Chapter 5
Last Words on Anova?

Terry Speed

Many people like to say the last words in an academic debate, and I am no exception.
I have tried to do this on a few occasions, only to discover that when I came to say
my piece, everyone had left the room. The analysis of variance is a case in point,
and my comments on Tukey’s contributions to anova explain the problem. If — as I
believe to be true — people don’t care much these days what Tukey thought about
anova, they are going to care even less what I think. This is not said with any sense
of bitterness. Indeed I regard myself as something of a student of fads, fashions and
trends in statistics, so why should I expect otherwise? Nevertheless, I'm very happy
to see these articles reprinted, as their easier availability may kindle the interest of
someone, somewhere, sometime in what I still believe to be an important part of
(the history of) our subject.

My main stimulus for work in this area came from the papers of six people:
R.A. Fisher, Frank Yates, and John A. Nelder from the U.K, indeed all from Rotham-
sted, Alan T. James and Graham Wilkinson from Adelaide, Australia, and John W.
Tukey from the U.S.A. Unpublished lecture notes by James were extremely help-
ful in getting me going. The anova program within GENSTAT, initially created by
Wilkinson based on research by James, Wilkinson, James & Wilkinson and Nelder,
was enormously influential. It was (and remains) truly brilliant in conception and
execution, and I wanted to understand it. For a long time I was interested in — one
might say obsessed with — the symmetries underlying much of anova, and that is
reflected in some of the papers reprinted (thank you Rosemary Bailey)! But also I
wanted to understand how users of anova saw things, including gory details such as
the combination of information, the analysis of covariance and dealing with missing
values, all topics with wonderful histories. I made one attempt to put it all together
for general consumption, but that got rejected, and so I moved on to other things.
As explained above, it is not clear how many people now care. I hope you enjoy the
papers. There are several more if you do.
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1. Introduction

For i=1,2, let (G;,A;)) be a permutation group. The permutation direct product
(G, A1) x(G,,4,) is (G, x G,, Ay X A,) with action defined by

(01,62)(91,92) = (8191,9292)-

If A; x A, is visualized as a rectangular array, an element of G, x G, may be described
as a permutation of rows by an element of G, followed by a permutation of columns
by an element of G,.

A,
1 2
A G ° )
1
G, D
FiG. 1

The permutation wreath product (G, A,)wr(G,,Ay) is (G2 x G,,A; x A,), with
action defined by

(01,62)(£,92) = (6,(6,.1),6292),

where f is a function from A, to G,. Thus an informal description of an element of
G, wr G, is ‘independent permutations of the points within each column by elements
of G,, followed by a permutation of the columns by an element of G,’.

A,

G, on each
column separately
F1G. 2
Proc. London Math. Soc. (3), 47 (1983). 69-82.
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In the first case, the indexes 1 and 2 play an equal role, and the rows of the array are
significant. In the second case, the index 2 dominates the index 1, and the rows have no
significance.

Sets with the two structures described above are frequently used in designed
experiments. Nelder [9] described a class of structures obtained from these by
successive crossing (corresponding to the direct product) and nesting (corresponding
to the wreath product). He developed a large body of theory for these structures and
asked whether only these structures satisfied his results.

However, there are many structures that are recognized as tractable by designers of
statistical experiments, but which are not in Nelder’s class: the simplest such was
described by Throckmorton [14].

ExampLE 1. The set is divided into rows (index 1) crossed with columns (index 2).
Each row is subdivided into minirows (index 3), which meet all columns. Within each
square (row—column intersection), the fragments of minirows are crossed with
microcolumns (index 4). Thus 1 dominates 3 and 4, while 2 dominates 4.

minirow

10 L2
microcolumn
4 3 4
——
column
@
FiG. 3

Although this is not one of Nelder’s structures, most statisticians working in the
design of experiments could describe its automorphism group, in such terms as
‘permute rows, permute columns, within each row separately permute minirows,
within each square separately permute microcolumns’.

A more precise discussion of structures such as this is given by Speed and Bailey
[12], and Bailey [2]: however, our concern here is with the associated permutation
groups. In § 3 of this paper we introduce an explicit description of the elements of both
the full automorphism group of such a structure and some of its subgroups. For
Nelder’s structures these groups can be obtained by successively forming direct
products and wreath products of the appropriate permutation groups (group actions),
but for our more general class we need to use a construction which Wells [15, §7]
described for actions of semigroups: he called it the wreath product of an ordered set of
actions. The ordered set here is a partially ordered set, the partial order being given by
the combinatorial structure. (The right-hand part of Figs 1-3 shows the appropriate
partially ordered set.) We need to prove that if we start with group actions then Wells’s
wreath product action is also a group action.

Since statistical experiments are, necessarily, finite, our main interest is in structures
defined by finite partially ordered sets: in this case, as is quite straightforward to check
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using the results of §4, the permutation group which we construct is identical with
that constructed by Holland [6] and Silcock [11]. This is why we call it a generalized
wreath product. However, finiteness is not essential to all of the theory: and so we
have not confined our attention to this case.

Throughout this paper we rely heavily on Wells’s explicit representation of the
elements of the generalized wreath product. We use a slightly modified version based
on the notation introduced in §2.

In §§ 5-6 we address two questions which are relevant to the use of these structures
in designed experiments. What are the orbits on pairs of points (§5)? In particular,
which subgroups have the ‘expected’ orbits? What are the irreducible constituents of
the permutation linear representation (§6)? In particular, when is the centralizer
algebra commutative?

2. Notation and terminology

The notation introduced in this section is used without comment in the rest of this
paper. Throughout, (1, p) denotes a partially ordered set. We shall find it convenient to
use both of the symbols p and < for the partial order, the former in descriptive work
and the latter in computations (when we shall also use the associated symbols <, >,
and > with their obvious meanings).

DEerINITIONS. Following Gritzer [4], we define a subset J of I to be

hereditary if, whenever i < jand je J, thenie J;

ancestral if, whenever i > jand je J, thenie J;

a chain if, whenever i, j € J, then either i < jor j <i;

an antichain if, whenever i, j € J and i # j, then neither i <j nor j <.
For i € I we define

AWy={jel: j>i}, Alil={jel:j=i},
Hi)={jel:j<i}, HlJ={jel: j<i},
and for J = I we define

A(J) = UJA(i), AlJ] = UJA[i],
H()=H(), H[I=H[]
ieJ ieJ
Note that all the A-subsets are ancestral and all the H-subsets are hereditary.

Forie I, let A; be a set with | A;| > 2 (this restriction is to avoid irritating special
cases). For J < I, put Ay = [ iy Ai. If K = J < 1, let 1k denote the natural projection
from A, onto A. If K = {k}, we shall often write rj for ng. We shall also abbreviate A,
to A and 7} to 7;. We shall need A 4, and m 4 so often that we abbreviate them to A’
and ' respectively.

We write elements of A as § = (§;) with §; € A;. For J < I we define the equivalence
relation y on A by 6 ¢ if and only if én; = ex;.

Foreach i € I let G; be a (faithful) permutation group on A; with identity 1;, and let
F; be the set of all functions from A’ into G,. For J = I put F; = [];c; F;, and let
F = F,. We write elements of F as f = (f)) with f; e F,. If K = J < I, let ¢} denote the
natural projection from F, to Fy. The abbreviations ¢] and ¢, are used analogously
to nj and ;.
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Note that if J is empty then both A, and F, are singletons, and that if J is infinite
then each is the full Cartesian product.

3. Specification of the generalized wreath product

Our aim is to identify F with a set of functions from A to A. We do this by defining
an ‘action’ of F on A and showing that this action is, in a natural sense, faithful.

DEFINITION. For each f = (f)) € F, we define an action of f on A by the following
rule: for each § = (§;) € A,

Sf =&, where e = (g) € A, and ¢; = 6{on'f);
that is, (8f); = 60n' f)).

LEMMA 1. The action on A is faithful in the sense that if ffhe F and if 6f = oh
for all 6 € A then f = h.

Proof. Letie I and let y € A Put x = yf;and y = yh;, so that x,y € G;. Leta € A,
and choose 6 € A so that §; = « and 6n' = y. Then (5f); = ax and (6h); = ay so
ax = ay. We can choose such a 6 for every a € A;, and so x = y. Thus y f; = yh, for all
y € A%, and so f; = h;.

Lemma 1 shows that the above definition identifies F with a subset of A%, and
henceforth we shall regard F as this subset. Thus elements of F are ‘multiplied’
according to the composition of the corresponding functions from A to A. We wish to
prove that this subset F of the semigroup A is a subgroup. To do this we first need to
investigate in some detail the relationship between the action of F on A and the partial
order on I; these results (Lemmas 2, 3, and 6) are also used in subsequent sections. The
proof that F is a submonoid (Lemmas 4 and 5) is immediate but the existence of
inverses in F (Lemmas 7 and 8) requires a restriction on the partial order on I.

LeEMMA 2. Let J be an ancestral subset of I; let 6, € A and fe F. If 6 + & then
Sfy ef

Proof. Suppose that § + ¢. Let i € J. Then, since J is ancestral, §; = ¢; for all j > i.
Thus J; = ¢; and on’ = en’. It follows that (3f); = (¢f);. Hence 0f  ¢f.

Lemma 2 shows that, if f € F and J is an ancestral subset of I, then f induces a
map f;: A, » A, such that fr, = n,f,. It follows directly from the definitions that
for J any subset of I and f,g € F we have fn, = gn, if and only if fo;, = g¢,. Thus
Lemma 2 gives us a way of defining an action of F, on Ay, in the case when J is an
ancestral subset, by identifying f¢, with f}. It is evident that this definition coincides
with that obtained by defining the action of F; on A; analogously to that of F on A. If
J = {j} then A, = A; and f, = f;: there is therefore no ambiguity in writing f, for f}
and f; for f.

LemMa 3. Let J,K be ancestral subsets of I with K = J, and let fe F. Then
nk = nxfx: in particular, fr; = n,f,.
JTk
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LEMMA 4. Let fhe F. Then fh =t, where
ti = fi X fa@h
and the product of the functions f; and fyuh; from A, to G, is defined pointwise.

Proof. Let 6 € A. Then

(0f h); = (8f )(ofn'hy)
= 5i(575iﬁ)(575‘f,1(5)hf) (by Lemma 3)
= §,(6m't;).

LemMMaA 5. If, for each i € I, the function z; € F; is defined by yz; = 1, for all y € A}
then z = (z;) is the identity permutation on A.

LEMMA 6. Let J and K be ancestral subsets of I with K < J. Then ¢%: F; —» Fyisa
semigroup homomorphism.

DEFINITION. Let J be an ancestral subset of I and let f € F. Then f is invertible on J
if f, has an inverse in F;.

LeMMA 7. Let & be a family of ancestral subsetsof 1;let L =) &, let fe F.If f is
invertible on J for all J in & then f is invertible on the ancestral subset L.

Proof. Since all the projections involved are semigroup homomorphisms, if
J,K e % and ieJnK then (f)” 'o! = (fx) '¢X. Hence we may define h in F, by
hot = (f))"'o!, using any J € & such that i € J. It is straightforward to check that
h=f"" '

LeEMMA 8. Suppose that (1, p) satisfies the maximal condition. If fe F and J is an
ancestral subset of I then f is invertible on J.

Proof. Let X = {i e J: f is not invertible on A[i]}. If X is not empty, then X
contains a maximal element m. Then f is invertible on A[i] for alli > m. By Lemma 7,
f is invertible on A(m), because | J;», A[i] = A(m). Define h in F,,, by

hettm = f 1108 for all i e A(m)
and
Yhoa™) = f 2 Sw) ™' for all y € A™

Then Lemma 4 shows that & is the inverse of fy,,;, so f is invertible on A[m]. This
contradiction shows that X is empty. Since J = U,-E, A[i], Lemma 7 shows that f is
invertible on J.

The following example can be modified to show that, if (I, p) is any partially ordered
set which contains an infinite ascending chain, then F contains an element which is
not invertible on /. Thus the maximal condition in Lemma 8 is necessary.

ExaMPLE 2. Let N be the natural numbers with the usual ordering. For alli € N, let
A; be an arbitrary fixed 2-element set {a, b}, and let G; = Symm(A,). Now, for all
i € N, let f; be the function in F; which maps every element of A, with one exception,
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to the transposition in G;: the exception being the element a in A’, each of whose co-
ordinates is equal to a; this element a is mapped to the identity of G;. Then f.is not a
bijection on A, because its image does not include the element b with each co-ordinate
equal to b.

