
Erich Lehmann's Work on Asymptotics

David Draper

Erich Lehmann's contributions to mathematical statistics have been both broad and
deep, and his influence on applied statistics has been more widespread than perhaps
even he knew. As an example, I used Google scholar to look at the citation
patterns of Chernoff and Lehmann (1954), one of the articles I discuss below. As of
this writing (November 2011), this paper has been cited

• quite steadily from 1954 to the present, in fact a total of 327 times, by workers
in archaeology, astronomy, biology, biostatistics, business , computer engineering,
computer science, ecology, econometrics, education, electrical engineering, envi­
ronmental sciences, finance, genetics, gerontology, machine learning, mathematical
statistics, mechanical engineering, oncology, operations research, physics , proba­
bility theory, psychology, reliability theory, remote sensing, sports sciences , traffic
safety, and urban planning;

• by researchers writing in English, French, German, Italian , Korean , Romanian,
Russian, and Spanish;

• by investigators working in Australia, Belgium, Canada, China, Denmark, France,
Germany, Greece, India, Italy, Japan, Korea, the Netherlands, New Zealand, Roma­
nia, Russia, Spain, Taiwan, the U.K., and the U.S.; and

• by both frequentists and Bayesians.

A small (non-random) sample of the titles of the works that cite this paper, chosen
to illustrate the breadth of application areas, includes the following (alphabetically by
the first letter of the title) :

• "Antecedents and implications of search engine use as pre-purchase information
tools";
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• "A downscaling approach for air quality at a mid-latitude site using circulation
patterns and surface meteorology";

• "Bayesian item fit analysis for unidimensional item response theory models";
• "Communication of emotion in mediated and technology-mediated contexts: face­

to-face, telephone, and instant messaging";
• "Gender equity and foxsports. com: a coverage analysis of the 2007 NCAA

Division I basketball tournament";
• "Guiding architectural SRAM models";
• "Is the universe expanding?";
• "Labor market segmentation: the case of Ukraine and Russia";
• "Mechanical state estimation for overhead-transmission power lines with level

spans";
• "Nonlinear multisystem physiological dysregulation associated with frailty in older

women";
• "Opinion retrieval from blogs";
• "Principle of detailed balance and convergence assessment of Markov Chain

Monte Carlo methods and simulated annealing" (this topic is absolutely central to
contemporary Bayesian computing);

• "Probabilistic approach for durability design of reinforced concrete in marine
environments";

• "Production of antibody fragments in Arabidopsis seeds";
• "Statistical problems in ancient numismatics";
• "Supermarket customers segments stability";
• "Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry devel­

opment";
• "Universal Donsker classes and metric entropy";
• "Vergleich verschiedener Postrernissionsstrategien bei dur akuten myeloischen

Leukamie mit normalem Karyotyp"; and
• "Whom we laugh with affects how we laugh."

In what follows I examine a portion of Lehmann's contributions to asymptotic
methods in statistics, by revisiting and commenting upon six of his papers in this field.

Chernoff and Lehmann (1954) The use of maximum likelihood estimates in X2

tests for goodness of.fit. The problem considered by the authors of this paper is the use
of the X2 machinery to test for goodness of fit to a specified distribution such as the
Poisson or normal, a method that at the time they wrote the paper had been in use for
more than 50 years (Pearson (1900)). Suppose (to illustrate the issues) that you have
data values (YI, ... , Yn) on the real line that you think are like a random sample from
a normal distribution with unknown mean Jl and standard deviation (J , and you want to
make a repeated-sampling calculation that will assess the plausibility of this model. If
you knew u. and (J, Pearson would tell you to (a) partition the real line into k intervals
(although he was not so clear on suggesting what k should be and what cut-points to
use); (b) calculate

(1)
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where n j is the number of data values in interval j and Pj is the probability that the
N (fL, (J2) distribution assigns to that same interval; and (c) refer D to its asymptotic
X2 distribution with (k - 1) degrees of freedom to judge whether the assumed model is
plausible. If you don't know fL and (J, it's natural (in this frequentist setting) to estimate
them from the sample (Yl, . . . , Yn), using a method such as maximum likelihood, and
then pretend that

k ( ~ )2
~ L nj - npj

D = ~
np 'j=1 )

