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Erich Lehmann on rank methods 

Willem R. van Zwet 

Though statistical methods based on ranks, such as the sign test, have a history going 
back for centuries, it was the introduction of Wilcoxon's tests in Wilcoxon (1945) that 
started an avalanche of research on this subject. It is worth noting that Wilcoxon needed 
only a little over three pages introducing and discussing both his two-sample test and 
his one-sample test for symmetry, to set off a research effort that would fill thousands 
of journal pages. Almost from the beginning Erich Lehmann played a major role in 
the development of this subject. Eight of his papers will be discussed here, of which 
two are joint with J. L. Hodges, Jr. and one with C. Stein. The full content of these 
papers will not be described here. Instead, the focus will be on the main contributions 
of each paper to our present knowledge of rank tests. It all adds up to what is more 
or less a history of the subject. For ease of presentation attention will be focused on 
the two-sample problem. When needed, appropriate reference will be made to other 
models that are dealt with in a particular paper. 

Let us introduce the necessary notation. The two samples are denoted by X 1, 

X2, ... , Xm and Yt, Y2, ... , Yn and for the combined sample of size N = m + n, 
we write Zt, ... , ZN = X1, . .. , Xm, Y1, ... , Yn. We assume that Z1, ... , ZN are 
independent random variables, that X1, X2 , ... , Xm are identically distributed (i.d.) 
with common distribution function F, and that Y1, Yz, ... , Yn are i.d. with distribution 
function G. We suppose that F and G are continuous so that there are no equal 
values among Z 1, ••• , Z N. Let Zcll < · · · < Z(N) denote the ordered sequence of 
Z 1, ••• , ZN, and R1 the rank of Y1 in this sequence, thus Y1 = Z(Rj )· Wilcoxon's 
two sample test for H0 : F = G against H 1 : F > G rejects H0 for large values of 
the rank sum W = L 1 :::::J ::on R J • Here F > G should be interpreted as F (x) :=:: G (x) 
for all x with strict inequality for at least one value of x, and hence on an interval. 
More generally, a rank test for this testing problem rejects H 0 for large values of 
T = LL:::::J:::::n a(R 1 ), for an increasing sequence of scores a(r). Obviously, under Ho, 
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the vector R = (R 1, •• • , Rn) is distributed as a random sequence of length n drawn 
without replacement from the set { 1, 2, ... , N} and hence the distribution of W under 
H 0 is easy to find and independent of the underlying common distribution function 
F. In other words, rank tests are distribution-free and hence similar, in the sense that 
the probability of an error of the first kind is constant on the hypothesis H0 . For a 
given significance level a the critical value for the test based on W is therefore easy to 
determine. 

Perhaps this is the place for a word about terminology. In the classical parametric 
model unknown distributions have a given parametric form with only a finite dimen­
sional parameter left unspecified. The null hypothesis then sets restrictions on this 
finite dimensional parameter. In the model discussed above the unknown distributions 
F and G are left unspecified and under Ho the common distribution F = G is still 
unspecified . Neither the general model nor the null hypothesis can be described in 
terms of finite dimensional parameters, which is why such models and hypotheses 
are called nonparametric. This has led statisticians to call rank tests and other similar 
tests for such hypotheses nonparametric tests, which is clearly a misnomer. There is 
nothing parametric or nonparametric about a statistical test. The important property of 
such a test is simply that it deals with such large infinitely dimensional hypotheses by 
using test statistics that are distribution-free, in the sense that their distribution remains 
the same throughout the hypothesis. Hence distribution-free tests is clearly a more 
appropriate name for these tests. 

Returning to the two-sample rank tests, the main problem is of course to get some 
idea of the power of these tests against simple alternatives (F, G). The case where F 
and G are normal distributions differing only in location is of course of special interest. 
This is the case where Student's test comes into its own and it would be of interest to 
compare the powers. Initially, the common view of rank tests was that it was a nice 
idea, but that restricting attention to ranks instead of the variables themselves would 
probably result in a very serious loss of power. Even Wilcoxon himself didn't sound 
too optimistic about this, even though he felt that his symmetry test would do better 
than the sign test. 