Holland [6] and Silcock [11] avoid this problem by restricting the sets A and F;
other approaches are worth investigation.
We summarize the results of this section in the following theorem.

THEOREM A. Let (I, p) be a partially ordered set with the maximal condition. Then
(i) for all ancestral subsets J of I, (F;,A)) is a (faithful) permutation group;
(i) if J and K are ancestral subsets of I with J 2 K then (¢, %) is a permutation
homomorphism from (F,,A;) onto (Fg,Ag) with kernel

Ny ={feF, fj=z, for je K};
(i) if J, K and L are ancestral subsets of I and J 2 K 2 L then

(¢k T)(@F, nf) = (@1, 71).

In particular, (F,A) is a permutation group, which we call the generalized wreath
product of the permutation groups (G;, A,);. ;. More formally, we write [, ,,(G:, A)
for this generalized wreath product.

We observe that if p is the identity relation on I then [], ,(Gi,A) is the
permutation Cartesian product of the (G;,A;); if I is finite, this is simply the
permutation direct product. Similarly, if / is the disjoint union I, U I, and no element
of I, is comparable with any element of I, then Hu,p)(Gn A;) is the permutation direct
product of the generalized wreath products H(,,,p)(Gi,A,») and n(lz,p)(GhAi)’

At the other extreme, if (I, p) is the finite chain 1 <2 < ... < n then H(,'p,(Gi,Ai) is
the permutation wreath product (G,,A,) wr(G,,A,) wr...wr(G,, A,). More generally,
if I is the disjoint union I, U I, and, for all i € I, and j € I, i <}, then [ ], ,(G;, A) is
the permutation wreath product of the generalized wreath products [ [;,.,/(G:, A;) and
H(lz.p)(Gi’ 4a)).

Although, as remarked above, we cannot apply our generalized wreath product
construction to obtain a group if (1, p) is the natural numbers with the usual ordering,
we can if we take the opposite ordering N~. This gives a class of potentially
interesting examples of uncountable permutation groups on uncountable sets which
are built up by an explicit construction from (possibly) finite permutation groups: for
example, for all i € N take |A;| = 2 and G; = Symm(A) ~ Z,. .

Of practical significance to statistics, Example 1 shows that if | I | > 4 then there are
partial orders on I which cannot be decomposed into chains and identity relations:
thus these generalized wreath products include more than the wreath and direct
products and their iterated composites.

4. Poset block structures and their automorphism groups

DEFINITION. A poset block structure is a pair (A, S), where
(i) A is the Cartesian product over a partially ordered set (I, p) of sets A; (i € I),
with |A;] > 2,
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(ii) S is the following set of equivalence relations on A:

S = {v:J an ancestral subset of /}.

These structures, and their relationship with association schemes and distributive
lattices, are discussed by Speed and Bailey in [12], with the appellation ‘distributive
lattices of commuting uniform equivalence relations’. Their automorphism groups are
described, without proof, by Bailey in [2]; the purpose of this section is to prove
Theorem 1 of that paper (our Theorem B).

DEFINITION. An automorphism of a poset block structure (A, S) is a permutation t of
A such that, for all ¢ € S,

doe¢ ifand only if (6t)o(st) (0,¢ € A).

The following example shows that the weaker condition
doe implies (6t)o(et)

is not sufficient to ensure that the inverse of ¢ also preserves the block structure.

ExAMPLE 3. Let (I, p) be the two-element chain 1 < 2,let A; = A, = N, and definet
as follows:

(n,0)t = (2n,0), (n,1)t =(2n+1,0),
(n,mit =n,m—1) formz=2.

THEOREM B. Let (A,S) be a poset block structure with poset (I,p). Let F be the
generalized wreath product [ ., Symm(Q,). If (I, p) satisfies the maximal condition
then F is the group of automorphisms of (A,S).

Proof. Let f€ F and let J be an ancestral subset of I. Lemma 2 shows that
6 ¢ implies of v ¢f.
But f~!is also in F, and application of Lemma 2 to f~! shows that
0y ¢ isimplied by 6&f v ¢f.

Hence f is an automorphism of (4, S).

Now let ¢ be an automorphism of (A, S). We need to prove that there are functions
t; € F;such that t = (t;) € F.

Fix i e 1, and put J = A[i], K = A(i), so that Ay = A’. Because t is an auto-
morphism, there exist permutations t; and ¢, of A, Ag respectively such that
tn; = myty and tnyg = mgtg. Also, as in Lemma 3, nkty = t,nk.

Identifying A, with A; x Ay, for B € A define ft;: A, - A, by

a(Bt;) = (o, P)t,m] for € A,.
We shall show that

(i) for all B in A’ the function Bt; is a permutation of A;, which shows that ¢; € F;;

(i) for all 6 € A, 6tm; = 5,(on't,).

Since these results hold for all i € I, we can complete the proof as follows: by (i),
(t;) € F, and by (ii), t = (t,).
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Proof of (). We need a preliminary equality. For all « € A; and all § € A,

(& Bty = (o, Bty (o, B)tym) = (o(Be), (o, Bymictid) = ((Bt), i)

To prove that Bt; is injective, suppose that a,a’ € A; and a(ft;) = o'(ft;). By the
above equality, («, f)t; = (&, B)t;. Since ¢, is injective, o = o'.

To prove that ft; is surjective, we observe that, because t; is surjective, for
each a e A, there are o' € A; and B € Agx such that (o, ), = (o, ftg); then
(' (B't), B'ty) = (a, Bty). But ty is injective, so f = f and &'(Bt;) = a.

Proof of (ii).
Stn; = Sty = dmyt,m] = (6m;, Omy)tym.

By the definition of ¢ this is (67;)(9nxt;), which is 5,(0n't,).

S. Orbits on Ax A

Throughout this section we assume that (I, p) satisfies the maximal condition, so
that, as we established in Theorem A, (F, A) is a permutation group. We are interested
only in the case when F is transitive on A, so we first state the following lemma.

LEMMA 9. The generalized wreath product of the permutation groups (G;,A);e; is
transitive if and only if (G;, A) is transitive for all i € I.

When F is transitive on A, we are concerned with the orbits of F on AxA. For
subsets ['; of A; x A;, we denote by(X);., T'; the subset of A x A which contains (6, ) if
and only if (§;,¢;) € I'; for all i € I. For each i € I we denote by D, the diagonal subset
{(o,a): @ € A;} of A;x A;, and put E; = A; x A;.

DEerINITIONS. Let J be an ancestral subset of 1. The border of J, denoted B(J), is the
set of maximal elements of /\J. The subset O, of A x A is defined by
0, =(®D)®( X (E\D)) ®( ® E)

ieB(J) ieI\J\B(J)

LemMa 10. (i) If J is an ancestral subset of I and (8,¢) € O, then & ~+ & and J is the
maximal ancestral subset with this property.

(ii) The set Ax A is the disjoint union of the subsets O, taken over all ancestral
subsets J of I.

We shall refer to the subsets O, as association sets.

In work on the design of experiments, A is taken to be a set of random variables and
a covariance model on A is specified in terms of the equivalence relations (A'[‘i)-'el'
Many authors (see, for example, John [7]), assume a model in which the value of the
covariance of § and ¢ depends only on the values of i for which 5,4T.-‘18? that is, only on
the association set O, containing (,¢). Thus the decomposition of A x A into the
association sets is a useful one to study. Other authors (see, for example, Nelder [9]
and Bailey [1]) assume a model in which the covariance of é and ¢ depends only on
the orbit of F on A x A containing (,¢), where F = [],.,(G:,A;) and the groups G;
are specified transitive subgroups of the Symm(A;). Still other authors (see, for
example, Yates [17] and Preece, Pearce, and Kerr [10]), say that randomization based



5 Anova 151

WREATH PRODUCTS OF PERMUTATION GROUPS

on the group F is valid if and only if the orbits of F on A x A coincide with the
association sets.

By Lemma 2, it is evident that each association set is a union of orbits of F on A x A.
Grundy and Healy [5] showed that, for the direct product (G,,A,)x(G,,A,),
2-transitivity of each (G;, A;) ensures that each association set is a single orbit. Bailey
[2] proved a similar result for generalized wreath products. Here we prove the
following stronger result.

Tueorem C. The orbits of [[.,(Gi,A;) on AxA are precisely the association
sets if and only if, for each i € I, the permutation group (G;, A,) is 2-transitive.

We shall prove Theorem C as a corollary to Theorem D. First we illustrate
Theorem C by an example, and comment on its significance.

ExaMpLE 1. When F is transitive on A, as it is in this example, the orbits of F on
A x A are more conveniently displayed as the orbits on A of the stabilizer F;in F of a
fixed element & € A. In this case the ancestral subsets of I are &, {1}, {2}, {1,2}, {1,3},
{1,2,3}, {1,2,4}, and {1,2,3,4}. If each of the four groups (G;, A;) is 2-transitive, the
orbits of F5 on A are as shown in Table 1.

TABLE 1
Corresponding
Orbit ancestral set
{6} {1,2,3,4}
{¢: 6 and ¢ are in the same micro-column, and & # ¢} {1,2,4}
{e: & and ¢ are in the same column and minirow, and é # ¢} {1,2,3}
{g: 6 and ¢ are in the same minirow but different columns} {1,3}
{e: 6 and ¢ are in the same square but different minirows and different {1,2}
microcolumns}
{e: 6 and ¢ are in the same row but different minirows and different {1}
columns}
{e: 6 and ¢ are in the same column but different rows} {2}

{&: 6 and ¢ are in different rows and different columns} (7]

The significance of Theorem C is that, by Theorem B, the orbits of the automorph-
ism group of a poset block structure are precisely the combinatorially defined
association sets. Nelder [9] showed that this is true for those poset block structures in
which the partial order p is successively built up from chains and identity relations,
and asked which other structures have this property. We have here a wider class of
structures with this property, and hence a partial answer to the question. There are
still other block structures, not based on posets, for which association schemes can be
combinatorially defined (see Speed and Bailey [12]). The association sets of some of
these structures are identical to the orbits of their automorphism groups, but only
under fairly severe extra conditions (see Bailey [2,3]). Thus a complete answer to the
question does not yet seem to be known.

THEOREM D. Suppose that, for i € 1, (G;,A;) is transitive. For i € I, let M;; for
Jj(i) € A; be the non-diagonal orbits of G; on A; x A;. Then, if S is any antichain in I, and,
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for i € S,j(i) is any element of A;, the following subset M is an orbit of F on A x A:
M=( ® D)® (RQMi0) ® & E).
i€ ieH(S)

ieI\H[S)

Moreover, each orbit of F on A x A has a unique representation of this form.

Proof. Since | A;| > 2, none of the D, or M, is E;, nor is A; ever empty; therefore
distinct antichains S and distinct families (j(i));.s give distinct subsets of A x A.

Now let 4, ¢ € A. Then (d,¢) € M if and only if both J; = ¢; for all i e I\ H[S] and
(0:,6) € My for all ieS. Let (3,6) e M. If i e I\H(S) then A(i) = I\H[S], so
on' = en’. Thus if f € F then dn' f; and e’ f; are the same elements of G; for i € I\ H(S),
and hence (5f); = (&¢f); for i e INH[S] and ((6f);,(ef);) € M;j; for i € S. Therefore
bfief)e M.

Conversely, suppose that «,f,7,¢ € A, that (¢,8) e M and (y,e) € M. We must
show that there is an element fe F such that af =y and ff=¢ We deal with
coordinates in I\ H(S) and H(S) separately.

(i) Ifi € I\ H(S) then there is an element g; € G, such that a,g; = y; and f,g; = ¢;. Let
fir At > G, be the constant function with image g;.

(i) If i € H(S) then there is an element k € S with i < k. Since (o, ) € My, we
have o, # f,. By transitivity, there are elements g; and h; in G, such that a,g; = y; and
Bih; = ¢;. Define s;: Ay — G; by os; =g; and ws;=h; for all @ in A\, Let
fi A" > G; be the function nyUs;. Then afan'f;) = a,g; = y; and B(Br'f)) = Bih; = ;.

Now the element f = (f;) we have constructed maps « to y and f to ¢. Thus M is
indeed an orbit of F on A xA.