(2)

also has a large-sample X2 distribution, this time with (k - s - 1) degrees of freedom,
where Pj is the MLE of Pj and where (in this case) s = 2 (the number of parameters
estimated). Chernoff and Lehmann note that "this is in fact the procedure recommended
in many textbooks," and it is the purpose of their paper to show that this approach
may in practice be flawed, because "the test statistic [D] ... is stochastically larger
than would be expected under the X2 theory." They work out the actual asymptotic
distribution of D and provide some numerical examples of how far wrong one can go
using the xLs-1 distribution; for instance, with the normal setup above and the k = 4
intervals obtained by cutting the real line at {-I, 0, +I} they obtain a lower bound
of O.12 for the actual significance level of a nominal 0.05 test, showing that "in the
normal case the use of maximum likelihood estimates in X2 may lead to [a serious]
underestimate of the probability of type I error." The reverberations of this elegant
paper, only eight journal pages long, are still being felt today.

Fix, Hodges and Lehmann (1959): The restricted X2 test . This is another paper
about X2 , but in this case the authors are interested in examining variants on the usual
X2 method that have greater power against a class of specified alternatives than the
unrestricted X2 test (while of course at the same time sacrificing power against other
alternatives). Since the basic idea of hypothesis tests is to construct a measure of the
distance between {how the data came out} and {how the data should have come out if
the null hypothesis were true}, and since the usual X2 measure is clearly constructed
to be a distance between observed and expected counts, it's natural for Fix, Hodges
and Lehmann (FHL) to adopt a geometric perspective in examining their restricted X2

tests, and they do so in a way that again brings to mind the word "elegant." Letting
X = (Xl, . .. , Xk) be multinomial with parameters nand P = (PI, ... , Pk), FHL
note that the usual X2 measure when testing the simple hypothesis that P = n can be
written as

(3)

where R = (R 1, .. . , Rk) = ~ . This is a special case of the general expression

(4)
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for vectors a, band c of values between 0 and 1 and summing to 1; in particular
(3) is D:rr (R , rr}. When the null hypothesis is composite, say pET where T is a
t-dimensional surface on the hyperplane L7=1 Pi = 1, it's again natural to use the
data X to find the best estimate it" of the location of p if the null were true, and
to base the test on D:rr* (R, rr"}, FHL note that Pearson (1900) got the asymptotic
distribution of this test statistic wrong and that the error was not corrected until Fisher
did so about 25 years later (in fact this was one of the strongest battles in Fisher's
relentless campaign to show that he was the rising young star in British statistics and
Pearson was yesterday's man).

Fix, Hodges, and Lehmann (1959) assume that the alternative hypotheses can be
represented by a surface S of dimension s that contains the null surface T. Neyman
(1949) had shown earlier that if P is a good estimate of p under restriction T and Q
is a good estimate of p under restriction S (where "good" includes possibilities such
as maximum likelihood and minimum X2) , then VCR) = DR(R , P) - DR(R, Q)
is an asymptotically valid statistic for testing Ho : pET against HA : pES
with limiting null distribution X;-t. FHL investigate the behavior of this test against
a sequence of alternative values of p approaching T at a ...;n rate and prove a theorem,
identifying the non-central X2 distribution obeyed by VCR) asymptotically, that permits
an investigation of the power of the test. In numerical work that was not easy for the
late 1950s, they provide new tables of the non-central X2 distribution and a plot of the
power of the test against the degrees of freedom f = (s - t) for a variety of values
of the non-centrality parameter A. They conclude the paper by illustrating the use of
Neyman's test in a setting in which the null hypothesis is that events of interest occur
uniformly in time against the alternative that their occurrence is cyclical, noting that
at significance level 0.01 for a particular alternative considered the restricted test has
power 0.90 when the usual X2 test would only have power 0.62.

There are many points of interest in this paper even with 40 years of hindsight:
it features a non-Bayesian use of prior information (in the precise formulation of the
alternative hypothesis); the proofs, which involve a nice degree of geometric insight,
are discussed in a clear, intuitive way rather than enclosing them in a straitjacket of
formalism; FHL display an appealing command of the history of statistics in their
narrative (for example, they note at one point in a proof that the idea they're about
to mention dates back to Gauss); in an interesting demonstration of flexibility on
the setting of type I and type II error targets, the numerical tables give entries for
significance levels from 0.001 all the way up to 0.5; and again the question of what to
choose for k comes up (and this time FHL have useful advice to offer the reader) .

