Chapter 7

Asymptotics and Coding Theory: One of the
n — oo Dimensions of Terry

Bin Yu

Terry joined the Berkeley Statistics faculty in the summer of 1987 after being the
statistics head of CSIRO in Australia. His office was just down the hallway from
mine on the third floor of Evans. I was beginning my third year at Berkeley then and
I remember talking to him in the hallway after a talk that he gave on information
theory and the Minimum Description Length (MDL) Principle of Rissanen. I was
fascinated by the talk even though I did not understand everything. Terry pointed
me to many papers, and before long Terry started to co-advise me (with Lucien Le
Cam) as his first PhD student at Berkeley. It was truly a great privilege to work with
Terry, especially as his first student at Berkeley since I had the luxury of having
his attention almost every day — he would knock on my door to chat about research
and to take me to the library to find references. Every Saturday I was invited to
have lunch with him and his wife Sally at his rented house in the Normandy Village
on Spruce Street, a cluster of rural European styled houses near campus (the most
exotic part to me about the lunch was the avocado spread on a sandwich). Through
my interactions with Terry, I was molded in n — oo dimensions. In particular, I was
mesmerised by the interplay shown to me by Terry of data, statistical models, and
interpretations — it was art with rigor! I am able to pursue and enjoy this interplay in
my current research, even though I ended up writing a theoretical PhD thesis.

The four papers under “asymptotics and coding theory” in this volume represent
the MDL research done during my study with Terry (and Rissanen) and a paper after
my PhD on Information Theory proper: lossy compression.

The Minimum Description Length (MDL) Principle was invented by Rissanen
[7] to formalize Occam’s Razor. Based on a foundation of the coding theory of
Shannon, its most successful application to date is model selection, now a hot topic
again under the new name of sparse modeling or compressed sensing in the high-
dimensional situation. An idea closely related to MDL was Minimum Message
Length (MML) first articulated in the context of clustering in Wallace and Boulton
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[13]. In a nutshell, MDL goes back to Kolmogorov’s algorithmic complexity, a rev-
olutionary concept, but not one that is computable. By rooting MDL in Shannon’s
information theory, Rissanen made the complexity (or code length) of a statistical
or probabilistic model computable by corresponding a probability distribution to a
prefix code via Kraft’s inequality. At the same time, this coding interpretation of
probability distribution removed the necessity of postulating a true distribution for
data, since it can be viewed operationally as a code-generating device. This seem-
ingly trivial point is fundamental for statistical inference. Moreover, Rissanen put
MDL on solid footing by generalizing Shannon’s order source coding theorem to
the second order to support the coding forms valid for use in MDL model selection.
That is, he showed in Rissanen [8] that, for a nice parametric family of dimension
k with n iid observations, they have to achieve a § logn lower bound asymptotically
beyond the entropy lower bound when the data generating distribution is in the fam-
ily. More information on MDL can be found in the review articles Barron et al. [3]
and Hansen and Yu [5], and books Rissanen [6, 9] and Griinwald [4].

Not long before he and I started working on MDL in the late 1987, Terry had met
Jorma Rissanen when Jorma visited Ted Hannan at the Australia National University
(ANU). Hannan was a good friend of Terry. Jorma’s homebase was close by, the
IBM Almaden Research Center in San Jose, so Terry invited him to visit us almost
every month. Jorma would come with his wife and discuss MDL with us while
his wife purchased bread at a store in Berkeley before they headed home together
after lunch. We found Rissanen’s papers original, but not always easy to follow.
The discussions with him in person were a huge advantage for our understanding of
MDL.

After catching up with the literature on MDL and model selection methods such
as AIC [1] and BIC [11], we were ready to investigate MDL from a statistical angle
in the canonical model of Gaussian regression and became among the first to explore
MDL procedures in the nonparametric case, using the convenient and canonical his-
togram estimate (which is both parametric and nonparametric). This line of research
resulted in the first three papers on asymptotics and coding in this volume.

The research in Speed and Yu [12] started in 1987. The paper was possibly writ-
ten in 1989, with many drafts including extensive comments by David Freedman on
the first draft and it was a long story regarding why it took four years to publish.
By then, it was well-known that AIC is prediction optimal and inconsistent (unless
the true model is the largest model), while BIC is consistent when the true model is
finite and one of the sub-regression models considered. Speed and Yu [12] addresses
the prediction optimality question with refitting (causal or on-line prediction) and
without refitting (batch prediction). A new lower bound on the latter was derived
with sufficient achievability conditions, while a lower bound on the former had been
given by Rissanen [8]. Comparisons of AIC, stochastic complexity , BIC, and Final
Prediction Error (FPE) criteria [1] were made relative to the lower bounds and in
terms of underfitting and overfitting probabilities. A finite-dimensional (fixed p to
use modern terms) Gaussian linear regression model was assumed, as was common
in other works around that time or before. The simple but canonical Gaussian regres-
sion model assumption made the technical burdens minimal, but it was sufficient to
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reveal useful insights such as the orders of bias-variance trade-off when there was
underfit or overfit, respectively. Related trade-offs are seen in analysis of modern
model selection (sparse modeling) methods such as Lasso under high-dimensional
regression models (large p large n). In fact, Speed and Yu [12] entertained the idea
of a high-dimensional model through a discussion of finite dimensional models vs
infinite dimensional models. In fact, much insight from this paper is still relevant to-
day: BIC does well both in terms of consistency and prediction when the bias term
drastically decreases to a lower level at a certain point (e.g. a “cliff”” bias decrease
when there is a group of major predictors and rest marginal). Working with Terry
on this first paper of mine taught me lessons that I try to practice to this day: mathe-
matical derivations in statistics should have meanings and give insights, and a good
formulation of a problem is often more important than solving it.

The next two papers, Rissanen et al. [10] and Yu and Speed [14], are on his-
tograms and MDL. They extend the MDL paradigm to the nonparametric domain.
Around the same time Barron and Cover were working on other nonparametric
MDL procedures through the resolvability index [2]. Rissanen spearheaded the first
of the two papers, Rissanen et al. [10], to obtain a (properly defined) code length
almost sure lower bound in the nonparametric case in the same spirit as the lower
bound in the parametric case of his seminal paper [7]. This paper also showed that
a histogram estimator achieve this lower bound. The second paper [14] introduced
the minimax framework to address both the lower and upper code length bound
questions for Lipschitz nonparametric families. Technically the paper was quite in-
volved with long and refined asymptotic derivations, a Poissonization argument, and
multinomial/Poisson cumulant calculations for which Terry showed dazzling alge-
braic power. A surprising insight from the second paper was that predictive MDL
seemed a very flexible way to achieve the minimax optimal rate for expected code
length. Working on the two histogram/MDL papers made me realize that there is
no clear cut difference between parametric and nonparametric estimation: the so-
called infinite dimensional models such as the Lipschitz family actually correspond
to parametric estimation problems of dimensions increasing with the sample size.
This insight holds for all nonparametric estimation problems and the histogram is a
concrete example of sieve estimation.

The last of the four paper was on lossy compression of information theory proper.
MDL model selection criteria are based on lossless code (prefix code) lengths. The
aforementioned lower bound in Rissanen [7] was also fundamental for universal
source (lossless) coding when the underlying data generating distribution has to be
estimated, in addition to being the cornerstone of the MDL theory in the parametric
case. It was natural to ask whether there is a parallel result for lossy compression
where entropy is replaced by Shannon’s rate-distortion function. Yu and Speed [15]
showed it was indeed the case and there are quite a few follow-up papers in the
information theory literature including Zhang et al. [16].

During my study with Terry, starting in the late 1987, Terry was moving full
steam into biology as a visionary pioneer of statistical bioinformatics. To accom-
modate my interest in analysis and asymptotic theory and possibly pursue his other
love for information theory rather than biology, Terry was happy to work with me
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on theoretical MDL research and information theory, an instance of Terry’s amazing
intellectual versatility as amply clear from this volume.
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Density Estimation by Stochastic Complexity

Jorma Rissanen, Senior Member, IEEE, Terry P. Speed, Bin Yu

Abstract—The results by Hall and Hannan on optimiza-
lion of hi density esti wulh equnl bin widths by
of the h ded and
sharpened In lwo separale ways. As the ﬁrst mntnbuuon, two
are constructed. The first has
unequal Inn wndths wlnch lugether with the number of the bms.
are of the h:
with help of dynamic progr ing. The other con-
sists of a mixture of equal bin wudth estimators, each of which is
defined by the lexity. As the main
contribution in this paper, two theorems are proved, which
together extend the universal coding theorems to a large class of
data generating densities. The first gives an asymptotic upper
bound for the code redundancy in the order of mngmtude,
achieved with a special pi ive type of hi
which sharpens a related bound. The second theorem states lhat
this bound cannot be improved upon by any code whatsoever.

Index Terms—MDL Principle, universal coding, histograms,
asymptotic bounds, variable bin widths.

1. INTRODUCTION

HE MDL (minimum description length) principle to

nonparametric density estimation is applied in this paper.
This principle permits us to compare any two density estima-
tors based upon a finite set of observed data by the code-
length with which the data together with the estimator itself
can be encoded. We prefer an estimator that achieves a short
total codelength, which means that the best estimators are
such that they assign high probabilities to clusters of the data
points while at the same time the estimators themselves are
not too complex to describe. Hence, for example, a his-
togram estimator with a large number of bins will not neces-
sarily be good, because we have to describe, one way or
another, the large number of counts of the observations
falling in these bins. Similarly, the usual kernel estimators,
which are formed as a sum of functions, one centered at each
observed data point, are bad, because to describe them we
need at least as many bits as for the description of the data
points themselves. However, such estimators can be greatly
simplified by retaining just enough functions to permit a good
fit to the data, the number of them being subject to optimiza-

Manuscript received December 6, 1989. T. P. Speed and B. Yu are
supported in part by NSF Grant DMS 88-02378.

J. Rissanen is with IBM Almaden Research Center, 650 Harry Road,
Room K52/802, San Jose, CA 95120-6099.

T. P. Speed is with the Department of Statistics, Evans Hall, 3rd Floor,
University of California, Berkeley, CA 94720.

B. Yu is with the Department of Statistics, University of Wisconsin,
Madison, WI 53706.

IEEE Log Number 9104812.

0018-9448 /92$03.00

tion. Such pruned-down kernel estimators turn out to have
quite short codelengths [21].

In [11], an idealized codelength, the stochastic complexity,
based upon the class of histogram estimators with equal-width
bins was computed, which when minimized gave the optimal
number of the bins and the associated density estimator. This
estimator turns out to be good for data that are roughly
uniformly distributed. However, when the distribution is
strongly nonuniform, for instance having a long sparse tail,
then many of the optimized number of bins may have very
few data points or none at all, and one may then say that for
the sparse portion of the data the density function is described
with unnecessary detail. For such reasons, we extend the
Hall-Hannan stochastic complexity calculation to the class of
histogram estimators with variable-width bins, which can be
calculated with dynamic programming. Despite an increased
number of additional parameters to be encoded, the resulting
codelength can be shorter than the Hall-Hannan stochastic
complexity, while never exceeding it by more than about
three bits for the entire data string. For small data sets
histogram estimators lack smoothness. However, by con-
structing an estimator as a mixture of many equal bin width
histograms we achieve a degree of ‘‘smoothness,”” not lo-
cally in terms of continuity or differentiability, but in a
broader sense, without sacrificing efficiency. The analysis of
the new estimators appears to be difficult, and we compare
their performance with the equal bin width histogram estima-
tor in an example.

It was shown in [11] that the optimal number of bins is
also asymptotically of the correct magnitude to minimize the
largest absolute deviation of the histogram estimator from the
data generating density, in a fairly large family of nonpara-
metric densities. Although such a result lends support to the
idea of MDL principle providing good estimators, the sup-
port is somewhat indirect: the optimality is in terms of a
sensible but still arbitrary distance measure. As the main
analytic result in this paper, we prove another, stronger
optimality property of a complexity based estimator, denoted
S*(y| x"), which is extended to a family of densities f¥(x")
for sequences x” = x,-+, x, predictively by multiplica-
tion. In broad terms, we show that this estimator gives
asymptotically the shortest codelength for the data in the
order of magnitude that can be achieved by any density
estimator, be it of histogram type or not, relative to the class
A of densities f(y) defined on the unit interval, which are
uniformly bounded and also bounded away from zero and
from infinity, and each having a bounded first derivative.
These are extended to sequences by independence with the
result f"(x"). Moreover, we spell out the shortest mean
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codelength, which we define to be the asymptotic stochastic
complexity of the data, relative to the nonparametric model
class .4 in question. More specifically, our first theorem
states that

I(x")

% n =
Sr(x")
while the second theorem states that for any family of density
estimators {g,(x")}

A (n2),

1
;Eflog (1.1)

S7(x")
2.{(x")

holds for some positive constant K and all densities fe 4,
except for a set that is asymptotically ignorable in a suitable
sense. We recall [17], [18] that for a model class with & free
parameters, the right-hand side in (1.2), which represents the
shortest codelength required to encode the optimal model

1
— E, log = Kn~ 7
n

(12)

with which the code for the data is designed, is —— log 7.

Hence, we see that it takes a longer code to describe the
estimator in the non-parametric family, as it should.

In [1], density estimators p, minimizing a codelength
criterion of the form L(x", ¢) = —log q(x") + L,(q) were
studied, where the second term denotes a prefix codelength
for the estimator. Instead of providing an explicit construc-
tion for this length the authors specify it abstractly by certain
properties. As their main contribution, the authors define the
index of resolvability and show it to provide an upper bound
both for the code redundancy, as well as for the Hellinger
distance between the ‘‘true’” density and its estimator of the
form p(y| x"), in probability. Further, an asymptotic for-
mula is given for the index of resolvability. There are three
main differences between their work and ours. First, we give
an explicit construction for a density estimator, obtained with
the MDL principle. Second, the class of estimators, provided
by the two-stage codelength in [1], excludes those which do
not satisfy the imposed condition that L,(-) depends only on
n as well as the important estimators obtained by a predictive
coding process or by stochastic complexity. This is because
the codelength for the data, resulting from these estimators,
cannot be separated into codelengths for the model and the
data, and hence the index of resolvability is inapplicable to
them. By contrast, our second theorem does apply, not only
to predictively constructed estimators but to estimators of any
kind.

1I. HisToGRAM ESTIMATORS AND UNIVERSAL CODES

In [11], the stochastic complexity (for a general defini-
tion, see [21, Section 3.2]) of a set of observed data, relative
to the class of histogram densities with equal size bins, their
number to be optimized, was derived and the associated
density estimator constructed. Another paper with similar
ideas is [6], based on an earlier paper [5]. In the former,
Dawid considers what is in effect a density estimate obtained
from the equal bin width stochastic complexity in predictive
form, and he demonstrates through simulations some of its
desirable properties.

Although the histogram-like density estimators with the
number of bins optimized will be shown to have strong
asymptotic optimality properties among all density estimators
whatsoever, other estimators may well perform better for
small and medium size data or have other desirable properties
such as a great degree of smoothness. For example, the
varjous kernel estimators can be designed to provide any
desired degree of smoothness, and the number of functions
can be optimized with the MDL principle even though we
cannot calculate the stochastic complexity for them in a
closed form. In this section we study two generalizations of
the usual histogram estimators, in both of which we can take
advantage of the closed form solution for the stochastic
complexity. The first class of estimators have variable-length
bins, the lengths as well as the number of the bins determined
by optimizing the stochastic complexity. This class shares the
asymptotic optimality properties of the equal bin width his-
togram estimators. The other class consists of a mixture of a
collection of ordinary equal bin width histograms, aimed at
providing increased over-all ‘‘smoothness.”’

We begin by generalizing the Hall-Hannan complexity and
the associated density estimators to histograms with
variable-width bins. For convenience of notation we index
the observed data so that x; <x, < --- <Xx,, and note
that the indexes need have no bearing on the time order of
their arrival. Without loss of generality, we take all the
observed data points as integers with the smallest x, = 0,
and we write x" = x,**-, x,. Let @ = (a,,"**, a,,_,) de-
note an increasing sequence of the end points of m bins
[0, 4], (a,, 4,1, -, (@,,_, R], partitioning the range
[0,R]; let R, =a; - a,.,, a,=0and a,, = R, denote the
length of the ith bin. Next, consider parametric histogram

densities defined by f(»| p, R, m, a) = Te’_’ if y falls in

the ith bin, where p = (p,,"*-, p,,) denotes nonnegative
parameters with sum unity.

With the uniform prior #(p) = (m — 1)! on the simplex
defined by the parameters, we can evaluate the integral

S Roma) = [ 11 7(x,) po R, a)n(p) dp

(m - 1)'M;n;!
(m+n-1)t"

= (ﬁ R;"') 2.1

i=1

Then the stochastic complexity, /(x"|R, m, a) =
—log f(x"| R, m, a), fixing n, R, m and a, is given by

m
I(x"|R,m,a) =Y n;log Ri+1"g(n|.~~”~,n,,,)
i=1

+log (7 +m = ‘), 2.2)

in terms of the multinomial

n )_ n!
ORI
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and the binomial

(n+m—1)!

(H+M-1)_ ni(m - 1)!

n =

coefficients. Here, #; denotes the number of observations
that fall in the ith bin. In the special case R =1 and
R, = 1/m we get the Hall-Hannan complexity, which we
write as I(x" | m).

We may interpret the three terms in (2.2) as codelengths
corresponding to a particular encoding process. (Although a
codelength is an integer-valued quantity it is convenient to
regard the negative logarithm of a probability as a kind of
idealized codelength, and with a further idealization we call
even the negative logarithm of a density a codelength [17].)
The last term is the length required to encode the m nonnega-
tive integers n;, when m is given; this is a special case of
(2.4), derived next. The first two terms give the codelength
for the observations when we imagine each to be specified by
a pair (i, y), where i gives the bin (the ith) in which the
observation falls, and y gives the position of the observation
within this bin. Encoding of y, when we know that it belongs
to the ith bin, clearly takes about log R; bits, and the first
term in (2.2) is the sum of these over all the n observations.
Finally, the second term in (2.2) is the codelength required to
encode the bin numbers (the first component in (i, )) of all
the n observations, for it is the logarithm of the number of
all strings of length 7 in m symbols with the given counts.
Another, predictive encoding process is defined by the condi-
tional densities in (2.7), and taking the sum of their negative
logarithms gives exactly the same codelength (2.2) for the
same parameter values.