All that remains to show is that every orbit of F on A x A arises in this way. Let
é,¢ € A and let J be the unique ancestral subset of I such that (d,¢) € 0,. Now, B(J)
is an antichain. Moreover, H(B(J)) = (I\J)\ B(J), and so I\ H[B(J)] = J. By defini-
tion of Oy, for each i in B(J) there is a unique j(i) in A; such that (d;,¢;) € M;;;. Thus, if
M is defined as above for S = B(J) and these j(i), then (6,¢) € M.

The proof of Theorem D gives the following, alternative, description of the orbits of
F on A x A. Each such orbit is specified by

(i) an ancestral subset J of I,

(ii) for each maximal element i of I\ J, a non-diagonal orbit M; of G; on A; x A,.
The pair («, ) is in the corresponding orbit if and only if

(i) o; = B;forallieJ,

(i) (&, B;) € M; for each maximal element i of I\ J.

Proof of Theorem C. If (G;, A;) is 2-transitive then the only M;;; which occurs is
E;\ D;: hence each antichain S gives just one orbit M. Let J = I\ H[S]. Then J is an
ancestral subset of I, and B(J) = S; the last part of the proof of Theorem D shows that
Mg = 0,.

To prove the converse, for k € I let J = I\ H[k]; then O, is the union of | A, | orbits.
If (G, A,) is not 2-transitive then |A,| = 2.

6. Characters

In this section we assume that I is finite and that, for each i € I, (G;, A;) is finite and
transitive. We investigate the permutation characters of the action of F on A and on
A,, for ancestral subsets J of I. Since we are using the letter @ for projections, we
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denote the permutation character of F on A, (that is, on equivalence classes of ) by
V,, and put Y = ,. Once again, the case in which every (G;,A)) is 2-transitive is
particularly interesting and straightforward.

THEOREM E. If I is finite and, for each i € I, (G;,A,;) is finite and 2-transitive then
e (G, A) has distinct irreducible characters {y,: J < I, J ancestral} such that, if
K is any ancestral subset of I, the permutation character Yy of []y.,(Gi,A;) on
the equivalence classes of < is Y ,cxy,: in particular,  is the sum Y.y, over all
ancestral subsets J. Moreover, if, for each i€ l, |A;| =n;, the degree of y, is
[ Tiemn =V [ Tics\mwy ni» where m(J) is the set of minimal elements of J.

We shall prove Theorem E as a corollary to Theorem F. Here we simply note that,
since the ¥, are very easy to compute in practice, so are the (irreducible) ;.

The permutation linear representations of (G;, A;) and (F, A) are afforded canoni-
cally by the vector spaces R* and R* respectively. Let W, = R*. We shall identify R*
with );.; W; by regarding the tensor product of the functions w;, with i € I, to be the
function which maps 6 € A to [ [;c, 6;w;. We shall also use the natural inner product
on R* given by v+ w = Y 5. 4(6v)(5w).

THeOREM F. Let F =[], ,(G:, A). Suppose that 1 is finite and, for i € I, (G;,A) is
finite and transitive. Let C; be the subspace of constant functions in W, and let V,,
for j(i) € ©; denote the other components of a direct decomposition of W, into
G-irreducible subspaces. Let S be an antichain in I, and, for each i € S, let j(i) be an
element of ®,. Then

(i) the following subspace V of R is F-irreducible:

V= W.)®(® Vij(i)) ® (' ® C).
S) ieS i

ieA eI\ A[S]

(i) Moreover, R is the direct sum of such subspaces.
Let

W=(® M@ Vu)®( ® C)
ie A(T) ieT ieI\A[T]
for some antichain T and some family (k(i));. r such that, for eachi € T, k(i) € ®;. Then
(i) V=W if and only if S =T and j(i) = k(i) for each i€ S.
(iv) The subspaces V and W afford equivalent representations of F if and only if
S = Tand, for each i € S, the spaces Vi;;, and V., afford equivalent represen-
tations of G;.

Proof. (iii) Since, for each i € I, | A;| > 2, none of the subspaces W, or V, is equal
to C; and O, is non-empty; therefore V' n W is the zero subspace unless S = T and, for
each i € S, j(i) = k(i).

(i) (a) Now we show that the subspace V given above is F-invariant. For each
o € Ay let w,: Ay — R be the characteristic function of {«}. Then V is spanned by
the set of all functions v: A — R of the following form:

v= (nA(S)Wa)l_I ;s
ieS

where o € A ), and, for i € S, v; € Vj;,; the product is pointwise. It is, therefore,
sufficient to show that, for each fe F and each function v of this form, the function
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for A > Risin V. Put f=of 14, and let § € A. Since 7, fys) = fTas)> We have
6 fmas = o if and only if o7 45 = B.

Thus if én, # B then fv = 0. On the other hand, if 0m 4 = § then, for each
i€es, .

ofmp; = 6,(0n' f)v; = 5:(‘57‘A(S)7Tﬂffsyjfi)vi = 5;(1375‘:53)]:')”-‘ = 0igiv; = Omigv;,

where g; = Br4 f; € G, and so gw; € Vy, because Vi, is G-invariant.

Thus fv = (n45Wp) [ [ies mgiv:, which is in V, and so V is F-invariant.

(i) To see that R* is the direct sum of such subspaces, for each i € I we let H; be the
orthogonal complement of C; in W,. Now for each antichain S let

Ys=(.@ W)®(@H)®( & C).
ie A(S) ieS

ieI\A[S)

Then, since F acts orthogonally on R?, Y is the direct sum

@ (® M@V ® C)), (6.1)
JjeE, ieA(s) ies ieI\A(S)
where X is the set of families (j(i));.s such that, for alli € S, j(i) € ®;. Moreover, if X
is the subspace generated by {Y;: T is an antichain, T < A[S], and T # S}, then
Ysn X is the zero subspace. Thus the Yy generate their direct sum. Now, R is
spanned by vectors of the form w =(X); ., w;, where, for i € 1, either w; € H; or w; € C;.
Let S(w) = m({i € I: w; € H;}). Then S(w) is an antichain and w € Yg,,. Thus

R= @ Vs

antichains
S

(i)(b) and (iv). For each i e I, denote by m; the sum of the squares of the
multiplicities of the distinct inequivalent G;-irreducible components of H;. Let m and
mg be the corresponding sums of squares for the F-irreducible components of R* and
Y s respectively. Then Proposition 29.2 of Wielandt [16] shows that m; = | A;|, where
A; is as defined in §5; then, with Theorem D, it shows that

m= Y [[m. (6.2)

antichains ieS
N
Since R? is the direct sum of the F-subspaces Yy,

mz= Y mg, 6.3)

antichains
S

with equality if and only if, for S # T, no F-component of Y is equivalent to any
F-component of Y.

Let jkeZs If, for all ieS, the spaces V; and Vg afford equivalent
representations of G;, then the direct summands in (6.1) corresponding to j and k
afford equivalent representations of F. The sum of the squares of the numbers of these
F-equivalent direct summands is calculated to be [ [;.sm;. Since (6.1) gives Ys, we have

mg 2= [1m;, . 6.4)
ieS
with equality if and only if both each V is F-irreducible and there are no more
F-equivalences among the direct summands of (6.1) than those just described.
Now Equation 6.2 forces equality in Equations 6.3 and 6.4, and the result follows.
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Proof of Theorem E. If (G, A)) is 2-transitive then the orthogonal complement H; of
C; in W, is Girreducible. Thus, for each antichain S, the set X contains just one
element j, and so, by Theorem F, the subspace Y; defined above is F-irreducible.

For each antichain S, the subset A[S] is ancestral and m(A[S]) = S. For each
ancestral subset J, the subset m(J) is an antichain and A[m(J)] = J. Thus the maps
J — m(J) and S — A[S] are mutually inverse bijections. For each ancestral subset J,
let x, be the irreducible character of F afforded by Y.

If K is any ancestral subset of I, the permutation character Y, of F is afforded by the
subspace

Vk=R*® ®C..
ik
Applying Theorem F to the partially ordered set K, and then tensoring the result with
Rk C;, gives )
Vg = @ YS = @ Ym(J)»

antichains ancestral
SckK JEK

and so Yg = Yoo

ancestralJS K

From the point of view of the statistician, a permutation group (G, I') is useful only
if the centralizer algebra o/ of G in RT is commutative, or possibly if only the subset
& of symmetric matrices in this centralizer algebra is commutative (and so forms
a subalgebra) (see McLaren [8], and Speed, Bailey, Praeger, and Taylor [13]).
Denote the permutation character of (G,T") by ¢.

LeMMA 11. (1) g is commutative if and only if Y is multiplicity-free.
(il) Fg is commutative if and only if all irreducible quaternionic characters in  ; have
multiplicity 2 and all other irreducible characters in Y have multiplicity 1.

Proof. Part (i) is well-known (see Wielandt [16, Theorem 29.3]), whilst (ii) is a slight
modification of (i), and is proved by McLaren [8] and Speed et al. [13].

CorOLLARY TO THEOREM F. Under the hypotheses of Theorem F:

(i) p is commutative if and only if o ;, is commutative for all i € I;

(i) &r is commutative if and only if L, is commutative for all i € I and there is no
two-element antichain {i, j} such that Y, includes quaternionic characters and
Y, includes either non-real or quaternionic characters.

For example, if I is the two-element antichain {1,2} and, for i = 1,2, (G, A)) is the
regular representation of the quaternion group Qg, then &;, and ¥, are both
commutative but & is not.
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BALANCE IN DESIGNED EXPERIMENTS WITH ORTHOGONAL
BLOCK STRUCTURE

By A. M. HouTMAN AND T. P. SPEED
A. C. Nielsen and CSIRO

The notion of general balance due to Nelder is discussed in relation to
the eigenvectors of an information matrix, combinatorial balance and the
simple combinability of information from uncorrelated sources in an experi-
ment.

1. Introduction. This paper is about the notion of general balance (GB) introduced
by Nelder (1965) in two papers on designed experiments with orthogonal block structure.
Nelder defined (GB) as a relationship between the block structure or dispersion model for
the data and the treatment structure or model for the expécted value of the data. It
embodies and unifies three important and apparently unrelated ideas concerning designed
experiments: the usefulness of eigenvectors of the associated information matrices, the
combinatorial and statistical notions of balance, and the simple combinability of infor-
mation from different, uncorrelated, sources in the experiment. These ideas have been
discussed independently by a number of authors including Yates (1936, 1939, 1940), Sprott
(1956), Morley Jones (1959), Pearce (1963), Martin and Zyskind (1966), Corsten (1976)
and many others. We will review the work of these authors in Section 3 and relate it to
Nelder’s (1965) work.

Nelder (1965, 1968) has shown how a simple and unified approach may be adopted to
the analysis of multistratum designed experiments satisfying (GB), including the estima-
tion of stratum variances and the combination of information across strata. We summarise
these facts in Section 4 and also prove a useful supplementary result: that (GB) is not
only a sufficient but also a necessary condition (assuming known stratum variances) for
the simple recovery of all information on every contrast from every stratum in which it is
estimable. Our definition of (GB) is slightly different from Nelder’s in that we accommo-
date unequal treatment replications, but it has all the same consequences, and the broad
scope of the notion so defined is underlined by the fact that all block designs with equal
block size are then generally balanced (assuming the standard dispersion model). It will
be seen from our examples and the associated discussion that essentially all designs with
orthogonal block structure which have ever been recommended for use satisfy (GB). It
also provides a convenient basis for the classification of designs, one which is connected
with the simple and directly interpretable analysis.

Section 5 below is devoted to examples, beginning with the balanced incomplete block
design (BIBD) which is the prototype of all designs satisfying (GB). Instead of going on
to prove directly‘that partially balanced incomplete block designs (PBIBDs) all satisfy
(GB), we obtain the saime conclusion for their natural generalisations to more general
block structures. Following a brief discussion of some further examples, we close the paper
with a row-column design not satisfying (GB).

2. Basic framework.

2.1. Treatment structure. Our data will be viewed as a random array y = (¥i)ia
indexed by a set I of n = | I| unit labels and taking values in the vector space I = R'
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which has the inner product (¢ |d) = ¥ c;d; and squared norm | ¢ ||2 = {c| ¢). The models
we consider for 7 = Ey, termed the treatment structure, will all be linear, i.e. of the form

(2.1) Eye 7

where 7 C & is a linear subspace of Z In the theory of designed experiments
this usually arises as follows: we have a set 2 of v = | Z | treatment labels, a design map
x:1 > Z which assigns a treatment to each unit, and a design matrix X satisfying
XGu=1ifx(@)=u,i €I, u € Z, and = 0 otherwise. In this case 7 = Z(X), the
range of X, and r = Xa for some « € R% However none of the general discussion which
follows assumes that 7 arises in this way. The (unweighted) orthogonal projection of &
onto 7 will be denoted by T; if 7 = 2(X) then T = X(X'X)™'X".

