 
can of course be based on the one-sample estimates of Section 5 of [15]. All results 
will then hold with the obvious modifications, subject only to the restriction that 
the distribution F of the variables U,a must be symmetric. 
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