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3.10] SEQUENTIAL PROBABILITY RATIO TESTS 

Since the distribution of L(Xi - X)2/a2 does not depend on ; or a, the 
probability P{L(Xi - X)2 > ej;, a} is independent of ; and increases 
with a, so that the conditions of Corollary 5 are satisfied. The test (32), 
being independent of ; 1 and a1, is UMP for testing a< a0 against a > a0 . 

It is also seen to coincide with the likelihood ratio test (29). On the 
other hand, the most powerful test (31) for testing a> a0 against a< a0 

does depend on the value ~1 of ~ under the alternative. 
It was tacitly assumed so far that n > 1. If n = 1, the argument 

applies without change with respect to H1, leading to (31) with n = 1. 
However, in the discussion of H2 the statistic U now drops out, and Y 
coincides with the single observation X. Using the same las before one 
sees that X has the same distribution under H). as under K, and the test 
<P). therefore becomes cp;.(x) = IX. This satisfies the conditions of Corollary 
5 and is therefore the most powerful test for the given problem. It 
follows that a single observation is of no value for testing the hypothesis 
H2 as seems intuitively obvious, but that it could be used to test H1 if the 
class of alternatives were sufficiently restricted. 

The corresponding derivation for the hypothesis ~ < ~0 is less straight­
forward . It turns out* that Student's test given by (30) is most powerful 
if the level of significance IX is> 1/2, regardless of the alternative ~1 > ~0, a1• 

This test is therefore UMP for IX> 1/2. On the other hand, when 
IX < 1/2 the most powerful test of H rejects when ~(xi - a)2 < b, where 
the constants a and b depend on the alternative (~1 , a1) and on rx. Thus for 
the significance levels that are of interest, a UMP test of H does not exist. 
No new problem arises for the hypothesis ~ >- ~0 since this reduces to the 
case just considered through the transformation Yi = ~0 - (Xi - ~0). 

10. SEQUENTIAL PROBABILITY RATIO TESTS 

According to the Neyman-Pearson fundamental lemma, the best 
procedure for testing the simple hypothesis H that the probability density 
of X is p0 against the simple alternative that it is p 1 accepts or rejects Has 

\ 

Ptn Pt(xl) · · · Pt(xn) 
--=~~--~---

Pon Po(xl) · · · Po(xn) 

is less or greater than a suitable constant C. However, further improve-
ment is possible if the sample size is not fixed in advance but is permitted 
to depend on the observations. The best procedure, in a ·certain sense, 
is then the following sequential probability ratio test. Let A 0 < A1 be 

* See Lehmann and Stein, "Most powerful tests of composite hypotheses. I. 
Normal distributions," Ann. Math. Stat., Vol. 19 (1948), pp. 495-516. 
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two given constants and suppose that observation is continued as long 
as the probability ratio p1niPon satisfies the inequality 

(33) Ao <Pin < Al. 
Pon 

The hypothesis H is accepted or rejected at the first violation of (33) as 
P1n/Pon < Ao or > AI. 

The usual measures of the performance of such a procedure are the 
probabilities, say ~X0 and ~X1 , of rejecting H when p = p 0 and of accepting 
it when p = p1 and the expected number of observations E;(N) when 
p = p; (i = 0, 1). 

Theorem 8. Among all tests (seque~tial or not) for which 

P 0 (rejecting H)< ~X0 , P1 (accepting H)< ~X1 

and for which E 0(N) and E1(N) are finite, the sequential probability ratio 

test with error probabilities ~Xo and ~X1 minimizes both E 0(N) and E1(N). 

In particular, the sequential probability ratio test therefore requires on 
the average fewer observations than the fixed sample size test which 
controls the errors at the same levels. The proof of this result will be 
deferred to Section 12. In this and the following sections some of the 
basic properties of sequential probability ratio tests will be sketched. 

