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Consider the problem of estimating the mean of a finite population on 
the basis of a simple random sample. It was proved by Aggarwal (1954) that 
the sample mean minimizes the maximum expected squared error divided by 
the. population variance 1'2• Aggarwal also stated, but did not successfully 
prove, that the sample mean minimizes the maximum expected squared error 
over the populations satisfying T 2 :s M for any fixed positive M . It is the 
purpose of this paper to give a proof of this second result, and to indicate 
some generalizations. 

1. Introduction. Consider a population {a,, · · · , aN} of real numbers. In order to 
estimate the population average, ii, a simple random sample of size n is drawn, say Y1, 

· .. , Yn . We are concerned with the problem of determining an estimator 8 = 8(Y,, · ·., 
Yn} which minimizes the maximum expected squared error 

(1) 

This problem is meaningless unless limitations are placed on the a's under which this 
minimax risk is finite. Two natural restrictions are 

(i) A ::::: a; ::::: B where A, B are given 
(ii) 2: (a, - ii) 2 ::::: M where Misgiven. 

A third possibility is 
(iii) to minimize instead of (1) 

(2) 

in which case no restriction on the a's is required. 
A minimax estimator for (i) was recently obtained by Hodges and Lehmann (1981) . For 

problems (ii) and (iii), Aggarwal (1959) stated that the sample mean Y has the desired 
minimax properties. If 

(3) a;= fJ + d,, (} = ii, d; =a,- ii 

Aggarwal obtained the Bayes estimator 8. of(} when fJ is N(O, o2 ) and the d's have a 
suitable singular multivariate normal distribution, and showed that the risk of 8. tends to 
the risk of Y as o -4 oo , His argument does prove property (iii) but does not establish (ii) 

since the prior distribution of the a's violates (ii). The purpose of the present paper is to 
show that y is in fact minimax when the a's are subject to the restriction 

(4) 

It then immediately follows when 1 is replaced in (4) by an arbitrary M, and this establishes 
both (ii) and (iii) . 
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2. Reduction of the minimax problem. In order to minimize (1) subject to (4), 
consider the auxiliary problem in which the a's are given by (3) with 0 unknown and the 
d's distributed according to a distribution Q over the intersection of the sphere L,dT = 1 
with the hyperplane L,d, = 0 to be specified below. We shall show that Y is a minimax 
estimator of 0 for this auxiliary problem in which 0 is the only unknown parameter, i.e., 
that Y minimizes 

(5) 

Since for 8 = Y, (5) is equal to 

(6) 

it will follow that Y is also minimax for the original problem under the restriction (4). 
In the auxiliary problem if Q is invariant under permutation of the d;, we can assume 

without loss of generality that 

(7) i = 1, · · ·, n, 

where the joint distribution of (Dt , · · · , DN) is Q. The problem of estimating 0 on the basis 
of the variables (7) is that of estimating a location parameter 0 when the joint density of 
the variables is known except for 0. It was shown by Girshick and Savage (1951) that the 
Pitman estimator is then minimax provided an estimator with finite risk exists. It will 
therefore be enough to show that Y is the Pitman estimator on the basis of (7) . 

Let us next specify the distribution of the D's. Let X1, · · . XN be i.i.d. N (0, 1) and let 

(8) 

where X= (1/N) L,;-'-t X,, S~ = 2:,;:.1 (X,- X)2. Then the U's satisfy L, UT = 1 and L, U, = 

0 and we shall take as distribution of (D1, • • • , DN) that of ( U1, · · · , UN) so that the joint 
distribution of the variables Yt, • · · , Yn is the same as that of U1 + 0, · · · , Un + 0. 

The Pitman estimator of 0 in this last representation is given by 

(9) 

Since the second term in (9) is equal to 

(10) 

where On= ( U1 + · · · + Un)/n, it is enough to show that (10) is equal to zero. 

3. A symmetry property. To show that (10) is equal to zero, we shall now prove the 
stronger property that 

(11) 2'(0nl U1- On, • ••, Un- On) ='2'(-0nl U1- On, • • •, Un- On). 

Condition (11) will follow if we show that 

(12) 

is symmetric about zero since symmetry about zero is preserved under mixing with respect 
to a scale parameter. 