A vector ¢ = (¢;) € “Z of constants satisfying ¥ ¢; = 0 is said to define (or be) a contrast;
if ¢ € 9, then c defines (or is) a treatment contrast. This usage arises because least-
squares estimation concentrates on the estimation of linear functions (¢|7) of r = Ey (¢
€ 7) based upon linear functions {(c|y) of the data. Thus the term contrast refers in
each case to the coefficients of these linear functions. In many analyses interest focuses
on treatment contrasts (t|7) defined by elements ¢ of specific subspaces of 7 ; for
examples, we refer to Section 5 below. When 7 = #(X) we say that simple treatment
contrasts are those elements t,, € 7 for which (t,, | 7) is proportional to a, — a,, 4, 0 €
Z , where Xa = 7.

2.2. Block structure. Following Nelder (1965) we use the term block structure to mean
the model for the dispersion matrix V = Dy, and all our models for V will have the form

(2.2) Dy € 7

where 2/ is a suitably parameterized set of positive semi-definite (p.s.d.) matrices. We
will say that we have orthogonal block structure (OBS) when 2 consists of all p.s.d.
matrices V(£) = Y. £.S., where &, = 0 for all @, and the {S,} are a family of known
pairwise orthogonal projectors summing to the identity matrix, i.e. S, = S’ = 8%, S.Ss =
SS.=0if a # B, and ¥, S, = I, the identity matrix. We call this representation of V(£)
its spectral form. In the theory of designed experiments such models usually arise in the
following way: there is a system {A,} of association matrices defined over the set I of unit
labels, and the dispersion matrix V = Dy has the form V = ¥, v,A, where {v,} is a set of
covariances varying freely subject only to the constraints ensuring that V is p.s.d. If the
matrices {A,} satisfy the requirements of an association scheme then there always exist
matrices P = (p..) and Q = (q..) of coefficients such that S, = (1/n) Y. g..A. satisfies the
properties listed above, and £, = ¥ P.«v. cOnstitutes an invertible linear reparametrization;
see MacWilliams and Sloane (1978, Chapter 21, especially Section 2) for definitions and
the results cited. Once more we remark that the general results which follow do not assume
that our orthogonal block structure arose in this way although in practice the vast majority
(block, row-column, split-plot designs etc.) do so. For example, any model 2° whose
elements have the form V = Y; 6;C,, where the {C;} are known symmetric idempotent
matrices which commute, will be a submodel of a model of the form (OBS) above as the
{C;} are simultaneously diagonalizable, but in general there will be more £s than fs.

Summarising, we will be supposing that our data y is modeled by (2.1) and (2.2) where
7 is a linear subspace of & and 2 satisfies (OBS). The subspaces &, = 2(S.) are
termed the strata of the dispersion model, the {S.} are strata projectors and the {£.} the
strata variances (for it is easy to see that DS,y = £.S.). Multi-strata designs are those
with two or more strata variances in the dispersion model.

2.3. Examples.

ExaMPLE 1. The data y from an experiment consisting of v treatments applied across
b blocks of k plots each are usually analysed under the mixed model
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(2.3) y=Xa+Zy+e,

where X and Z are the n X v and n X b treatment and block incidence matrices, respectively,
« is a v X 1 vector of treatment parameters, and v is a b X 1 vector of zero-mean block
effects having dispersion matrix o¢}I, uncorrelated with the n X 1 vector ¢ of errors which
have dispersion matrix ¢2I,.

The dispersion matrix associated with such a model is V = 6}ZZ’ + ¢%I,, and its
spectral form is

(2.4) V=4G+ &(B - G) + &(,. - B)

where G = n'11’ is the grand mean averaging operator (1 is the n X 1 vector of ones), B
= k™1ZZ’ is the block averaging operator, & = £, = ko} + ¢ and & = o> Note that here
we have the constraint £ = §&; = & > 0.

A randomisation maodel for y, see Nelder (1954), would generate a dispersion matrix of
the form (2.4).

In order to include both types of model, we will assume when analysing data from block
designs with equal block size (which are the only sort we consider) that So =G, S, =B —
G and S, = I — B defines our block structure satisfying (OBS). It will be simpler, and
necessary for most results, to assume £ > 0, £, > 0 and £ > 0 as well. 0

EXAMPLE 2. The data y from an experiment in which v treatments are allocated to
the n = rc plots of a row-column design consisting of r rows and ¢ columns are usually
analysed under the mixed model

(2.5) y=Xa+Zivi+Zyya+e

where X, Z; and Z, are the treatment, row and column incidence matrices, respectively,
and 71, v2 and ¢ are uncorrelated zero-mean vectors having dispersion matrices o2, ¢2I.
and oI, respectively.

This time the dispersion matrix of y is V = ¢2Z,Z{ + ¢2Z:Z3 + o2, and its spectral
form is

(2.6) V=4(G+LHR-G)+&C-GQ+H1-R-C+G)

where G = (r¢)™11’, R =¢"'Z,Z{ and C = r™'Z,Z}, &, = co? + ro? + 62, &, = co? + o2, &,
=ra? + o? and & = o> Again we have constraints: £ = £ >0, 5= 6>0and & =6 +
£ — &

A randomisation model for y would also generate a dispersion matrix of the form (2.6).
Accordingly we will analyse row-column designs below with S =G, S; =R -G, S;=C —
Gand S; =1 — R — C + G, a block structure satisfying (OBS). Again we will usually
assume that £ >0, £ >0, £, >0and £&> 0.0

2.4. Designed experiments. The design of an experiment, i.e. the actual allocation of
treatments to units, affects the least-squares analysis (under our model) of the data
generated through the relationships it determines between the treatment subspace .7 and
the strata subspaces {%}. For example, it is known that if T commutes with all the {S.},
then the analysis is easy; such designs are known as orthogonal designs, a class which
includes completely randomised, randomised block, latin square and split-plot designs.
For other designs, such as the balanced incomplete block designs (BIBDs), this commu-
tativity fails, and a more elaborate analysis is required. Nelder’s (1965) notion of general
balance (GB) describes a relationship between T and the {S,} which generalises, but in a
sense is no more difficult than, that which arises with a BIBD, and as a consequence we
find that essentially all designed experiments may be analysed in a manner almost identical
to that of a BIBD. Note that the {C;} of Nelder (1965) correspond to our }S.}. Before
giving any further details of these ideas, we devote the next section to reviewing the
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antecedents of general balance and clarifying its connections with similar notions which
have appeared since 1965. See also Bailey (1981) for a related discussion.

3. Eigenvectors, balance and simple combinability.

3.1. Eigenvectors of information matrices. It has long been known in linear regression
analysis that contrasts which are eigenvectors of the information matrix have special
properties which make inference concerning them particularly straigh. ‘. ward; the analogy
with principal components analysis explains why this is so. Howev. ' it appears that
Morley Jones (1959) was the first person to examine these ideas in so.-e detail in the
context of block experiments, and because of their relevance to general balance we will
summarise his results within the framework introduced in Example 1 of the previous
section.

Morley Jones analysed the data y under the “fixed block effects” model: Ey € 7 + 4,
Dy € 2 where 2 = #(B) and 2 = {¢2[:¢* > 0}, and he concentrated upon the intra-
block analysis, i.e. that using the reduced data By (B = I — B) consisting . f the observations
adjusted by their block means. Clearly EBy € B.7 and DBy € B %/B, and the task of
minimising | By — Br |2 over 1 € 7 is equivalent to solving the reduced normal equations
(“eliminating blocks”):

TBTr = TBy

for r € 7 In this context the eigenvectors and eigenvalues of the information matrix
TBT are likely to be of interest. (In fact Morley Jones studied a closely-related matrix
with the same eigenvectors but eigenvalues one minus those of TBT.) He made the
following observations: (a) an element t € 7 is an eigenvector of TBT iff there exists a
constant k such that for allu € 7 (u| (B — G)t) = k(u| Bt); (b) if one of two orthogonal
treatment contrasts ¢ and u is an eigenvector of TBT, then their inter-block components
Bt, Bu (resp. intra-block components Bt, Bu) are also orthogonal; (c) the best linear
unbiased estimators (BLUEs) of contrasts (¢ | 7) defined by eigenvectors of TBT are easy
to compute, as are their precisions, and these are related to the corresponding eigenvalue;
(d) the eigenvalues of TBT are directly related to the Fisher efficiency factors describing
the relative loss of information occurring by restricting attention only to the intrablock
analysis; and (e) normalised contrasts defined by eigenvectors of TBT corresponding to
the same eigenvalue are estimated with the same precision; in particular, all contrasts are
estimated with the same precision in BIBDs.

Although not explicitly referring to eigenvector contrasts, similar ideas can be found
in Kurkjian and Zelen (1963). Their “property A” is equivalent to the spectral decompo-
sition TBT = 34 A\sTs where the {T;} are the orthogonal projections decomposing 7 into
subspaces { 9} corresponding to main effects and interactions in a factorial experiment
laid out in blocks. Their conclusions included (c) above, with the BLUE of (s} ) based
upon By being A\;'{t;s | By) for an arbitrary t; € 7, having variance ¢2\5' || ¢; |2, and they
observed that BLUEs of contrasts defined by elements of the different subspaces { .7;} are
uncorrelated (cf. (b) above). They also applied their results to other types of incomplete
block designs including group divisible and direct product designs. A further paper, Zelen
and Federer (1964) extended the same ideas to row-column designs, but still only in the
context of the lowest stratum analysis, i.e. that based upon (I — R — C + G)y; cf. Example
2 above.

In Pearce, Calinski and Marshall (1974) the eigenvectors of TBT are called “basic
contrasts”, and these authors note that those with eigenvalue 1 can be estimated with full
efficiency in the intra-block analysis, those with eigenvalue 0 are “totally confounded”
with blocks, whilst the remainder are “partially confounded”. They recommend that the
spectral decomposition of TBT be used by experimenters to ensure that the design permits
contrasts of particular interest to be estimated with maximum efficiency in the intra-
block analysis.
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Corsten’s (1976) canonical analysis is also equivalent to the spectral analysis of TBT.
He calls the eigenvectors (with non-zero eigenvalues) “identifiable contrasts” and views
the corresponding eigenvalues as the squared cosines of the canonical angles between the
subspaces .7 and " the orthogonal complement of #; the same geometric approach is
used by James and Wilkinson (1971).

3.2. Balance. BIBDs were introduced by Yates (1935) as incomplete block designs
with equal block sizes, equal replications, and having the combinatorial property that
every pair of distinct treatments appeared together in a block the same number of times.
It followed that simple treatment contrasts were all estimated with the same precision,
and as a consequence, that normalised treatment contrasts were also estimated with the
same precision. Thus combinatorial balance was related to the property of sets of contrasts
being estimated with the same precison.

Generalised forms of these ideas appeared soon afterwards: PBIBDs were introduced
by Bose and Nair (1939); designs with unequally replicated treatments having a restricted
form of balance were studied by Nair and Rao (1942); designs with supplemented balance
by Hoblyn, Pearce and Freeman (1954), and Pearce (1960, 1963). Morley Jones (1959)
continued this line of development.

Balance in block designs was first linked to the spectral properties of the intra-block
information matrix (or a closely related matrix) by V. R. Rao (1958) and Morley Jones
(1959). The latter proved that a block design is balanced with respect to a set of treatment
contrasts iff those contrasts span a subspace of an eigenspace of TBT. The combinatorial
aspects of balance are reviewed in Raghavarao (1971), although we will see that the
approach through general balance is more relevant to the problem of analysing data from
an experiment with a design exhibiting the given type of balance.

3.3. Simple combinability. The term recovery of interblock information has come to
mean the double task of estimating the relevant strata variances and the calculation of
weighted combinations of the inter- and intra-block estimates (where this is appropriate)
of a given treatment contrast. Following earlier work with cubic lattice designs, Yates
(1939), Yates (1940) showed that the overall (weighted least squares) BLUE of any
treatment contrast in a BIBD was the linear combination of its BLUE calculated using
the intra-block data (I — B)y and that calculated using the inter-block data (B — G)y,
each weighted inversely according to its variance. We shall call this result, which assumes
that the strata variances are known, the property of simple combinability, which is valid
for all contrasts in a BIBD. Yates also gave a method of estimating the usually unknown
strata variances from the anova table.

