Chapter 6
Cumulants and Partition Lattices

Peter McCullagh

This is the first paper to appear in the statistical literature pointing out the importance
of the partition lattice in the theory of statistical moments and their close cousins,
the cumulants. The paper was first brought to my attention by Susan Wilson, shortly
after I had given a talk at Imperial College on the Leonov-Shiryaev result expressed
in graph-theoretic terms. Speed’s paper was hot off the press, arriving a day or two
after I had first become acquainted with the partition lattice from conversations with
Oliver Pretzel. Naturally, I read the paper with more than usual attention to detail
because I was still unfamiliar with Rota [18], and because it was immediately clear
that Mdbius inversion on the partition lattice &, partially ordered by sub-partition,
led to clear proofs and great simplification. It was a short paper packing a big punch,
and for me it could not have arrived at a more opportune moment.

The basic notion is a partition ¢ of the finite set [n] = {1,...,n}, a collection
of disjoint non-empty subsets whose union is [n]. Occasionally, the more emphatic
term set-partition is used to distinguish a partition of [n] from a partition of the inte-
ger n. For example 135|2|4 and 245]1|3 are distinct partitions of [5] corresponding
to the same partition 34 1 + 1 of the integer 5. Altogether, there are two partitions
of [2], five partitions of [3], 15 partitions of [4], 52 partitions of [5], and so on. These
are the Bell numbers #&,, whose exponential generating function is exp(e’ — 1).
The symmetric group acting on &), preserves block sizes, and each integer partition
is a group orbit. There are two partitions of the integer 2, three partitions of 3, five
partitions of 4, seven partitions of 5, and so on.

It turns out that, although set partitions are much larger, the additional structure
they provide is essential for at least two purposes that are fundamental in modern
probability and statistics. It is the partial order and the lattice property of &, that
simplifies the description of moments and generalized cumulants in terms of cumu-
lants. This is the subject matter of Speed’s paper. At around the same time, from
the late 1970s until the mid 1980s, Kingman was developing the theory of partition
structures, or partition processes. These were initially described in terms of inte-
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ger partitions [3, 10], but subsequent workers including Kingman and Aldous have
found it simpler and more natural to work with set partitions. In this setting, the
simplification comes not from the lattice property, but from the fact that the family
& ={8,6,,...} of set partitions is a projective system, closed under permutation
and deletion of elements. The projective property makes it possible to define a pro-
cess on &', and the mutual consistency of the Ewens formulae for different n implies
an infinitely exchangeable partition process.

In his 1964 paper, Rota pointed out that the inclusion-exclusion principle and
much of combinatorics could be unified in the following manner. To any function f
defined on a finite partially-ordered set, there corresponds a cumulative function

F(o)= 3 f(7).

<0

The mapping f +— F is linear and invertible with inverse
f(o) =Y m(,0)F(7),
T

where the Mobius function is such that m(7,06) = 0 unless 7 < ¢. In matrix nota-
tion, F = Lf, where L is lower-triangular with inverse M. The Mobius function for
the Boolean lattice (of sets, subsets and complements) is (—1)*~#7, giving rise to
the familiar inclusion-exclusion rule. For the partition lattice, the Mdbius function
relative to the single-block partition is m(t, {[n]}) = (= 1)**~!(#7—1)!, where #7 is
the number of blocks. More generally, m(t,0) = [Ipeq m(t[D],b) for T < o, where
7[b] is the restriction of 7 to the subset b.

Although they have the same etymology, the word ‘cumulative’ in this context is
unrelated semantically to ‘cumulant’, and in a certain sense, the two meanings are
exact opposites: cumulants are to moments as f is to F, not vice-versa.

Speed’s paper is concerned with multiplicative functions on the partition lat-
tice. To understand what this means, it is helpful to frame the discussion in terms
of random variables X', X?,..., X", indexed by [n]. The joint moment function u
associates with each subset b C [n] the number p(b), which is the product mo-
ment of the random variables X[b] = {X': i € b}. Any such function defined on
subsets of [n] can be extended multiplicatively to a function on set partitions by
w(o) =TIpeos u(b). Likewise, the joint cumulant function k associates with each
non-empty subset b C [n] a number k(b), which is the joint cumulant of the random
variables X [b]. The extension of Kk to set partitions is also multiplicative over the
blocks. It is a property of the partition lattice that if f = x is multiplicative, so also
is the cumulative function F' = . In particular, the full product moment is the sum

of cumulant products
u(ln)) =X TT x(®).