Lehmann (1963a) and Lehmann (1964): Asymptotically nonparametric inference:
an alternative approach to linear models and Asymptotically nonparametric inference
in some linear models with one observation per cell. I've known these papers rather
well for a long time; they were the basis for part of my dissertation work with Lehmann
in the late 1970s and early 1980s (Draper (1988)). The context of these articles is as
follows .

It's hard to argue with the viewpoint that parametric frequentist inferential methods
were greatly strengthened in the 1920s and 1930s by the work of Fisher on the one
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hand (e.g., Fisher (1922)) and Neyman and Pearson on the other hand (e.g., Neyman
and Pearson (1933)) . Given a particular parametric model

IID
(Yi Ie, I) '" I(-Ie), (5)

where e is a vector of real numbers and the functional form of I is assumed known,
these investigators sought methods of estimation and hypothesis testing that were in
some sense "best" in repeated sampling from the presumed model (5). As people
started to use these methods, a new class of questions arose: what should you do
if you don't know the "right" parametric model? One idea would naturally be to
continue to use one of the methods that Fisher and Neyman-Pearson had developed
for standard choices of I, and then to investigate how badly these methods perform
when I was not the actual data-generating mechanism; this approach (studying the
robustness of the standard methods) was pursued vigorously by many people, including
Pearson (1931) himself. A second idea would be to look for new methods that worked
rather well "in the neighborhood of I" and never did much worse than the "best"
methods (if somehow you knew what I really was). This gave rise to nonparametric
(or distribution-free) techniques, such as the Wilcoxon (1945) rank tests in the one- and
two-sample problems. These tests were shown by Pitman (1949) and others to have
an efficiency (the asymptotic ratio of sample sizes needed to achieve the same power
against the same alternative at the same significance level) (a) of approximately 96%
when I is normal and (b) never lower than about 86% no matter what I is, but they
had the limitation that, as tests, their final products (P -values) live on the probability
scale, rather than on the scale ofthe data (where most good scientific inference actually
resides (or at least should reside) in practice). Lehmann wondered: how can point and
interval estimates (on the data scale) be developed that in some sense arise naturally
from the nonparametric tests?

It's a common idea in (frequentist) statistics that if you have a good method for
estimating a parameter then you can derive a good test from that estimate; it's equally
true (but less often used) that if you have a good test you can work backwards from it
(invert it) to get a good (point or interval) estimate. In the early 1960s, during a highly
productive period, Lehmann - sometimes working alone (e.g., Lehmann (l963b)),
sometimes with Joe Hodges (e.g., Hodges and Lehmann (1963)) - used this idea, of
inverting the Wilcoxon procedures, to produce rank-based point and interval estimates
in a large variety of interesting inferential problems. The two papers I discuss here are
examples of this: Lehmann (1964) and Lehmann (1963c) cover analysis of variance
models with one and several observations per cell, respectively.

Following Draper (1988), the model that Lehmann (I 963c) considers for ANOYA
with several observations per cell can be written

f ij = ILi + eij ,I .i~ 1, I . t n, = N I '
} - 1, , n1 •

1=1

533

(6)



(7)

D. Draper

in which the eij are lID continuous real-valued random variables with density g
satisfying

o = i: g2(y)dy < 00

and (J2 = V(eij) < 00; here u, is a measure of center for the ith of 1 total cells, Yij is
the j th of the n, observations in cell i and N is the total number of observations. This
looks like a one-way ANOVA model, but more complicated layouts can be handled
just by numbering the cells from 1 to I.

Lehmann noted that most inference in ANOVA is based on contrasts among the cell
centers, and any contrast

1 1

¢ = LCi /Li, LCi = 0,
i=1 i=1

can be expressed in terms of the cell centers:

1 I-I 1

LCi /Li = L L bij(/Li - /Lj)
i=1 i=1 j =i+1

(8)

(9)

(note that the bij are not unique). To estimate (/Li - /Lj), Hodges and Lehmann (1963)
showed that inverting the Wilcoxon rank-sum test yields the robust estimate

(10)

which inherits the efficiency properties of the Wilcoxon test noted above. This turns out
to be unsatisfactory as a basis for inference in ANOVA, however, because the Tij don 't
satisfy the linearity constraints obeyed by the quantities they're trying to estimate:

since the operations of subtraction and taking a median don't commute. Lehmann's
suggested fix for this problem, improved slightly a few years later by Spjotvoll (1968),
was to express (/Li - /Lj) as [(/Li - jl) - (/Lj - jl)], where jl = it 'L{=I n. u, is

the grand mean, and estimate (/Li - jl) by i; = it 'Lk=1 nk~k; this linearizes the
estimates by making all comparisons relative to jl. With this approach, (/Li - /Lj) can
now be estimated by Wij = ci, - Tj ), leading to the contrast estimate