We can find the optimal sequence of the bins by dynamic
programming. However, since the codelength required to
encode the sequence of the bins, which must be added to
(2.2), may be large, we generally get a shorter overall
codelength if the end points of the bins are suitably restricted.
We do this by introducing two parameters. The first is the
precision, an integer d, with which the break points a; are
expressed; in other words, @, = k,d and a = dk, where
k = (ky," -, k,,_,). The second new parameter is the mini-
mum bin width we permit, say «d, also expressed as a
multiple of d. To apply the dynamic programming argument,
subdivide the interval [0, R], where R is taken as a variable
multiple of d, into m + 1 bins with the break points a =
a,,"**,a,_,,7 and writt @ = a,," -, a,,_,. Then from
(2.2) we get by a straightforward calculation a decomposition
of the form I(x"®|R,m + 1, a) = I(x"?| 1, m, &)
+ -+, where Xx,,"*-, X,, denotes the portion of the
observed data falling within [0, R], and similarly for x™,
The remaining term, represented by the dots, is given by the
last three terms in (2.3). Next, let

L,(R) = min I(x"®|R, m,a),
a

where @ = dk with k;,, — k; =« and k,,_, < k — «, and

k = R/d. By the dynamic programming argument, we then

301

get the recursion
L) = i 1(7) + ((R) = () o 2 =)

n(r)+m
+log% ,

(2.3)

where 7, besides being less than R, is also restricted to be a
multiple of d as well as by the requirement of the minimum
bin width. The recursive equations are solved for m = 1 and
for R = dk, d(x + 1), -, until the desired range including
all the observations is reached. The initial value is L,(R) =
n(R)log R for all R. A recursive evaluation of (2.3) for the
desired value of m and the range gives both the minimized
stochastic complexity and the optimal sequence of the bin
boundaries @ with about (R /d)? operations.

We need the codelengths required to encode the various
integer-valued parameters, of which we first consider the
increasing sequence k with k;, — k,_, =k fori=1,---, m
— 1, ko = 0, and k,, = k. To get this length, associate with
the sequence in a one-to-one fashion a binary string as
follows. Begin with.k, — « 0’s and a 1, followed by k, —
k, —«k O’sand a 1, and so on until ¥ — k,,_, — « O’s are
added, followed by the last 1. The string has & — m« 0’s
and m 1’s, and it always ends with a 1. Hence, the code-
length required for such a sequence is to within one bit

k—m(k —1) -1
m-—1

n(R) +m
*log ( n(r) +m

L(k) = log (2.4)
This (nonprefix) length estimate is valid provided that m, k
= R/d, and « are given. In fact, we need to encode the four
parameters m, d, k, and k, since in general the range R
cannot be regarded as given. The code for these four integers
must be a prefix code, for we must be able to decode them
from a preamble in the entire code string without a separating
comma. We recall that a positive integer i can be encoded in
a prefix manner with about L*(i) = 1.5 + log i + loglog /
+ -+ bits, where the series includes all the positive terms
[8], [16]. Hence, we can encode the four parameters with the
length L(d, m, x, k) = L*(d) + L*(m) + L*() +
L*(max {1, k — m«}) bits. The best codelength we can get
for the data sequence using variable-length bins by this
procedure is then

Ly(x) min

= min {I(x|k,m.dk) +L(k)
- +L(d, m,x, k)}. (2.5)

For each m, d, «, and k only the first term in (2.5) depends
on the sequence k, and the minimization is done by the
recursion (2.3). The minimization with respect to the remain-
ing three bounded integer-valued parameters (k being deter-
mined by d and the range, which is not subject to optimiza-
tion) is to be done by exhaustive search.

Consider the choice d = 1 and x = [(k/m), where [ x
denotes the least integer upper bound for x. This forces the
bins to have equal lengths, which means that L(k) = 0, and
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with K = R we have
L(1,m,x, R) = L(m, R}y + 2L*(1),

where the first term denotes the prefix codelength for m and
the range R, both to be added to the Hall-Hannan complex-
ity to make it complete. We then see that the codelength
L, (x") of the optimal variable bin width code never exceeds
the length, say Lz(x"), of the optimal equal bin width code
by more than about 2L1*(1) = 3 bits. A further (trivial)
subclass of uniform densities results from the choice d = 1
and m = 1.

Once the optimal parameters 71, aA’, K, and l}, minimizing
the stochastic complexity are found, we generally wish to
construct a density estimate. One way is to calculate the
natural histogram estimator

n

fV(Y‘x"):;iR;l»

2.6)

for y in the ith bin with length R, = (k, — k,_,)d. Another
is defined by (2.1) as

S(x"y| R, m, &)
© f(x"|R. M, )

n+1 .
= —R;', (2.7)
n+m

Frixm)

for y also in the ith bin; the pair x"y denotes the string
X\, . X,, y of length n + 1.

‘We next describe the estimator obtained as a mixture of the
equal bin width histograms. Writing first

n+1m

f(ylx",m)=n+m R’

(2.8)

for the special case of (2.7) with equal bin widths, we define
the mixture density estimator as

A 1 M
Su(y|x") = — ¥ f(r]x", m)
M =

1 M

—_— m
RM =

n;+1
n+m

)

where, again, / is the index of the bin in which y falls, and
n; is the number of the data points that fall within this bin.
The number M is taken as a parameter to be optimized. With
this estimator the data sequence can be encoded with the
codelength

n-1
—log fp(x") = — Zo log fys(¥ri1 | x[)~ (2.10)
=
Example: We calculated the optimal codelength L, (x")
= 572, obtained with the parameters /# = 4, d = 6, & = 18,
k =18, and k = 12,14, 16 for the set of 76 integers 0, 7,
18, 39, 49, 50, 61, 80, 82, 82, 82, 82, 84, 84, 85, 86, 88,
89, 89, 91, 91, 92, 92, 92, 92, 92, 93, 95, 96, 96, 101, 101,
101, 101, 105, 107, 107, 111, 112, 115, 115, 116, 117, 117,
118, 119, 119, 121, 122, 123, 124, 124, 125, 125, 125, 129,
129, 129, 130, 131, 196, 201, 201, 203, 212, 232, 236, 241,
241, 243, 243, 243, 245, 246, 248, 248. We also calculated
the ““fit,”” —log f(x"| R, 1, 4 = 549. Fig. 1 shows the

0012
T
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T
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Fig. 1. Three density estimators.

corresponding  density estimator marked ‘‘variable bin
width.”” The optimal number of equal-length bins is # = 13,
which gives the total codelength Lg(x") = 577 and the
“fit’” 554. In Fig. 1, the associated density estimator is
marked ‘‘equal bin width.” Finally, we calculated the total
codelength for the mixture estimator with the optimized
number M = 16 as L,(x") = 578, and the ‘‘fit”
—log fp(x™ = 557. The dependence of the codelength on
the number of terms M in the mixture is very slight, and we
can pick it in the form of an integer power of two. The
associated density estimator is marked with ‘‘mixture’” in
Fig. 1.

Due to the relatively small data set the codelengths ob-
tained with all the three estimators are virtually the same,
despite the fact that the estimators differ considerably. We
see in Fig. 1 that the large optimal number of bins, 13, in the
equal bin width density estimator makes it somewhat
“‘jumpy’” in creating perhaps needlessly many local maxima
and minima. The four bins in the variable bin width estima-
tor, by contrast, give a less ragged density function. By far
the best looking estimator, however, is the mixture density,
in which, unlike in the usual kernel and spline estimators,
“‘smoothness’” is achieved without imposing analytic continu-
ity. As a practical matter, both the equal bin width and the
mixture estimators are casy to calculate, requiring only O(n)
number of operations for 7 observations, which makes them
feasible to compute even for multidimensional data. By con-
trast, the variable bin width estimator requires O(R”) opera-
tions, which just about confines their calculations for scalar
observations only.

III. AsympPTOTIC OPTIMALITY

Ordinarily the goodness of a density estimator is expressed
in terms of a suitably chosen distance measure between the
estimated density and an assumed data generating one in
some class. In this paper, in accordance with the MDL
principle, we have taken the codelength with which the data
and the estimator itself can be encoded as the yardstick for
the quality of an estimator. The purpose of this section is to
derive optimum asymptotic rates, in the order of magnitude,
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for the expected codelengths, relative to a class of smooth
data generating densities, and to demonstrate an estimator
and the associated universal code that achieves the optimal
rate in the order of magnitude. The same measure also
translates into the Kullback distance between the estimated
and the data generating densities, which provides further
support for the codelength criterion. Specifically, the class .#
consists of densities f(y), defined on the unit interval such
that 0 < ¢y < f(¥) <¢,, ¢ <1, ¢; > 1, and each density
having a bounded first derivative, say | f(»)| < c,. This
class is larger than the class .#’ considered in [11], in which
the absolute derivative was required to be bounded uniformly
over the densities. It was shown in [11] that for each density
function f in the class .#’ the number of bins minimizing
(2.2) for R = 1 satisfies i(x")/(n /log n)'”* = C; in prob-
ability, where C; is a constant for each f. Moreover, the
corresponding optimal bin width 1/#(x") is also of the
correct order of magnitude for minimizing the largest abso-
lute deviation of the histogram estimator from any data
generating density in the same class. With this number of
bins, the stochastic complexity (2.2), denoted now by
I(x"| m,), behaves asymptotically like

‘1,. _ 1l ., lognz/"’%l
- (xlm,,)~—; ogf(x)+K(T) (3.1)

in probability, and the second term gives also the amount by
which the mean-per-symbol stochastic complexity exceeds
the entropy. Since the codelength provided by the variable
bin width estimator, constructed in the previous section,
exceeds the optimal equal bin width estimator /(x"|m,)
only by at most three bits, its mean-per-symbol length, too, is
asymptotically no greater than the right-hand side.

However, we get a smaller excess term for a different
density estimator, constructed from the stochastic complexity
I(x"| m) in a predictive way. This estimator is defined in
terms of the conditional densities (2.8), rewritten here for
R=1and0 =1t

i+ 1

mm, (3.2)

f(xr+l'x(>m) =

where we let the number of bins grow with ¢ as m} = [ '/
to take advantage of an increasing information. Writing

Syl x) = syl x' mi), (3.3)
where x° is the empty string, we obtain for any string
FEx™ =107, f*(x,| x ), regardless of the ordering of
the observations. Notice that the negative logarithm of f¥(x")
is not the stochastic complexity /(x”|m) for any single
value of m, but rather it is the sum of the increments
I(x™ ' m¥) — I(x"| m*). Itis interesting that here the mean
predictive codelength is asymptotically strictly shorter than
the nonpredictive one. This is in contrast with all the para-
metric model classes studied, where the two mean lengths are
asymptotically equal.

303
Theorem 1: For all fe 4,
1 fr(x")
—E;log ———~ < A,n %3, 3.4
n B8 Tty = G4

where f"(x") =TI]_,f(x,) and A, a number dependent
on f. Also,
! 7(») 2
2 gy < %
£y [ 40108 Zoly oy = B
B is a number dependent of f. The expectation E is taken
with respect to f” over the data sequences x".

The proof is given in Appendix A.

The question arises whether any code exists with shorter
mean length in the order of magnitude than given by the
right-hand side of (3.4). Just as for parametric model classes
[17], [18], we cannot expect this to be the greatest lower
bound for all data generating densities, since one designed
with f clearly reaches the entropy, but what we can expect is
the right-hand side of (3.4) to represent, in the order of
magnitude, the shortest possible mean codelength for all but a
negligible subset of the densities. This turns out to be true,
although the lack of nonsingular measures in function spaces
forces us to invent a plausible way to capture the intuitive
idea of ‘‘negligible subset’” of densities. For this we need
some notation. Consider a partition of the unit interval into
m,, equal size bins, where

m, = [(n'/log n). (3.6)
For a density function f in .# let p; denote the probability
of the ith bin. Write f; =m,p; and denote by 6,=
(f1,"**, fon ) the collection of such linear functionals that act
as paramete"rs although they do not determinc the density
function completely. Further, write @, = {6,€R™"| fe
MY

(.5)

Theorem 2: Let g = {g,(x")} be any family of densities
on ", where [ is the unit interval, such that the Kolmogorov
consistency conditions are satisfied, and each member is
positive except in a set of measure zero. Then, there exists a
positive constant K such that for all sufficiently large values
of nand all fin 4,

1)
— —_ 3.7
n E;log 2 () (3.7

except for finaset { f|(f}, ", fn ) €A, , C 2, CR™}

such that the ratio of the volume of A, , to that of the entire
set Q, = {6,€R™"| fe 4} satisfies

V(A )
v(e,)

> Kn?P,

-0,

as n— oo,

The proof is given in Appendix B.

Remarks: The requirement that the family {g,} satisfies
the consistency conditions for a random process is not really
needed in this version of the theorem. However, in universal
coding the main interest is in encoding sequences modeled as
samples from random processes, for which the consistency
requirement provides a collection of Kraft-inequalities for the
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symbols and hence, prefix codes. Further, just as in the case
with parametric model classes we may interpret the right-hand
side in (3.4) as the optimal model cost per observation in
order of magnitude; i.e, the codelength per observation re-
quired to encode the density estimator itself. Since the esti-
mator is defined predictively, this cost does not appear
explicitly in the total codelength, but it may be visualized as
resulting from the cumulative effect of the errors in the
estimated counts #,. This cost is greater than in the case with
parametric models, namely, (k log n)/2n, where k denotes
the number of free parameters, reflecting the fact that the
nonparametric model class here is richer and its members
more difficult to estimate. The choice of m¥ = [¢'/ is seen
to be appropriate for the model class .# with its specific
smoothness conditions. For a class with different smoothness
conditions and hence different e-entropy, [7], another choice
would be better leading to a different optimal rate. Extensions
and variations of Theorems 1-2 have already been proved,
including an a.s. approximation for the codelength and a
minimax form of Theorem 2. These will be published sepa-
rately. Finally, the second bound (3.5) serves to indicate that
not only does the codelength obtained with the estimator
(3.3) converge to the entropy, but also the estimator itself
converges to the data generating density at the same rate,
when the distance is measured in terms of the Kullback
distance.

We may regard the theorems as the latest step in the series
of statements about universal codelength, relative to model
classes of steadily increasing generality. The very first such
result is Shannon’s coding theorem for the singelton class
{P(x)}. It was followed by the theorems in [3], [4], [14],
establishing worst case bounds for independent and Markov
sources as well as for some gaussian classes. In [17], a
sharper inequality of the type in Theorem 2, valid for all but
a vanishing subset of parameters, were proved for general
parametric classes, which was further strengthened for the
Markov sources in [19]. A further generalization of the latter
to the ARMA class became possible through the works [9]
and [18].

The reachability of the lower bound with predictive coding
has important implications in prediction theory. Indeed, the
bound for the codelength translates naturally to a bound for
the mean prediction error. Here, the early results in [17] and
[20] have been vastly generalized in [12], [10], and [13].
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APPENDIX A

Partition the unit interval into m equal-length bins and let 7,

=|—, ——\|shere0<m<nand k=0,---, m. To sim-
m m

plify the notation in (3.2) slightly we write

frixm,my=f, .(¥) =

1 n m
—(——m+—),
1+m/n\n n

for y €I, while bearing in mind that this density depends on the

data x”. Notice that 0 < Py =< fu,m(y) S m.

Lemma 1: For every fe d, 0<c,
> 1,

=fMN=c, <1, ¢

RACEF=oE

s%@ﬂUH%LAOY“

+4am(n+1)(cf + mz)e“’"%"/"‘””,
where B is a positive constant.

Proof of Lemma I: Put p; = [; f(x)dx, and we have
mpy = ¢,. Further, [2, p. 10],

( g *

E/ S(x) log =—5
(s(x) - LAW
SEL o)

V() =~ o
= E{‘m_mm,@,/o (%) = fa.m(x))"

2
dx
S m(X) }
1
+E l(fn,mz‘c,,/z)/o

(f(x) - 1, m(X))
Sa.m(%)
The first term in the sum is bounded from above by the first term in
the right-hand side of the inequality in the lemma. As to the second
term, using the inequality (f(x) — f, )% = 2(f2(X) + £, (X))
together with the bounds for f and f, ,, we get the upper bound

2(n+ 1)(c + m*) P{f, (%) # co/2} (A1)

for it. Now, any sequence x” for which {f, ,(x") < ¢,/2} for
some K (and, hencc, {fr. m(X") # o /2} is true) also satisfies
ny Co S

~m_——~ - = <—,andsmcempk
n 2 n 2 2

n o
satisfies mp; — £ m > 2. Therefore, P{fom(X)#c/2} =

g it further

P{n,m/n — mp, = c,/2} for some k. Further, by Bennett's
inequality, [15],

n;,
P{—m mp, = cm/\/_}<PH—m mp,
n

>cm/f}

<2e7Bm,

(a2)
for any ¢, whfnre Bi 1s a positive constant, independent of m, n, and

k. Putting — = — ° the upper bound (A.1) with (A.2) gives the
vn 2

second term in the right-hand side of the inequality in Lemma 1,
which completes the proof. a

Lemma 2: For every fe 4

1 2m c? Lom?
E//o (F(x) = fo.m(x)) dx = —+ A—m—fz +a(l+e)— .
(A3)

where ¢, = max, | f(»)|.
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Proof of Lemma 2: We have first

l:‘/ol(f(x) — S m(%)) dx

'«

& nem/n — mp,
-E g| /,( 1+m/n

14+ m/n

(“ﬂﬂﬂﬂ—u»Y“

A
mp,+m/n
1+m/n

<EY [/ 2(nem/n — mp)?
=1 Yy,

—ﬂnfu (a4)

N mp,+m/n
1+m/n

2
- f(x) ) ] dx.
For the first term in the right-hand side of the inequality we get

m
EY /Z(n,(m/n—mpk)zdx
k=1 Yy,

2

M=

1

2
E(ngm/n — m, X —
(nem/n Pr) m

~
)

=2 m7_pk(1—pk) sz—m.
n

nm

Ms

(a.5)

For the second term in the right-hand side of the inequality in (A.4),
which does not depend on x”, we get, again using (g + b)Y < 2d®
+ b?) and the upper bounds for the densities and their derivatives

i

2 2
Cr m
54(? + 037). (A.6)

mp,+m/n
1+m/n

42] [./,k('"p"_f(x))zdx+ %(

This completes the proof. O

Returning to the proof of Theorem 1, we verify that the right-hand
side of the inequality in Lemma 2 is minimized for m approxi-
mately n'/3. At any rate, with the choice m}_, = [ n'/? for m the
right-hand side is bounded from above by

2(1+2c})n 2P + O(n™%7).
By Lemma 1, then, we get with this bound
7(x)

————~dx< AP
fr,mf,,(x) 4

Ef/olf(x) log

+O(r3Pe ) 1 0(1747),

where A,=2(1 + 2c}), proving (3.5). Further, with the notation
(3.3) and the subsequent convention

1 L) 1 1 /(%)
—Elog 57— = — E/fxlog—dx
wER ey T w5 T
1
=< ;(Bfn‘/3 +0(1)),
for a constant B -, which concludes the proof. O
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APPENDIX B
N n;
We begin with an estimate of the rate with which f; = m, —
converges to f; in probability, where m, is given in (3.6). By
Bennett’s inequality, (A.2), we get

m

P{ U | fi—fil = ¢ "} <2m,e B, (B.1)

7 n

We wish to select ¢ so that the right-hand side gets smaller than
some number «, 0 < o < 1, say a = 2/3, to be specific. This is
true with the choice

This value, in turn, determines the threshold ¢m,, / Vn in (B.1), for
which we pick

r,=(3B) 05, (B.2)
which for large n is slightly larger than what required. With these
choices (B.1) gives the inequality

P{ULi-sil =) <25 (3.3)

Next, we generalize an inequality in (17], [21], valid for paramet-
ric classes of models, which links the Kullback distance and the
estimation rate for parameters. Consider a partition of the compact
set Q,, into m,-dimensional hypercubes of edge length r,, given in
(B.2). Write fl,, for the finite set of the centers of these cubes, and
let C(8) denote the cube with its center at §. Further, let X, () =

" a nn] mnnm
{(x,,""*, x,)|0 € C(6)}, where 6 = (T,,—n—")
From (B.3)
P,(6) = P{X,(0)} = 1/3. (B.4)

Next, consider the density function g,, as specified in the theo-
rem, and let Q,(8) = Pg(X,,(O)) denote the probability mass g,
assigns to the set X, (6). Notice that for any two distinct points in
ﬁ,, these sets of strings are disjoint. The ratio f"(x")/P,(8) defines
a distribution on X,(8), as does of course g,(x")/Q,(6). By the
nonnegativity of the mutual information, applied to these two distri-
butions, we get

P,(8)
0,(8)
(B.5)

S"(x")

dx" = P,(0) )
.7 (6)10g

T,(6) = /X”w]fn(xn)log

Also,

=T (0) - 1,

r(x")
Pea) @)

E;log
7 ga(x

where we used the inequality log z =1 — 1/z for z =
SF(x™)/g,(x"), whenever g,(x") >0, to get

RGO T I

=Q,(8) - P,(0) > - 1;

Authorized licensed use limited to: UNIVERSITY OF MELBOURNE. Downloaded on April 14,2010 at 11:58:33 UTC from IEEE Xplore. Restrictions apply.