O beo

For zero-mean Gaussian variables, all camulants are zero except those of order two,
and the above expression reduces to Isserlis’s theorem [5] for n = 2k, which is a the
sum over n!/(2¥k!) pairings of covariance products. Wick’s theorem, as it is known
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in the quantum field literature, is closely associated with Feynman diagrams. These
are not merely a symbolic device for the computation of Gaussian moments, but
also an aid for interpretation in terms of particle collisions [4, Chapter 8]. For an
account that is accessible to statisticians, see Janson [8] or the AMS feature article
by Phillips [17].

The moments and cumulants arising in this way involve distinct random vari-
ables, for example X2X>X*, never X3X3X*. However, variables that are given dis-
tinct labels may be equal, say X> = X > with probability one, so this is not a limi-
tation. As virtually everyone who has worked with cumulants, from Kaplan [9] to
Speed and thereafter, has noted, the general results are most transparent when all
random variables are taken as distinct.

The arguments put forward in the paper for the combinatorial lattice-theoretic
approach are based on the simplicity of the proof of various known results. For ex-
ample, it is shown that the ordinary cumulant x([n]) is zero if the variables can be
partitioned into two independent blocks. Subsequently, Streitberg [25] used cumu-
lant measures to give an if and only if version of the same result. To my mind, how-
ever, the most compelling argument for Speed’s combinatoric approach comes in
Proposition 4.3, which offers a simple proof of the Leonov-Shiryaev result us-
ing lattice-theoretic operations. To each subset b C [n] there corresponds a prod-
uct random variable X” = [];c, X’. To each partition ¢ there corresponds a set
of product variables, one for each of the blocks b € o, and a joint cumulant
k% = cum{X”: b € c}. One of the obstacles that I had encountered in work on
asymptotic approximation of mildly non-linear transformations of joint distributions
was the difficulty of expressing such a generalized cumulant in terms of ordinary cu-
mulants. The lattice-theoretic expression is remarkable for its simplicity:

k7= Y J[x®),

T:tvVo=1, bet

where the sum extends over partitions 7 such that the least upper bound ¢ V 7 is the
single-block partition 1, = {[n]}. Tables for these connected partitions are provided
in McCullagh [14]. For example, if 6 = 12|34|5 the third-order cumulant k€ is a
sum over 25 connected partitions. If all means are zero, partitions having a singleton
block can be dropped, leaving nine terms

(12345 _ (12345 1 123,45 4] + 135 K2,4[4]

in the abbreviated notation of McCullagh [13]. Versions of this result can
be traced back to James [6], Leonov and Shiryaev [11], James and Mayne [7],
and Malyshev [12].

A subject such as statistical moments and cumulants that has been thoroughly
raked over by Thiele, Fisher, Tukey, Dressel and others for more than a century,
might seem dry and unpromising as a topic for current research. Surprisingly, this is
not the case. Although the area has largely been abandoned by research statisticians,
it is a topic of vigorous mathematical research connected with Voiculescu’s theory
of non-commutative random variables, in which there exists a notion of freeness
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related to, but distinct from, independence. The following is a brief idiosyncratic
sketch emphasizing the parallels between Speicher’s work and Speed’s paper.

First, Speed’s combinatorial theory is purely algebraic: it does not impose posi-
tive definiteness conditions on the moments or cumulants, nor does it require them
to be real-valued, but it does implicitly require commutativity of the variables. In a
theory of non-commutative random variables, we may think of X!,..., X" as orthog-
onally invariant matrices of unspecified order. For a subset b C [n], the scalar prod-
uct X? = tr[;c, X' is the trace of the matrix product, which depends on the cyclic
order. The first novelty is that u(b) = E(X?) is not a function on subsets of [n],
but a function on cyclically ordered subsets. Since every permutation o: [n] — [n]
is a product of disjoint cycles, every function on cyclically ordered subsets can be
extended multiplicatively to a function on permutations (t(0) = [Iycq (D). Given
two permutations, we say that 7 is a sub-permutation of ¢ if each cycle of 7 is a sub-
cycle of some cycle of 0 — in the obvious sense of preserving cyclic order [1]. For
T < 0, the crossing number ¥ (7, ) is the number of 4-cycles (i, j, k,1) below & such
that i,k and j,1 are consecutivein 7: x(t,0) =#{(i, j,k,l) < o: 1(i) =k, 1(j) =1},
and 7 is called non-crossing in ¢ if y(7,0) = 0. For a good readable account of the
non-crossing property, see Novak and Sniady [16].