Because of the difficulty of determining exactly the boundaries A0 and 
A1 for which ix0 and ~X1 take on preassigned values, the following 
inequalities are useful. Let Rn be the part of n-space defined by the 
inequalities 

A0 < Plk < A1 for k = 1, · · ·, n - 1 and A1 < Pln. 
P• ~n 

This is the set of points (xi, · · ·, xn) for which the procedure stops with 
N = n observations and rejects H. Then 

<X! i 1 <X! f · 1 - IX1 ~Xo = ~ Pon < -A ~ Pin = A · 
n = 1 Rn 1 n = 1 Rn 1 

Similarly, if Sn denotes the part of n-space in which N = n and H is 
accepted, one has 

(f) i (X 
1 - ~Xo = ~ Pon > _2_ • 

n=l s,. A0 

Here it has been tacitly assumed that 

00 00 l "2, P; {N = n} = ~ Pin= 1 
n ~~ l n=l R,.vSn 

for i = 0, 1, 
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that is, that the probability is 0 of the procedure continuing indefinitely. 
For a proof of this fact see Problems 34 and 35. The inequalities 

(34) 
0:1 

Ao> ' - 1 - <Xo 

suggest the possibility of approximating the boundaries A 0 and A1 that 
would yield the desired o:0 and o:1 by 

I 1 - (Xl 

At=--­
o:o 

By (34) the error probabilities of the approximate procedure then satisfy 
I 

(X} < I (Xl 
-~....,.~ - Ao = ---
1 - o:0 - 1 - tx0 

and 

and hence 

and 

If typically o:0 and tx1 are of the order .01 to .1, the amount by which 
tx~ can exceed txi (i = 1, 0) is negligible so that the probabilities of the 
two kinds of error are very nearly bounded above by the specified o: 0 

and tx1. This conclusion is strengthened by the fact that o:~ + tx~ < 
o:0 + tx1, as is seen by adding the inequalities tx~(l - tx0) < tx1(1 - o:~) 
and tx~(l - tx~) < tx0(l - tx~). 

The only serious risk in using the approximate boundaries A~, A~ is 
therefore that o:~ and o:~ are much smaller than required, which would 
lead to an excessive number of observations. There is some reason to 
hope that this effect is also moderate. For let 

(35) 

Then (33) becomes 
n 

log A 0 < L zi < log A 1, 
i=l 

and when His rejected the z's satisfy 

z1 + · · · + zn_1 < log A1 < z1 + · · · + zn. 

The approximation consists in replacing z1 + · · · + zn by log A1 • The 
error will usually be moderate since after n - 1 observations ~zi is 
still < A1 and the excess has therefore had no possibility to accumulate, 
but is due to a single observation. An analogous argument applies to 
the other boundary. 
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Example 9. Consider a sequence of binomial trials with constant proba­
bility p of success, and the problem of testing p = p0 against p = p1(p 0 < p1). 

Then 

P1n =pti(J -p~):-~:i = (PlqOtXi(~r. 
Pon Po •(1 -Po) - ' P~1 qo 

ln the case that log (p1p0- 1)/log (q0q1- 1) is rational, exact formulas have been 
obtained t for the error probabilities and expected sample size which make it 
possible to compute the effects involved in the approximation of A 0, A 1 by 
A~, A~. As an illustration,t suppose thatp0 = .05,p1 = .17, cx0 = .05, cx 1 = .10. 
It then turns out that e~.~ = .031, a:~ = .099, and that the expectations of the 
sample size for the approximate procedure are E~(N) = 31.4, E~(N) = 30.0. 
There is an alternate plan, determined by trial and error, with e~.~ = .046, 
ext = .097, E:(N) = 30.5, Ef(N) = 26.1. On the other hand, the fixed sample 
size procedure with error probabilities .05 and .I 0 requires 57 observations. 

In order to be specific, we assumed in the definition of a sequential 
probability ratio test that observation continues only as long as the 
probability ratio is strictly between A 0 and A1. The discussion applies 
equally well to the rule of continuing as long as A0 < p1n/Pon < A1, 

coming to the indicated conclusion the first time that p1n/Pon < A0 or 
> A 1, and deciding on the boundaries according to any fixed probabilities. 
The term sequential probability ratio test is applied also to this more 
general procedure. If the probability ratio p1(X)/p0(X) has a continuous 
distribution, all these procedures are equivalent. However, in case of 
discrete probability ratios the possibility of randomization on the boundary 
is necessary to achieve preassigned error probabilities. If randomization 
is permitted also between taking at least one observation or reaching a 
decision without taking any observations, it can be shown that actually 
any preassigned error probabilities can be achieved.§ 

11. POWER AND EXPECTED SAMPLE SIZE OF 
SEQUENTIAL PROBABILITY RATIO TESTS 

The preceding section is somewhat misleading in that it discusses the 
problem in a setting, that of testing a simple hypothesis against a simple 
alternative, which is interesting mainly because of its implications for the 
more realistic situation of a continuous parameter family of distributions. 

t Girshick, "Contributions to the theory of sequential analysis, II, III," Ann. Math. 
Stat ., Vol. 17 (1946), pp. 282-298, and Polya, "Exact formulas in the sequential analysis 
of attributes," Univ. Calif Pubis. Mathematics, New Series, Vol. 1 (1948), pp. 229-240. 
~Taken from Robinson, "A note on exact sequential analysis," Univ. Calif Pubis. 