306

7 Asymptotics and Coding Theory

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 2, MARCH 1992

here X denotes the complement of X. Notice that for each hyper-
cube with its center 8 in fz,. we have a set of density functions
associated with that §, any one of which by (B.4) assigns a O(1)
probability to the cube. Let f, ; denote one of them. Now, if a
single density function g, succeeds in approximating all these
density functions f, , well, as 6 runs through all the centers, then
the probability mass it assigns to each cube cannot go to zero as 7
grows. But since there is just so much probability mass available for
this density function, there can be only so many cubes where the
approximation can be very good. A quantitative evaluation of the
number of the cubes, where a very good approximation is possible,
is what gives the desired inequality.

Putting the just sketched plan to work let X be a positive number
and let 4, , be the set of 8°s such that the left-hand side of (B.5)
satisfies the inequality

1

> T,(8) < Kn™%73, (B.7)
which means that for these 8’s we are trying to force the codelength
—log Q,(8) to be close to the ideal —log P,(#). This with (B.4)
and (B.S) implies

log P,(6)

<2Kn'3,
TTe)

—log Q,(0) < T,(0)| P '(6) —

(8.8)

which holds for 6 €4, , and for all sufficiently large n. This gives
a lower bound for Q,(6), which we write as g,(8) for short; in
other words, forcing (B.7) causes us to ‘‘spend’’ a certain minimum
amount of the available probability mass. Next, let B, , be the
smallest set of the centers of the hypercubes which cover A 2, n> and
let v, be the number of the elements in B, ,. Since the sets X,,(6),
[} eﬂ are disjoint, we have

z ¥ 0,(0) 2 n4, (8.9)
ocB, ,

which with (B.8) gives the inequality log », < 2 Kn'/>. The volume
of A, , is then bounded from above by
V(A, ) < v,rm, (B.10)
which holds for all sufficiently large 7.
We next calculate a Jower bound for the volume of the m,-di-
mensnonal set Q,={6,=f, ", f, |fed}. Todoit, 1ot C
4min{l - ¢;, ¢; — 1}, and consider the set

My

,_210‘=m"' [6,— 1] < C,all j,

D= [05R”’~

which has the volume (2C)™~. This will be the sought-for lower
bound after we show that D is a subset of Q,. Hence, we must
demonstrate that for each § = (6,,---, 0,,,"), Y8, =m,, in D
there is a density function in .# such that f; = 6,. In fact, define a

density function f, successively on [y,---, I, _,, where I,_,
-1 i "

= , — |, as follows:
m m

" n

£o(x) = 8, + (6, - 8,) sin [Zwm,,(x— i;:) - ;]

(B.11)

for xe,_,. By a direct verification

m/ fo(x) dx" =1, =6, (8.12)
ll*l

5o that the integral over the unit interval is unity. Further, the values
of this function at the bin boundaries all equal 8;, so the function is
continuous. Its derivative at the bin boundaries vanishes, and the
function has a first derivative in the entire unit interval. Also,

[f,;(x)‘sm?x|21rm,,(6,-—9‘)|<cu. (B.13)

Finally,

fo(x) < max|f;] + max |6, - 6,| =C+1+2C=¢
i i

fo(x) = —max |6;| —max[§;-6,| 21 -C-2C=¢.
i J

(B.14)
By (B.12)~(B.14) f; belongs to .#.
The volume of Q,, is then at least as large as the volume of D, or
(2C)™=. Hence, with (B.10) we get
v(4,.,)

lug-—V(n )

<logw, — m,log (2C/r,)

1 1
sn‘/3[2K——5—O(l )]
og n

which goes to ~oo for all K smaller than 1/6. Hence, for each
1

such K we get by (B.7) — T,(8) = Kn 2/, except for § €A, n

and by (B.6) the claim in the theorem follows.
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Abstract. This paper discusses the topic of model selection for finite-
dimensional normal regression models. We compare model selection criteria
according to prediction errors based upon prediction with refitting, and pre-
diction without refitting. We provide a new lower bound for prediction with-
out refitting, while a lower bound for prediction with refitting was given by
Rissanen. Moreover, we specify a set of sufficient conditions for a model se-
lection criterion to achieve these bounds. Then the achievability of the two
bounds by the following selection rules are addressed: Rissanen’s accumulated
prediction error criterion (APE), his stochastic complexity criterion, AIC, BIC
and the FPE criteria. In particular, we provide upper bounds on overfitting
and underfitting probabilities needed for the achievability. Finally, we offer a
brief discussion on the issue of finite-dimensional vs. infinite-dimensional model
assumptions.

Key words and phrases: Model selection, prediction lower bound, accumulated
prediction error (APE), AIC, BIC, FPE, stochastic complexity, overfit and
underfit probability.

1. Introduction

This paper discusses the topic of model selection for prediction in regression
analysis. We compare model selection criteria according to the quality of the pre-
dictions they give. Two types of prediction errors, prediction with and without
refitting, will be considered. A lower bound on the former type of error was given
by Rissanen (19864), and in this paper (Section 2) we provide a lower bound for
the latter. Moreover, also in Section 2 we specify a set of sufficient conditions for
a model selection criterion to achieve these bounds. Roughly speaking, to achieve
these bounds, a model selection criterion has to be consistent and satisfy some
underfitting and overfitting probability constraints. Section 3 concerns the follow-
ing model selection criteria: Rissanan’s predictive “minimum description length”

* Support from the National Science Foundation, grant DMS 8802378 and support from ARO,
grant DAAL03-91-G-007 to B. Yu during the revision are gratefully acknowledged.
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(accumulated prediction error, or predictive least squares), stochastic complex-
ity, AIC, BIC and FPE. We consider bounds on their overfitting and underfitting
probabilities, and therefore their achievability of the prediction lower bounds. In
particular, the selection rule based on the accumulated prediction error and BIC
achieve the two prediction lower bounds, but AIC does not unless the largest model
considered is the true model.

Detailed proofs are relegated to the last section 5. All of our results are
obtained under the assumption that a finite dimensional normal model generates
the data under discussion. This contrasts greatly with most previous discussions,
notably Shibata (1983a, 1983b) and Breiman and Freedman (1983), where the
“true” model is infinite-dimensional. More discussion on finite-dimensional models
vs. infinite-dimensional models can be found in Section 4.

2. Model selection and prediction in regression

In order to compare model selection procedures a number of choices need to
be made; these can be critical. Two objectives of regression analysis are data
description and prediction. The focus will be on the second, prediction.

Write y = (y1,...,yn) for the n-dimensional column vector of observations,
and X = (z;;) for the n x K matrix of covariates or regressors. Inner products
and squared norms are denoted by (y,z) = 3" y:2; and |y|® = (y,y), respectively.
For1 <t<mn,1<k<K,denote by y(t) and Xi(¢) that ¢t x 1 and ¢ x k subvector
and submatrix of y and X respectively, consisting of the first ¢ rows and, in the
case of X, of the first k columns. The subscript k or the parenthetical ¢ will be
omitted when they are clear from the context, or when k = K or t = n. The ¢-th
row of X is denoted by z} and the j-th column by ¢;, whilst x}(k) denotes the
t-th row of Xj, with an analogous convention regarding the dropping of ¢ or k.
Parameter vectors are denoted by 8 = (3;,..., B)’, written 8(k) when necessary.

The class of models to be discussed will be denoted by {My : 1 < k < K},
where M}, is the model prescribing that y is N(X.3,0%1) for some 3 € R* and
02 > 0. The number K of models is supposed known, and for the present discussion
is held fixed as the sample size n — oc.

One framework for prediction involving regression is the following: (yi,x1),
(y2,x2), ..., (yt, x¢) are given. The object is to predict y;+1 from z,1+1. An obvious
approach is to select a model on the basis of the data available at time ¢, and predict
yr+1 from this model with ¢ + 1 replacing ¢t. The response y; at time ¢ is known
before predicting y;+1, so this framework is called prediction with repeated refitting
because it allows model selection at each time.

A quite different framework assumes the existence of an initial data set
{(y1,21)s- -+, (Yn,Tn)}, often called a training sample, and the regressors Zy,...,
T associated with a number of other units, the requirement being to predict the
corresponding responses 91, ...,Um. A familiar variant on this would be when
the “prediction” is in fact the allocation of units into predetermined groups. The
standard solution to this problem is to select a model on the basis of the initial
data set, and then predict or allocate using the model selected. This framework
will be called prediction without refitting.
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In this section, the above two frameworks for prediction will be discussed in
detail: lower bounds are given in each case, and sufficient conditions for a model
selection procedure to achieve them are obtained. However, we leave to Section 3
the achievability of these lower bounds by common selection procedures.

2.1 Prediction with repeated refitting
A natural measure of the quality of a sequence of predictions in the repeated
refitting framework is the sum

(2.1) APE, = Z(yt — Gee—1)’

t=1

where §;);—; denotes a predictor of y; made on the basis of data up to and including
time ¢ —1, and any covariates available at time ¢. Model selection is thus permitted
at every stage. The predictors which we consider below are ;1 = ;G _1(ks-1),
where fit_ 1( l%t*l) is the least squares estimator based on model M %, at time

t, and we will compare selection procedures leading to different ks according to
the average size of APE which is achieved for large n. For the purposes of our
asymptotic analysis, it is not necessary to specify how we define ke fort < K. In
practice a number of reasonable approaches exist.

Our comparison is based upon a general inequality derived by Rissanen
((1986a), p. 1087). As in Sections 3 and 4 we denote by k* the dimension associ-
ated with the true model, and §,_; is any predictor of y; which is a measurable
function of y1,... 4.1, and z1,...,z:. Although all our discussions so far have
supposed that the error variance o2 is known and equal to unity, we will state
the inequality for an arbitrary unknown o2. It asserts that for all k* there is a
Lebesgue null subset A(k*) of R¥" such that for 3* ¢ A(k*):

E‘ . S\ . ~ _ 2 o 2 .
(2.2) lim inf s {Ll (ye Grie-1) no’} > g2,

n-—+0C k* log n -

We say that the lower bound (2.2) is achieved by a model selection criterion if it
is achieved by the corresponding predictor y;;—;.

We need some assumptions before we can state our results on the achievability
of the prediction lower bound (2.2).

Assume (cf. Lai et al. (1979)) that there exists a positive definite K x K matrix
C = Cx such that

M+N
(2.3) Jim N7UOY T aag = C
! t=M+1

uniformlyin M > 0. If M = 0, the left-hand side is just limy ]\f’lX(A")'X(JN). A
further specialization gives limy N ™' X (N)' X (N) = Cy, where Cy, denotes the
principal k x k submatrix of C. Assume also that

(2.4) My~ C Mg is the smallest true model, and 8(k™) the true parameter.
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With this background we can now state the following result, proved in Section
5 below.

THEOREM 2.1. Suppose that (2.3) and (2.4) hold and that k., the dimension
defined by a model selection procedure, satisfies:

(i) pr(k, < k*) = O(n~2(logn)~°) as n — oo, for some c > 1, and

(ii) pr(k, > k*) < O((logn)™*) as n — oo, for some o > 2.
Then the predictor g1 = z’tﬁtnl(lbct_l) achieves the lower bound (2.2).

2.2 Prediction without refitting

Now let us suppose that we have observed (y1,z1),...,(Yn,Zn) and are re-
quired to predict the responses 7, ..., ¥n corresponding to units with covariate
vectors Z1,...,Zm. In most discussions of this aspect of model selection, see e.g.
Nishi (1984) and Shibata (1986a), m = n and z; = Z;, 1 <¢ < n. Our framework
is more realistic and although the general conclusions do not seem to be different
from Shibata’s, this was not obvious a priori.

Our predictors will all be of the form :i;,é(k), w=1,...,m where k corresponds
to a model selected on the basis of {(ys, z¢) : t = 1,...,n}. Given that k=k, a
natural measure of the quality of our set of m predictions is given by the prediction
error

PE(k) = E{[§ — XpB(k)|* | y} = mo? + | Xy-B(k™) — XiB(K)|?,

which averages over the new observations and conditions on the initial data. Fol-
lowing this line of thought, an equally natural measure of the effectiveness of the
model selection procedure leading to k is E{PE(k) — ma?}, where this time the
expectation is over the possible initial data sets. What we now do is give some
results on the behaviour of this quantity under a range of assumptions about X.

Our results are asymptotic in both n, the size of the initial sample, and m,
the number of predictions being made. For this reason we need to supplement
assumption (2.3) with an analogous, but weaker hypothesis concerning X namely:
that there exists a K x K positive definite C = Cg such that

M—oo

M
(2.5) lim M~y "z, =C.
u=1

In the theorems which follow, k = {k,} is the index resulting from a procedure
selecting from the models {M} : 1 < k < K}.
The components of condition (B) below are defined by the partitioning

Croy = [ Ck Dk,k-‘rl}
- Dirr1 Ergsr |’
where Cy, k < K is defined following (2.3).

THEOREM 2.2. Assume conditions (2.3), (2.4) and (2.5). Then under any of
the following conditions:
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(A) limp—oo pr(ky < k) > 0;

(B) Ck_le,k-H = Ck_leJH-l» E*<k<K;

(C) k= IAcppEa for a sequence a = (o) with n™ ey, — 0 where FPE, is the
Final Prediction Error criterion defined in Section 3, we may conclude

(2.6) m,lri:.rilm nm 'E{PE(k,) — mo?} > tr{C .} Cy-}o?.

The proof will be given in Section 5. It can be seen from the proof of this
theorem that there will be other “symmetric” selection rules other than FPE, for
which the conclusion holds.

The next question of interest is the following: what kinds of selection rules
attain the lower bound (2.6)?

THEOREM 2.3. The lower bound (2.6) is attained for any consistent selection
rule whose underfitting probability pr(k, < k*) is o(n™2) as n — oc.

3. APE, stochastic complexity, and FPE

In this section, we consider the achievability of the two lower bounds in Section
2 of some commonly-used model selection criteria. We derive upper bounds on the
underfitting and overfitting probabilities of these criteria and then use Theorem
2.1 or Theorem 2.3.

First, we consider the criterion based upon accumulated (one-step) prediction
errors (APE) (or predictive least squares). This criterion is the predictive MDL
criterion introduced in Rissanen (1984, 19865). Many authors have discussed this
criterion as detailed in the remark after Theorem 3.1.

We now introduce the definition of APE. Only ordinary least squares estimates
will be used. For 1 <k < K, k+ 1< s <n, write

Bs(k) = (Xn(s) X (5)) 2 Xk(s) y(s)

and 8(k) = B,(k). All of the matrices X,(¢) will be assumed to have rank k
when ¢t > k. The recursive residuals, also called one-step prediction errors, based
on My are e;(k) = y: — z:(k)'B:—1(k). The ordinary residuals are r; (k) = y: —
a:t(k)’Bn(k). The parenthetical k£ will be dropped if its value is clear from the
context.

For any fixed k¥ < K, consider the accumulated squared prediction error
APE, (k) = Y1, ., ei(k)®. Obviously, APE,(k) is the same as the prediction
error with refitting (2.2) when the model M}, is fixed through time ¢.

Expression APE,, (k) will lead us to a model selection criterion: choose that &
which minimizes APE, (k) over all £ < K.

For the remainder of this section o2 is supposed known and so, for simplicity,
is taken to be 1. This is possible because, unlike many model selection criteria, the
one based on APE does not require knowledge or an estimate of o2. The numbers
{bx} which appear in the following theorem are normalized limiting (squared) bias
terms defined by

b = tr{(Ex g — Dy 4-Ci ' Dy e )C(k)C(k)'}
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where for k£ < k* the principal submatrices Cy and Cy- of C are written

_ | Cx  Dyp-
Ck‘_Ika,k‘ Epp- |’

and 8(k*) = (8(k)’ | ((k)’)’ is the corresponding partitioning of 3(k*). It is shown
in Section 5 (Lemma 5.3) that by > by > -+« > bg«_1 > 0.

THEOREM 3.1. Under assumptions (2.3) and (2.4), as n — oo, let k, de-
note the dimension selected by minimizing APE, (k). Then we have the following
bounds: A

(i) pr(ks, < k*) < O(exp(—bn)) asn — oo, for b = min(bg=—_1/3,b%. _,/18).

(i) pr(k, > k*) < O(n=/8) as n — .

Remark. The upper bound in (i) shows the interplay between the bias term by
and the sample size n; the product of them determines the underfitting probability,
not the sample size n alone.