I-I 1

¢ = L L bijWij;
i=l j=i+1

(12)

the above linearization ensures that even though the bij are not unique, all choices of

bij lead to the same value of ¢.
534



Erich Lehmann 's Work on Asymptotics

It's now straightforward to "robustify" virtually any standard normal-theory-based
ANOVA procedure, simply by (a) replacing the usual quantity (Yi - Y) - in which
- In - 11-· -
Yi = n: L/=I Yij and Y = N Li=l n.Y, - by Its rank-based analogue Ti, and (b)
replacing the normal-theory estimated error variance fj2 by its analogue fj~. Lehmann
showed that the asymptotic analogue of a 2 in this procedure is

(13)

In my dissertation work with Lehmann I developed two methods for estimating f g2 ­
one (suggested by Lehmann (1963b» derived from the lengths of confidence intervals
based on the same differences (Yik - Yjl) whose median is Tij (see equation (10»,
and another involving density estimation - and conducted a large simulation study
to see how this machinery works in small samples. The conclusions were that interval
estimates from this approach (a) have about the same coverage as the standard methods
with normal and non-normal data, (b) are about 2% wider when the data really are
normal, but (c) can be noticeably narrower with samples from non-normal distributions
(e.g., normal-theory intervals are about 40% wider than the rank-based intervals with
data from t distributions with small degrees of freedom).

In parallel with this paper, Lehmann (1964) is principally interested in ANOVA
models with one observation per cell:

c N

X ia = V + ~i + fia + Via, L~i = Lfia = 0;
i=l a=1

(14)

here the factor of interest, represented by ~, is at c levels, fi represents a blocking factor
at N levels, and the Via are IID with CDP F . Lehmann again focuses on contrasts
e = Lf=l Ci~i (with Lf=1 c, = 0); he defines Va = Lf=l c, X ia and notes that
these random variables are also IID, with CDP (say) Gc . If F (and therefore Gc ) are
symmetric, then a natural place to start in estimating efrom a rank-based point of view

is with the Walsh averages med [V,,~V,B J, where the median is taken over all a :::: {3. As

in the paper discussed above, these quantities are linearly incompatible, so Lehmann
again focuses instead on (~i - ~j) and estimates these differences with

(15)

Even these quantities are not compatible, so he linearizes them with

(16)

where the dot signifies averaging with respect to the indicated subscript, and bases
his inferences about contrasts on the Zi]. The asymptotic distribution of the Zij again
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involves f g2, where this time g is the density of (Xia - Xj /3 ), and efficiency gains
relative to the standard normal-theory methods are similar to those found in Lehmann
(1963a). Taken together, these two papers - and the other related articles published
around the same time - provide the foundation for Rvestimation, an approach to
robust inference that's competitive with the other two leading methods developed
subsequently (L-estimation (e.g. , Bickel (1973)), based on linear combinations of
order statistics, and M-estimation (e.g., Huber (1973)), which generalizes maximum
likelihood in a robust fashion) .

Hodges and Lehmann (1970): Deficiency. In this pap er Hodges and Lehmann
(HL) are interested in comparing the number of observations required by two different
inferential methods to achieve the same accuracy, as a measure of how much one
method is better than the other. As they note, if methods A and B require nand k; > n
observations to arrive at the same level of performance, one natural way to summarize
this is through the ratio ~l , whose limit e as n -+ 00 will generally be stable (this is
the basis of the familiar concept of asymptotic relative efficiency (ARE)). If e > 1, its
value can often give reliable guidance as to how much method A will be better than
B with finite (and even rather small) n; but what if (as frequently occurs) e = I? It
may still be that A is better than B in small samples, and a natural way to quantify this
is through the difference (k; - n), which HL call the deficiency of B relative to A; if
d = limn-+oo (k n - n) exists, they call this the asymptotic deficiency.