Mathematics, New Series, Vol. I ( 1948), pp. 241-246. 
§This result is contained in an as yet unpublished paper by Stein, "Existence of 

sequential probability ratio tests." See also the abstract by Wijsman, "On the existence 
of Wald's sequential test," Ann. Math. Stat., Vol. 29 (1958), pp. 938-939. 
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Unfortunately, the property of being uniformly most powerful, which 
the fixed sample size probability ratio test possesses for families with 
monotone likelihood ratio (Theorem 2), does not extend to the sequential 
case. More specifically, consider the sequential probability ratio test 
for testing H: 80 against K: 81, and let its power function be {J(fJ) = 
P8 (rejecting H). Then if 82 is some other alternative, the sequential 
probability ratio test for testing 80 against 02 with error probabilities ex0 

and ex1 does not in general coincide with the original test, which therefore 
does not minimize E02(N). It seems in fact likely that from an over-all 
point of view the sequential probability ratio test is not the best sequential 
procedure in the continuous parameter case, although it is usually better 
than the best competitive test with fixed sample size. 

When the probability density depends on a real parameter 0 and one is 
testing the hypothesis () < 00, one is usually not concerned with the 
power of the test against alternatives 0 close to 80, but would like to be 
able to control the probability of detecting alternatives sufficiently far 
away. The test should therefore satisfy 

{3(8) < ex for 0 < 80 

{3( fJ) ?. {3 for () ?. fJ1 

which it will do in particular if 

and if {J(O) is a nondecreasing function of 0. The sequential probability 
ratio test for testing fJ 0 against 01 with error probabilities ex0 = ex, ex1 = 
1 - {3 thus is a solution of the stated problem provided its power function 
is nondecreasing. 

Lemma 4. Let X1, X 2 , • · • be independently distributed with probability 
density pe(x), and suppose that the densities p 8(x) have monotone likelihood 
ratio in T(x). Then any sequential probability ratio test for testing 00 

against 01 (fJ 0 < 01) has a nondecreasing power function. 

Proof Let Zi = log [p01(Xi)/p80(Xi)] = h(Ti), where his nondecreasing~ 
and let () < ()'. By Lemma 2, the cumulative distribution function 
F0(t) of Ti satisfies F8-(t) < F0(t) for all t, and by Lemma 1 there exists 
therefore a random variable Vi andfunctionsfandf' such thatf(v) < j'(v) 
for all v and that the distributions off (Vi) and f' (Vi) are F0 and F()' 
respectively. The sequential test under consideration has the following 
graphical representation in the (n, .2il=1h(ti)) plane. Observation is 
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continued as long as the sample points fall inside the band formed by the 
parallel straight lines 

n 

.L h(t1) = log A1, j = 0, 1. 
i=l 

The hypothesis is rejected if the path formed by the points (1, h(t1)), 

(2, h(t1) + h(tJ), · · ·, (N, h(t1) + · · · + h(tN)) leaves the band through 
the upper boundary. The probability of this event is therefore the 
probability of rejection, for(} when each Ti is replaced by f(Vi) and for(}' 
when Ti is replaced by .f'(Vi). Since .f(Vi) < f'(Vi) for all i, the path 
generated by the f'(Vi) leaves the band through the upper boundary 
.whenever this is true for the path generated by the .f (Vi). Hence {J(O) < 
{J(O'), as was to be proved. 