COROLLARY 3.1. The lower bounds (2.2) and (2.6) are attained for the APE
selection rule.

PrOOF. Straightforward from Theorems 2.1, 2.2 and 3.1.

Remark. (a) Convergence in probability of the APE selection rule was estab-
lished by Rissanen (1986b) under essentially the same conditions as we have used
here. Other writers who have suggested the use of APE or a related criterion to
select regression models include Hjorth (1982) and Dawid (1984, 1992). The latter
describes a generalization of the use of APE as the prequential approach to sta-
tistical analysis. (b) There is no doubt that our assumptions could be weakened,
but the derivations of the same results are expected to be much more involved. In
the context of time series, Wax (1988) derived the weak consistency of an anal-
ogous estimator of the order of an autoregressive process without the Gaussian
assumption, and Hemerly and Davis (1989) strengthened it to the a.s. consistency.
Moreover, Wei (1992) obtained the a.s. consistency and asymptotic expansions of
APE under stochastic regression models.

Now we turn to selection rules based on the residual sum of squares, which
is RSSp(k) = 37 re.n(k)? where the ordinary residuals ¢, (k) are defined above.
When o2 = 1 in the regression models M, the final prediction error (FPE) criterion
is FPE,, (k) = RSS, (k) + a,k where (o) is a sequence of positive numbers. For
AIC, a,, = 2. For BIC (Schwartz (1978)), o, = logn. When o2 is not known,
we may replace it by its usual estimate from the largest model My . Our results
should still hold in that case.

Rissanen (1986a) introduced stochastic complexity (SC) of a set of data rela-
tive to a model as variant of his MDL and PMDL expressions, and in many cases
it is asymptotically equivalent to the latter, whilst being easier to calculate. We
refer to his paper for definitions of these quantities. For our regression models
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with error variance equal to unity, SC takes a particularly simple form if the prior
distribution for the parameter B(k) is taken to be N(0,71;) where 7 > 0 is a scale
parameter, k = 1,..., K. A simple calculation yields the expression

1 1 1 _
(3.1)  SCp(k) = 5nlog2ﬂ'+ 5 log det (I, + 7 Xk X}) + 57'/([" + 7 X X1) "y
From Lemma 5.5 in Section 5 we see that as n — oo,
1
SCn(k) —- §n10g27r = klogn + RSS,(k) +O(1) as.

and so any discussion of model selection based upon stochastic complexity is sub-
sumed under that of BIC.

The FPE criterion has been discussed by Akaike (1970, 1974), Bhansali and
Downham (1977), Atkinson (1980), and Shibata (1976, 1986a) amongst others.
Geweke and Meese (1981) discuss the problem quite generally, but with random
regressors, whilst Kohn (1983) considers selection in general parametric models.
Shibata (1984) may be consulted for further details on some cases of FPE. The con-
sistency of FPE’s, with a,,’s satisfying limn~'a,, = 0 and lim(2 log log n)_lan > 1,
was established in a time-series context by Hannan and Quinn (1979). Moreover,
the equivalence of BIC and APE has been shown by Hannan et al. (1989) for the
finite-dimensional autoregressive models and by Wei (1992) for finite-dimensional
stochastic regression models.

THEOREM 3.2. Let l%n denote the dimension selected by FPE,, for some
sequence o, such that n™*a, — 0 as n — oco. Then

(1) ky, overfits with probability approaching unity as n — oo. More precisely,
for any constant 0 < b < bg-_1 /4, pr(k, < k*) < O(exp(—bn)) as n — 0.

(i) If k* < K, and liminf(2loglogn)~ta, > 2, we have, for some v > 2,
pr(k, > k*) < O((logn)™) as n — oc.

We omit the proof of this theorem in this paper because Woodroofe (1982)
and Haughton (1989) contain smilar bounds for BIC under more general models.
Moreover, a lower bound, instead of an upper one, on the overfit probability (ii)
is given in the Appendix II of Merhav et al. (1989) for BIC. Their result suggests
that the overfit probability of BIC tends to zero slower than exponentially as n
tends to infinity.

COROLLARY 3.2. (i) The selection rules defined by BIC and SC all lead to
predictors which achieve the lower bounds (2.2) and (2.6);

(ii) If lim(2loglogn)~la,, < 1, the selection rules defined by FPE,, do not
achieve the lower bounds (2.2) and (2.6) unless k* = K in particular, AIC does
not achieve the lower bounds unless k* = K.
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4. Discussion

The results presented seem to suggest that if prediction is part of the objec-
tive of a regression analysis, then model selection carried out using APE, BIC,
SC or an equivalent procedure has some desirable properties. Of course there is
a qualification: in deriving these theorems we have assumed that the model gen-
erating our data is (i) fixed throughout the asymptotics; (ii) finite-dimensional;
and (iii) belongs to the class of models being examined. Before commenting on
these assumptions, let us see that our theorems are at least in general agreement
with a number of analyses and simulations in the literature. The first paper to
point out clearly that consistent model selection gives better predictions seems to
be Shibata (1984), although he does not emphasize this conclusion. Atkinson’s
(1980) results also suggest the conclusion we have reached, but again this is not
emphasized. The simulation results of Clayton et al. (1986) led them to conclude
“that if the ‘true’ or ‘approximately true’ model is included among the alternatives
considered, all reasonable model selection procedures will possess rather similar
predictive capabilities”. We feel that this conclusion is more a reflection of the
limited scope of the simulations conducted rather than the true state of affairs.
Indeed a close examination of the sample sizes and models these authors studied
suggests that there was little opportunity for the procedures (not the models) to
be distinguished, as far as the squared prediction error of the resulting choices
is concerned. More recently, Rissanen (1989) reported clear differences between
cross validation and SC, and to the extent that cross-validation and AIC perform
similarly, Stone (1977), this is explained by Corollary 3.2.

Shibata (1981, 1983a, 19835, 1984, 19864, 1986b) presents a number of theo-
rems demonstrating the optimality of AIC or other forms of FPE,, with bounded
sequences (o, ), as well as arguments rebutting the criticisms that such procedures
are unsatisfactory by virtue of their inconsistency under assumptions (i), (ii) and
(iii). Shibata (1981), and Breiman and Freedman (1983) using random regressors,
suppose the true model to be infinite-dimensional rather than finite-dimensional.
Shibata (1981) also offers an optimality result for AIC valid under a “moving
truth” assumption.

Clearly, the prediction optimality of BIC and its analogues like APE depend
on the assumption that the true model is finite-dimensional, i.e., the bias term
by = 0 for £k > k*. When the true model is assumed to be infinite-dimensional,
i.e., by > 0 for all k, Breiman and Freedman (1983) showed that AIC’s equivalent
is optimal in terms of one-step further prediction. We now show by the following
three simple examples that the decay rate of the bias term plays a determining
role in the battle of AIC vs. BIC.

For simplicity, let us take the framework of Breiman and Freedman (1983)
where an infinite-dimensional model with Gaussan N(0,1) independent regressors
is assumed with the error variance o2 = 1. Then the one-step ahead prediction
error for the (n + 1)-st observation based on model My is roughly PE(k) = by +
kn~!. Moreover, AIC approximately minimizes by + kn~!, while BIC minimizes
br + kn~!logn. By the result of Breiman and Freedman (1983), asymptotically,
PE(]Egjc) / PE(];?AI(;) > 1, where kajc is the model selected by AIC, and similarly
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fOI‘ ];:31(3.

Ezample 1. Assurr}e by = k~%. Straightforward calculation shows that, as
n — oo, PE(kpic)/PE(kaic) — .

Ezample 2. Assume by = e~*. Then as n — 00, PE(kpic)/PE(karc) — 2.

Ezample 3. Assume by = e~¢", Then as n — oo, PE(kpic)/PE(kaic) — 1.

To summarize, as the decay rate of the bias term increases, the prediction
performance of BIC catches up with that of AIC. And, as we have seen, BIC
out-performs AIC when b, = 0 for & > k*, i.e. when the model is finite.

Finally, all three of APE, BIC and SC derive from general approaches to the
model selection problem and have extensions to situations where one or more of (i),
(ii) and (iii) are dropped, see Sawa (1978) for some remarks about this situation.
When something is known about these extensions, it will be of interest to compare
them with AIC or, more generally FPE,, .

5. Proofs

Most of the arguments given below are straightforward. We have tried to be
explicit wherever possible, and have included some proofs which may be found
elsewhere in order to keep this paper self-contained.

The proofs are presented in the following order: Theorem 3.1, Corollaries 3.1
and 3.2, Theorem 2.2, Theorem 2.3 and Theorem 2.1. We continue to use the
notation introduced in Section 2 above. It is straightforward to show

LEMMA 5.1. Fork < s <t <n and ¢ € R(X(t)), we have cov(esi,(k),
c'y(t)) = 0.

It follows from the lemma that

COROLLARY 5.1. (a) For all k < s < t < n, we have cov(es(k),ec(k)) = 0.
(b) For all k <t < n, and ¢ € R(X), cov(es(k),c'y) = 0.

Let us write A\;(k) = E{e:(k)} and ps(k) = Var{e:(k)} — 1, &, = yr — E{y:}
and H, (k) = X,,(k)(Xn (k) Xn(k)) 1 X, (k), and define the following quantities:

n

Valk) = 3" (), Balk)= Y M(k)?  Nu(k) =|Hn(k)el?,

t=k+1 t=k+1
i €4 k “)‘t k 2
N = 3 | I o]

t=k+1

Bl =2 3" (eulk) — MRDAK).

t=k+1
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It is clear from the proof of the result we state shortly that V' is a variance term,
B is a bias term, and N is a noise term, whilst NT is a second noise term and Bf

a part-noise part-bias term.

LEMMA 5.2. With the above notation

(5.1) D7 ek)? =€ = Vi(k) + Bu(k) — N, (k) + BL(k) + N (k).
t=k+1 t=1
Proor. It follows from Corollary 5.1 that {ex+1(k),...,e,(k)} are pairwise

uncorrelated, and uncorrelated with ¢’y for all ¢ € R(X}). Thus we can make an
orthogonal transformation and obtain

- 2 = lee(k) — E{e:(k)}?
(52) O Y S amr

The lemma then follows from this equation and the comparing two sides of (5.1). O

In the lemmas which follow, (2.1) and (2.2) will be assumed without comment.
Moreover, to state our next result we need a little further notation. For k < k*,
write the principal k X k submatrix Cy of C given by (2.4) in the form

| Ck Dy
Che = [ch,k- Ek,k‘]

and we write 8(k*) = (8(k)’ | ((k)’)" and Xk~ (n) = [Xi(n) | Zr(n)].

LEMMA 5.3. n7!B,(k) — by asn — oo, where

by = tr{(Eg x> — Dj - C ' D= )C(R)C(K)'}

satisfies by > by > -+ 2> b1 > 0.

PrROOF. We begin by observing that for k < k*, Ai(k) = Ak (¢)'((k), where

Ap(t) = 2e(k) — z4(k) (Xp(t — 1)/ X (t — 1)) T Xp(t — 1) Zy(t — 1).
It follows that Ai(k)? = tr{Ax(t) Ak (t)’¢(k)((k)'} and so
n”! 2": Ae(k)? = tr {n_l i Ak(i)Ak(t)'C(k)C(k)'} :
t=k+1 t=k+1

Using (2.4) and the notation introduced above, t= Xy (¢)' Xy (t) — Cy, t 71Xk (t)’ -

Zi(t) — Dy =, and t 72 Zi(t)' Zy(t) — Ex k- as t — 00, and so it follows that

nt z Ay Ar(t) — Ej e — Dy - Cp ' Dy e
t=k+1
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as n — o0, giving the expression for b, stated. The monotonicity of by can then
be checked using the partial order of positive definite matrices. O

For the next lemma we need some notation paralleling that used in Lemma
5.2 above. Write A(k) = E{r.(k)} and Bn(k) = Y.7 Ae(k)®. Furthermore, put
Bl (k) = 237 Ae(k)es. By variants of the proofs of Lemmas 5.2 and 5.3 and by
the law of iterative algorithm, we obtain

LEMMA 5.4.

(5.3) D orik)? =" = Bu(k) — Nu(k) + Bl (k)
1 1
where for k < k*, n" B, (k) — by, and B} (k) = O((nloglogn)'/?) a.s. asn — 0.
LEMMA 5.5. In the notation introduced prior to equation (3.1)
log det(I,, + 7Xg(n) Xp(n)) + y(n) (In + 7Xk(n) Xik(n)") 1y(n)

=klogn+2'rt(k)2+0(1) a.s. n — 00.
1

ProoF. Straightforward from assumption (2.3) and Rao ((1973), p. 33). O

In the following lemmas we use the notation pr = k+1 — XYk, Pk = gk_}_l —
Xpve and n = Xp(XLXg) " X1k, where v = (X3 Xk) ' Xj&ks1. It is evident
that 7y, is the regression coeflicient of the (k + 1)-st variable on the previous k,
and so pi and pi are essentially residuals when the current model is M}, whereas
Nk is part residual and part fitted value.

LEMMA 5.6.
X1 (Xps1 Xei1) " Xppre = X (XL X5) 7 X e + |ok] "2 or, €) .

Proor. This is a straightforward consequence of the formula for the inverse
of a partitioned matrix, see e.g. Rao ((1973), p. 33). O

If we write Ny, (k) = |Xk(X}X5) ' XLel? by analogy with the noise term
introduced just before Lemma 5.2, then we have

COROLLARY 5.2.
‘Nmﬂ(k + 1) - A’Vm,n(k) + 2lpkl—2<nk’ E\){Pk=€> + !,Dk‘_4]ﬁk|2<ﬁ’k~, 6>2'

Now let us write Xg- = [Xk | Zi] and Ry = Z; — Xp(XL X)) ' XL 2. Fur-
thermore, for k > k*, write

Ck D kg1

Ck+1 =
Dy rv1 Erpsr
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and similarly for Ck+1. Finally, denote by Ay 1 and Ag, the differences C‘,:l .
Dk’k+1 - C,;'le,k,*.l and C’;lf)k,y — Ck”le‘k*, respectively.

The following formulae bear a close resemblance to ones obtained in a similar
context by Box and Draper (1959, 1963). There, however, the emphasis is on
design: the choice of x vectors. It should be clear from the context whether or not
k < k* is required to give a non-trivial result.

LEMMA 5~.7‘~ As m,n — 0o we have
(i) vaX,’ch — Crlg.
(ii) 'IR;CR;; — Ek - D;ctkté'k_lbk‘k* + A;Cék_lAk
(iii) ~1|ﬁk|2 — Ek']c+1 - E;c!k+1ék_l[)k,k+l + A;C,IHLIC;IAkJﬁ—I-
(iv) n”I[pklz — Eipy1 — D;c:k+1Ck—IDk,k+1-
(v) =22 = AL 1 Ok Gl

m
m

ProOOFs. These are all straightforward consequences of the relevant defini-
tions. O

Next we extend some earlier notation, writing B, (k) = tr{ R} RiC(k)C(k)'},
and S, (k) = 2(RikC(k), Xp(X} Xi) "' X}e€). Clearly the first term is the analogue
of the bias term introduced prior to Lemma 5.2, and reduces to it if m = n and
X = X. For the definition of PE(k), see Section 2 above.

LEMMA 5.8. In the notation just introduced, we have

PE(k) — mo? = Bpn(k) + N (k) — Smn(k).
PROOF. PE(k)—mo? = |Xp-B(k*) — Xp((k)|?, where we may write

Xp-Bk) — XpBk) = Xpe BE*) — X (X1 X3) " X1 (X B(K™) + €)
= (Zk — Xe(X[ Xk) T X Z1)C (k) — Xi( X[ Xe) ™ Xie.

The result now follows upon taking the squared norm of this vector. [

LEMMA 5.9. Asm,n — oo we have
(i) m™Bpn(k) = tr{(Ex — D} 4. Gy ' Di e + LG AR)C(R)C(R)'}.
(i) m™ nE{ Ny n(k)} — tr(CLCTH).

iii) m~'nNp, (k) = O(loglogn) a.s.

iv) m™nSp (k) — 0 a.s. if Ay = 0.

(v) m~ 18, (k) = O((n " loglogn)'/?) a.s. if Ay # 0.

PROOF. (i) is an immediate consequence of Lemma 5.7(iv); (ii) and (iii)
are straightforward calculations; (iv) follows from the definitions, whilst {v) is a
now-familiar form of the law of the iterated logarithm. [J



320 7 Asymptotics and Coding Theory

MODEL SELECTION AND PREDICTION: NORMAL REGRESSION

PRrROOF OF THEOREM 3.1. (i) We begin by obtaining some probability in-
equalities concerning the terms in APE,(k), cf. Lemma 5.2. Since N,(k) =
|H,.(k)e|? is a chi-squared r.v.,

pr(Np(k) > B,) < O(exp(—Bn)) as n— oo,

Similarly, B,(k) is a sum of independent zero mean normal r.v.’s whose variance
is O(n), and so pr(| B} (k)| > ) < O(v; /2 exp(—2/2n)).

Finally, Wy, (k) = V,,(k)+ N} (k) is a sum of n—k independent squared normals,
the ¢-th of which is scaled by p,(k), and so

pr(Wy,(k) > 6,) < exp(—6,) ﬁ(l — ‘Zut(k))“l”2 < exp {—6n + Zn:ut(k')}

E+1 k+1
= exp{—&, + klogn + o(logn)}

< pktl exp(—é,), as n — oo.