Conditions on a design which ensure the simple combinability in PBIBDs of certain
sets of treatment contrasts were described by Sprott (1956) in a paper which gave great
insight into the rrelation between combinability and combinatorial balance. In particular
Sprott showed that the property of simple combinability holds for all contrasts in a PBIBD
only if the design is actually a BIBD. This and other results along the same lines are
special cases of a general theorem proved in the next section.

A link between the spectral properties of TBT and simple combinability in an incom-
plete block design was established by Zyskind and Martin (1966), who showed that a
treatment contrast is simply combinable iff it is an eigenvector of TBT. Thus these three
topics: the eigenspaces of TBT, balance, in either the combinatorial sense or in the
statistical sense of contrasts being estimable with the same precision, and simple combin-
ability are all seen to be intimately related. With this introduction to general balance we
now turn to its definition and study.

4. General balance. As we have explained in Section 2 above, our model for the
data y = (¥:)ier associated with our designed experiment is given by (2.1) Ey € 7 and
(2.2) Dy € 2 where  C & is a linear subspace and 27 = {V(§):V(§) = Y. £.S.,
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£, > 0 for all o} is a dispersion model satisfying (OBS). General balance is a structural
property relating 7 and the strata { ).

4.1. Definition of (GB). We say that a design with (OBS) defined by {S.} and
treatment structure 7 is generally balanced with respect to the decomposition 7 =
®; 7 or just generally balanced if there exists a matrix ()\,s) of numbers such that for
all o

(GB) TSaT = ZB AaBT&

where the {T}} are the orthogonal projectors onto the subspaces { 7). It is clear that (GB)
is equivalent to the requirement that the matrices {7'S. T} are simultaneously diagonali-
sible, with the { 7} as their common eigenspaces. Another equivalent form is the following:
there exists numbers (\,s) such that for all o, 8 and 8’

_ AaﬁTg if ﬁ = ,3’,
TpS8:Ty = {0 otherwise.

Since the {S.} and {T}} are all projectors, we must have 0 < \; < 1 for all « and §, and
it follows from Y. S. = I that for all 8, Y. A.s = 1. A statistical interpretation of the A,z
as efficiency factors will be explained in Section 4.3 below, and we refer-to Fisher (1935)
for the first use of such a two-way array. Orthogonal designs are just those for which each
Agis O or 1.

4.2. Overall analysis assuming (GB): known strata variances. It is well known that the
BLUE of r = Ey based on y is given by the solution 7 € 7 of the normal equation

(NE) TV'Tr = TV™y;

equivalently, that it is given by 7 = Uy where U = PY% is projection of & onto 7
orthogonal with respect to the weighted inner product (c|d)v := (c| V7'd). Yet one
further statement of this (Gauss’s) result is the following: {t|7) is the unique BLUE of
(t|7)foreveryt € 7

Now TV™'T = ¥4 3T, under (GB), where we write v, = ¥, A.s£2", and so the unique
matrix inverse of TV~'T on the subspace .7 is Y v3'Ts. Consequently the solution 7 =
Uy of (NE) is given by

4.1) U= Yus Washad TS

where we have written w.s = v3"£."\.s. This expression is called the weight for the
treatment term B within stratum «, a name which we will shortly justify. Here and later
all summations involving A7} will be restricted only to those « or 8 for which A,z > 0.

As we have already observed, the unique BLUE of (t| ) for t € 7 is (t| ) and by
(4.1) this is just

“4.2) (L) = Tap Waphab(t] ToSuy)
with variance ¥ v3' | Tst |2 If t = t; € F, the BLUE simplifies to
(4.3) (gl 7) = Yu wapAZi{ts | Say)

with variance v3' || ;|| 2.
Finally, the covariance between two BLUEs (¢, | 7) and (t,| 7) is just
Zs v3 (Tpty | Totz),

andif t, € %, t, € Jy, 8 # B’, this reduces to zero.
" It is clear from the above that as long as the strata variances are known (up to a
common scalar multiplier) and we can readily effect the projections {S.} and {T}}, the
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weighted least squares analysis of data from a designed experiment with generally balanced
block structure is particularly simple. We will deal with the problem of unknown strata
variances in the next subsection and in Section 4.5 below. On the issue of the ease of
calculation and computation of the projections we can say this: the {S,} are commonly
built up from simple averaging operators such as G and B in Example 1 or R, C and G in
Example 2 above, and rarely give any difficulties. The common decompositions {7}
relative to which designed experiments satisfy (GB) are also of this form, although there
are some that are quite different, and in general the problem is not: “how do we compute
the projections {T};}?” but: “how do we discover them?” This is essentially a combinatorial
problem, which needs to be done for each new design or class of designs. The usual
mathematical skills (trial and error, ingenuity, etc.) help, as does the occasional computer-
aided spectral analysis, and it is only the broader classes of block designs for which general
solutions are unavailable; see Section 5.4.

4.3. Within strata analysis assuming (GB). A reduction of the full data y to its strata
projections S,y permits analyses within strata without knowledge of the strata variances,
for ES,y € 8.9 and DS.y = £,.S.; in particular, the dispersion matrix of S,y is known
up to a scalar, and this is adequate for the usual least-squares analyses.

The least-squares fitted value J. of y in stratum a is J. = Ps 7y, the unweighted
projection of y onto S,,.7, unweighted because the subspace S, 7 is invariant under DS,y
whence unweighted and weighted projectors coincide. The normal equation within % is

(NE,) TS . T+ =TS.y
and its solution 7, = U,y is given by (cf. Nelder (1965) equation 3.3)
(4.4) Uey = T Nas ToSay

where the sum is only over those 8 for which A.; > 0. We can readily prove that Ps_, =
S, U,. It follows from (4.4) that the unique BLUE of a contrast (¢ | 7) which is estimable
in & (i.e. for which there exists a BLUE based on S, y) is

(4.5) (t] 7o) = o NG (Tt | Say)
with variance &, Ys Ao || Tst l|2. If t = t; € J; the BLUE simplifies to
(4.6) (] 7a) = Nai(ts| Sey)  (provided A,z > 0)

with variance A\ 3¢, [ £s11%, and if A\,s = O then no contrast (ts|7) is estimable in &.
Finally, we remark that the covariance between two BLUEs (¢, |7.) and (t|7.) is
£ Ts ANop(Tsts | Tste) and if t, € G, t, € Fpr, B # B, this again reduces to zero.

There are a number of points in the formulae above and in the corresponding ones in
the previous sub-section which are worth noting. First, it is clear from both (4.6) and (4.3)
that estimation is especially simple for contrasts which are eigenvectors of all the
information matrices TS, T, cf. Section 3.1 point (c). Secondly, BLUEs of contrasts from
distinct (common) eigenspaces of the T'S,T are orthogonal, cf. Section 3.1 point (b), and
so the BLUESs of contrasts (¢ | 7) for arbitrary ¢t € 7 are sums of the uncorrelated BLUEs
of (Tst|7) which have the simple form. And finally, the overall BLUE (4.3) of (5| )
for tg € F is quite clearly the simple combination of its BLUEs (4.6) in each stratum in
which it is estimable, each weighted inversely according to its variance: (ts|7)
= Y. wes(ts| 7o). This justifies our use of the term weight for w.s introduced following
equation (4.1). Similarly we can compare the variance of (i;|7.) to that of (t;| 7) when
the &, are assumed equal, and see why A\ is termed the efficiency factor for treatment
term g in stratum e, cf. point (d) in Section 3.1.

In a sense there is no single analysis of variance table which summarises all aspects of
the least-squares analysis of a designed experiment satisfying (GB), but rather one for
each stratum and one overall. See Table 1, the anova table within stratum «. Examples of
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TABLE 1
Anova table within stratum a

Source df. Sum of squares E{Mean square}
Treatment term 7 . - 2 Aag 2
g a0 dim % A3 TaS.y | AL

Residual d,:By difference By difference £, (ifd,>0)
1 1
may be zero
Total dim %, I1S.y?

.

designs with residual degrees of freedom d, = 0 in some strata are quite common, e.g.
symmetric BIBDs, double, triple, - - - lattice designs, rectangular lattice designs all have
zero residual d.f. in the inter-block stratum, and the best general way to estimate £, is
certainly not via the anova table for stratum «. For further comments on the estimation
of £,, see Section 4.5 below.

4.4. Simple combinability: a converse to (GB). We now prove a result asserting that
under certain general circumstances, if a set of contrasts spanning .7 is simply combinable,
then the design satisfies (GB). The following lemma has its straightforward proof omitted.
Our framework is that of Section 2.4 without assuming (GB).

LEMMA. If the treatment contrast {t| ) is estimable in stratum o, then there exists a
unique c, = c,(t) € 2(S.T) such that Tc, = t. Furthermore, the unique BLUE of (t|7)
based on S,y is then (c,| y).O

PROPOSITION 4.1. Let (t|7) be a treatment contrast such that for each stratum %, it
is either estimable in or orthogonal to %, and suppose that there is a set {w.} of non-
negative weights summing to unity such that

4.7 (t]7) = Ta walea|y), (yE D)

where (c. | y) is the BLUE of (t| ) based on S.., if (t|7) is estimable in ¥,, and w, =0
if t is orthogonal to &,. Then for all a, t is an eigenvector of TS.T with eigenvalue \, =
£l T Eala) "

PROOF. ‘It is not hard to prove that the transpose U’ of U = PY% coincides with
V-UV. It follows from equation (4.7) that VUVt = ¥, w.c, and so

4.8) UVt = (Za £Se)(Ta WeCe) = T £alWaCa-
Now TU = U and since Tc, = t for all «, (4.8) implies

(4.9) UVt = (3. Ewa)t.

On the other hand, (4.8) also implieé that S, UVt = £,w.C., and so
(4.10) TS UVt = Ew,.t.

The conclusion now follows from (4.9) and (4.10).0

Now let us suppose that the subspace .7 has a basis consisting of vectors ¢ satisfying
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the hypotheses of Proposition 4.1. Then for each such ¢ there is a set {\..} eigenvalues,
and we can obtain a pairwise orthogonal system { .7} of subspaces of 7 by grouping
together all ts with a common set of eigenvalues, say {A.s} for each ¢t € ;. It is clear that
the system { 7} forms a complete set of eigenspaces common to all the matrices {T'S,T'}
and also that 7 = @; ;. Thus we can obtain the following converse to (GB) implying
equation (4.1).

PROPOSITION 4.2. If there exists an orthogonal decomposition 9 = ®; Jsof 7 and a
set {wks} of weights such that for all V € 2 the projection U onto 7 orthogonal with
respect to (- | -Yv is U= Y. s w¥TsS,, where wkst, is independent of a, then the design
satisfies (GB) with respect to { Z3}.0

The proof will be omitted; it can be found in Houtman (1980). A stronger result can be
obtained when there are only two effective strata, i.e. 2/ is spanned by S, = G, S,, Ss; for
this case the hypothesis “for all V€ 2” in Proposition 4.2 is not required, as one suitable
V leads to the same conclusion.

4.5. The estimation of strata variances under (GB). We remarked in Section 4.3 above
that the residual operator R, = S, — Ps_.- in stratum « may be zero, equivalently, that d,,
=tr R, = dim % — Y {dim 9;:\.s > 0} may be zero. The reason for this is not hard to
see: if 0 < A s < 1, then treatment term T} is being fitted and its full d.f. dim 7; removed
not only in stratum «, but also in one or more other strata in which it is estimable. In a
sense we should only remove that fraction w.s(dim %) of the d.f. corresponding to the
amount of information on % in %, and the approach of Nelder (1968) amounts to just
this.