Although it is not a lattice, the set I', of permutations has a lattice-like structure;
each maximal interval [0,, 0], in which 0,, is the identity and o is cyclic, is a lattice.
With sub-permutation as the partial order, [0,, 0] = &, is isomorphic with the stan-
dard partition lattice; with non-crossing sub-permutation as the partial order, each
maximal interval is a partition lattice of a different structure. Speicher’s combinato-
rial theory of moments and cumulants of non-commutative variables uses Mdbius
inversion on this lattice of non-crossing partitions [24]. If f = k is multiplicative, so
also is the cumulative function F' = 1, and vice-versa. The function x(b) on cycli-
cally ordered subsets is called the free cumulant because it is additive for sums of
freely independent variables. Roughly speaking, freeness implies that the matrices
are orthogonally or unitarily invariant of infinite order. For further discussion on this
topic, see Nica and Speicher [15] or Di Nardo et al. [2].

The partition lattice simplifies the sampling theory of symmetric functions,
leading to a complete account of the joint moments of Fisher’s k-statistics and
Tukey’s polykays [19]. It led to the development of an extended theory of sym-
metric functions for structured and nested arrays associated with a certain sub-
group [20, 21, 22, 23]. Elegant though they are, these papers are not for the faint
of heart. With some limitations, it is possible to develop a parallel theory of spectral
k-statistics and polykays — polynomial functions of eigenvalues having analogous
finite-population inheritance and reverse-martingale properties. Simple expressions
are easily obtained for low-order statistics, but the general theory is technically
rather complicated.
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CUMULANTS AND PARTITION LATTICES'

T. P. SPEED
CSIRO Division of Mathematics and Statistics, Canberra

Summary

The (joint) cumulant of a set of (possibly coincident) random
variables is defined as an alternating sum of moments with appropriate
integral coefficients. By exploiting properties of the Mdbius function of
a partition lattice some basic results concerning cumulants are derived
and illustrations of their use given.

1. Introduction

Cumulants were first defined and studied by the Danish scientist T.
N. Thiele (1889, 1897, 1899) who called them half-invariants (halvin-
varianter); see Hald (1981) for a review of this early work. The ready
interpretability and descriptive power of the first few cumulants was
evident to Thiele, as was their role in studying non-linear functions of
random variables, and these aspects of their use have continued to be
important to the present day, see Brillinger (1975, Section 2.3). In a
sense which it is hard to make precise, all of the important aspects of
(joint) distributions seem to be simpler functions of cumulants than of
anything else, and they are also the natural tools with which transfor-
mations (linear or not) of systems of random variables (independent or
not) can be studied when exact distribution theory is out of the
question.

The definition of multivariate cumulant most commonly used

today involves moment-generating functions. If X, ..., X,, is a system
of m random variables and r=(r,,...,7,) is an m-tuple of non-
negative integers, then the cumulants {«,} of Xy, ..., X,, are defined

by ko.0=0 and the identity
er r
;«,F=log2‘:IE{X'}E. (1.1)

where we have written 0"=67...6, X' =X7?...Xx and rl=
r!...rn,!, and summed over r,=0,...,r,=0. Here and below all
relevant moments are assumed to exist. An alternative approach which

! Manuscript received September 22, 1982; revised February 1, 1983.



284 6 Cumulants and Partition Lattices

CUMULANTS AND PARTITION LATTICES

is in some respects more convenient defines the joint cumulant
€(X,, ..., X, of X;,....X. (x, , in the notation above) directly:

blo)
(X, X =L Db T I x} a2
o a=1 i€o,
the sum being over all partitions o of {1,...,m} into b=b(o)=1
blocks o, o5, . .., 0,. For example, if m =3 we have

(X1, Xa, Xa) = [E{X1X2X3} _E{X1X2}‘E{X3}
—E{X, XHE{X,} — E{ X JE{ X, X5} + 2E{ X YE{ XL JE{ X}

Note that we have not required that the random variables X, ..., X,
are all distinct. If X, =X,=X5=X in the last formula, we obtain an
expression which in the notation of Kendall & Stuart (1969) we
recognise to be the formula wxy=pui—3pins+2(ni)’>. The general
multivariate cumulant «, can be defined via (1.2) in a similar manner.