We now put these inequalities together, select (3,), (v») and (6,,), and obtain
(i). For simplicity, we drop subscripts n where no confusion will result. If k < k*,

pr(k = k) < pr{APE(k) < APE(k*)}
= pr{B(k) — N(k) + W(k) + Bl (k)
< B(k*) = N(k*) + W(k*) + BT (k™)}
< pr{W(k*) > B(k) + B'(k) — N(k)}
since W(k) >0 and N(k*) >0,
< pr{W (k™) > nbx + o(n) — vn — By}
+ P{N(k) > Bn} + P{|B"(k)| > 7}
< nFFlexp(—nby + o(n) 4+ Y + Bn)
+ O(exp(—Bn)) + Oy 'n'/? exp(—~2 /2n)).
We now see that if 3,, = byn/3 and +,, = bpn/3, the desired conclusion follows
since b, decreases as k increases to k* — 1. X
(ii) For the overfitting probability, we estimate pr(k = k) for k > k*, noting
that in this case APE(k) = V(k) — N(k) + N1(k), i.e. the bias terms disappear.
In this proof we bound —Nf(k) and NT(k*) from below by the same quantity, 3,
say, and calculate the tail probability as in the first part of the proof. We find

that
pr(NT(k) < —B,) = pr(=NT(k) > 3,)

< exp(=a) [ {1+ 21(k)) /2 exp pue(k)}

E+1

< O(exp(—5y)).-
Similarly we have pr(NT(k*) > 3,) < O(exp(—£3,)), and since N(k) — N(k*) is a
chi-squared r.v. on k — k* degrees of freedom,

pr(N(k) — N(k*) > ) < O(v; T *=F)/2 exp(—,/2)).
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Thus if & > k*,

pr(k = k) = pr{APE(k) < APE(k*)}
=pr{V (k) = N(k) + NT(k) < V(k*) = N(k*) + NT(k*)}
< pr{V (k) = Bn — (N(k) = N(k*)) < V(k*) + Bn}
+pr{NT(k) < =8,} + pr{NT(k) > Bn}
< Oy HHEFI2 exp(—y /2)) + 20(exp(—B,)),

where v,, = (k — k*)logn + o(logn) — 23,, since V(k) = klogn + o(logn), and
similarly for V(k*). If we take 3, = Blogn for 3 = 671, say, then we deduce that
pr(k > k) <O(n~Y%). 0

Corollary 3.2 can be shown by an argument similar to Theorems 2.1 and 2.3.
Note that when the selection rule is not consistent, the inequality is sharp since the
prediction error based on M) for some k > k* is strictly larger than the one based
on M+, and underfitting does not cause any problem since all FPE’s underfit with
a probability vanishing exponentially fast (Theorem 3.1(i)).

Let {H; : j = 1,...,n} be a set of pairwise orthogonal rank 1 projectors
summing to the identity, such that for all k = 1,..., K we have Z‘;zl H, = H(k),
where R(H(k)) = R(Xk(n)). Let € = (&) be an n-tuple of iid N(0,1) random
variables, F' any function of |H;e|? for a fixed i € {1,...,n}, and £, 7 fixed vectors.

LemMA 5.10. E{(z;, Hie)F(|H;e[?)} = 0.

PrROOF. The lemma is an immediate consequence of the symmetry of the
normal distribution. O

COROLLARY 5.3. Let f be a function of |Hye|?, ..., |Hyel?. Thenifl <i,j <
k, we have

E{(¢, Hie)f(|Hiel*,...,[Hke®)} = 0,
E{<£a Hiﬁ)(nv Hj6>f(1H16|2= ) |Hk€l2)} =0.

PROOF. The identities follow from the lemma by a suitable conditioning. 0

In the lemma which follows we use the expressions p; and n, defined prior to
Lemma 5.6 above.

LEMMA 5.11. Let k,, denote the dimension selected by FPE,, and suppose
that l > k > k*. Then we have

(5.4) limm ™ n|px| 2 E{(pk, €) (e, €)1 4, -} = 0.
. m\n
PrOOF. We begin by replacing lAc,, by k. that k which minimizes FPE(k) over

the range {k*,k* 4+ 1,..., K}. From Theorem 3.2 we know that pr(k, # k,) — 0
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Now recall the definition of FPE(k) and note that if £ <[, FPE(k) < FPE(])
if and only if Y., [Hpel* < (I — k)a. Thus the event {k = [} is the intersection
of the two events: {Zp“h*l |Hpel? > (1 — h)a; k* < h < 1} and {Z i1 | Hpe? <
(h—Da,l < h < K} whose 1nd1cators we denote by f; and g respectlvely Our
aim is to show that

(5.5) E{{p,€)(n,€) figi} =0

and then deduce the conclusion of the lemma.

Since my € R(Xk), we may write (mx,€) = Sory (M, Hi¢). Similarly, py €
R(Xi)* and so (pg,€) = o k*l(pmH ¢). Thus our interim objective will be
achieved if we can prove that for all 4, j, 1 <¢ <k, k+1 < j < n, we have

(5.6) E{(ni. Hie){pr, Hje) figi} = 0.
Note that fi is a function of {|H,e|? : k* < p < I} whilst g; is a function of
{|Hpel* : 1 < p < K}, and so if i < k* or j > k, (5.6) is trivially zero. If we

take the case k* < ,j <[, we can split off g; by independence and use Corollary
5.3 to get the conclusion. Similarly if &* <i <l and ! < j < K, we can again
use independence this time splitting off (nx, H;€) fi, and again getting zero by the
same corollary. Thus (5.6) and hence (5.5) are established.

The proof is completed by noting that lim,, » m™n|px| "2 E|(nk, €){pk, €)] is
finite, and so we can combine the result pr(k, # k,) — 0 as n — oo with (5.5) to
obtain (5.4). O

PROOF OF THEOREM 2.2. We obtain (2.6) under each of the three conditions
in turn; in all cases making use of Lemmas 5.8 and 5.9. Then by Lemma 5.8, the
left-hand side of (2.6) will be O(n) as m,n — oo, since the bias terms nB,, ,(k)
for k < k* are not all eliminated, and these are O(n) as m,n — oo, and cannot
be canceled by either of the noise terms. Thus (2.6) is trivially true. Now let us
assume (B). By virtue of the result just established, we may also suppose that
pr(kn, < k*) — 0 as n — oo. Otherwise we make no assumptions concerning the
selection procedure k. On the set {k > k*}, Bm,n(fc) = m,n(ic) = 0, and so
PE(k) — mo? = Ny (k).

Our proof begins by observing that

lim nm ™ E||pk| "% {1k, €) (o, €)|
m,n
< lrilrryllnm"l\'pkiﬁ{E(Uk, €)2E (py, €)*}1/?
= limnm ™ o] "2 {|me|*| o |2} /2,
mmn

and this limit is zero by Lemma 5.7 and (B).
Repeated application of this result and Corollary 5.2 give a series of inequali-
ties, which imply that for k£ > k*:

1}}% nm  E{Np o (k)1 iy} 2 ,l,lfr,i nm_lE{Nm,n(k*)l{;c:k}},
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whence limp, n nm ™  E{ N n(k)1 55y} 2 limpmn nm ™ E{Npm n(E)1 55y }
Since pr(k, > k*) — 1 as n — 00, and Ny, (k*) > 0, limp, o nm ™ E{Np . (k*)}
= tr{Cy-C,.'} implies (2.6) in case (B).

Finally we consider case (C). The proof goes as for case (B), and in particular
the selection rules k& based on FPE,, for a, such that n"'a, — 0 as n — oo,
overfit with probability approaching unity by Theorem 3.2. The chain of inequal-
ities leading to the final conclusion is also true, but this time the individual steps
are justified by Theorem 3.1, and the proof is completed exactly as it was in case
(B). Any other selection rule for which the same symmetry argument is valid also
has the lower bound. O

PrROOF OF THEOREM 2.3. (i) We begin by proving that the underfitting
contribution to the left-hand side of (2.6) is asymptotically negligible. This follows
from the readily checked fact that when k < k*, nm™'E{(PE(k) —mo?)} < O(n)
as m,n — oo. Thus for all k < k*,

nm ' E{(PE(k) = mo®)1_y } < O(n)y/pr(k, = k) = 0

as m,n — oo, and so nm ™' E{PE(k) — moz)l{,kk.}} — 0 as n,m — oo.

Turning now to the overfitting contribution, we begin by proving that in the
chain of inequalities used to prove the lower bound in cases (B) and (C), the terms
dropped-—the second and third terms of the right-hand side of Corollary 5.2—all
have absolute expectations which are O(mn~!). The argument at the beginning
of the proof of case (B) of Theorem 2.2 shows this for the second term, for even
without the hypothesis (B) we get a constant at that stage by Lemma 5.7(v).
Similarly for the third terms,

lim nm ™" E{|pk|~*|p|*(px. €)*} = O(1)
by Lemma 5.7. Thus we may use the consistency hypothesis and get

}?lln;ll nm ™' E{(PE(k) - mffz)l{bk*}}

K
= Z grryllnm'lE{(PE(lAc)—m02)1{,‘c:k}}
k=k~+1
K
= Z lirnnm'lE{(PE(k*)—m(r2)1{jczk}}
k=k*+1

= limnm 'E(PE(k™) — mo?) = tr{Cy-C;. },

the second last step following from our assumption that pr(fcn =k)—0asn— oo
for all k > k*. This completes the proof of (i).

(ii) Now we suppose that k is obtained by minimizing FPE, for a sequence
on < 2loglogn. We know from Theorem 3.2 that pr(k < k*) = o(n~!) and so
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need only consider overfitting. By Shibata (1984), liminf pr(k, = k* + 1) > 0.
We next simplify limp, , nin ! E{(PE(k) — mo?)} in the now familiar way, noting
that (as in the proof of Theorem 2.2) it coincides with

lim ™! B{(PE(R) ~ mo®)1 ;54 }

> tr{Cp-Cil'} + lim nm” L E{|px- % Px- i2<pk”6>21{§:=k'+1}}'
Now the second term above is zero only if pk- = 0, which implies £* = K, since

we have assumed all design matrices to be of full rank. Thus the inequality (2.6)
is strict for selection rules based on FPE,, with liminf(2loglog n)_lan <1l.0O

PROOF OF THEOREM 2.1. Since ¢ is independent of l’épl and ,ét_l for all
t>1,

E {Z(yt - x;Bt—l(iCt—l))z} =no? + ZE(I'Q,B* — 2B 1 (ke-1))?.
1 1

Write .
Un =Y E{(z}3" — 2} Bi-1(keo1)®1 (4, ey b
1

Vo= B{(z}8" — z\fBi1(ki1))1 (5, gy b
1

W = 3" B{(@l8" = w4Bis (ke-1))L g5 sy b
1

We deal with each of these three components in turn. Let us temporarily denote
Th(Xp(t — 1) Xp(t — 1)) 71Xk (t — 1)e(t — 1) by d’e. Then

k*—1 n

Un=Y_ Y E{(z}p" - 24 Bo-1(ke-1))1 (5, =iy}
k=1 t=1
k*=1 n

ZZE{ (Me(k) = d'*L, gy}

k=1 t=

23S Z K)2pr(kes = k) + 2B{(d0)1 5, _})
k=1 t=1

Now for k < k*, 37 Me(k)? = byn + 0(1) as n — oo, whilst pr(l?:t_l =k) <
O(t=?(logt)™¢) as n — oo, ¢ > 1. Summing by parts we thus conclude that

k-1 n
> Z/\t(k)2pr(ict_1 =k)=0(1) as n—oo.

k=1 t=1
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Furthermore, E{(d'¢)*} = 3E{(d’¢)?}, and since E(d'¢)? = |d|?0? = . (k)o?,

k-1 n k=1 n
Z ZE{(d'e)Zl{kt_lzk}} < Z Z\/garzm(k){pr(}%t_l = k)}/2
k=1 t=1 k=1 t=1

I

O(1) as n— oo,

as argued above, but this time using 7 w: (k) = klogn(1+o0(1)) as n — oco. Thus
U, =0(1) as n — oo.

Turning now to the overfitting term V;,, we find only the quadratic form (d’¢)?,
as the bias term vanishes. Thus we can argue as above, giving

K n
Wo= > ZE{(d’e)Ql{;ﬁ_lzk}}
k=k*+1t=1
K n
<VBo® YN k) {pr(kior = k)}2 = 0(1),

k=k*+1 t=1

since pr(k,—1 = k) < O(logt~°) as t — oo, where a > 2.
_Finally, we examine the term corresponding to getting the model correct. Since
pr{ki_1 # k*) < A(t™%(logt)~¢) + B(logt)~ for large t,

Il
NE

v, E{(z,5" - x;Bt_l(k:*))%{,;t_l:k,}}

i
L

I
M=

E{(d¢)’} =Y B{(de)1 5, ey}
t=1

Flogn(l+o(1))+0(1) as n— . O

T

o~
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7 Asymptotics and Coding Theory

A Rate of Convergence Result for a
Universal D-Semifaithful Code

Bin Yu and T. P. Speed

Abstract—The problem of optimal rate universal coding in the
context of rate-distortion theory is considered. A D-semifaithful
universal coding scheme for discrete memoryless sources is given.
The main result is a refined covering lemma based on the
random coding argument and the method of types. The average
codelength of the code is shown to appraoch its lower bound,
the rate-distortion function, at a rate O(n™" log n), and this is
conjectured to be optimal based on a result of Pilc. Issues of
constructiveness and universality are also addressed.

Index Terms— Discrete memoryless source, rate-distortion,
D-semifaithful, universal coding, optimal rate, random coding,
method of types.

1. INTRODUCTION

NTROPY has a central position in information theory,
in part because in the limit it gives the shortest possible
per-symbol average length of a noiseless code. If we consider
a discrete memoryless source with distribution Py, the entropy
H(P,) serves as a nonasymptotic lower bound to the average
expected codelength for data strings from this source. More-
over, the entropy lower bound can be achieved asymptotically
at the rate O(n 1) when the source distribution P, is known,
and at the rate O(n~! log n) when P, is not known.
Rissanen [19] improved the ’ entropy lower bound by
showing that entropy %kn"logn is an asymptotic lower
bound to the average expected codelength. His bound holds
for data strings from parametric statistical models satisfying
mild regularity conditions, and the k in the lower bound is
the dimension of the model. Discrete memoryless sources
are covered by his result, with & there being the cardinality
of the source alphabet minus one, and the rate O(n~'logn)
is optimal in this case, when Py is not known. The rate
O(n~'logn) has been shown to be achievable for various
other statistical models, see for example Davisson [8],
Rissanen [19], [20], Hannan and Kavalieris [10], Hemerly and
Davis [11], Gerenscer and Rissanen [9], Clarke and Barron
[5], and Weinberger, Lempel, and Ziv [27]. Extensions to
nonparametric models can be found in Barron and Cover [1],
Rissanen, Speed, and Yu [21], and Yu and Speed [28].
Rate-distortion theory was started by Shannon [23], and in
that context we consider block-codes with a fidelity criterion,
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or semifaithful codes to use the term from a recent paper of
Omnstein and Shields [15]. Instead of the expected codelength
used in noiseless coding it is natural in rate-distortion theory
to consider the log of the number of D-balls required to cover
the n-tuple space of the source alphabet under some single-
letter distance measure. The role of entropy in noiseless coding
is then taken by the rate-distortion function, in the following
sense: the rate-distortion function gives a lower bound to the
log of the covering number, which we may also refer to
as the expected code length of a D-semifaithful code, and
this lower bound can be achieved in the limit by certain D-
semifaithful codes. In particular, Ornstein and Shields [15]
obtain D-semifaithful codes which achieve the rate-distortion
function lower bound almost surely, for ergodic sequences,
and Shields [22] uses Markov types for similar results. Earlier
work for other classes of sources include Neuhoff, Gray, and
Davisson [14], Mackenthun and Pursley [13] and Kieffer [12].
In the case of memoryless sources, the achievability proof can
be found in standard texts, see for example, Cover and Thomas
[7] for a recent exposition using the random coding argument.
However, no results have yet been provided on the rate at
which this lower bound is approached.

In this paper, we describe a D-semifaithful universal coding
scheme of memoryless sources and obtain an associated rate
result. We show, for a discrete memoryless source with a
source alphabet of J elements and an unknown distribution
Py, that under some mild smoothness conditions on the rate-
distortion function, a universal D-semifaithful code can be
constructed such that the average expected length of this
code tends to the rate-distortion function at the rate n~logn.
The techniques used are the method of types and random
coding. The main result will be based on a refined coding
lemma (Theorem 1) for type classes. It is “refined” because it
improves the o(1) term in the covering lemma in Csiszar and
Korner [6] to an O(n*llogn) term. In other words, we are
able to give a better upper bound on (the log of) the number
of D-balls needed to cover a type class, equivalently, on
the number of D-semifaithful code words required to encode
a type class. Then a two-stage code is conmstructed as the
D-semifaithful code for all strings: first we encode the type
class, and next we encode the elements of each type class using
the refined covering lemma. The above results are contained
in Section IL

In Section III, we conjecture that the rate n™! log n is
asymptotically optimal. Our conjecture is based on a result
of Pilc [16], [17], which is expressed in terms of the inverse
of the rate-distortion function: the distortion-rate function. Pilc
has upper bounds and lower bounds for noiseless channels and
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for noisy channels, but we use his results only for noiseless
channels. Unfortunately, although the rate n~! log » in the
upper bound of our two-stage code matches that in Pilc’s lower
bound, his lower bound is on the log cardinality of an expected
D-semifaithful code (cf. the forthcoming definition) while our
code is pointwise D-semifaithful with an upper bound on the
expected codelength. Hence, we do not know at this stage
if the rate n~! log n is indeed optimal in terms of expected
codelength. Moreover, his bound does not include Rissanen’s
since it holds only for nonzero distortion levels.

In Section IV, we compare our code with the code corre-
sponding to Pilc’s upper bound. The main point made there
is that our code is universal, while the other one is not. In
addition, the issue of construction versus pure existence is
addressed in relation to our code and the one corresponding
to Pilc’s upper bound.

We start with some preliminaries on rate-distortion theory
and the method of types. Our main reference on rate-distortion
theory is Berger [2], and that on the method of types is Csiszar
and Korner [6].

II. PRELIMINARIES

Let Ay = {1,2,---,J — 1, J} be the source alphabet, and
let By = {1,2,---, K} be the reproducing alphabet. By could
be the same as or a subset of Ag. We assume our source is
memoryless, i.e., that the letters z1,- - -, z,, which make up
our strings are mutually independent and identically distributed
(i.i.d.) with distribution Py on Ag. Without loss of generality
we assume Py(j) > 0 for all j € Ap. We use a single-letter
fidelity criterion to measure the distortion between any nth
order source string 2" = (z1,---,2z,) € A}, and its code
word y" € By. More precisely, let

n
da(z",y™) = 07y d(ws,32),

t=1

where d is a bounded real nonnegative function on Ay x By,
with maximum dy; and minimum d,,,. Then the rate distortion

function R, (Py, D) for the distribution of zy,--,z, equals.

nR(Py, D) where the rate-distortion function R(Py, D) of Py
can be formally defined as follows:

R(Po, D) = min I(W, Po)

Wiklj)
Q)
where the minimum is taken over the set of matrices W
from Ay to By such that for any j,k, W(k|j) > 0, for all
b e Wk = 1,

J K

> Poi)W(klj) d(j,k) < D,

j=1k=1

J K
=min) ")~ Po(j)W(kls) log
- j=1 k=1

and Q is the marginal distribution on By induced by P, and
W, ie., for k € By,

J
Qk) =Y Po())W(K|3).

j=1
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The following properties of R(P, D) can be found in Berger
[2].

1) R(P,-) is convex, monotonically decreasing on [0, Dpax|
where Dpax = ming Z}’:l P(j)d(j,k). Moreover, for
D > Duax, R(P,D) = 0, and R(P,0) = H(P) =
—3°]_; P(j) log P(j). Hence Rj,(P,D) < 0 for any D,
where / denotes differentiation with respect to D.