In the case of monotone likelihood ratios, the sequential probability 
ratio test with error probabilities oc0 = oc, oc1 = 1 - fJ therefore satisfies 
~36). It follows from the optimum property stated in Section 10 that 
among all tests satisfying (36) the sequential probability ratio test mini­
mizes the expected sample size for (} = 00 and (J = 01• However, one is 
now concerned with EriN) for all values of 0. Typically, the function 
Eo(N) has a maximum at a point between 00 and 81, and decreases as (} 
moves away from this point in either direction. It frequently turns out 
that the maximum is < n0, the smallest fixed sample size for which there 
exists a test satisfying (36). On the other hand, this is not always the 
case. Thus, in Example 9 for p 0 = .4, p1 = .6, oc0 = oc1 = .005 for 
example, the fixed sample size n0 is 160, and E'P(N), while below this for 
most values of p, equals 170 for p = 1/2. The important problem of 
determining the test that minimizes sup E8(N) subject to (36) is still 
unsolved. 

An exact evaluation of the power function {J(O) and the expected sample 
size £ 6(N) of a sequential probability ratio test is in general extremely 
difficult. However, a simple approximation is available provided the 
equation 

(37) 

has a nonzero solution h = h(O), as is the case under mild assumptions. 
(See Problem 38.) Then 

* ) [Po1(x)J 11 
( ) Po(x = -- PoX 

Poo(x) 

is again a probability density. Suppose now that h > 0-the other case 
can be treated similarly-and consider the sequential probability ratio 
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test with boundaries A~, A~ for testing p6 against p:. With this procedure 
observation is continued as long as 

A~ < p:(xl) . . . P:(x,J < A~. 
Po(xl) Po(xn) 

If cx.ci and 1 - cx.i denote the probability of rejection when p9 and p: are the 
true densities, it is seen from (34) that the boundaries are given approxi­
mately by 

However, the test under consideration is exactly the same as the sequential 
probability ratio test with error probabilities cx. 0 = ex., cx.1 = 1 - {J for 
testing 00 against 01. Hence cx.ci and {J(O), the probability of rejection 
for the two tests when p6 is the true density, must be equal. Solving for 
cx.ci from the above two approximate equations one therefore finds 

1- A~ 
fJ(O) "-' h h • 

AI- Ao 
(38) 

An approximation for Eo(N) can be based on Wald's equation 

(39) 

which is valid whenever the Z's are identically and independently distri­
buted and the procedure is such that the expected sample size E1lN) i~ 
finite. For a proof of this equation see Problem 37. If the Z's are 
defined by (35) and the procedure is a sequential probability ratio test, 
Z 1 + · · · + Z N can be approximated as before by log A1 and log A0 when 
H is rejected and accepted respectively, so that from (39) one obtains 

(40) ) {J(O) log A1 + [1 - {J(O)] log A0 

Eo(N ""' Eo(Z) 

provided E6(Z) "* 0. 

Example 10. In the binomial problem of Example 9, equation (37) becomes 

(41) P(~:f + q(::r = 1. 

Since the left-hand side is a convex function of h which is 1 for h = 0, it is seen 
that the equation has a unique nonzero solution except when p = log (q0/q1)/ 

log (p1q0/p.,q1), in which case the left-hand side has its minimum at h = 0. 
Equations (38) and ( 41) provide a parametric representation of the approximate 
power function, which can now be computed by giving different values to h 
and obtaining the associated values p and ~ from (38) and (41). (For h = 0, 
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fJ can be obtained by continuity.) The following is a comparison of the approxi­
mate with the exact values of {3(p) and Ev(N) in the numerical case considered in 
Example 9, with p0 = .05, p = .099, p1 = .17 :* 

!Hp0) {J(p) {3(p1) E110(N) Ev(N) Ev1(N) 

.05 
.031 

.44 

.409 
.90 
.901 

30 

31.4 

39 

46.8 

25 Approx. 
30.0 Exact 

12. OPTIMUM PROPERTY OF SEQUENTIAL 
PROBABILITY RATIO TESTSt 

The main part of the proof of Theorem 8 is contained in the solution 
of the following auxiliary problem. For testing the hypothesis H that 
p 0 is the true probability density of X against the alternative that it is p 1, 

Jet the losses resulting from false rejection and acceptance of H be w0 and 
w1, and let the cost of each observation be c. The risk (expected loss 
plus expected cost) of a sequential procedure is then 

(Xiwi + cElN) 

when Pi is the true density, where 

(Xo = P 0 (rejecting H), (X1 = P 1 (accepting H) 

are the two probabilities of error. If one supposes that the subscript i 
of the probability density is itself a random variable, which takes on the 
values 0 .and 1 with probability 1T and 1 - 1r respectively, the total average 
risk of a procedure b is 

(42) r(1r, b) = 1r[(X0w0 + c£0(N)] + (1 - 1r)[(X1W1 + c£1(N)]. 