The purpose of this expository note is to derive some basic results
concerning (joint) cumulants from definition (1.2) and give illustra-
tions of their use. Our approach is based upon the fact that (1.2) is an
instance of M&bius inversion over the lattice ?(m) of all partitions of
the set m ={1, ..., m}, and further use of this technique leads to some
new proofs. None of the results we prove are new; our aim is simply to
show how a small investment in modern algebra—in this instance the
theory of Mobius functions—helps us to step our way elegantly
through some potentially messy classical algebra.

It is a great pleasure to be able to contribute to this number
honouring Evan Williams. Amongst many other things he introduced
me to cumulants and showed me their usefulness, and I hope that this
note can convey some of the enjoyment I have found working with
them.

2. Lattice Preliminaries

A partition o of a non-empty set S is simply a family of non-empty
subsets oy, ..., o,—=<alled the blocks of o—whose union is S. For
example, the family o = {{1, 2}, {3}, {4}} is a partition of S ={1, 2, 3, 4}
and we denote it by o =12|3|4. If o and 7 are two partitions of the
same set S and every block of o is contained in a block of 7, then we
say that o is finer than  ( is coarser then o) and write o =71 (T1=0).
In this way we find that the collection %(S) of all partitions of S
becomes a partially-ordered set and it is in fact a lattice, for every pair
o, 7€ P(S) has a least upper bound and a greatest lower bound in the
partial order. The greatest-lower bound oAt of o and 7 is easy to
describe directly: its blocks are just the non-empty intersections of
blocks of o with blocks of 7. For example, 123 [4A12|34=12|3|4
and 12[34A13|24=1]2]3]4 hold in ?(4). An excellent general
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1/2/3/4

Pla)
Fig. 1

reference for lattice theory and those results we quote below is Aigner
(1979). We illustrate the foregoing with Hasse diagrams of the small
partition lattices, see Figure 1.

In these diagrams each element of the partially-ordered set is
denoted by a vertex, and an edge is drawn between the vertices
corresponding to p and 7 if p <t (or p>7) and there is no element o
with p<o <7t (0or p>0>7).

Associated with any finite partially ordered set (%, <) are two
important numerical functions defined on %: its zeta function {p
given by {(o, 7)=1 if o =<1, and 0 otherwise; and its M0bius function
g = pge which can be defined in many ways, one simple one being the
following:

1 if p=1;

plon)=4- Y ulpo) if p<m
pso<r

0 otherwise.

It is not hard to prove that Y, u(p, 0){(o, 7)=Y,¢(p, o)ula, 7)=
8(p, 7) where 8(p,7)=1 if p=7 and 0 otherwise, i.e. the matrices
Z=({(o, 7)) and M= (u(o, 7)) over P are mutually inverse.

Let us suppose that f is a real-valued function on # and that we
define another function F on ? by

F(r)= Y. f(o).

o=T
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Thinking of f as a column vector this is saying that F=Zf Mobius
inversion is just the recovery of f from F: formally, f=Z"'F=MF,
and more fully

fir)=3 wlo, 7)Flo).

The power of Mdbius inversion rests in the fact that for many familiar
partially ordered sets, there is a simple formula for w. Indeed it can be
quite a useful technique without even having a formula! These basic
ideas apply to any finite partially ordered set and we refer to Aigner
(1979) for many illustrations.

It is clear from the definition of w that if p <7 and there is no o
with p<a <, then pu(p, 7)=—w(p, p) = —1. Referring to the diagram
of ?(3) we can readily calculate that w(1]2]3,123)=2, whilst all
other w-values there are +1 or —1. Similarly we find that in P(4) the
following are true: w(12|3]4, 1234)=2 whilst u(1]2]|3]4, 1234)=
—6. It can be shown that for any ceP(m) we have p(o,m)=
(=1 "Yb-1)! where b = b(o) is the number of blocks of ¢; a product
of such expressions gives a formula for p(o, 7) in ?(m) but we will
have no occasion to use it. We refer to Rota (1964), and Aigner (1979)
for a proof.