2) If I(W, P) = R(P, D), then for any j:

GIW,P) W)
awgky) " = Pl gy
where for any 7, k:
Qe
W(kl|j) = S QDedin
£

with s = Rp,(P,D) < 0.
Definition (D-semifaithful code): A map M, : Af — Bg is
called a pointwise D-semifaithful code if for any z" € A}

da(z™, Ma(z™)) < D.

Similarly a map M, is called expected D-semifaithful with
respect to a source distribution Py if whenever (z1,---,2n)
are i.i.d. with common distribution Py,

Eryda(s”, Ma(a™)) < D.

Since our main argument will be based on the method of
types, we next introduce the definition of type and some of its
properties. We will follow the notation of Csiszir and Korner
[6], with 1{A} denoting the indicator of the event A and =
meaning equal by definition.

Definition (Type): The type of a sequence z* € A} is the
distribution P;» on Ag defined for j € Ay by

S SN )
Pen(j) = — N(jla") = 3 1ae =3}
t=1
that is, the empirical distribution of z" on A;. We write
Tp = {2™ : ™ has type P} for any P on A such that
{nP(j)} are integers.
For any given 2" € Ajf, and a stochastic matrix W : 4g —
By, we next define conditional types.
Definition (Conditional type): The conditional type W of a
sequence y" € Bf given 2™ € Af is defined for j € Ag, k €
Bo by

N(jlz")W (klj) = N(j, klz".y")

n
= Zl{z, =jandy, = k}.
t=1

We denote the set of sequences y™ € Bj having the
conditional type W given z" by T3} (z™).

The cardinality of a type class, or a conditional type class
can be bounded above and below as in the following results
from Csiszdr and Korner [6].

Lemma 1: For any type P of sequences in A,

(n+1)77 exp(nH(P)) < |Tp| < exp(nH(P)). (11)

Authorized licensed use limited to: UNIVERSITY OF MELBOURNE. Downloaded on April 14,2010 at 12:00:00 UTC from IEEE Xplore. Restrictions apply.



330

7 Asymptotics and Coding Theory

YU AND SPEED: A RATE OF CONVERGENCE RESULT FOR A UNIVERSAL D-SEMIFAITHFUL CODE 815

Lemma 2: For every z" € Af, and stochastic matrix
V : Ag — By such that T{}(z") is nonempty,

(n+1)"7% exp{nH(V|Pn)}
< |TP(z")| < exp{nH(V|Per)}, (1.2)

where H(V|P) = £, PGYH(V(Ii) = ~ i P()
Tkt V(L) log V(k]j).

Lemma 3: The total number of type classes is at most
(n+1)7.

1I. A UNIVERSAL POINTWISE D-SEMIFAITHFUL CODE

In this section, we first use the random coding argument in
Csiszar and Kormner [6] to prove a refined covering lemma
(Theorem 1). Then, we go on to give a two-stage univer-
sal D-semifaithful coding scheme (Theorem 2) with the rate
n~! log n. We begin with a proposition extracted from Csiszér
and Korner [6].

For a given type P on Aj, positive constant D in (0, Dyax),
and a subset B of Bf, write

Up(B) = {a" € T3 : dn(z™, B) > D},
where dy,(z", B) := minyp dp(z™,y").

Proposition 1: Suppose Z(™ = {Zy,---,Zy} are iid.
and uniform over a subset G C Bj. If for some m, we
have E|Up(Z(™))| < 1, then there is a set Bpp such
that |Bpp| < my and [Up(Bp,p)| < 1. This implies that
Up(Bp,p) = ¢. In other words, that Bp p “covers” Tp within
distance D.

See Csiszar and Kémer [6] for the proof.

Moreover, note that,

[oo(2)] = 3 1{vn(2)}a"
zneTp
implying
EI(UD (z('"))[ = ;T Po (z" €Up (Z('"))). @1
€Ty
For any fixed 2™ € Tp, because the Z are i.id.,
Po(z" €Up (z‘m))) = [Po(dn(z™, 2) > D)™, (22)

where Z is uniformly distributed over G.
Furthermore, if we can find a subset G1(z™) C G such that,
for any y™ € G1(z™) we have d,(z™,y") < D, then
Po(dn(z™,Z) > D) = 1 — Po(dn(2",Z) < D)
< 1-Po(Z € Gi(z"))

=1-1GE="/IG)- 23)

Combining (2.1), (2.2), and (23), we get
m lGl(Tn)' "
Blup(2)| < 3 (1” €] )

zneTR
exp(— IG}ézl")l m) X))

>

ZneTp

The last inequality holds because (1—%)" < exp(—tm)
for any ¢ > 0. Next we choose a conditional type class as
G1(z™), and a type class as G. For the chosen G1(z™) and’
G, we select m,, using (2.4) such that E[Up(Z(™)| < 1.
For any type P and constant D in (0, Dpmax), take W such
that

> W(kli)P()d(i, k) < D*,

ik
and I(W, P) = R(P, D*), where D* = D — n~'JKdy.

Note that this W depends on both P and D*, but for
simplicity, we do not indicate this dependence in any way.
Because the nP(j) are integers, we can find a stochastic
matrix [W], a truncation of W, such that for all j and k,
n[W](k|j)P(j) are integers, and
1

W(k|j) — Wk < —5~ forj=1,---,J.
W (kL) = WK € s, ford
Let [Q] = [W] - P, ie., [Q)(K) = 527 _, [W](klj)P(s). Then,
the n[Q](k) are also integers. Therefore, the type class T[?H
and the conditional type class T{M (z™) are well defined for
all z™ € Tp.

Let us take G = Tjty and G1(a™) = Tjjy(z™). Then, for
any y" € Gy(z"),

N, k™, y") = [W1(kl7)P(5)n,
and
N(kly™) = 3 NG, K", 9")
J
=3 Wkl P(i)n = [Q(k)n,
J
that is, y" € G = - Hence, Gq(z™) C G.
In addition, for any " € Gi(z"), since D* = D —

n~ I Kdp,

dn(a”,y™) = Y [W(klj)P(5)d(j, k)

ik

< (WEG)PG) +n7")d(, k)
Ik

<Y WRG)P(G)AG,R) + n TKda
Ik

<D*+n"'JKdy = D.
Recalling the bounds in (1.1) and (1.2), we have
G| < exp(nH(Q)),
1G1(a™)] 2 (n+ 1) exp{nH([W]|P)}.
Thus, since I([W], P) = H([Q]) - H(IW]|P),

-G ¢ 1) exp(-nr (], ).

TE 25)
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Putting (2.5) into (2.4), we find
£lun(z")|
<

TnETE
- exp{—(n + 1) "X exp(~nI([W], P))m}
T3 exp{~(n+ 1)~
- exp(—nI([W], P))m}
Finally, we get by Lemma 1:
E ] Up (z("‘>) ;s exp(nH(P)) exp{—(n+1)"7%
-exp(—nI([W], P))m}.

I

(26)

Now we can choose m = m,, as an integer such that
exp{nI([W],P) + (JK +2) log(n + 1)}
< my, <exp{nl([W],P)+ (JK + 4) log(n + 1)}.
Then for such an m,, (2.6) gives
E|Up(Z2™)| < exp(n log J) cxp(—(n + 1)2)
<1, for n large.
Applying Proposition 1, we obtain the following theorem.
Theorem 1 (Refined Covering Lemma for Type Classes):
Given a type P on Ap and D in (0, Dyax), there is a subset
Bpp C By such that for any 2™ € Tg, d,(z",Bpp) < D
and
{Bp,p| < exp{nI([W],P) + (JK +4) log(n + 1)},
where for any j, &
1
Wik|j) = W(k|j)| € ——=,
VIGk0) ~ Wk € 75
and I(W, P) = R(P,D*) for D* = D — n~'JKdy.

Next, we show that we can replace [W] by W in Theorem
1. Since [W] is close to W, and D* is close to D, we expect
I([W), P) to be close to I(W,P) = R(P,D*), hence close
to R(P, D). Formally, we expand I([W], P) around I{W, P)

as follows:
J K-1

oI
(W), P) = I(W,P)+ -
[W), P) = I(W, P) 2_:; T

(P Wiy (WKL) = WD) + -+, 27)
where (---) denotes smaller order terms. Since I(W,P) =
R(P,D*), by property 2) in Section I, for any &, j

oI( P) | 3 100 VY (KLA)

w5 (W = P(j) lo .

o) " = PO )

Note that for any j, &, |[W](k|j) — W(k|j) < (nP(j))"", so
we have from (2.7):
(W}, P) = I(W, P)

SSE W)
-r{j log 10 n
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However, again by property 2) in Section I, for all j, k we
have

QR)erio)

W(klj) = F 06D
7

where s = R},(P,D*) < 0. Hence,
W) _ e Oh
Q) T QeCh = T Qe

7 7

= elslu—dn)

e~ leldm

Similarly W (k[j)/Q(k) > e~1s1(@%=dm) and hence,
W (ki)
Q(k)

Without loss of generality, assume d,,, = 0. We then get
I((W],P) < I(W, P) +n~ ' JK|s|dr + O(n'l)
= R(P,D*) +n"YJK|s|dp + O(n7Y).

[log | < Isl(das = dm).

On the other hand,
I(W,P) = R(P,D*)
= R(P,D)+ Rp(P,D)(D* = D) +---
= R(P,D) + |s|JKdyn™t +---.
Thus,
I(W),P) < R(P,D) + 2JK|s|dyn™! + o(n“), 2.8)

where s = R,(P, D). We have proved the following
Corollary 1: Under the assumptions of Theorem 1

log|Bp,p| <nR(P,D) + 2JK|s|dp
+0(1) + (KJ + 4) log(n + 1).
Theorem 2 (Universal Pointwise D-Semifaithful Coding):
Let F be a class of distributions on .Ag such that for some D €
(0, Dipax), the derivatives {02R(P,D)/0P;0P; : j,j' =
1,-++,J} are uniformly bounded over F by a constant C,

and |Ep, R} (Pen, D)| < oo for all Py € F. Then there exists
a two-stage code M, : Af — Bf such that

dn(a", Ma(a™)) < D,
and for all Py € F, as n — o0,
0™ Bp, (M, (a")) SR(Po, D) + (KJ +J + 4)n”"
-log(n+1) + O(n71).

Proof of Theorem 2: For any ™ € AR, our coding
scheme has two stages: First, we encode Pp», which by
Lemma 3 takes at most J log(n + 1) bits. Next, we use
Corollary 1, which asserts that for the type class 77, , there
is a Bp_, ,p which covers T";‘ with radius D. We then take
M, : T§, — Bp,.,p Where My(a") = y* € Bp,.,p is
such that d,(z",y™) < D. This takes at most log|Bp,.,p|
bits, which, since R}, < 0, is bounded by
NR(Pgn, D) + (KJ + 4) log(n +1)

— 2KJRp(Pyn, D) + o(1).
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For simplicity, denote P~ by P. Taking the expectation of this
last expression gives a bound on the expected codelength of

Ep,R(P,D) + (KJ +4)n"! log(n+1)
— 2KJEp,Rp(P,D)n~" +o(n ™).

To prove the theorem, it suffices to show

Ep,R(P,D) = R(Py, D)+ 0O(n™?), 2.9)

because |Ep, R}, (P, D)| < oo by assumption.

The idea to show (2.9) is simply a Taylor expansion of
R(P, D) around P = Py, but because the Taylor expansion
holds only in an o(1) neighborhood of Py, some effort has to
be made to give a rigorous proof.

We split the set of types into two disjoint subsets:

Q= {P:|P(j) - Po(5)|
<nY2logn, for all j € Ao},
and
= {P:|P(5) - Ro(h)|

-1/2

>n logn, for some j € Ag},

and we break the expectation Ep, R(P,D) up similarly,
defining

Ei1= Y Po(a" € TR)R(P,D)
PeQn

Ey= Y Po(a" € TR)R(P, D),
PeQg

where P denotes the probability measure on sequences de-
fined by Pyp. Before we go further, we need a good bound on
> peqa: Po(z" € Tg). Hoeffding’s inequality, cf. Pollard [18,
p. 191], implies that for all j,

Po(z" : [P(§) = Po(3)| > n™*/? log m)
< exp(—2[logn]® - n/4n)

1
= exp (—7 (log n)2).
As a result,

>~ Po(z"eTp)

PeQe.
J —
<Y Po(a™ :[P() - Pa(i)| > 0™/ logn)
j=1
L 2 —%logn
<J exp(—?(logn) ) = Jn-Flen. (210)

Then (2.10) and the inequality R(P,D) < logJ together
yield

Ey= Y Po(z" € TR)R(P, D)

Pens
< (IogJ).]n'%logn
=0(n™"), for n large.

On Q,, we can expand R(P, D) as

= oR
R(P,D)=R(Py, D)+ 35, (Por D)+ (PG) = Po(3)
j=1

F 2P - P - (P2, D)
2o T P,
~((P(3) = Po(3),
where Pj is in between P, and P. Because the partial
derivatives around P, are bounded by a constant C, the third
term on the right is bounded by

J
2JCY (PG) = Po3))?,
j=1
and so its expectation is O(n~!) by a known result concerning
the multinomial variance.
Moreover, the fact that Ep (P(j) — Po(j)) = 0 for all j,
implies that

| 3 Pole" € TRI(PG) - R |

PeQ,
=| 3 Pole” e TH(PG) - R |
PeqQg
<2 ) Po(a” € Tp)=0(n7"). (211)
PeQg
Similarly, we can show

> Po(z"eT)R(Py, D) = R(Py, D) + O(n™"). (212)
PeQ,

Hence,
Ep,R(P,D) < R(Py, D) +0(n7Y).
This completes the proof that
n~1Ep,L(M,(z")) < R(Po, D)
+(KJ+J+4)n7t
Jlog(n+1)+0(n7Y). 0O

Remark: Note that it is very easy to check that the bound-
edness conditions on the derivatives of the rate-distortion
funciton are satisfied by a Bernoulli(p) source with dis-
tortion measured by Hamming distance. In that case, the
rate-distortion function is known, cf. Cover and Thomas [7],
to be

R(p,D) = {g{(p) - H(D)x

Then,

if 0 < D < min(p,1 - p),
if D > min(p,1 — p).

1-D
D

Rp(p, D) = log

and
1

32
2 R(p,D) = ————
o B D) =~ o
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It is clear that the boundedness conditions are satisfied in
this case if we choose F as the set of binary distributions with
uniform bounds on p away from both 0 and 1. In general, if
those derivatives exist, they are likely to be bounded. Thus,
our conditions do not appear to be too stringent.

IV. LOWER BOUND

For a string of i.i.d. discrete source letters from Ao, we
have shown in the last section that under some smoothness
conditions there is a pointwise D-semifaithful code with its
average expected code length tending to R(Pp, D) at the rate
n~!logn. Recalling that R(Py, D) is a lower bound on the
average codelength of such D-semifaithful codes, we may ask:
is the rate n~! log n the best possible?

Unfortunately, we have not been able to show that
n~! log n is the optimal rate, though we conjecture it is the
case. The main reason for our conjecture is a lower bound
due to Pilc [16], [17] in terms on the distortion-rate function
D(P,, R), which is the inverse function of R(Py, D) in the
variable D. Note that D(Py, -) is defined on [0, H(Pp)].

Theorem 3 (Pilc [17]): Assume that zi,---,z, are iid.
with distribution Py on Ao, and that M, is a map from
AR — BE. Given R € (0, H(Rp)), if | M, (AZ)| < 2°E, then

E'pud,.(z",Mn(x")) > D(Po,R)
1 logn

"2 Sl

(1+0(1)), @1

where sq satisfies
u(s0, Po) — sop'(s0, Po) = —R
with
J K
s Pe) = Y- ol o8 3 Q(R)exp (s 1) )
j=1 k=1
Q=WPh,

and

I(W, ) = R(Py, Dr) = R.

Moreover, for any € > 0, there exists N(e) > 0, such that if
n > Ne),
min Ep,dn(z", Mn(z™))

<D(Po,B)+ 5 (1+) 187

|s0ln

(1+0(1)), (2
where the minimum is taken over all codes (maps) M,, such
that |M(AF)] < 2°R.

It is worth noting that the constant % in front of the rate
n~'logn does not depend on the dimension J of source dis-
tribution Py, whereas in the noiscless case the corresponding
constant is % (J—1).

Applying the function R(F,,-) to both sides of (3.1), we
get the following corollary.

Corollary 2 (Lower Bound): Under the assumptions of
Theorem 3, for any expected D-semifaithful code M,, if
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|M,| = 2", then as n — oo,

R> R(Py,D) + %n_l logn{1 + o(1)). (3.3)
Proof: By (3.1) and the fact that R(Pp, -) is decreasing,
R(Po, Ep,dn(z™, Mn(z™)) < R(Po, D(Po, )

1 logn
7 s 1+ 0)
= R(Py, D(Py, R))
+ Rip(Po, D(Ps, R))

logn ,
. 1
S, L+ 9D)

where the o'(1) term represents the sum of o(l) term in
the previous expression and the smaller order terms from
the Taylor expansion. From the parametric representation
of R(Py,-) (Berger [2]), it is easy to see that so(R) =
R(Py, D(Py, R)) < 0.

Also note that R}y < 0, Ep,dn(z",M,(z")) < D, and
R(Py,D(Po,R)) = R, so we have

R > R(Py, Ep,dn(z™, M, (z™)) + %n’l logn(1 + o'(1)).

Since R(Po,-) is decreasing,
R(Po, Ep, (dn(a™, Mn(z™)) 2 R(Po, D).

This completes the proof of (3.3). O

Remark 1: Pilc’s lower bound in Theorem 3 relies on some
large deviation bounds from Shannon and Gallager [25], [26].
Those bounds are for tails of sums of i.i.d. variables and
are accurate to the order n~'/? exp(—cn) with the best
constant ¢. Moreover, Pilc’s original lower bound does not
hold for noiseless coding because at R = H(FP), so(R) =
R,(Py, D) = —oc. Hence, his lower bound does not include
Rissanen’s lower bound in the noiseless coding case as a
special case.

Remark 2: From the previous section, we have a universal
code which is pointwise D-semifaithful and R(Pp,D) +
O(n~'logn) in expected codelength. It would have been
perfect if Pilc’s result was in terms of expected code length
and for pointwise D-semifaithful codes. However, Pilc’s lower
bound in the form of Corollary 2 is something like a dual to
the result we seek; it says that for any expected D-semifaithful
code, the log of the cardinality of the set of its code words is
bounded below by R(Py, D) + O(n~! log n). Note that this
log cardinality is not a random quantity, unlike the codelength
of our universal code. For a pointwise D-semifaithful code,
the log cardinality is likely to be bigger than the expected
codelength.