More precisely, Nelder’s approach is based upon equating the observed with expected
mean square of the actual residual S.(I — U)y = S,Uy in stratum « rather than doing so
with the apparent residual R,y as is done if only the anova table is consulted. To illustrate
the difference between the two we cite the following without proof:

LemMAa () [|S.Oyl?=[R.y|*+ || (Ps,> = S.U)y|*
(i) di=tr(S,0) =d.+ ¥ (1 — ws)dim ;.
(ili) When every treatment term is estimated in one of two strata, « and a’ say, then
| (Ps,. — Sy ? = T warphas | Apy |I?

where Agy = A3TpS.y — A TSy is the difference between the estimates of treatment
term (3 in the two strata, and a similar equation holds with the roles of a and o’ reversed.ll

Now both U and d involve the weights {was} so if we are to make use of the identity
E||S.Uy|? = d.£. in estimating £, an iterative approach must be used. We proceed as
follows: '

(0) Begin with initial estimates {£®} or {w %3} of the strata variances or weights,
possibly making use of the strata anova tables;

(1) Given a set {£.} and {w.s} of working estimates of the strata variances and weights,
calculate U and d/, and obtain revised estimates {£}} by solving for {£.} in
(411) ” SnUy "2 = Eadn;: o= 01 1’ MR

It is interesting to note that equation (4.11) is in fact the likelihood equation for {£,}
based upon || (I — T)y||? under the assumption that y has a multivariate normal distri-
bution, see Patterson and Thompson (1971) for details. The information matrix corre-
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sponding to these restricted ML estimates {£.} under normality has elements

_m{azlog l} _ 1 {[dn + 35 (1= wdim F)] if «=a’
35«5«' gaEa’ [Zﬁ wnﬁwn'ﬁ(dim %)] lf a F a’

where the sums are over all 3 for which A, (or A,-s) > 0.

4.6. Inferential difficulties under (GB). Even when a designed experiment with or-
thogonal block structure defined by the strata { <%} and treatment structure { 7} satisfies
(GB), there remain difficulties with estimation and testing the model.

Although the formula (4.1) gives a precise expression for 7 when the strata variances
{t.} are known, these considerations no longer apply when we use the estimates {£.}
obtained as in Section 4.5. The general problem of combining information on a common
mean when the weights require estimation has a large literature; see Brown and Cohen
(1974) for a general discussion and further references. In some of these papers the problem
of combining information on treatment contrasts in BIBDs is considered and it would be
of interest to extend these conclusions to multi-strata designs with a number of treatment
terms.

A second difficulty arises when the analyst wishes to test the hypothesis Ty = 0 for
some (3, say under a normality assumption. This can be done by an F-test in every stratum
a for which A, > 0 and the stratum residual d.f. d, > 0, and although such tests would be
independent, there appears to be no accepted procedure for combining the tests into a
single one. On the other hand, an overall test might be sought, fitting to .7 first and then
to the orthogonal complement 7 © 7, of 9;in .7 which still satisfies (GB). The problem
here is the fact that the likelihood ratio test for such hypotheses does not appear to have
been studied when information concerning .7 resides in more than one stratum.

Both of these problems would seem to warrant further research. Until straightforward
exact or approximate solutions are found, most analysts will follow Yates (1940) and
others in substituting the estimated weights into (4.1), and testing hypotheses Ts7 = 0 in
the stratum a for which A, is largest.

5. Examples.

5.1. BIBDs. The basic notation for block designs was introduced in Section 2.3: b
blocks of k plots each, and the term balanced means that the v = k different treatments
are applied to the plots in such a way that each pair of distinct treatments appears together
in a block the same number of times, A say. The strata projections are G, B— G and I —
B, all derived from simple averaging operators, whilst the treatment decomposition T'= G
+ (T — G) is similarly straightforward. We readily find that

(5.1) TGT=G, TB-G)T=¢é(T-G), TU-B)T=e(T-G)

where e = (1 — k7')/(1 — v™') = 1 — é is the efficiency factor of the design; Yates (1936).
The computation which establishes the (GB) conditions most easily is the checking that
(T — G)B(T — G) = é(T — G) by applying (T — G)B to a simple contrast t,,; in this form
it is nothing more than checking the balance condition.

The overall BLUE of a treatment contrast (¢|z) is given by (t|7) = £r'(ét1" +
et Wt (B — Q)y) + Ez'(éert + egz')!(t| (I — B)y), the correctly weighted linear
combination of the inter- and intra-block BLUEs é~'(¢t| (B — G)y), and e™'(¢t | (I = B)y),
respectively.

When we turn to the estimation of £ and &, we note that the residual d.f. d, = (b — 1)
— (v — 1) in the inter-block stratum is usually small and is zero if v = b. Nelder’s iterative
method or its Fisher scoring variant can be used with initial values £{® = ¢ =d;' | R,y ||?
ond, = b(k — 1) — (v — 1) d.f. from the intra-block stratum. The only quantities needed
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for this calculation are the residual arrays
Riy=B-Gy-¢'B-QATB-Gy
R,y = By — e 'BTBy
and the array of differences of effects estimated in the two strata:
Ay =¢é'T(B — G)y — e™'TBy.

The procedure generally converges quickly, and gives estimates which are close, although
not identical, to those given by Yates’ (1940) method based on anova tables, and the
statistical properties of these estimates appear (by simulations) to be very similar to those
of Yates’ estimates.

5.2. A natural generalisation of PBIBDs. PBIBDs were introduced by Bose and Nair
(1939) as generalisations of BIBDs and have been the subject of much study since then,
mostly devoted to combinatorial aspects of the designs because the combinatorial objects
now known as association schemes were first defined in this context, see MacWilliams and
Sloane (1978) and Raghavarao (1971). The standard reference on the analysis of PBIBDs
seems to be Clatworthy (1973). The idea behind PBIBDs is quite simple: where it is not
possible for every pair of distinct treatment to be together in a block the same number A
of times, the pairs are partitioned into association classes forming an association scheme
so that this can hold within classes, and the single number A is replaced by a family A,
Az, - - - of numbers, one for each association class. Our generalisation carries this idea over
to more general block structures than just blocks and plots such as nested BIBDs; Preece
(1967).

Let us suppose that the orthogonal block structure of our design arises from a dispersion
model based upon an association scheme {A,} over the set I of unit labels as described in
Section 2.2. That is, the strata projections {S.} are given by S, = (1/n) ¥, ¢..A. where @
= (g..) is a matrix of structure constants. The association matrices {A.} are defined in
terms of the strata projections by A, = Y. PaaS. where P = (p,,) is the “inverse” matrix
of constants: PQ = QP = nl.

Similarly we suppose—as is customary with PBIBDs—that there is an association
scheme {B,} defined over the set Z of treatment labels, see Section 2.2, with co;responding
orthogonal projectors {T'} given by T's = (1/v) 3 GusBs, where @ = (dys) and P = (py,) are
the appropriate matrices of structure constants.

DEFINITION. A design map x:I — & is said to be ({A.}, {B,})-balanced if for all
association classes a over I and b over 2 and u,, u, € Z with By(u,, us) = 1, the number
H(, j) € I X LA, j) =1, x(i) = w1, x(j) = u,} | depends only on b and not on the pair
U1, U, chosen. If we denote the number (of concurrences) in this definition by n,, then,
recalling the design matrix X introduced in Section 2.1 above, we see that an equivalent
form of the definition is: theére exists numbers n,; such that for all a we have

(5.2) X'A.X = Y naBs.

In particular if we consider A. and B, where e represents the identity association, we find
that n.. = r defines the common replication number for the treatments of our design.

PROPOSITION 5.1. An experiment with block structure arising from an association
scheme {A,} over the set I of units, and having a design map which is ({A.}, {By})-balanced
with respect to an association scheme {B,} over the set & of treatments, satisfies (GB). In
notation introduced above, the treatment decomposition is given by {Ts} where Ty =
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r'XTyX’, and the matrix A = (Aep) of efficiency factors is given by
Aeg = (rn)™" Ta Tb GaaltabDeb

where n = (nq) is the matrix of concurrences.

PROOF. We begin by noting that T'= r~*XX’. Then for all «

TS.T =n""' ¥4 quTA.T (definition of S,)
= (r’n)" ¥, gu X(X'A. X)X’ (definition of T')
= (r’n)™" Yo T Quana XBp X' (by (5.2))

= (r*n)™" Yo Yo X Qualtas Do XTs X’  (definition of T;)
= Y5 {(rn)™" Ta Tb GualasPes} T (definition of T})

and the assertion is proved.

EXAMPLE 1. It is not hard to see that a BIBD is built over an association scheme on
its units with associations which can be labeled e (equality), 1 (same block but different
unit) and 2 (different block), whilst its treatments have the trivial association scheme
with associations e (equality) and 1 (inequality). We readily find that (rn)'Q'nP’ takes
the form

1 11 r 0 L1 1 0
)™ b—-1 b-1 -1 0 A _1 4l= 0 1—-e
bk—-1 =b o0 llrc-1 r2=2J? 0 e

making use of the relations r(k — 1) = A\(v — 1) and rv = bk = n.

EXAMPLE 2. Kshirsagar (1957) gave the very interesting 6 X 6 row-column design
with 9 treatments A, B, C, D, E, F, G, H, I shown in Table 2. Let us consider the
association scheme defined on the treatments by imposing a row-column pseudo-structure
on them as shown in Table 3. If we let e, 1, 2 and 3 denote the associations of equality,
same row (but unequal), same column (but unequal) and different row and column for
both schemes, then we have what is shown in Table 4, with a similar result holding for
X'A; X by differencing, since A, + A, + A; = J — I, where J is the matrix of all 1s. These
clearly satisfy our balance condition with matrix n = (n.) of concurrences, shown in
Table 5. With these preliminaries we can readily get P and @ and calculate the matrix A
= (A,s) of efficiency factors; this turns out to be as given in Table 6.

For many further such designs see Preece (1968, 1976) and Cheng (1981a, b).

TABLE 2 TABLE 3
Treatment allocation to 36 units with a 3 X 3 row-column pseudostructure
6 X 6 row-column block structure on 9 treatments

A B C

BID/H|G|F|C DETF

CIE|G[B|D|I G H I
E{F|CIA|G[H
DI'T|A/H|C|E
FIG|I|E|A|B
A/HIB|D|I|F
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TABLia 4
A B C D E F G H I
0 2 2 2 3 3 2 3 3 A
0 2 3 2 3 3 2 3 B
0 3 3 2 3 3 2 C
0 2 2 2 3 3 D
X'AX= 0 2 3 2 3 E
by symmetry 0 3 3 2 F
0 2 2 G
0 2 H
0 1
A B C D E F G H |
[ o 3 3 3 2 2 3 2 2 A
0 3 2 3 2 2 3 2 B
0 2 2 3 2 2 3 C
0 3 3 3 2 2 D
X'AX= 0 3 2 3 2 E
by symmetry (1] 2 2 3 F
0 3 3 G
0 3 H
0 I
TABLE 5
e 1 2 3
4 0 0 O e
n= 0 2 2 3 1
0 3 3 2 2
12 11 11 11 3
TABLE 6
Treatment pseudo-factor gm r ¢ r-c
1 0 0 0 Grand mean
_ 10 Y Y 0 Rows
A= 0 0 0 s Columns Block stratum
0 % s s Rows - Columns

5.3. Suppleémented balance and related notions. Pearce (1960) described a class of
block designs possessing what he termed supplemented balance, and later Pearce (1963)
extended the notion to row-column and more general designs. A typical example is a
BIBD consisting of b blocks of k& plots each and a standard balanced allocation of v
treatments, which is supplemented by the addition of an extra plot to each block to which
a control is applied. The resulting block design has b blocks each of k + 1 plots and v + 1
“treatments”, but is readily found to satisfy (GB) for the “treatment” decomposition

(5.3) T=9® I,

where ¥ = 2(G), 7, is the (v — 1)-dimensional space of contrasts amongst the v original
treatments, and 7, is the 1-dimensional subspace spanned by the contrast comparing the
control to the average of the original treatments. This contrast is estimated with efficiency
1 in the intra-block stratum, whilst the contrasts in 7, are estimated intra-block with
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efficiency e* where 1 — e* = k(k + 1)7'(1 — ¢), e being the efficiency factor of the original
BIBD.

A similar analysis holds for block designs which only satisfy (GB) with more compli-
cated treatment decompositions, and also for row-column and other designs with supple-
mented balance: in these cases 7, is replaced by the direct sum of the terms relative to
which the original (unsupplemented) design satisfied (GB).