3. Equivalence of the Two Definition

We will begin the proof of the equivalence of the two definitions
by seeking an expression for E{X, ... X,.} in terms of the {x.}, and to
this end we introduce some notation which plays a fundamental role in
what follows. For a partition o =0, |...| 6, of {1, ..., m}let us write

b{er)
Ke = H‘ Ke(og)
where ¥(g,)=(r,, ..., r,) is defined by r, =1 if i€ g,, r, =0 otherwise,
a=1,...,b(0). For example, if o =1234, then «, = k;;;, Whilst if
o=12]34, then k, = K1100K0011-

Now let us exponentiate both sides of {1.1) and calculate the
coefficient of 8,...6, on the left-hand side. It is really quite
straightforward to see that the answer is Y, k,, Where the k, have just
been defined and the sum is over all partitions o of {1,..., m}. For
example, E{X,X,X;X,} is the sum of 15 terms beginning with k53, =
k1111 and ending with k34 = K1000K0100K0010K0001- More generally, if 7
is an arbitrary partition of {1, ..., m} with blocks 7,,..., 7, then we
can multiply expressions of the form just derived to obtain the identity

ﬁ) E{H X}=ﬁ Y k=Y ko (3.1)

a=1 ier, a=1 o, eP(r,) osr
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For example, E{X,XGHE{XGHE{X4}=(k12+ ki) K3Ks = K120+ Ky 2paja-
Now equation (3.1) can be inverted by Mdbius inversion and doing so
gives us the fundamental relationship:

blr)
K, =Y. wlo, ) Hl IE{H x,}. (3.2)
When +=m this reduces to (1.2), apart from the identification of
plo, m) as (=1)*7'(b(o)-1)!, and we have proved the equivalence
of the definitions.

A more abstract and general theory including this equivalence can
be found in Doubilet et al. (1972).

Example. Putting m =4 we see from (3.2) and Figure 1 that
K234 = K111 Is an alternating sum of 15 terms with coefficients +1, —1,
+2 and -6. If we identify two or more of the random variables
X1, ..., X,, additional numerical factors enter because the same ex-
pression appears more than once in the 15 terms. At the extreme,
when X, =X,=X;=X,=X, we find cf. Kendall & Stuart (1969, p.
701) the traditional expression

xa =E{ X} - 4E{XYE{X} - 3E{X ) + 12E{X*HE{X})* - 6(E{XD*.

Here the factors of —4, —3 and 12 are a combination of multiplicities
and Mobius function values.

It is a long standing observation of workers with cumulants that
the general results are most transparent when all random variables
under discussion are taken as distinct. The identification of some or all
at a later stage merely introduces extra factors, and at times these
multiplicities are not particularly easy to calculate.

4. Properties of Cumulants

Cumulants of order 2 are just variances and covariances and a
number of properties which are familiar in this case seem much less
well known in general. Our first result provides a good illustration of
the way in which Mobius inversion may be used in this context
although its proof using (1.1) is also easy. We take as given a set
X;, ..., X, of random variables, and write m ={1, ..., m}.

Proposition 4.1. If there is a subset s < m such that the random
variables {X;:ies} and {X;:iet} are independent, t=m\s, then
(X, ..., Xn)=0.

Proof. For each w € ?(m) we denote the partition induced on s,
i.e. that partition having as blocks the non-empty numbers of
m Ns,...,mNs, by wNs, and similarly for wNt. The proof makes
crucial use of the following simple fact: for any 7€ P(m), o< P(s)
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and 7€ P(t) we have
m=zcl|lr if wNs=o and w7Nt=1 (4.1)
We can now go to (1.2) and calculate:

b{w)
(X X =T ul, m)E‘E{H X}

iew,

= wtm m) b:fiﬂﬁ{ I xi}“ﬁ”rE{ I1 X.-}

iem,Ms a=1 iemw,Mt

by independence,

= ; w(m, m){;{(a, T nS)K(,}{Z: L(r, TN I)K,}

by (3.1),
=Y Y ¥ wlm mo, wNs)(r, 7 N1k, k,)
=Y T Y wlmm)io]r, wikex, by (4.1),

=YY 8(c |7, m,7, by Mobius inversion

and this expression is zero since m# o | T for any o€ P(s), T P(1).