V. DISCUSSION

In this section, we compare the proofs of our Theorem 2 and
Pilc’s Theorem 3 from the points of view of constructiveness
and universality. Both Pilc’s upper bound (3.2) and our
Theorem 2 involve a random coding argument. We might think
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that neither of them can give a code constructively, and that
we can not really say which code is universal, since neither
result looks constructive. On the other hand, we observe that
the random coding argument in Theorem 2 does not need
the true distribution Py, since we proved the existence of a
D-semifaithful code for each type class, while Pilc’s random
coding argument used a knowledge of Pp. This difference
in random coding seems to suggest that our code might be
universal, whereas Pilc’s coding might not be so. We now
show this to be the case.

A. Construction of a Universal D-Semifaithful
Code when P, is Unknown

For each type class Tg, let [Q] = [W] - P as in Section II.
[W] can be obtained to any precision numerically (if not
analytically) by Blahut’s algorithm, Blahut [4]. We require
a precision of order (nP(j))!. Then, the n[Q](k) are in-
tegers, .., [@] is a type. Take my, to be the infeger part
of exp{nI({W],P) + 3JKlog(n+1)}. For this m,, we
could in principle search through all subsets of size m, in
Ty in order to find a subset Bp,p that covers Tp within
L; distance. That is, for each subset B, we check whether
d(z™, B) < D for all z* € T%. For the m,, previously chosen,
Theorem I guarantees the existence of such a pointwise D-
semifaithful code. In other words, through exhaustive search,
we can find at least one set Bp,p C Ty, satisfying our D-
covering requirement. We take the first such Bp p found as
our codebook for T3, and we have “constructed” a universal
pointwise D-semifaithful code. Note that the code we just
described has its code length approach the rate-distortion
function lower bound at the rate n~'logn, and this rate is
optimal in the noiseless coding case.

B. Construction of a D-Semifaithful Code when Py is Known

Pilc’s upper bound (3.2) says that for any R € (0, H(Pp))
and € > 0, we can use a random coding argument to find a
map M, : A — Bj such that as n — oo,

Epydn(z", Ma(z™)) < D(Po, R) + (5 +¢)
logn
. 1+ 0o(1)).

o 1 o)
When P is known, for any fixed D € (0, Dpax), We can take
R, to be R(Py, D)+ 4(1+ €)n~" logn. For this R,,, we can
search through all subsets in Bf of size less than or equal to
27En We choose the codebook By, as the set such that

Ep,d(z",Bp,) = mBinEpod"(z",B),

@.1)

where the min is taken over all B with |B| < onln,
Pilc’s result guarantees this codebook Bp, satisfies
Ep,dn (2", Br,) < D(Po, Rn)

logn

1
+ 2 (1+¢) Tooln

(1+0(1))

logn

1
= D(Po, R(Po, D)) = 5 (L +¢) ol
+ é (1+¢€) :Oﬁ +o(n"'logn).

so|n

The last equality holds because of the Taylor expansion of
D(Ps, ), the fact that D'(Py, R(Py, D)) = s5*, and D’ < 0.
It follows that

Epudn(:c",ﬁpu) =D+ o(n'1 logn).

Without knowledge of the o(1) term in Pilc’s upper bound,
D +o(nlogn) is the best level of distortion we can estab-
lish; we cannot deduce that the code is expected semifaithful
at the exact level D.

The code Fpo clearly depends on P, as we need to know
Py to check (4.1). The D + o(n~"logn)-semifaithful code
obtained from Pilc’s upper bound is, therefore, not universal.

When Py is not known, a natural remedy would be to use
the empirical distribution P instead of P in the construction
we have just outlined. But this does not work if we want to
keep the rate n~!logn. The problem here is that when we
replace P, by P in (4.1), we create an error of magnitude
(n~lloglogn)!/? since ||P — Pyl = O[(n~'loglogn)/?].
This rate overwrites the desired rate n~* logn.

There is another difference between our code and Pilc’s.
The code Bp, has the stated distortion on average, ie., it
is an expected D-semifaithful code, but the codelength is
pointwise R(Py, D) + (1 + €)n~!logn, not in expectation.
On the other hand, our code {Bp p : P any type} is pointwise
D-semifaithful with the expected codelength R(Py,D) +
(KJ + J + 4)n~! log n. Ignoring the issue of nonuniversality,
and the different constants in front of n~" logn, we might say
that Pilc’s result is dual to ours. We doubt that there exists a
universal code that is pointwise D-semifaithful and whose log
cardinality approaches the lower bound R(P, D) at the rate
n~logn.

A technical difference of the two results concerns the
mathematical tools employed. We both use the random coding
argument, but the rate n~*logn came out of the method
of types for us, while for Pilc it came out of the large
deviation results of Shannon and Gallager [25], [26]. This is
not surprising, however, since large deviation results can be
obtained using the method of types in the discrete memoryless
source case. Due to the elegance of the method of types, our
proofs are  simpler and more direct than those of Pilc. Both
results rely on the assumption that the source is i.i.d., although
Pilc has results on noisy channels, too. Large deviation results
do exist for independent not identical distributions, but we are
not aware of any result as refined as that required by Pilc’s
bounds.
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INFORMATION AND THE CLONE MAPPING
OF CHROMOSOMES

By BIN YUu! AND T. P. SPEED?

University of California, Berkeley

A clone map of part or all of a chromosome is the result of organizing
order and overlap information concerning collections of DNA fragments
called clone libraries. In this paper the expected amount of information
(entropy) needed to create such a map is discussed. A number of different
formalizations of the notion of a clone map are considered, and exact or
approximate expressions or bounds for the associated entropy are calcu-
lated for each formalization. Based on these bounds, comparisons are
made for four species of the entropies associated with the mapping of their
respective cosmid clone libraries. All the entropies have the same first-
order term N log, N (when the clone library size N — =) as that obtained
by Lehrach et al.

1. Introduction. The primary goal of the Human Genome Project is to
sequence the entire human genome, which consists of about 3 X 10° base
pairs (bp) of DNA. Current technology only permits sequencing of fragments
of the order of a few hundred to a thousand base pairs of DNA in a single
reaction. Consequently, much effort is devoted to fragmenting large DNA
molecules, such as chromosomes, in such a way that the sequenced fragments
can be readily assembled. Clone maps, which are one form of physical
mapping, play a key role in this process, as well as providing a resource
permitting the detailed study of chromosomal regions of biological interest.

A clone map of part or all of a chromosome is the result of organizing order
and overlap information concerning collections of DNA fragments called clone
libraries. Such libraries consist of many, typically thousands or tens of
thousands, of DNA fragments from a chromosome or region of interest. Each
fragment exists as an insert in an autonomously replicating DNA sequence,
which resides within, and replicates with its host cells. In this manner it is
possible to generate many copies of the fragment of interest, and the name
clone is thus used as an abbreviation for the longer and more accurate name:
cloned DNA fragment.

A large clone library might consist of 5000 cloned fragments of average
length 100,000 base pairs, from a chromosome of length 100,000,000 base
pairs. Assuming that the cloned fragments are randomly located along the
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chromosome, this would mean that any particular spot on the chromosome
should be represented on an average of five cloned fragments, giving rise to
the term fivefold coverage, or a five-hit library. We note that a library of
fragments of this size is still not suitable for DNA sequencing. Typically, one
or two further stages of subcloning are needed prior to sequencing, and there
may be additional mapping at these stages as well. In such cases both the
libraries and the fragments will be smaller, but the principles of mapping
remain much the same. For details on clone mapping from the perspective of
applied probability, see Lander and Waterman (1988). Nelson and Speed
(1994) have a more statistical perspective, and give further references to
these aspects of the topic.

In their paper comparing the relative merits of fingerprinting cloned
fragments of DNA by hybridization of oligonucleotide probes and by digestion
into restriction fragments, Lehrach et al. (1990) raised two interesting ques-
tions concerning the creation of clone maps of a chromosome: (1) how much
information is needed? and (2) how much information is gained by the
hybridization and restriction digestion methods, respectively? The answer to
the first question offered by these authors was log,(3N!) for a library of N
clones. This figure corresponds to the average amount of information (the
entropy, see the following discussion) required to identify the true ordering of
N objects labeled 1,2,..., N when it is not possible to distinguish between
the ordering (i, i,,...,iy) and its reverse (iy,..., iy, 1;), but otherwise all
orderings are equally likely. However, it is not entirely clear why the ordering
of objects in this way corresponds to any formal notion of a physical map, and
even if there is such a correspondence, why all possible configurations should
be equally likely.

To illustrate these points, let us briefly consider the cases of N = 2 and
N = 3 clones, regarded mathematically as having identical length L bp and
being randomly located along a chromosome of length G bp [cf. Lander and
Waterman (1988)]. For two such clones we have two configurations, overlap
or not, with quite unequal probabilities 23 and 1 — 2, respectively, where
B = L/G. For three clones there are ten distinguishable configurations: one
with no overlaps, three with exactly two clones overlapping, three with two
different clone pairs overlapping, but no triple overlap and three distinguish-
able configurations involving a triple overlap. Again these can be seen to be
far from equally probable. In practice, N will be in the hundreds or
thousands.

In order to answer question (1) exactly, we would need to enumerate the
set 2 of distinguishable configurations, calculate their probabilities {p(x):
x €2} and then go on to calculate the entropy HX) = — %, ., p(x)log, p(x)
of a random configuration X. The first part of this program has been com-
pleted [see Newberg (1993)], but to our knowledge no one has carried the
calculation of the probabilities beyond N = 3, although this is, in principle,
possible. We do not know how to obtain the entropy H(X) exactly, but in the
following discussion we will find bounds on entropies of various configuration
variables which are relevant to clone mapping.
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The reason that the entropy H(X) is the appropriate measure of informa-
tion is explained in texts on information theory [ see, e.g., Craig et al. (1990)
and Rényi (1984)]. We content ourselves here with a brief informal explana-
tion, applicable when the elements of 2 are equally likely, each having
probability 1//£°], in which case H(2) achieves its upper bound log,| 2’ |. The
argument goes like this: to identify any particular element x € 2, we con-
sider successive subdivisions of £ into halves, quarters, eighths, and so on,
and if we were told at each stage which half, quarter, eighth, and so forth
contained the particular element, we would gain one bit of information each
time. Clearly this process cannot finish in less than % steps, where 2* < |2’|
< 2%*1 and this % is thus a lower bound to the number of such questions,
equivalently bits of information, necessary to identify the particular element
in question. More refined procedures can limit the amount of information
necessary to log,|2’| + &, where ¢ > 0 is as small as we wish [ see, e.g., Rényi
(1984)]. A similar but more complicated argument applies when the elements
of & are not equiprobable [see the discussion of the noiseless coding theorem
in Cover and Thomas (1991)].

In this paper we study the entropy H(X) of a random configuration X most
appropriate to the clone mapping problem. The study is done through seven
other random structures, P, Q, U, V, W, Y and Z, each of which can be
regarded as embodying a greater or lesser amount of the structure implicit in
X, but whose entropies are more accessible. We derive a variety of exact and
approximate expressions and lower and upper bounds for the entropies of
these quantities. We compute these bounds for clone libraries of interest and
the bounds are reasonable for all configuration variables considered and very
tight for some. Based on these computations, comparisons are made for four
“model” species in terms of information needed for the mapping of their
respective cosmid clone libraries. It is somewhat surprising that all the
entropies have the same first-order term N log, N when N — «, as that
obtained in Lehrach et al. (1990). We end the paper with some remarks
concerning the more difficult question 2.

In closing this brief introduction we note that in the analysis which follows
we essentially ignore the role of distances, although we do consider the
placement variable W in units of thousands of base pairs. Many physical
mapping methods produce some information concerning distances as well as
clone order, and such information can be very useful in practice, even when
(as is often the case) there are large error bounds attached. In particular, it
would be misleading to compare the hybridization and restriction digest
methods mentioned previously, solely on the basis of the information they
produce concerning clone order. The restriction digest method produces fairly
precise information about distances, whereas the hybridization method does
not. An analysis, which incorporates distance as well as order and overlap
information, is beyond us at this time.

2. What is a clone map? We now introduce several different but related
abstractions of the notion of a clone map of a chromosome, this being
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informally an ordering of a library of cloned fragments of the chromosome in
question. As noted previously, we adopt the mathematical model for a clone
library used in Lander and Waterman (1988), namely, that the N cloned
fragments can be identified with N randomly located subintervals of equal
length L of a genome of length G. More formally, the left-hand endpoints
(say) of the N intervals corresponding to the cloned fragments are indepen-
dently located uniformly along [0, G — L]. It will be convenient at points in
the argument to take an alternative, effectively equivalent view of the
left-hand endpoints as being the points on [0,G — L] of a homogeneous
Poisson process with rate A = N/G per base pair.

2.1. Fully ordered configurations. Following the terminology of Alizadeh,
Karp, Newberg and Weisser (1993), we use the term placement to describe a
configuration of positions of the clones along the chromosome, that is, a
specification W = (W,, W,, ..., Wy), where W, € [0,G — L] is the location of
the left-hand endpoint of the ith cloned fragment, i = 1,2,..., N. The units
here are base pairs (bp) or kilobase pairs (kb); see the following discussion.
Experimental procedures exist which could precisely determine these loca-
tions for a clone library, but most clone mappings have more modest aims,
seeking to single out a less completely specified configuration from among a
class of a priori equivalent alternatives. Before we turn to a discussion of
such “coarser” configurations, we make a connection with the work of Lehrach
et al. (1990), which stimulated this research. By the linear ordering of a clone
library, we mean the sequence V = (V,,V,,...,Vy) of labels of the ordered
left-hand endpoints of the clones; equivalently, the vector of ranks of W =
(W, W,,...,Wy) listed in reverse order. This variable seems to be the one
considered in Lehrach et al. (1990).

2.2. Island configurations. We turn now to a second class of clone con-
figurations, those based on the notion of an island, which is either a single
clone, not overlapping with any other clone in the library, or a set of clones,
each pair of which is connected by a chain of overlapping pairs of clones.
Islands of two or more clones are usually called contigs, and many clone
mapping projects have as their initial objective the determination of all
contigs in their library and the ordering, up to inversion, of clones within
contigs. This is usually the objective of fingerprint-based clone mapping,
which attempts to infer clone order and overlap from information concerning
each of the clones in the library, such as the list of fragment lengths following
digestion by restriction enzymes, or the pattern of hits and misses following
hybridization with a panel of probes. Fingerprint-based clone mapping pro-
jects usually turn to quite different techniques such as radiation hybrid or
fluorescence in situ hybridization (FISH) mapping [see, e.g., Cox, Burmeister,
Price and Myers (1990) and Trask (1991)].

The most basic island configuration variable is Z, the number of islands.
More informative is the variable U = (U,, U, ..., Uy) of island sizes, which is
a partition of the integer N, that is, YN U, = Z, ¥¥iU, = N; or, equivalently,
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U, is the number of islands containing i clones. The components of U are the
multiplicities of the block sizes of the partition Q of the set {1,2,..., N} of
clone labels into islands. Here Q is the unordered list of disjoint subsets of
{1,2,..., N}, usually called blocks or equivalence classes, but called islands in
this context, whose union is {1,2,..., N}.

More informative again than Q is the configuration variable we term the
distinguishable orderings of the clones and denote by Y, namely, the variable
which refines Q by including information on the ordering of clones within
contigs, up to inversion. Thus Y tells us which clones are together in a contig
and, up to a flip, the order in which they appear, but it contains no informa-
tion on the relative positions of distinct islands along the genome.

There is one last refinement which we mention, namely, the configuration
variable discussed in Newberg (1993), which includes information on the
depth of coverage within contigs. We denote this configuration variable by X,
and note that it may be regarded as refining Y by containing not just
information on the labels of the left-hand endpoints of the clones within each
contig, up to inversion, but the labels of the interleaved sequence of the
left-hand and right-hand endpoints of the clones, again up to inversion.
Newberg (1990) calls two configurations of clones topologically similar if one
can be transformed into the other by permuting the islands and /or reflecting
some of the islands. An adjustment of the amount by which any pair of clones
overlap leaves one with a topologically similar clone ordering, if no endpoint
of a clone is moved past an endpoint of another clone. With this definition, X
is the set of equivalence classes of topologically distinct configurations, called
interleavings in Newberg (1993) and Alizadeh, Karp, Newberg and Weisser
(1993).

2.3. Pairwise overlaps. Many fingerprint-based clone mapping projects
take as their starting points the determination of pairwise overlaps among
the clones in their library [see, e.g., Branscomb et al. (1990), Craig et al.
(1990) and Fu, Timberlake and Arnold (1992)]. For this reason we define the
pairwise overlap variable P = (P;;: 1 <i <j < N), where P;; = 1 if clones i
and j overlap, and P;; = 0 otherwise. It is clear that P can be obtained from
X but not from Y. In seeking to estimate H(P) we do not mean to imply that
pairwise comparisons are the best, or even an effective way to ascertain
pairwise overlap information. Indeed, many of the most common clone map-
ping methods, such as STS-content mapping [Green and Green (1991)] and
restriction mapping [Olson et al. (1986)], do not attempt to determine pair-
wise overlaps at all. Nevertheless, it seems to us of interest to ask just how
large H(P) is in relation to the entropies of other, more refined configuration
variables.

This concludes our discussion of the different abstractions of the notion of
a clone map of a chromosome based on a library of cloned DNA fragments
from that chromosome. As with all mathematical idealizations, our variables
all fail to account for many features of real clone mapping projects. Our hope
is that the features we do retain are the important ones, and that our results
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are at least qualitatively correct and useful. We now illustrate the different
variables just introduced in a simple case.

ExaMpLE. Suppose that G = 150, L = 20 and N = 8. We list the set of
configuration variables refining W = (120, 50, 10, 45, 105, 55, 20, 76). The vec-
tor of ranks of these values, viewed as observations on [0,150], is
1,5,8,6,2,4,7,3),and so V = (3,7,4,2,6,8,5, 1). Using the values in W, it is
easy to ascertain that

X = {(373'7")*, (4264'2'6")*, (88')*, (515'1")*},

where 3 (resp. 3’) denotes the left-hand (resp. right-hand) end of clone 3 or
vice versa, and * indicates the fact that the ordering is only unique up to
reversal. In a similar notation we have

Y = {(37)", (426)",(8),(51)"},
while Q = 15246[378, U = (1',2%,3") and Z = 4.

3. Results. In this section we present our approximations to the entropy
of the configurations just described. All proofs are collected in the appendices.