The paper is devoted to an exploration of this idea in a series of examples, using
expected squared error of point estimators as the performance measure. They show, for
instance, that if you and I are both estimating the population variance ()2 based on a
sample (Xl, ... , X n ) , and I pretend that I know the population mean ~ and use M; =
~ L:7=t (Xi - ~)2 while you make no such assumption and use M~ = n~l L:7=1 (Xi ­
X)2 (where X = ~ L:7=1 Xi), both of us will be using estimators that are unbiased (in

4
repeated sampling) with the same large-sample variance y~ ,where (y + 1) = ~1 is
the standardized fourth central moment of the population distribution F . Thus in this
case e = 1, but they show that the asymptotic deficiency of M~ relative to M; is ~.

With normal data y = 2, so (as they put it) in that case "it costs only one observation to
protect against an erroneous value of ~ ," whereas the deficiency can be arbitrarily large
for non-normal populations since y can be as close to 0 as you might want to make it.

Other examples analyzed include comparisons of (a) biased and unbiased estimates
when drawing inferences about the population variance, (b) medians versu s quasi­
medians in estimating the center of symmetry of a symmetric distribution, (c) several
methods for creating confidence sets for normal means, (d) the one-sample t test versus
the analogous z procedure obtained by pretending the population variance is known,
and (e) Bayesian versus unbiased estimation of a normal mean. I'm a bit uncomfortable
with their only other example not on this list, however: with X as the (binomial)
number of successes in n IID Bernoulli trials with unknown success probability p ,
they compare the usual unbiased estimator M; = ~ with the minimax estimator

M' = ,J"ii M + 1 .
n 1 +,J"ii n 2(1 + ,J"ii)'
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Table 1 Expected squared errors for the unbiased ( V,,) and minimax (v,;) estimators of a
Bernoulli/binomial p ,for various values ofn and p.

p = 0.25 p = 0.4999 p = 0.5

n Vn V' v" V' v" V'n n n

1 1.88.10-1 6.25.10-2 2.50.10-1 6.25.10-2 2.50 .10-1 6.25.10-2

10 1.88 .10-2 1.44.10-2 2.50 .10-2 1.44.10-2 2.50 .10-2 1.44.10-2

100 1.88 .10- 3 2.07.10- 3 2.50 .10- 3 2.07 .10- 3 2.50 .10- 3 2.07 .10- 3

1,000 1.88 .10-4 2.35. 10-4 2.50 .10-4 2.35 .10-4 2.50 .10-4 2.35 .10-4

10,000 1.88 .10-5 2.45.10-5 2.50 .10-5 2.45 . 10-5 2.50. 10-5 2.45 . 10-5

these estimators have expected squared errors

p(1- p) / 1
Vn = and Vn = r: 2 '

n 4(1+yn)
(18)

respecti vely. You can see that if p =1= ~ the asymptotic relative efficiency of M~ to M;

is p (1,;- p) < 1, so that for large n the unbiased estimator is better (with expected squared

error as the figure of merit); but with p = ~ the ARE is 1 and V~ < Vn , and HL show
that in this case the asymptotic deficiency of M; relative to M~ is infinite. Thi s seems
misleading to me from a practical point of view, as illustrated in Table 1. HL note that
"the deficiency computation thus shows that the [unbiased] estimator requires a much
larger sample size than the minimax [estimator] if they are to have the same expected
squared error at p = ~ ' in spite of the fact that the corresponding asymptotic efficiency
is I." While this may strictl y speaking be true, to me a better summary of what' s going
on (with reference to Table 1) would be just to say that (a) for p near 0.5, M~ is better
for all realistic sample sizes n, but the amount that it's better goes to 0, and (b) for p
not near 0.5, M~ is better for small n and then from a certain point on (as n grows), M;
is better.

Lehmann and Loh (1990): Pointwise versus uniform robustness of some large­
sample tests and confidence intervals. Thi s paper is about the sensitivity of hypothesis
tests to departures from the distributional assumptions made to derive them. Lehmann
and Loh (LL) note, for instance, that the one- sample t test of the null hypothesis that
the population mean is 0 again st positive alternatives is designed to have exact type­
I error rate a under normality, and it's natural to wonder how it behaves when the
data are not normal. If the data (Xl , . . . , Xn) are IID from CDF F, then as long as
F has finite variance the first-order asymptotic answer is pleasant: with an(F) as the
probability of rejecting Hi, : jJ.,(F) = 0 (where jJ.,(F) is the mean of F), it' s easy to
show that an(F) -+ a as n -+ 00, which people typically describe by saying that the
the level of the t test is robust against non-normality. But Q: how big does n need to
be for an(F) to be close to a?