For the next two propositions we consider an array (X;:jen, i € m)
of real random variables and a similarly indexed array (a;) of real
numbers. The following result also generalises a well known one for
variances and covariances: it states that € is a multi-linear operator.

Proposition 4.2.

‘@(Z @, X e Z a,,,,-me,-m>
I fm

=2 Ay Gy € X, X )
I Im

Proof. From (1.2) and the distributive law

T wlom) ﬁ1 e{I1 ¥ ax,)

i€o, jien

=§ (o, m) f[ E{ r II a«-,-.Xm}

a=1 ii€n.ieo, i€a,
b
~Tuoom ¥ e eI %]
o fiem.iem i a= i€o,
b
=Z e Z al,-) e amfmz [L(O', m) I-IIE{H 'Xii;}
I im o a= ieq,

which is the stated result.
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Corollary. If X,=Y;+Z, i=1,..., m, where {Y;} and {Z} are
independent sets of m real random variables, then

€(X,,....X)=%(Y,,..., Y, )+€(Z,,...,2Z,).

Proof. This is an immediate consequence of Propositions 4.1 and
4.2.

The following proposition is the core of the main result of Leonov
& Shiryaev (1959). Our proof is much more direct than theirs and
highlights the power of Mdbius inversion. Any partition r =, |.. .l m,
of the row labels m of the (Xj;) induces a partition 7 of the full set
S={(i, j):jen, i e m} of labels in a natural way: 7 has blocks {(i, j):j e
n,iem}, a=1,..., b(w). We say that a partition o of S is decompos-
able relative to a partition 7 of m when o=, where # has just been
defined, and we call o indecomposable if no such relation holds other
than o =<m. Brillinger (1975, p. 20) gives some equivalent formula-
tions, and states without proof the following.

Proposition 4.3.
bler)

@ IT Xy, TT %) =2 [T €,:pea)

Ji€ny Jin € Bin o

where Y. * denotes the sum over all indecomposable partitions o of S.

Proof. For any 7€ P(m) we have by (3.1)
b(r) hia)
T IT I %)= % 11 €6 peow.
a=1 iem, jen o=sta=1

The sum on the right, which we denote by F(ar), is over all o€ 2(S)
which are decomposable relative to 7. Such o may also be decomposa-
ble relative to some p <, and so we can use Mobius inversion over
P(m) to write f(w) =Y, ulp, w)F(p) for the corresponding sum over
all o which are decomposable relative to o and no finer partition. With
this notation we use (1.2) and Mobius inversion over (m) once more
to obtain

¢(TT X o> TT X )= T b, m)EC) = )
jiem im€hm L

and the proof is complete.

This proposition provides easy access to a number of results due
to Isserlis (1918-19a,b) Bergstrom (1918-19), Wishart (1928-29,
1929) and others.

Example. Let us take S={(1,1),(1,2),(2,1),(2,2)} which we
simplify to {1, 2, 3, 4}. Then we may refer to the lattice ?(4) and, by
omitting the decomposable partitions 1234, 12|3|4, 1|2|34 and
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1]213|4 we readily see that

:g(XlXZs X3X4) =<€(le XZ’ X3a X4)
+B(X))E (X5, X5, X)) +6(X)€6(X,, X5, X,)
+E(X)E (X, Xz, Xo) + €(X)E(X1, X, X3)+ 6(X), X5)€(X5, Xa)

+ B(X), X 6(Xs, X3)+ 6(X,)E(X3)6(Xz, Xa)
+B(X)E(X)E(Xs, X5)

+E(X)E(X5)6(X,; Xo)+B(X)E(X)E(X,, X3).
If X,, X5, X5 and X, have a joint normal distribution, then cumulants

of order exceeding two all vanish, and in this case if their means are all
zero we have

cov (X, X5, X5X,) =cov(X,, X5) cov (X, X,)+cov (X, X,) cov (X, X,).