We have sought close nonasymptotic upper and lower bounds to the
entropy expressions of interest, and have been quite successful in this regard
with H(Q) and H(Y), and somewhat less so with H(X) and H(P). Exact
calculations of H(W) and H(V) are straightforward. It is also of interest to
consider our results asymptotically as N — «. In so doing, we could keep
L /G fixed and let ¢ = NL /G increase, or we could keep ¢ fixed and let L/G
decrease. A value of ¢ in the range 3-10 is typical, with ¢ = 5 being quite
common, although values in the range 40-50 have been used. Our figures and
tables have ¢ fixed at 5.

The easiest entropy to evaluate is H(W) which is just N log,(G — L) =
N log,G. This last expression can be rewritten as

H(W) = Nlog,N + N log,(L/c)

by making the substitution ¢ = NL/G. It is clear that the leading term is
N log, N, and also that the second term depends on the units in which L is
measured. The most reasonable choice would seem to be kilobase pairs (kb),
in which the values G = 100,000 kb, L = 40 kb (corresponding to a cosmid
library) and ¢ = 5 give N = 12,500 and H(W) = 2.1 X 105, compared with
Nlog,N = 1.7 x 10°.

As pointed out in Lehrach et al. (1990), we may use Stirling’s formula to
get

H(V) = log,(N1)
~ N log,N + 3log, N — (log,e) N — log,(vV2m) — 1.
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Now let us define
L(U) = E{Z}[log,N — log,e] + 3log,E{Z} + log,(vV2me'/12),
E(U) = K{Z} 10g2N7p2 + (logyq)ey |
q(1-q")
M(U) = Ne “(ay + by) — (log,e)N,
M(U) = Ne “(ay + by) — (logye) N + (logy(V2me'/1?))E{Z},

where ay = {FNlog,FV}, by = 3Hlog, FV} and cy = HFY}, and FY is a
truncated geometric random variable with p = ¢™¢ and truncation at N. That
is,for g =1—p, P(F¥N =) =pqg’ /(0 — qV), j=1,2,..., N. We have the
following bounds on the entropies.

RESULT A (Finite-sample entropy bounds). Let us introduce the following
abbreviations:

H(Y) =log,N!~ L(U) - Np(1 - p),

H(Y) = log,N!— L(U)" = Np(1 - p) + E{Z}H(F") + log,N,
H(Q) = log,N!~ L(U) — M(U),

H(Q) = log,N!~ L(U) ' ~ M(U) + E{Z}H(F") + log, N,
H(X) = Nlog,N + N log,(4/¢) — log, N,

H(X) = H(Y),
H(P) = H(X),
H(P) =H(Q),
where
N
H(FY) = ; —P(FN =j)log2P(FN =Jj).

Then our main bounds may be expressed as
H(S) < H(S) < H(S),

where S may be X, Y, Q or P.

ResuLT B (Asymptotic expansions for entropies). The following expres-
sions are valid as N — o

(i) H(W)/N log,N =1+ o(1),
(ii) H(V)/Nlog,N =1+ 0(1),
(i) (1-e°)+o(1)<H(X)/Nlog,N <1+ o0(1),
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(iv) H(Y)/Nlog,N =(1—-e°) +0o(1),
(v) H(Q)/Nlog,N = (1—-e"°) +0(1),
(vi) H(P)/Nlog,N=(1—-¢"°) +o0(1).

The finite-sample bounds in Result A are really only useful when they are
not very far apart. Fortunately, they are reasonably close for all four configu-
ration variables considered here and very close for Y and Q. Figure 1 is the
log-log plot of the entropy bounds for ¢ = 5 and N = 100,...,20,000, and it is
clear that the bounds are very tight for H(Y) and H(Q), tight for H(X), but
not so close for H(P). It is also comforting to see that W, X and Y, which are
all reasonable definitions of a clone map, turn out to have very similar
entropies. The other interesting and useful observation is that H(V) is
numerically very close to H(Y) for the range of N that we considered and for
¢ = 5. Therefore, the simple Stirling expansion for H(V) can be used as a
valid short-hand formula for H(Y) when ¢ = 5. This shows that Lehrach
et al’s intuition works well here since the coverage is high enough that most
of the randomness in the configuration variable Y comes from the permuta-
tion which is captured in V.

It is perhaps remarkable that the entropies of W, V, X, Y, Q and P all turn
out to have the first-order term N log, N, asymptotically, as obtained in
Lehrach et al. (1990) (cf. Result B). Moreover, the constant for the first-order

18
1

(14 ) 16

Iog bits (base 2
1

10
1

8 10 12 14
log number of clones (base 2)

Fic. 1. log, H(W) (top line); log, H(X) (second line from top); log, H(Y), log, H(V) and log, H(Y)
in the third line (cluster) and in that order from top; log, H(Q) and log, H(Q) in the bottom line
(cluster) and in that order from top. Here the basic unit for W is kb, L = 40 kb and ¢ = 5.
log, H(YY) and log, HX) serve as lower and upper bounds for log, HX) and log, HQ) and
log, HX) serve as lower and upper bounds for log, H(P).
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terms of H(Y), H(Q) and H(P) is the same, namely, 1 — e °. Unfortunately,
this asymptotic result is not so useful for the values of N which are relevant
here, because the term which makes the difference between H(Y) and H(Q)
(cf. Figure 1) is M(U), which is O(N). The problem is that log, N is
asymptotically larger than any constant term, but in this case it is much
smaller than the corresponding constant (~ 260) in the O(N) term.

An interesting fact which follows from the entropy bounds is that
H®P)/HX) > 0.20 for ¢ = 5 and N = 100, 200,...,20,000 (cf. Figure 2). (Note
that the turns on the ratios for small N are probably artifacts of our bounds,
not indicative of the true ratios of the entropies.) This implies that the
pairwise variable P contains a substantial proportion of the information in
the interleaving variable X. However, although the pairwise mapping ap-
proach is definitely a good starting point for any clone mapping effort,
recovering the pairwise variable P efficiently may well be improved by using
multiple comparisons.

Table 1 lists the entropy bounds for specific cosmid (L = 40 kb) clone
libraries corresponding to the G for a bacterium E. coli, yeast S. cerevisiae,
roundworm C. elegans and humans. Here we observe behavior similar to that
found in the figures. Table 2 gives the bounds on H(W), H(X) and H(Y) for
the last three species in relation to those of the bacterium E. coli. The ratios
are seen to be species specific rather than specific to the configuration
variables. We conclude that it makes sense to say, for example, that cosmid
clone mapping for the roundworm requires about 40 times as much informa-
tion as that for the bacterium E. coli, and that such mapping for humans

1.0

0.8

ercents
0.6

84

0.2

0.0
1

o

5000 10000 15000 20000
number of clones

Fic. 2. Lower bounds on H(P)/H(Y) (upper line) and HP)/HX) (lower line), ¢ = 5.
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TABLE 1
Entropies and ratios for fivefold cosmid clone libraries of four species
(ratios based on unrounded figures)

Bacterium Yeast Roundworm Human
N =500 N =1,875 N = 12,500 N = 375,000

HW) 6.0 x 10 2.6 x 104 2.1 x 105 8.1 x 108

HNV) 3.8 x 10° 1.8 x 10* 1.5 x 10° 6.4 x 108

HX) 3.7 x 103 1.8 x 10* 15 x 10° 6.4 x 108

HX) 4.8 x 103 2.1 x 104 1.8 x 10° 7.2 x 10°
HX)/HX) 0.79 0.82 0.85 0.89

H(Y) 3.7 x 103 1.8 x 10* 1.5 x 10° 6.4 x 10

HY) 3.8 x 108 1.8 x 10* 1.5 x 10° 6.4 x 108
HY)/H(Y) 0.99 0.99 0.99 0.99

HOQ 1.1 x 10° 55 % 103 7.0 x 10* 3.9 x 10°

HQ 1.2 x 10° 5.7 % 103 7.2 x 10* 4.0 x 108
HQ/HQ 0.95 0.96 0.98 0.99

H®P) 1.1 x 102 0.6 x 104 0.7 x 10° 3.9 x 10°

H®P) 4.8 x 103 2.1 x 104 1.8 x 10° 7.2 x 108
H®P)/H®P) 0.23 0.26 0.40 0.55

requires about 1500 times as much information as that for the bacterium
E. coli.

4. Final comments. We close our discussion with some brief remarks on
the important question (2) raised in Section 1: how much information is
gained by the hybridization and restriction digestion methods, respectively?
It is not our intention to offer a thorough discussion of this topic here, as we
hope to present something more complete in a future paper. Rather, our aim
here is simply to point out that the situation is not quite as simple as the
discussion in Lehrach et al. (1990), page 45, suggests.

Suppose that we collect data D,, D,,...,D, on our clone library, for
example, D, could be the pattern of responses of our clones (+ or —) to the
nth in a sequence of hybridization with short oligonucleotides. Each such

TABLE 2
Entropies of W,X and Y relativeto E. coli,c = 5

Yeast Roundworm Human
HW) 4.3 35 1350
HX) 45 37 1505
HX) 4.7 40 1700
H(Y) 4.7 40 1690

HY) 47 40 1700
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data item has an entropy H(D,), indeed the full collection has an entropy
H(D,,D,,...,D,), but if our aim is constructing a clone map using these
data, the relevant entropy is HX|D,, D,, ..., D,), the conditional entropy of
the library configuration X given the data D,, D,,..., D,. The computation of
this quantity is not at all straightforward, even if the data items
D,, D,,..., D, are mutually independent and identically distributed, given X,
as might be the case with a sequence of hybridizations involving short
oligonucleotides of the same length. In such a case H(D,, D,,...,D,) =
nH(D,), but no such simplification occurs for H(X|D,..., D,), although it
should be possible to determine the asymptotic behavior of this quantity as
n — o, In a future paper we hope to discuss this issue more fully.

APPENDIX A

Upper and lower bounds for H(Q) and H(Y). Letu = (1“1,2%2...) be
a partition of the number N, and suppose that YNu, = z. We will use the
notation U(-) to denote the partition of N associated with the configuration in
parentheses.

LEMMA A.1. The number of configurations Q for which U(Q) = u is

N!
A.l TN s u

(A1) Y i u,!
Proor. This is well known [see, e.g., Aigner (1979)].

LEMMA A.2. The number of configurations Y for which U(Y) = u is
N! 1

TN 1 9z—u;”
I ju;! 2574

(A.2)

ProoF. It is clear that the number we seek in this lemma is the number
(A.1) multiplied by the number of directionless permutations of clones within
islands. However, the latter is just

N u
[Tz
i=2
and the result follows once we note that ©¥ ,u;, =2 — u,. O
LEMMA A.3. The configurations Y with U(Y) = u are equally likely.
ProOOF. By symmetry.

ExaMpPLE. It is easy to see that the configurations y, = {(37)*, (426)*,
(8),(51)*} and y, = {(32)*,(785)*, (4), (16)*}, for example, are equiprobable.
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COROLLARY A.1.

(i) H(Q|U) =1log,N!— L(U) — M(U),
(ii) H(Y|U) =log,N!— L(U) — Np(1 — p),
where N
(A.3) L(U) = [E{log2 I w}
i=1
and
N
(A.4) M(U) = [E{10g2 I1 (i!)”i}.
i=1

ProoF. These relations are consequences of Lemmas A.1 and A.2 and the
equiprobable assertion of Lemma A.3.

We turn now to obtaining upper and lower bounds L(U), M(U) and L(U),
M(U) of L(U) and M(U). In the calculations that follow, we use upper and
lower bounds for factorials easily obtained from Stirling’s formula [see, e.g.,
Feller (1968), page 52]

(A5) nn+1/2e—n Sn!gn"+1/2e_" 277_61/12.

We also make use of the readily proved fact that the distribution of the
sizes of islands is a truncated geometric with probability p = e™¢, where
¢ = NL/G. More fully, the (ordered) sequence FV,FY,... of island sizes
consists of identically distributed random variables with common distribution
pr(FN =i) =pqgi~1/(1 — q%), i =1,2,..., N. Lander and Waterman (1988)
give the proof for N large in which case F¥ is approximated by a geometric.
Taking the truncation into account gives more accurate results in our bounds
when N is in the hundreds. It follows that EF(Z — U;) = Ne “(1 — e ), since,
fori=1,2,..., N,

13

Z
EU; = B X Lipp-iy = H{Z}P(FY = )
j=1

np2q171/(1 _ qN)

[More precisely, EU; =~ np2q'~1/(1 — q¥), since Z is very weakly related to
the sequence {I FJ_N=L'}} Jj=1,2,.... Equality holds if Z is independent of this
sequence.] We note that the preceding approximations are not expected to
work for very small N’s, but we believe they do work when N is in the

hundreds, say larger than 500.

LEMMA A 4.
L(U)" < L(U) < L(U),
where x* = max{x, 0},
L(U) = E{Z}[log, N — log,e] + 3log,E{Z} + log,(V2me'/'?)
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and
L(U) = E{Z}[log,N — (2¢ + 1)log,e + (e — 1)log,(1 — e 9)].

Proor. Since YVU. = Z, we must have

(U1 (i ) >1,
in which case
E{log,TT;U;!} < Elog,Z1}
< [E{(Z + %)logzZ — (logye)Z + Ing(\/Eel/lz)}.
Now Z < N, and so the right-hand side of the preceding formula is
< E{Z}log,N + $E{log,Z} — (logye)E{Z} + log,(V2me'/12),

which is just the expression L(U).
For the lower bound L(U) we argue as follows:

N
L(U) = Y E{log,U!}

i=1
N

=) E{U;log,U; — (log,e)U;}
i=1
N

— ¥ E(Ulog,U} — (log,e)E{Z} since YU = Z
i=1
N

> Y E{U}log,E{U;} — (log,e)E{Z} since x log,x is convex.
i=1

Now KU} = Np%qi~'/(1 — q%) where p =e™° and ¢ = 1 — p and so, contin-
uing the preceding sequence of inequalities,
2

N
. p .
L(U) > ¥ Np2gi-! 1og21 p—y + (i — 1)log,q | — (logye)E{Z}
i=1

Np?
q(1-q")
= [E{Z}IngN—pz + (logyq)cy — (logye)E{Z},
q(1-¢")

= Np log, + Np(logyq)cy — (log,e)E{Z)

which is seen to be L(U) once we recall that E{Z} = Ne™“ and ¢, = EF”". This
completes the proof of Lemma A.4. Note that the leading term in each case is
e °N log, N. Obviously, U > 0. Hence L(U) > L*(U). O

In the following lemma a, and by are moments E{FYlog,F"} and
1E{log, F"}, where FV has a truncated geometric distribution with parame-
ter p = e~ ¢, ¢ = NL/QG, and truncation at N.
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LEMMA A.5.
M(U) < M(U) < M(U),
where
M(U) = Ne “(ay + by) — (log,e) N
and

M(U) = Ne “(ay + by) — (log,e) N + log,(vV2me'/*?) X E{Z}.

PrOOF. By definition,
N
mm=%%nwﬁ}
i=1
- [E{ y Uilogzi!>.

We first use the lower bound of (A.5), obtaining

N
M(U) = E{ Y Ui + 3)logyi — (logze)i}
i=1
N N
= ) (ilogyi + 3log,i)E{U;} — (logye) N since ) iU, = N.
i=1 i=1
Now E(U,) = Np2q'~1/(1 — ¢") as before.
To complete this, we need to recall that
N i—1

. .. P9
E{FNlog,F"} = Y i(log,i) T o¥
i-1
and
1 1 X N2
5 Hlog, F} = gig(logzl) 1%

As mentioned in the statement of the lemma, these will be denoted by a, and
by, respectively, giving

M(U) = Ne “(ay + by) — (log,e) N = M(U).
Turning now to the upper bound, the same reasoning leads to
M(U) < Ne “(ay + by) — (log,e) N + (log,(vV2me'/12))E{Z},

where we have used the fact that X,U; = Z. However, the right-hand side of
the preceding formula is just M(U) and we are finished. O

LEMMA A.6.
0 <H(U|Z) < E{Z}H(FY).

PRrOOF.
H(U|Z) = Y pr(Z=k)H(U|Z =F)
k
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and

H(U|IZ=F) < H(FIN,,F;f") < kH(FY),
since U is a function of Z = % identically distributed random variables with
the same truncated geometric distribution as FV and its (conditional) en-
tropy is bounded from above by the entropy of FN, FY, ..., F¥ when they are
independent. The lemma now follows by substituting this second equation in
the previous one. O

COROLLARY A.2.
0 < H(U) < Ne *H(F") + log,N.

ProOF. The relation is an immediate consequence of the lemma, once we
recall that Z < N and EZ = Ne ™ °. O

APPENDIX B

An upper bound for H(X). In his thesis Newberg (1993) obtained
recurrence relations and asymptotic expressions for the total number C(N) of
interleavings involving any number of islands which can be formed from N
equal-sized randomly located cloned fragments. His asymptotic expression is
given in the following result.

ProposITION B.1.

C(N) ~

93/8\/5 AN N
8N (—) asN = .

COROLLARY B.1.
H(X) <log,C(N)

4
= N log,N + Nlogz(;) —logy, N
3 5
+ glogz(e) -3 +0(1l) asN-—wx.
APPENDIX C
Proofs of Results A and B.

Proor OF RESULT A. Note that, for S = Y or Q,
H(S)=H(S|U) + HU).
The bounds for S =Y follow from Corollaries A.1(Gi) and A.2 and Lem-

ma A.4. The bounds for S = Q follow from Corollaries A.1(1) and A.2 and
Lemma A.5. The bounds for S = X follow from Corollary B.1 and the fact that
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X is a function of Y and the lower bound on H(Y). We dropped the constant
term in the upper bound for X in Corollary B.1 since it makes only negligible
difference. Finally, the bounds for S = P follow from the facts that

H(P) > H(Q) > H(Q)
and
H(P) < H(X) < HX)

(because Q is a function of P and P is a function of X). O

Proor oF REsuLT B. (i) and (ii) follow directly from the finite-sample
bounds on H(X), H(Y) and H(P), and the exact expressions for H(W) and
H(V), and so does

H(P) > (1—-e )N log,N(1+o0(1)).
Because Q is a function of P,
H(P)=H(Q) +H(PI|Q).
For any given configuration Q, let U = U(Q). Then, for any island of i clones,
P can only take 2+ /2 possible values. It follows that
HP|Q) < [Elogz(]_[2UiXi(i+1)/2)

13

< Y EU(i* + i) /2
= Y Np®q' '(i* +1i)/2
=Ne ™ Y pq' '(i* +1i)/2

= Ne~*(E{F2} + E{Fy})/2(1 — ¢")

=O0O(N) as N — =,
Hence

H(P) < H(Q) + O(N) = (1 — e )N log, N(1 + o(1)). O
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