Looking at the problem a bit more generally, LL con sider testing

H~: the mean jJ., F of the unknown F is 0
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against the alternatives (indexed by F) that MF is positive. When testing H~ the level of
the t test with n observations is an = supFan (F), with F as the set of all CDFs with
mean 0 and finite variance. It would be nice if limn-4 oo an = a; if this were true we
could say that the t test is uniformly robust over F. But it's been known for a long time
(Bahadur and Savage (1956)) that sUPFan(F) = I for all a > 0, so it's necessary to
seek the answer to question Q above a bit differently: the Bahadur-Savage result says
that, given a small E > 0, you cannot find a sample size no such that

Ian (F) - al < E for all n > no (20)

when F is allowed to vary over F, but can you find a subset Fo of F (that's big
enough to be relevant to actual statistical practice) for which (20) is true? LL devote
much of this paper to showing, unhappily, that across natural and obvious choices of
Fo - for example, all distributions in a fixed Kolmogorov-Smirnov neighborhood of
normal densities with mean 0, and all continuous distributions with support contained
in a bounded interval- the t test fails to achieve uniform robustness; in fact, the only
class Fo that LL can find that works is the set of absolutely continuous F E F with
the rth standardized absolute moment about the mean uniformly bounded for some
r > 2. They also obtain a negative result for inference about the success parameter p in
Bernoulli/binomial sampling. Overall the paper serves to show how hard it is to achieve
uniform robustness as a performance criterion for repeated-sampling hypothesis tests.

An overview. Together (as of this writing) these papers have been cited more than
560 times, by researchers working in a wide variety of fields; the resulting citation rate
per paper (about 93) is above average for an author who is himself highly-cited (the
citation software Publish or Perish finds that Lehmann has been cited almost
22,000 times over a 66-year period, with an average number of citations per paper of
about 62). All of these papers are well-written, which (besides high impact) is another
general feature of Lehmann's work. Two threads run through these articles, and serve
to draw my comments to a close.

• They're all written from the repeated-sampling (frequentist) point of view, although
Bayesian methods sometimes get a mention . A Bayesian would approach the
problems addressed in these articles differently - for example, (1) today I would
solve the linear-model problems in Lehmann (1963b), Lehmann (1964) not by
seeking robust estimates but by direct Bayesian parametric or nonparametric
modeling of the (non-normal) error distributions, which would yield inferential
procedures with repeated-sampling robustness properties similar to those exhibited
by Lehmann's methods, and (2) in my view many uses of hypothesis-testing in
practice should really be reformulated as Bayesian decision-theory problems with
utility structures (a) that are sensitive to the real-world context of the problem and
(b) that will often be found to differ from the loss function inherent in the usual type
I and II error story - but everyone would agree that the problems posed here (Does
this model fit the data? Does this procedure still work well, even though some of the
assumptions on which it's based are violated? How much better is method A than
B in extracting signal from the data?) are important.
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• They all feature an interest in how often statistical procedures get the right answer.
This is a fundamental scientific question to which, in my view, all statisticians
- whether they work in the Bayesian or frequentist paradigms - need to pay
constant attention (I learned the importance of this topic both from Lehmann and
from his mentor Jerzy Neyman). I began my research career in the frequentist
paradigm (which was the only story readily available at Berkeley, at least when I
was there in the late 1970s and early 1980s), and came to appreciate the value of
Bayesian methodology and thinking later (in the mid 1980s). The standard position
taken by many statisticians in the 20th century was that you had to (a) choose
between the Bayesian and frequentist paradigms and then (b) defend your chosen
approach against attacks from people who had chosen the other paradigm, but this
is a flawed formulation of the problem: when you look closely you find that each
paradigm has both strengths and weaknesses, so - in my view - in the 21st
century it's the job of all working statisticians to try to construct a fusion of the
two paradigms that emphasizes the strengths and de-emphasizes the weaknesses.
My own personal fusion, combining elements of my Berkeley training and post­
Berkeley study, is (i) to reason in a Bayesian way when formulating my inferences,
predictions and decisions (because the Bayesian approach seems to me to be the
most successful method so far invented for capturing and quantifying all relevant
sources of uncertainty, whether arising from an inherently repeatable process or
not) and (ii) to reason in a frequentist way when evaluating the procedures in (i)
(because we all need to pay attention to how often we get the right answer, and this
is an inherently frequentist question). I'm not sure what Lehmann's position was on
this issue toward the end of his long career, but I am sure that, if he were still here
to give us his thoughts on the subject, they would be well worth listening to.
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