Pearce’s block designs with supplemented balance are a special case of a class of block
designs introduced by Nair and Rao (1942), which are themselves a variant on those
described in the previous sub-section. They are analogous to PBIBDs with group-divisible
association schemes defined on the treatments, but do not necessarily have equal group
sizes, in which case they do not define an association scheme. Despite this fact, even when
the group sizes are unequal the line of argument used in Proposition 5.1 carries over. We
illustrate the results with the case of two groups, as discussed in Nair and Rao (1942),
supposing that there are v, “rare” treatments each replicated r, times, and v, “frequent”
treatments each replicated r, times. Each pair of “rare” (resp. “frequent”) treatments
occurs together in the same block n,; (resp. ng.) times, whilst pairs of treatments one of
which is “rare” and the other “frequent” occur together in a block n,; = n; times. It is
easy to establish that such designs are balanced with respect to the treatment decompo-
sition

T=9® 906 %0 7

where 9 (resp. %) is the space of dimension 7; — 1 (resp. n, — 1) spanned by contrasts
between the “rare” (resp. “frequent”) treatments, and .7, is spanned by the single d.f.
contrast comparing the average of the “rare” treatments with the average of the “frequent”
treatments. The array of efficiency factors is shown in Table 7.

5.4. Designs satisfying (GB). Nelder (1965) observed that most of the common designs
in use satisfied his definition of general balance. With our extension (GB) to designs in
which treatments are not necessarily equally replicated, we can go further and assert that
all block designs (with equal block sizes, and the usual dispersion model) satisfy (GB),
since it is quite obvious that TGT, T(B — G)T and T(I — B)T all commute. All row and
column designs which we have seen in the literature satisfy (GB), see Kshirsagar (1957),
Pearce (1963, 1975), Zelen and Federer (1964a) for examples, and so also do all designs
known to us with orthogonal block structure having three or more strata.

Knowing that a block design must satisfy (GB) is one thing; having explicit expressions
for the orthogonal projections {T}} is quite another matter. There are a very large number
of types of PBIBDs, and although it is generally not difficult to describe the structure of
their Bose-Mesner algebra, see MacWilliams and Sloane (1978, Chapter 21), and hence
obtain the {T},}, most writers in statistics have not taken this viewpoint. Corsten (1976)
is an exception,

For classes of block designs which are not PBIBDs, other methods must be used; the
details concerning rectangular lattice designs, linked block and a number of other classes

TABLE 7
Treatment 1 2 c Stratum:
term:
1 0 0 0 grand mean
A=1]o0 rn—nn g — Ny rir; — by blocks
kry kry riry
r(k —1) + ny ralk — 1) + naos bni
0 k=27 = - = —_— plots

kry kry rir
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are available on request. Recently the class of a-designs was introduced, Patterson and
Williams (1976), these being obtained in a particularly simple way from a basic generating
array. This class seems to be so large, including BIBDs, PBIBDs, square and rectangular
lattice designs as well as many others, that it does not seem to be possible to give a general
description of the subspaces { .7} relative to which the designs satisfy (GB). However this
should be regarded as a challenging unsolved problem.

5.5. Designs not satisfying (GB).

A black sheep. Although all block designs satisfy (GB) this is not necessarily the case
for row-column designs as the following 4 X 4 example with four equally-replicated
treatments is shown in Table 8. To see that (GB) fails, one simply notes that the contrast
which compares treatment 1 with the average of treatments 2, 3 and 4 is an eigenvector
of T(C — G)T (notation as in Section 2 above) and not of T(ﬂ -Qo)T.

Other designs. Some designs in common use which may not satisfy (GB) are those in
which repeated measures are taken on a number of units, when both time (e.g. periods)
and subjects (say) are assumed to contribute to the dispersion model, i.e. are regarded as
“random effects”, and “residual” as well as “direct” treatment effects are included in the
model, see Cochran and Cox (1957) for a general discussion. The problem here is that
there are no residual effects applying to the first period. In general both time and subjects
are regarded as “fixed”, in which case no problems arise because the dispersion model is
then trivial.

Another class of designs whose structure and accepted analysis does not satisty (GB)
is the class of so-called two-phase experiments, McIntyre (1955, 1956), Curnow (1959).
The explanation here appears to be simply the amount of structure in the experiment.

5.6. Concluding discussion. Throughout this paper we have discussed the notion of
balance and its generalisations from a purely theoretical point of view, focusing upon
contrasts with particular mathematical properties. It has not been our concern whether
these contrasts are natural, or of possible scientific interest, although this is clearly the
case in many common examples.

The designer of an experiment has a quite different perspective. Amongst other things,
he tries to ensure that contrasts of primary interest are estimated with as high a precision
as possible, subject to the constraints imposed by the experimental material. It by no
means follows that he should always design his experiment so that such contrasts are
eigenvectors of all the {T'S.T} of Section 4.1; indeed in many cases this is impossible.

If a designed experiment with orthogonal block structure satisfies (GB), then the
coarsest decomposition .7 = @ 7; with respect to which it does so is uniquely defined by
the design. Other decompositions of 7 which satisfy (GB) can only arise by further
decomposition of the individual { 7} in the coarsest one. When the designer is able to
arrange that all of the subspaces { .7} consist of contrasts of interest, the analysis of data
from the experiment and the display of the results will be particularly straightforward;
examples here include BIBDs and the designs of Section 5.3. In general, however, not all

TABLE 8
Design not satisfying (GB).
2 111 1
1133
2 24713
414413
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contrasts of interest will belong to one of the 7, and it will be necessary in the analysis
to use the more complicated formula (4.2) involving the projections {7%}; examples here
include unbalanced lattice designs.

A final point concerning the subspaces {.%} in (GB) is worth making. Even when they
do not consist of contrasts of scientific interest, they are frequently recognisable as arising
from a pseudo-structure on the treatments, i.e. an artificial view of the treatments relative
to which the {7} are natural or interpretable. Examples here include many PBIBDs,
most lattice designs and Example 2 of Section 5.2. The most general design satisfying
(GB)—and we need go no further than block a-designs to find examples—involves a
decomposition of 7 into subspaces { %3} which have neither scientific interest nor any
natural or interpretable structure, however we care to view the treatments. Qur general
theory applies to such designs, although it may be an affront to some to describe them as
balanced in any sense. We hope that our readers will appreciate the value of tracing the
path from balance in BIBDs through to the notion of general balance, and conclude that
the unity of outlook achieved outweighs any terminological problems met along the way.
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Summary

Building upon early work of E. A. Cornish we show that G. N.
Wilkinson’s version of Yates’ approach to the analysis of designed
experiments with a single error stratum carries over completely to
designs with an arbitrary non-singular covariance matrix, initially
assumed known. We show that the equations, corrections, adjustments
and algorithms all have their more general analogues and that these
can be solved, computed or executed quite readily if the design has
orthogonal block structure and satisfies Nelder’s condition of general
balance. The results are illustrated with a split-plot and a simple
(square) lattice design.

1. Introduction

The problem of analysing designed experiments with incomplete
data—for example, missing or mixed-up values—has received a lot of
attention when the designs are analysed with only a single error line.
The corresponding questions for designs analysed with more than one
error line (which we term multistrata designs), such as split-plot
designs or block designs in which inter-block information is recovered,
have rarely been raised, and in our opinion the accepted answers in
these areas are not completely satisfactory. The most frequently
adopted approach is to change the model back to one with only a
single error line, that corresponding to the lowest stratum, and to carry
out the analysis appropriate for incomplete data under the model in
which all other terms (including the other errors) are fixed. Such an
approach has the merit of simplicity, but it has no theoretical basis

! Manuscript received May 30, 1983.
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and in our experience can give replacement values which are undesir-
ably discordant with the remaining data. This paper reports an attempt
to give an analysis of multistrata designed experiments with incomplete
data which is closer to the exact one under the model usually assumed
for such data.

We will build upon the early work of Cornish (1943, 1944, 1956),
showing that Wilkinson’s (1958a,b) version of Yates’ (1933) approach
carries over completely to experimental designs with an arbitrary
non-singular covariance matrix V, initially assumed known. More
precisely, we show that the equations, corrections, adjustments and
algorithms associated with the analysis of an experiment with incom-
plete data but only one error line all have their more general
analogues; the main problem is their solution, evaluation or execution.
To simpilify the discussion, as well as to make contact with the common
multistrata designs, we then specialise to designs which are generally
balanced in the sense of Nelder (1965a,b, 1968). This means that we
suppose V to have a very specific relationship to the treatment model
under discussion, and we remark that all common designs—e.g. all
those in Cochran & Cox (1957)—possess this property, see Nelder
(1965b) and Houtman & Speed (1983). Indeed most of the common
multistrata designs have only two effective strata, i.e. all of the infor-
mation concerning treatment contrasts lies in only two strata, and for
such designs our results are simplified substantially.

Our results are all exact as long as the covariance matrix V is
known, and in the case of generally balanced designs a natural exten-
sion of Nelder’s (1968) method for estimating an unknown V suggests
itself. The discussion is then illustrated by giving our analysis of a
split-plot and a simple (square) lattice design, each having a single
missing value.

We have not attempted in this paper to describe what we regard
as the best way to carry out the associated calculations. One reason for
this is our desire to outline a general approach and avoid concentrating
on particular designs, but the main reason is the absence of widely-
used general algorithms which perform multistrata analyses and are
capable of the few modifications necessary to do the calculations we
require. The ANOVA algorithm and the associated Macro facilities
which can be found in GENSTAT, see Alvey et al. (1977), provide the
most convenient framework known to us for doing the job.

2. Previous Work on the Subject

Formulae for replacing a single missing value in randomized
complete block designs and in Latin squares were given by Allan &
Wishart (1930), but it was Yates (1933) who laid down the general
principles for replacing missing values in designed experiments and for
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correcting other aspects of the analysis of the completed data. Yates’
method, suggested to him by Fisher, consists of using those replace-
ment values which minimize the residual sum of squares when un-
knowns are substituted for the missing response values. When only one
value is missing, this method leads to a simple direct formula for the
replacement; when there are several missing values Yates suggests an
iterative method for solving the equations. He notes that this method
leads to the correct fitted values for the observed data, but with
inflated treatment sums of squares, gives the correction for randomized
blocks and for Latin squares and also computes the adjustment to the
variance of a contrast for those two types of designs.

Yates’ work was later generalized and expressed in a modern
framework by Wilkinson (1958a,b, 1959) and a host of authors have
made contributions to the formulation, interpretation, existence,
uniqueness and solution of problems with incomplete data, see Hoyle
(1971) for an extensive but incomplete bibliography. In particular we
note the coordinate-free approach shown by Kruskal (1961) to include
the estimation of mixed-up values and to provide an easy extension to
the analysis of designs with extra observations.

A different approach to estimating missing values was introduced
by Bartlett (1937). This method first assigns arbitrary response values
to the missing plots and then adjusts the completed data by covariance
upon pseudo-covariates, one being introduced for each missing plot
and having value unity for that missing plot and zeroes elsewhere. It is
easy to see that estimates so obtained are identical to those derived by
Yates’ method. Further contributions framed within the analysis of
covariance approach with a single error can be found in Nair (1940),
Truitt & Fairfield Smith (1956), Coons (1957), John & Prescott (1975),
John & Lewis (1976) and P. L. Smith (1981).

Many authors have studied iterative methods to obtain estimates
of missing values in single stratum experiments. The use of an iterative
procedure was first recommended by Yates (1933). Later Healy &
Westmacott (1956) gave a more general algorithm based on Yates’
observation that the residuals after fitting the completed data must be
zero in the cells corresponding to the missing values. Pearce (1965)
improved the Healy-Westmacott algorithm by introducing an ac-
celerating factor n/E where n 1s the total number of experimental units
and E is the number of residual degrees of freedom for a complete
experiment. This correction is also used in papers by Preece (1971)
and Pearce & Jeffers (1971). More recently Rubin (1972), Haseman &
Gaylor (1973), John & Prescott (1975) developed non-iterative
methods involving m +1 uses of the same subroutine used for fitting
the full model where m is the number of missing values. Jarrett (1978)
describes the relationships between those various computing proce-
dures.
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The problem of mixed-up values was first considered by Nair
(1940) using the analysis of covariance. Kruskal (1968) follows Yates’
approach in a coordinate-free framework. Preece & Gower (1974) give
an iterative procedure to deal with mixed-up values similar to the one
advocated by Healy & Westmacott (1956) for missing values. John &
Lewis (1976) give a direct procedure based on the appropriate analysis
of variance.