Let (X1 , • • • , Xn) ~ (Z1, · · · , Zn) be an orthogonal transformation such that Zt = 

fn Xn and let Zn+i = Xn+• (i = 1, · · · , N- n). Then 

Xn-X=-- --Z - - N- n (Z1 -) 
n Fn 
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where Z = (Zn+l + · · · + ZN)/(N- n), and a straight-forward calculation shows that 

2 n 2 N - 2 n(N - n) - z, ( )

2 

SN = ~•-2 Z, + ~•=n+l (Z,- Z) + N Z- .rn • 

Consider now the transformation 

(13) 

and note that it has the following three properties: 
(i) Under (12) 

(ii) the transformation (13) leaves S}; invariant. 
(iii) The distribution of (Z,, · · · , ZN) is not changed by (13). 
The distribution (12) in terms of the Z's becomes the conditional distribution 

(( z, -)N-n 2) !t' .rn- z -n-1 z2, ... 'Zn, SN 

which by (i) - (iii) is seen to be equal to 

( ( z, -)N-n 2) !t' - .r;;_- Z -n-IZ2, · · · Zn, SN . 

Re-expressing this last distribution in terms of the X's completes the proof. 

4. Some extensions. 
(i) Labels. The minimax result proved in the preceding sections did not take into 

account the labels of the population elements, which potentially provide additional 
information. It is however easy to see that the result remains valid even when the labels 
of the sampled elements are considered as part of the data. The population then consists 
of theN pairs (i, a,), i = 1, · · · , Nand the data of then sampled pairs. The problem of 
estimating ii remains invariant under permutation of the labels. Since the estimand ii 
remains invariant under these transformations, an estimand 8((i1 , a, ), · · · , (in, a, )) (where 
i,, · · · , in are the labels of the n sample elements) is invariant J it remains u"nchanged 
under all permutations of the first arguments, i.e., if it does not depend on the labels. Since 
the group of all permutations is finite there exists an invariant minimax estimator, and this 
completes the proof. 

(ii) Stratified sampling. Suppose the population has been divided into s strata of sizes 
N,, · · · , N. from which simple random samP,les of sizes n,, · · · , n. are drawn. Let Y,. and 
8, = a, be the mean of the sample and of the population of the ith stratum respectively, 
and let a .. = ~N,a,j~N, be the average of all N = ~N. population elements a,1 (j = 

1, · · ·, N,; i = 1, · · · , s). The natural estimator for estimating a .. is 8 = ~(N;/N) Y;. and its 
variance is 

where r~ is the population variance of the ith stratum. Then in generalization ofthe result 
for simple random sampling one can conclude that, subject to 72 ::s M, 8 is minimax for 
estimating a .. with squared error loss. 

The result follows immediately from the following two facts, for both of which the loss 
is squared error. 
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(a) Let (Y1, 8d, · · · , (Y., 8,) be s independent location families. Then the uniformly 
minimum risk translation equivariant estimator of 8 = l: c;8; is 8 = l: c;8; where 8; is the 
Pitman estimator of 8; based on (Y,, 8;) 

(b) The Girshick-Savage argument extends to the situation described in (a), see for 
example, Kiefer (1957), and the uniformly minimum risk equivariant of 8 is therefore also 
minimax. 

(iii) Design. We can use an invariance argument as in Blackwell and Girshick (1954) 
to get a stronger minimax property. 

In the situation of Section (1) let fJ be the class of all sampling designs in which a 
sample of size n is selected from a population of size N, i.e., members of fJ are probability 

measures on the finite setS whose members are the ( ~) subsets of size n of the integers 

{1, · . · , N). A procedure for estimating a now consists of a pair P E fJ and estimator 8 
and the risk is, with obvious notation, 

R(a1, ···,aN, P,8) = Ep(8(Y1, · ··, Yn)- a]2 

= L;P(s)[8({a;}:iE s)- a]2• 

It turns out that if Po is simple random sampling i.e., the uniform distribution on S, then 
(Po, Y) again minimizes max{R(ai, · · · , aN, P, 8) : l: (a; - a)2 =::; M) among all pairs 
(P, 8) as above. We need only invoke the results of Section 8.7 of Blackwell and Girshick 
to ensure that, for any fixed 8, (Po, 8) has minimax risk within the class {(P, 8): P E f'J} 
and then apply our main theorem. 

We have formulated this argument for populations without labels and for sampling 
plans where the order in which elements are drawn is disregarded, but it is clear that the 
minimax property continues to hold under these weaker conditions. 

We can also generalize the result to stratified sampling in the obvious way obtaining 
minimaxity among all sampling plans taking n; observations from stratum i, i = 1, · · · , s. 
By a further invariance argument we can get an even more general result (but under more 
special assumptions) . Suppose we are given a total sample size nand we are permitted.to 
allocate n1 , • • • , n, (2; n; = n) observations to the various strata as we please and then 
choose a sampling plan and estimate a. If the class of-populations considered consists of all 
those with T~ =::; M, i = 1, · · · , s, and s divides n, then the optimal (minimax) plan and 

estimate is to sample !!'. observations from each stratum without replacement and then 
s 

estimate a by the grand mean of the s samples. 
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