1 On the theory of some non-parametric hypotheses 

The first seven of Lehmann's papers discussed here were written between 1949 and 
1963 and in these papers one can trace the progress of the research on this topic almost 
from its very beginning. These papers will therefore be discussed in chronological 
order. In 'On the theory of some non-parametric hypotheses' by Lehmann and Stein 
(1949) a first glimmer is shed on the problem, even though the paper deals primarily 
with nonparametric hypotheses rather than distribution-free tests. First of all the 
authors point out that instead of testing H 0 , it is often more relevant to test the extended 
null hypothesis H; that Z 1, ••• , Z N are exchangeable, i.e. that their joint distribution 
is invariant under permutations of the variables. Of course for rank tests this makes 
no difference as the distribution of the ranks remains the same under the extended 
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hypothesis H0*. For general tests, however, optimality properties of a test for H0* do 
not necessarily correspond to the same property of this test among the larger class 
of tests for the restricted null hypothesis H0 . However, the authors prove that this 
correspondence does exist if the tests for H0 are restricted to distribution-free or similar 
tests. But this means that optimal tests for H; can only be beaten by tests that are not 
even similar for the restricted hypothesis H0 . One may hope that this means that not 
much power is lost by using a test for H0* - such as a rank test - provided it is in 
some sense optimal for testing H;. The paper further discusses the same phenomenon 
for more general pairs of null hypotheses and derives most powerful and most stringent 
tests for various testing problems. 

2 Consistency and unbiasedness of certain non parametric tests 

In the second paper 'Consistency and unbiasedness of certain nonparametric tests' 
(Lehmann ( 1951)) the attack on the power of Wilcoxon's test is well under way. Mann 
and Whitney had proved that Wilcoxon's test is consistent, i.e. its power against a 
simple alternative with F > G tends to 1 as m, n --+ oo. By noting that F > G 
implies that there exists a function h(x) > x such that h(X;) has distribution G, and 
that the test statistic is monotone, it is shown that the test is also unbiased against 
such alternatives, i.e. its power exceeds the level of significance a. The same proof 
shows that the power against alternatives F < G is below a and hence the test may 
also be applied for testing the hypothesis F :::: G against the alternative F > G. 
Unbiasedness and consistency are also proved for tests for the k-sample problem, tests 
for independence and the symmetry hypothesis. 

Because W can be written as 

W= L L l{X; <YJ}+n(n;l), 
I :Si :sm I :S} :sn 

it is a two-sample U -statistic. Extending Hoeffding's results on one-sample U -statistics 
(cf. Hoeffding (1948)), asymptotic normality of W under alternatives is proved as m 
and n tend to infinity at the same rate. The news of this major advance traveled around 
the world fast. Already before Lehmann's paper appeared, my own teacher David van 
Dantzig reported to the Royal Netherlands Academy of Sciences that ' ... Mr. A.M. 
Mood kindly informed me that Mr. E. Lehmann has proved the important result that 
the Wilcoxon test criterion is asymptotically normally distributed even when the null 
hypothesis is not true.' (van Dantzig (1951)) 

3 The power of rank tests 

The problem of power computation is attacked in a novel and imaginative way in the 
third paper 'The power of rank tests' (Lehmann (1953)). This paper is one of my 
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all-time favorites and I have had the pleasure to speak about it in Berkeley on the 
occasion of Erich's 80th birthday in 1997. Power computations for alternatives such 
as shift- i.e. G(x) = F(x- a) for a > 0- look rather forbidding and the result 
will also depend on F as well as a. Lehmann argued that since one probably has only 
a vague idea what alternatives would be plausible in any particular case, one might as 
well choose a mathematically convenient alternative hypothesis. His suggestion is to 
choose a distribution function K on (0, 1) with density k, take G(x) = K(F(x)) and 
consider the alternative hypothesis Ht : (F, K(F)) for varying F. Since the ranks 
are invariant under the monotone transformation x ~ F(x) of the Z's, this has the 
obvious advantage that that the distribution of the ranks under this alternative is the 
same as for the model (U, K) where the Xi have the uniform distribution function U 
on (0, 1) and the Y1 have distribution function K. Hence the power is constant on this 
alternative Ht. Application of a result of Hoeffding (1951) yields that under Ht and 
independent of F, 

* m!n! ( n ) P(Rr = rr, ... , Rn = rn I H 1 ) = (m + n)!IE . k(Ur1:N) , 
!-:::_; -:s_n 

(3.1) 

where Ui :N denotes the i -th order statistic of a sample of size N from the uniform 
distribution U on (0, 1). If K(v) < v for 0 < v < 1 we have G < F and Ht is a 
proper subset of the full alternative H 1 : F > G. Obvious examples are K(v) = va 
for a > 1. Especially for integer a, the right-hand side of (3.1) and consequently the 
exact power of Wilcoxon's test against Ht is easy to compute. One can now traverse 
the general alternative hypothesis H 1 : F > G almost at will and compute the power 
of Wilcoxon's test for small samples. In the paper we find graphs of the alternatives 
that are dealt with and numerical values of the corresponding power. Also moments of 
W under Ht are easy to compute and together with the asymptotic normality proved 
in the previous paper, this yields large sample approximations for the distribution of W 
under alternatives, and hence for the power of W. 