We shall now determine the Bayes procedure for this problem, that is, 
the procedure that minimizes ( 42). Here the interpretation of ( 42) as a 
Bayes risk is helpful for an understanding of the proof and gives the 
auxiliary problem independent interest. However, from the point of 
view of Theorem 8, the introduction of the w's, c, and 1T is only a mathe­
matical device, and the problem is simply that of minimizing the formal 
expression ( 42). 

The Bayes solutions involve two numbers 1r' < 1r" which are uniquely 
determined by w0 , w1, and c through equations (44) and (45) below, and 
which are independent of 1r. It will be sufficient to restrict attention to the 
case that 0 < 1r' < 1r" < 1 and to a priori probabilities 1T satisfying 
1TI < 1T < 1T". 

• Taken from Robinson, foe . cit ., where a number of further examples are given. 
t This section treats a special topic to which no reference is made in the remainder of 

the book . 
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Lemma 5. Let 7r', 7T 11 satisfy the equations ( 44). If 0 < 7T 1 < 7T11 < 1, 
then for allTT' < 7T < 7T 11 the Bayes risk (42) is minimized by any sequential 
probability ratio test with boundaries 

(43) 
7T 1 - 7TII 

Ao=--· 11 

1-7T 7T 

7T 1 - 7TI 

AI=--· I 

l-7T 7T 

Proof. (I) We begin by investigating whether at least one observation 
should be taken, in which case the resulting risk will be at least c, or 
whether it is better to come to a decision immediately. Let <5 0 denote the 
procedure that rejects H without taking any observations, and <51 the 
corresponding procedure that accepts H, so that 

Let 
r(TT, <50) = 7TW0 and r(1r, <51) = (l - 7T)w1. 

p(7T) = inf r(TT, o) 
&;'if 

where ~ is the class of all procedures requiring at least one observation. 
Then for any 0 < I. < 1 and any TT0, 7T1, 

p[I.7T0 + (1 - /.)7T1] = inf [.Ar(7T0, o) + (I - .A)r(7T1, o)) 
&;'if 

> l.p(7T0) + (1 - .A)p(7r1). 

Hence pis concave, and since it is bounded below by zero it is continuous 
in the interval (0, 1). * If 

( w1 ) _ w0w1 
p <..._ ' 

Wo + wl Wo + wl 

define 7T 1 and 7r" by 

(44) r(TT', b0) = p(7r') and 

(See Figure 3.) Otherwise let 

(45) 
I II Wl 

7T =7T =---
Wo + wl 

In the case 0 < 7T 1 < 7T11 < 1 with which we are concerned, <50 minimizes 
(42) if and only if 7T < 7T', and 01 minimizes (42) if and only if 7T > 7T 11

• 

This establishes the following uniquely as an optimum first step for 
7T i= 7T 1

, 7T 11
: If 7T < 7T 1 or > 7T 11

, no observation is taken and His rejected 
or accepted respectively; if 7r' < 7T < 7T11 the variable X1 is observed. 

(2) The proof is now completed by induction. Suppose that 7r' < 7T < 7T11 

and that n observations have been taken with outcomes xl = xl, ... ' xn = 
X 71 , and that one is faced with the alternatives of not taking another 

* See, for example, section 3.18 of Hardy, Littlewood, P6lya, Inequalities, Cambridge 
Univ. Press, 1934. 
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observation and rejecting or accepting H with losses w0, w1 for possible 
wrong decisions, or of going on to observe Xn+1· The situation is very 
similar to the one analyzed in part (1 ). An unlimited supply of observa­
tions Xn+l• X 11+2 , • • • is available. The fact that one has already incurred 
the expense of nc units does not affect the problem, since once this loss 
has been sustained no future action can retrieve it. The procedure is 
therefore as before: No further observation is taken if the probability of H 

Figure 3. 

being true iS < TT 1 Or > TT", Whereas Xn+l iS Observed if thiS probability 
is strictly between TT 1 and TT". 