As a further illustration of this result, let us suppose that X, ..., X,
are mutually independent and identically distributed random vari-
ables with cumulants x, =0, «,, k3, k3, . . . (traditional notation). Then
for any matrix (a;) of coefficients, we have

var (ZZ a,~,)(,~X,-> =Ky Z azi+ k2 ZZ (aZ+a;a;).
i i i
The proof is almost immediate once we observe that we require
2T ax% IT aXX) =L L T T a0 8X, X, X,X).
i i

i i) iy ix s

Of the 15 possible combinations of equality and inequality on i,, iy, i3
and i,, each corresponding to an element of ?(4) in an obvious way,
only three give a non-zero cumulant, namely those corresponding to
1234, 13|24 and 14|23. Now

a1 _gpoly e 1 X
’ _n—lz(xi %) _nZ;Xi n(n-l)zfl,.,zx)(’

and so if we put

nn-1)"

1 s
aii=; and a;=a;= i#],
in the preceding result we obtain the formula which goes back to
Gauss (1823);

K3.

var (82)='1— Kyt
n n—1

Our final result, due to Brillinger (1969), and generalizes to
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higher-order cumulants the familiar identity
Var (X)=E{Var (X | Y)}+ Var E{X | Y}

for real random variables X and Y. We will use an obvious notation
for conditional cumulants.

Proposition 4.4.
C(Xy, ..., Xn) =Y (€ (X,:iem, | Y):aehb(m),
the sum being over all partitions = of {1,..., m}.

Proof. The proof which follows is not as simple as Brillinger’s,
which uses moment-generating functions. A typical term in the expan-
sion (1.2) for ¥(X,,...,X,) is a product of terms of the form
E{[Ticn, X} =E{E{[Lic, Xi | Y}}, and we expand the inner term on the
right-hand side of this using (3.1), switch the sum and the outer
expectation, and use (3.1) once more. Most terms cancel and the
simple result is derived. The notational details are somewhat messy,
but we proceed.

E{u—:{l’[ x[y}}= Y )IE{ I1 %(x:iea’;!Y)}

iem, g, €P(m, kehta™)
= 2 2 I @t n:ker)
d €P(m,) T,€P(bla")) lebls,)

where we have abbreviated 4(X;:ico’|Y) by (%] Y). Putting this
expression into (1.2) we obtain

€X,,....X)=Yurm Y Y Il TI @t v:kerd)

osT T, ePlhla,)) ashin) tehlry)
a=1_..b(m)
where in the third sum we write o,=cN7® a=1,...,b(w). Our
result is proved if we can show that only terms involving = =m, i.e.
b(a) =1, survive.
To this end suppose that o€ ?(m) and 7€ P(b(o)) and write

P(o,7)= [] 4" | V):ker)

133-18))]
ployn)=U ol U o4....
ker, ket

Noting that p(c, T) =0, we find that the last sum can be written as

¥ 2 2 wlm m)(m, plo, )Plo, 1) = 3, 3. 8(m, p(o, 7)) P(o, 7)

wT o T o

by Mbobius inversion and the result is proved.

291
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Example. For m =3 this result asserts that

B(X1, X X3) = B(6(X,, X0, X3 | Y)+B(B(X, | V). 8(X2, X5 Y))
+8(8(X2]Y), €(X,, X5 YY)
+8(8(X:| V), (X, X2 Y))
+E(B(X | Y), €(X, | ), 6(X5| Y)).

If X,=X,=X;=X and we adopt a suggestive notation, the previous
expression simplifies to a formula similar to the well-known one for
Var (X):

k5(X) =E{xs(X | )} +3 cov (E{X | Y}, Var (X | Y)) + x5(E{X | Y}).

We note in closing that Proposition 4.4 has been used to obtain the
cumulants of random sums of (iid) random variables, see e.g. Lange et
al. (1681).

5. Closing Remarks

The theory of k-statistics developed by Fisher (1928-~29) and its
generalized form involving the so-called polykays due to Tukey (1950)
is also simplified greatly by a recognition of the role played by the
underlying partition lattices and their Mobius functions. For example,
it is possible to give a fairly compact proof of a generalization of
Fisher’s famous result concerning the joint cumulants of sample k-
statistics along the lines of that of Proposition 4.3 above.

In a quite different direction, (joint) cumulants of another kind
can be defined for arrays of random variables labelled by multiple
indices as in a complex experimental design. Here the second order
cumulants turn out to be components of variance, and many interesting
generalizations of anova notions appear. We leave this and other work
to another time.
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