Finally (3.1) allows us to derive most powerful tests against simple alternatives. 
Under H 0 , the probability of any set of ranks equals m!n!/(m + n)! independent of 
F, and hence the Neyman-Pearson lemma tells us to reject H0 for large values of the 
expected value on the right in (3.1). By taking K(v) = Kp(v) = (1- p)v + pv2 and 
maximizing the derivative of the power against this alternative at p = 0, one finds 
the locally most powerful rank test which happens to be Wilcoxon's test. Other testing 
problems are also considered. 
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4 The efficiency of some nonparametric competitors 
of the t-test 

The fourth paper 'The efficiency of some nonparametric competitors of the t-test' 
(Hodges and Lehmann (1956)) must be the one that caught the most attention, and 
the number 0.864 is probably engraved in many statisticians' minds. Consider the 
problem of testing G = F against G(x) = F(x - a), a > 0 for a given F 
with density f and variance (5 2 . Pitman (1949) showed that for this problem the 
asymptotic relative efficiency (ARE) of Wilcoxon's test relative to the t-test equals 

ew,1 = 12(52 (f f 2(x)dxf . It is easy to see that ew,1 can be arbitrarily large for 
certain densities, indicating a superior performance of Wilcoxon's test. On the other 
hand the efficiency is less than 1 ifF = <I>, the standard normal distribution function, 
because asymptotically Student's test can not be beaten on its own turf. However, for 
the normal case ew,1 = 3/n ~ 0.95, which is still fairly close to 1. Lehmann asked 
what the worst performance of Wilcoxon's test relative to Student's test could be, i.e. 
what the minimum of ew.t would be as a function of f. He found that this equals 
I 08/125 = 0.864. This means that for large samples you never throw away more than 
14 % of your data if you test for shift by using Wilcoxon's test instead of Student's, 
as was the general custom. For that relatively small price you buy a test that is valid 
regardless of the underlying distribution. This simple argument put a definite end to the 
idea that the cost of using ranks would be prohibitive. 

5 Rank methods for combination of independent experiments 
in analysis of variance 

In the paper 'Rank methods for combination of independent experiments in analysis 
of variance' by Hodges and Lehmann (1962) the authors turn to generalizations 
of Wilcoxon's two-sample test to randomized block designs. In this model the N 
available subjects are divided into k blocks, with Ni subjects in block i and hence 
L l.:<Oi ::::k Ni = N. The idea is that within each block subjects are believed to be more 
homogeneous than in the entire group. In block i, mi > 0 and ni > 0 subjects are 
randomly assigned to treatments A and B respectively, so mi + ni = Ni and the two 
treatments correspond to two samples of sizes mi and ni. The problem is to test the 
hypothesis that there is no difference between the treatments, against shift alternatives 
where in each block the response to treatment B is stochastically larger than that to 
treatment A. One possible test statistic for this problem is a linear combination of 
Wilcoxon's two-sample statistics Wi for blocks i = 1, ... , k, with weights that are in 
some sense optimal. If the underlying distributions would be known to be normal with a 
common variance, an optimal statistic would be a linear combination of the differences 
of the sample means in blocks 1, ... , k. Roughly speaking, for the normal distribution 
it turns out that if both the number of blocks k and the block sizes Ni tend to infinity, 
the ARE of this rank test with respect to the normal test is 3 j n. This equals the ARE of 



336

W.R. van Zwet 

Wilcoxon's two-sample test to Student's two-sample test. However, if the block sizes 
Ni equal 2 for all i and the number of blocks k tends to infinity, then this ARE equals 
2 I rr which is the ARE of the sign test to Student's test. This is no surprise as Ni = 2 
implies mi = ni = 1, and for two samples of size 1, Wilcoxon's test is equivalent to 
the sign test applied to the difference ofthe (single) responses to treatments Band A. 

Another possibility is to align the blocks by subtracting the average response of 
all Ni subjects in block i from these Ni responses in that block. Having thus aligned 
the different blocks, one pools all N subjects and carries out Wilcoxon's two-sample 
test on the two samples of sizes L 1 :Si :sk mi and L 1 :Si :sk ni of subjects having received 
treatment A orB. The test is carried out as a conditional test given the division of the set 
of ranks { 1, 2, ... , N} of the N combined aligned responses over the k blocks. Critical 
values and powers are computed and asymptotic normality under the hypothesis is 
proved. If the block sizes Ni equal 2 for all i, then for the normal case the ARE of 
the aligned block test equals 3 I rr which is the ARE of Wilcoxon's test with respect to 
Student's test. 