One aspect of the situation has changed as a result of observing x1, • · ·, X 11 • 

The probability of H being true is no longer TT but has become 

TTPon 
TT(X • • • X)- ' 

l• ' 11 - TTPon + (1 - TT)Pln 

the conditional (a posteriori) probability of H given X1 = x1, · · ·, Xn = X 11 • 

A complete procedure therefore consists in continuing as long as 

TT 1 < 7T(X1, • • ·, Xn) < TT" 

or equivalently as long as 

7T 1 - TT" Pln TT 1 - TTl 
Ao=--· , <-<--· 1 =A1. 

1 - TT TT Pon 1 - 7T 7T 

His accepted if, at the first violation of these inequalities, p111/Pon is < A0 
and rejected if it is > A1. 
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(3) In part (1) of this proof the first step of the procedure was uniquely 
determined as b0 for 7T < TT', as o1 for 7T > TT11

, and as taking at least one 
observation when TT 1 < 7T < TT11

• For TT = TT 1
, the procedure 00 still 

minimizes ( 42) but it is no longer unique, that is, there also exists a 
procedure b E ~ for which r(TT', b) = p(TT 1

). In order to belong to ~. 
such a procedure must require at least one observation. Once X1 has 
been observed, it follows from part (2) that the best procedure in ~ is 
obtained by continuing observation as long as 7T 1 < TT(x1, • • • xn) < TT 11

• 

At the first step it is therefore immaterial whether on the boundary 
experimentation is continued or the indicated decision is taken. The same 
is then true at the subsequent steps. This establishes in particular that 
for 7T 1 < 7T < 'TT, the procedure of taking a first observation and then 
following the sequential probability ratio test with boundaries ( 43) is Bayes. 

The required connection between the auxiliary problem and the original 
one is established by the following lemma. 

Lemma 6. Given any 0 < 'TT~ < TT~ < 1, there exist numbers 0 < w < 1, 
0 < c such that the Bayes solution of the auxiliary problem defined by 
w0 = 1 - w, w1 = w, c, and an a priori probability 7T satisfying TT~ < 7T < TT~ 
is a sequential probability ratio test ·with boundaries 

1 II 

7T - 7To 
Ao=-- · , 

1 - 7T TTo 

7T l - 'TT~ 
Al = -- . --:--

1 - 7T 'TT~ 

Proof* ( l) By Lemma 5, the quantities 7T 1 and TT 11 are functions of 
wand c, and it is therefore sufficient to find wand c such that 7r'(w, c) = TT~, 
TT"(w, c) = 'TT~ . For fixed w, let TT'(c) = TT'(w, c) and TT"(c) = 'TT"(w, c). 
If c0 is the smallest value of c such that TT'(c0) = 7r"(c0), then for 0 < c < c0 
the quantities 7T 1(c) and TT"(c) are determined by the equations 

(I - 7r")w = p(7r", c), 

where p(7T, c) stands for the quantity previously denoted by p(7r). The 
function p( 7T 1

, c) considered as a function of c for fixed 7T 1 has the following 
properties. (i) It is continuous. This follows as before from its being 
concave. (ii) It is strictly increasing, since for any o E ~ the risk r(o, 7r') 
increases strictly with c and since the minimum risk p(7T1

, c) is taken on 
by a procedure o E ~. (iii) As c tends to zero, so do p(7T', c) and p(TT", c). 
This follows from the fact that for n sufficiently large there exists a test of 
fixed sample size n for which the two error probabilities are arbitrarily 
small. 

• This proof was communicated to me by L. LeCam. 
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These properties of the function p imply that for 0 < c < c0 the 
functions rr' and 1r" are also continuous, strictly increasing and decreasing 
respectively, and that 1r'(c)-+ 0, 1r"(c)-+ 1 as c-+ 0. On the other hand, 
as c-+ c0 , 1r"(c)- 1r'(c)-+O so that both quantities tend to the solution 
rr' = 1r" = w of the equation 7T1(1 - w) = (1 - 1T1)w. It follows from 
these properties that for fixed w 

1T1(c) 1 - 1T11(c) 
A(c) = 1 - 1T1(c) 1T11(c) 

is a continuous, strictly increasing function of c, which increases from 0 to 
1 as c varies from 0 to c0 = c0(w). 