6 Robust estimation in analysis of variance 

The sixth paper 'Robust estimation in analysis of variance' (Lehmann (1963)) is a 
follow-up on 'Estimates oflocation based on rank tests' (Hodges and Lehmann (1963)) 
which appeared in the immediately preceding issue of Ann. Math. Statist .. In this earlier 
paper the authors consider the two-sample shift model with G(x) = F(x- ~) and 
propose the median of the mn differences (Y1 -Xi) as a robust estimator of~- The 
ARE of this estimator to the classical estimator which is the difference of the sample 
means is the same as the ARE of Wilcoxon's test to Student's test. 

Now the set-up is generalized to the c-sample problem where for i = 1, ... , c, the 
i -th sample of size ni consists of observations Xi,a = ~i + Ui ,a. a = 1, ... , ni. The 
Ui ,a are independent with median 0. The Hodges-Lehmann estimator of (~i - ~J) is 
given by Yi,J = med(Xi ,a- XJ,f;), the median of the nin J differences (Xi,a- XJ ,f3) for 
a = 1, ... , ni, f3 = 1, ... , n 1. There is an amusing problem with this definition. It is 
not compatible in the sense that the estimator Yi ,k of (~i - ~k) is generally not equal to 
the sum of the estimators Yi ,J of (~i -~1 ) and YJ,k of (~1 -~k). This becomes a nuisance 
when estimating general contrasts of the form L ai ~i with L ai = 0 because there 
are many linear combinations of the Yi ,J that can be used to estimate this contrast. 

This problem is solved by estimating (~i - ~J) by minimizing 

L (Yi,j- (~i- ~J)) 2 ' 
i-:fj 

which yields the difference of the two sample means Zi,J = Yi · - Y1. as an estimate. 
Now if a contrast is written in two different ways Li,j ai ,J (~i -~J) = Li,J bi,J (~i -~J) 
identically in ~J, ... ,~c . then obviously Li,Jai ,Jzi ,J = Li,Jai ,J(Yi·- YJ.) = 
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Li,J bi,J(Yi.- YJ.) = Li,J bi ,Jzi ,J• so the estimator is unique. Joint asymptotic 
normality of appropriately normalized Yi ,J is proved and with the same normalization, 
the zi ,j have the same limit distribution. 

7 A class of selection procedures based on ranks 

The seventh paper in this sequence 'A class of selection procedures based on ranks' 
(Lehmann (1963)) is devoted to the use of ranks in yet another area of statistics. 
Suppose we have samples of size n from each of c populations IT 1, ... , I1c which 
differ only in location. So for i = 1, ... , c and j = 1, ... , n, the random variables 
Xi ,J are independent and P(Xi.J ::=: x) = F(x- ei). One wishes to select the best 
population which is the one with the largest value of the parameter e. The classical 
procedure is the means procedure that selects the population ITi with largest mean 
xi. = n -I L I ~j 9 xi ,j. If F is a normal distribution function this is the natural thing 
to do. 

The performance of different selection procedures is compared as follows. Suppose 
that for i = 1, 2, ... , c - 1, ei < ec so that population I1c is uniquely the best. 
A population ITi is called good if ei :::: 8c - .6. for some .6. > 0. To ensure good 
behavior of a selection procedure one may require that 

P(selected population is good) :::: y, (7.1) 

for some y > 0. To compare the asymptotic performance of two procedures A and B 
we consider the ratio e = n BIn A of smallest sample sizes n A and n B needed to satisfy 
(7 .1) for a given .6. and y with these two procedures. The limit of e as .6. ----+ 0 is the 
ARE of procedure A with respect to procedure B. 

Let us now consider procedures based on ranks. Let Ri,J denote the rank of 
Xi ,J among the combined samples {Xi,J : i = 1, ... ,c,j = 1, ... ,n}. Define 
v; = LI~J~n h(Ri,J ), fori = 1, ... , c and an increasing function h, and select the 
population ITi with the largest v;. For h(x) = x we are dealing with a rank sum test 
which is similar to Wilcoxon's test. It is shown that in the case of normal F the ARE 
of this test to the means procedure equals 3 I rr which is the ARE of Wilcoxon's test 
to Student's test. Also the ARE in never smaller than 0.864 for any F and the entire 
theory for two-sample tests repeats itself is this very different situation. 

8 Parametrics versus nonparametrics: two alternative 
methodologies 

After this brief discussion of (a part of) Lehmann's work on rank tests it will 
be clear that he was one of the driving forces of this development. A masterful 
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picture of what was achieved is given by Lehmann himself in the last paper of 
this sequence. 'Parametrics versus nonparametrics: two alternative methodologies' 
(Lehmann (2009)). Here we see Erich Lehmann in a role that we all know so well 
from his books, that of the superb expositor. In 9 pages he tells us all there is to know 
about this subject and it makes no sense to produce a further condensed version here. 
Just read this paper! 
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