(2) Let 

,( 1r'(w, c) 
A w, c)= 1 

1 - 1r (w, c) 

1 - 1T11(w, c) 

7T"(w, c) 

7T 11(w, c) 
y( W' C) = 1 II ( ) - 7T w, c 

Instead of working with the variables 7T 1 and 1r", it is equivalent and more 
convenient to work with A andy, and to prove the existence of w, c such 
that 

I II 

7To 
A(w, c)= 1 

1 - 7To 

7To 
y(w, c) = 1 , =Yo· 

- 7To 

For any w, there exists by part (1) a unique cost c = c(w) such that 
A(w, c)= A0• It will be shown below that y(w) = y[w, c(w)] is a 1:1 
mapping of the interval 0 < w < 1 onto 0 < y < co, and hence that 
there exists a unique value w such that y(w) = y 0 . This will complete 
the proof of the lemma. 

(3) For the auxiliary problem defined by w, c = c(w), and1r = 7T1[w, c(w)] 
there exists by Lemma 5 a Bayes solution <5 1 which is a sequential proba­
bility ratio test with boundaries 

I _ 7T1 [w, c(w)] . I - 1r"[w, c(w)] _ ,[ ( )] _ , 
A0 - - 11. w, c w - 11.0, 

1 - 7T 1 [w, c(w)] 1r"[w, c(w)] 
A~= 1. 

Let <5" be the corresponding solution of the problem defined by w, c = c(w), 
and 7T = 1r"[w, c(w)], so that its boundaries are 

A~= 1, 
, 1r"[w, c(w)] 1 - 1T1[w, c(w)J 1 

A 1 = 1 - 1r"[w, c(w)] · 1T1 [w, c(w)] = Ao . 

Then the error probabilities and the expectations of the sample size 
rx~, rx~, E~(N), E~(N) of <5 1 and~. rx~, E;(N), E;(N) of <5 11 depend on wand c 
only through A.0 and not through y, so that for fixed A.0 they are fixed 
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numbers. The Bayes risks for 7T = 7r'[w, c(w)] and 7T = 7r"[w, c(w)] are 
given by 

p(7r') = r(7T', <5') 

and it follows from ( 44) that 

r( 7T1
, b0) = r( 7T1

, b') 

and 

and 

p( 7r") = r( 7T11 , b") 

These equations can be written more explicitly as 

7r'(l - w) = 7r'[a.~(l - w) + cE~(N)] + (1 - 7r')[a.~ w + cE~(N)] 
and 

(l - 7r")w = 7r"[a.~(l - w) + cE~(N)] + (1 - 7r")[a.~w + cE~(N)]. 
If one substitutes 1.0y for 7T'/(1 - 7T 1

) andy for 7T"/(l - 7r") and eliminates 

c, this reduces to a single equation connecting y and w: 

{.A0y(l - a.~) - w(.A0y(l - a.~) + a.~]}{yE~(N) t E~(N)} 

= { -ya.~ + w[(l - a.~) + ya.~]}{.A0yE~(N) + E~(N)}. 
This is linear in w and for any y > 0 has a solution 0 < w < 1. As a 
function of y it is quadratic, and the coefficients of the constant ·and 

quadratic terms have opposite signs provided 0 < w < I. In this case 
there exists therefore a unique positive solution y, which establishes the 
required 1:1 relation between y and w. 

To complete the proof of Theorem 8, consider now any sequential 

probability ratio test with A 0 < 1 < A1, and any constant 0 < 7T < 1. 
Let 

II 
7T 

7T =------
Ao(l - 7T) + 7T 

These values satisfy (43) and 0 < 7T 1 < 7T < 7T 11 < 1, and by Lemma 6 
there exist therefore constants 0 < w < l and c > 0 such that the given 
test is a Bayes solution for the auxiliary problem with an a priori probability 

7T of p0 being the true density, with losses w0 = 1 - wand w1 = w, and 
cost c. Let the error probabilities and expectations of the sample size be 
a.0, a.1, E0(N), E1(N) for the given test, and consider any competitive 
procedure o*, with error probabilities a.;< a.i and expectations of sample 

size E7(N) < ro (i = 0, 1). Since the given test minimizes the Bayes risk, 
it satisfies 

7r[(1 - w)a.0 + cE0(N)] + (I - 7r)[wa.1 + cE1(N)] 

< 7r[(l - w)a.ci' + cEci'(N)] + (1 - 7r)[wa.~ + cEi(N)] 
and hence 
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The validity of this inequality for all 0 < TT < 1 implies 

E0(N) < Eci(N) and E1(N) < Ei(N), 

as was to be proved. 
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