Most of the literature on missing values concerns experiments with
a single error stratum. The earliest efforts to adapt Yates’ approach to
designs with more than one error line, mainly lattices and BIB designs,
are due to Cornish (1943, 1944, 1956) in three papers dealing with the
recovery of interblock information. An influential early note of Ander-
son (1946) seems to end up recommending the lowest-stratum-only
analysis for split-plot designs with missing data. Anderson’s view has
become accepted, see Cochran & Cox (1957), and is widely used to
this day’ We note in passing that little satisfaction can be gained by an
appeal to the analysis of covariance, since, for multistrata designed
experiments, this technique is not in much better state than the special
cases which incomplete data pose. An exception is the unpublished
report Cochran (1946) which discusses the analysis of covariance in
split-plot designs and whose results may be modified to handle missing
and mixed-up values. Recently Williams, Ratcliff & Speed (1981)
showed how to get missing value estimates based on the information
contained in the lowest two strata.

Finally we note that the EM algorithm described by Dempster,
Laird & Rubin (1977) provides an iterative approach to the maximum
likelihood estimation of parameters from incomplete data under quite
general distributional assumptions. Under normality assumptions it can
be shown that the recursion in the EM algorithm is the same as that
satisfied by the estimates obtained at each step from Healy and
Westmacott’s algorithm, or from the extension we give of that al-
gorithm for multistrata experiments. However the discussion below
will only make the standard second-order assumptions usual in the
analysis of designed experiments.

3. Derivation of the Basic Equations

We regard the observations as an array of numbers y =(y;);cs
indexed by a set I of n unit labels and assume the following model for
the expectation and dispersion of y:

EyeT 3.1)
Dy=V

where J is the subspace of arrays that are constant over treatments
and V is a positive-definite matrix which is assumed to be known. The
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n-dimensional vector space & of all possible arrays y is endowed with
the natural inner product {(x,y)=3.; %Yy and with the inner product
(x,y)v ={x, V''y) induced by V, the associated norms are denoted
respectively by || and |.|y.

If the data are incomplete, the space @ splits into the sum of two
orthogonal sub-spaces

Q= @1 @92
reflecting the decomposition
y=y:ty:

of the data into the observed part y, and the “missing” part y,. This
notation was shown by Kruskal (1968) to include both the case of
missing values and the case of mixed-up values: in the first case, y; has
zeroes in all units corresponding to missing observations and in the
second case, y, has a quantity z=m™'S in all m units corresponding to
the observations whose sum S only was observed.

For the observed part y, of the data, the model (3.1) now becomes

EY159.1
Dy, =V,

(3.2)

where 7, =D,7, the orthogonal projection of J onto 9; and V,=
D, VD,. (In this paper we will always use script letters to denote linear
spaces and the corresponding capital letters to denote the orthogonal
projections onto those spaces, with a superscript V if the projection is
orthogonal with respect to (., .)y rather than {.,.)). Although the data
could be fitted by estimating Ey, by its BLUE %, =T}y, it is usually
not straightforward to do so, since any special relationship that existed
between V and J (e.g. orthogonality or general balance) would not
usually continue to hold between V, and & ,. Accordingly, following
Cornish (1956), we minimize

ly:+y>—7R,

over €7 and y,€9,, and assume that (7, §,) is a pair at which the
minimum is achieved. Arguing as Yates (1933) did in the single
stratum case, we may minimize first over 7 and then over 2, to get

¥.=DJ(F-yy),
and in the reverse order, obtaining
F=TV(y,+¥2).
Each of the two relations can be substituted into the other, leading to
D;,Tvyz = _D;’Tv)ﬁ (3.3)
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and _
T'D}7=T'D]y, (3.4
where TV =I-T" and similarly DY =1-DY.

In the next section section we will show how to solve these
equations. For the moment we simply state the result which justifies
their solution as follows: the restriction D, TV(y; +¥,) to the subspace
corresponding to the observed data of the fitted values TV(y,+¥,)
obtained by analysing the observed data y, completed with any solu-
tion ¥, of (3.3) coincides with the fitted values TYty, of the observed
data y, to the appropriate submodel, i.e.

4 =D,7. (3.5)

A proof of this result is given in the appendix.
_From (3.3) or (3.4) it is easy to verify that the vector of residuals
f=TY(y, +¥,) satisfies the equation

D3i=0, (3.6)

which is similar but not equivalent to the property noticed by Yates in
the single stratum case, that the residuals after fitting the completed
data to J must be zeroes in the units corresponding to missing values.

4. Solutions of the Equations

In the simple case in which there is a single missing value (or only
two mixed-up values) a direct formula may be obtained. Letting &
denote a dummy vector with unity in place of the missing value (or +1
and —1 in place of the two mixed-up values) and zeroes everywhere
else, the unobserved vector has the form y,=ae where a is to be
estimated, and Dyz=lelv¥e, z)ve. It follows then immediately from

(3.3) that g _E&Ty
= ITVe2

A more manageable form of y, will be obtained in §6 for
generally balanced designs and it will be illustrated with examples in
§8. We will now suppose that dim @ > 1, i.e. that there is more than
one missing value or there are more than two mixed-up values, and
study iterative methods for computing the solutions of (3.3) and (3.4)
The following recursion formulae suggest themselves for ¥,, y =y, + ¥,
% and F=TV§:

4.1)

M ¥y =0; WY =D T3, + %) -yl m=0.
@ §=yi; YU =U-DITH™, m=0.
@) #°=T"y; FP=T"(Dy,;+DJF™), m=0.
(v) £ =T",; ¥P=T'D}™, m=0.
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All of these recursions are essentially the same, each being obtain-
able from the others by simple algebraic manipulations. Recursion (i) is
a generalization of Healy and Westmacott’s algorithm, and, under
normality assumptions, (iii) can be shown to be equivalent to the EM
algorithm of Dempster et al. (1977). It is the last recursion which most
clearly indicates why convergence must take place, since TV and DY
are projection operators, and so [f™*Vy=<k™)|y for all m=
0,1,2,..., with equality if and only if ¥ =¢", in which case the
algorithm stops and #™ is the solution ¥ by virtue of (3.6). An
alternative proof of convergence uses a theorem of Von Neumann
(1950, p. 55) showing that (iv) converges to the projection of y, onto
VI +NVP,, orthogonal with respect to (.,.)y. We also notice that
each algorithm is equivalent to a Taylor expansion.

The speed of convergence may be improved by the introduction of
an appropriate acceleration factor w. With the same initial values as
before, the algorithms are modified as follows for m =0:

Q) §5 0 =55~ 0T DITY (3, +F5)
(11)’ i(m+1) = s,(m)_ w—1D¥Tvi(M)-
(i) 7V =7~ T TVDI(E™ ~y)).
(iv) ¥ Y =" - o I TVDYE™.
As all four algorithms are equivalent we study the convergence of (i).
Using (3.3) one obtains
$2- 95 = - 0 DITVDY)F, ~ §57).

It follows that the algorithm converges to a solution of (3.3) for all y
in @, if and only if the spectral radius p of I—w 'DYTYDY is strictly
smaller than unity. The solution is unique if we assume that ,NT =
{0}, excluding, in particular, situations where all the observations on
a treatment combination are missing. Under this assumption, the
algorithm converges to the unique solution ¥, if and only if

© >3 (DYTVDY)

where A,.(A) is the largest eigenvalue of A. The fastest convergence
is obtained for the value w,, which minimizes p and hence

@opt = HAmin(DYTVDY) + Ao (DYTVDY)],

where A.(A) is the smallest nonzero eigenvalue of A.

5. Maodifications to the Subsequent Analysis

The analysis performed on the data completed with a solution of
(3.3) will produce the correct residual sum of squares (although the
number of degrees of freedom must be reduced by the dimension of
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9,) but treatment sums of squares (differences between residual sums
of squares for a pair of nested treatment models) and variances of
contrasts will need adjustment. Yates had already pointed this out in
1933 and he gave the corrections for the designs he studied. We now
give the appropriate adjustments for multistrata experiments.

For a submodel Eye % <& of our original model, the treatment
sum of squares [UVy[3 — T'y|% will be inflated by the quantity

[CYY(DR -0y @R = [CVy(7) - y2(0) ] (5.1

where y(7)=y,+y.(7) and y(U) =y, +y.(%) denote the completed
data obtained by solving the missing values equations (3.3) respectively
for the models Ey e J and Ey €e%. Equation (5.1) is simple the differ-
ence between the apparent sum of squares

[CYY (DR ~1T DR
and the correct sum of squares
TYy@)F~ 1Ty (R,

the latter being smaller than the former since y(%) minimizes [UVy}%
over @,. The algebra leading to the RHS of (5.1) is given in the
appendix.

On the other hand, the variance of a contrast (t,7) where ¥
satisfies (3.4) can be decomposed into the sum of the variance of that
contrast when the data are complete and an adjustment due to the loss
of precision encountered when estimating missing data. We have the
identity

cov ({t, T, (, ) = (¢, TV Vu) +(t, TV (DI T'D;) DT Vu). (5.2)
If 9, is of dimension one only, this expression simplifies to

t, TVeXu, TVe)

cov ({t, #), , 7)) =(t, TV Va) + Ve

(5.3)

where € is the dummy vector introduced in §4. Again we leave the
algebra to the appendix and illustrations to §8.

6. Generally Balanced Experiments

Following Nelder (1965a) we now assume that the design has an
orthogonal block structure which determines the eigenstructure of the
covariance operator

v=Y¢&s8, - (6.1)

where the {¢,} are (usually unknown) positive eigenvalues and the {S_}
are known symmetric and idempotent projectors such that 3, S, =L
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Designs with such dispersion models are said to be generally balanced
for an orthogonal decomposition 7 =€D, T4 of the treatment space if
for all «

TS.T=Y AusTs (6.2)
<]

for a set of eigenvalues {A,z} such that 0=<A_;=1and )}, A,z = 1. This
condition will be assumed to hold for the rest of this section. The effect
corresponding to treatment [ in stratum « is then calculated by
Q. = A24T4S, (unless there is no information 5 in %,, and A,g = 0)
and, assuming that the {£,} are known, the overall effect of treatment
term B is Qg =Y, WasQus a linear combination of the within strata
effects with weights

Wag = sz‘m(g £:' N

{the sum being over all a’ such that A,.z# 0). Further, the {Qg} are
mutually orthogonal and TY =3, Q. We refer to Houtman & Speed
(1983) for a fuller discussion.

For a single missing value the solution (4.1) may be written usuig

(6.1) as

-1 V. TV

= @ So (SaT €, SaT )

3, = _[Z fa ST eS. 1)), 6.3)
Za Ea {SaT €|

If the design is generally balanced and there are only two effective

strata, the lowest, say «’, and another, say «”, with eigenvalues A, .5

and A, ., for treatment 74, and Q, - and Q. as effects in those strata,
we will write Ag = Q.5 — Q.5 for their difference. Then

Yo £ (R, e, Rayl>+ZB pa(Ags, Agyy)
”= — . 6.4
= T £ R+ Tp s 1Ape S

where g = €160  Aarghas (62 A ag + EatAarg) ', and R, is the residual
operator after fitting to J in stratum «.

If no treatment term is estimated in more than one stratum, then
(6.4) simplifies to

o Za §;1<Ra€l Ray1>
2= [ Za g;I lRaelz ] (65)

This is the case for all orthogonal designs i.e. designs for which A,z =0
or 1. For example, the covariance operator of a complete randomized
block design has spectral decomposition V= §£,G+4,(B~G) + £,(I—-B)
where G is the overall averaging operator (replacing all the compo-
nents of y by the grand mean) and B is the block averaging operator
(replacing all the components of y by the average of those components
belonging to the same block). If there are b blocks and t treatments, a
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single missing value is estimated using (6.5) by

E S +bYe=Y6)+& Ce—bTy)
EJ-DB-D+&Nb-1)

where Y5, Y5 and 3. denote respectively the sum of all the observa-
tions, the sum of the observations in the block containing the missing
observation and the sum of the observations that received the same
treatment as the missing unit.

In a txt Latin square with one missing value, the replacement
using (6.5) is given by

R+ I+ —2Y 61+ E ' Qo —t Lr)+E ' Ts —t Xe)
-1 -2)+ & -D+E1 (-1 '

Here V=¢(,G+§{R-G)+£(C-G)+£,(I-C-R+G) (R and C are
the row and column averaging operators and G is as before), Y and
Y are respectively the sum of the observations in the same row and
same column as the missing observation and Y and ). are as before.
The case of a split plot design will be discussed in §8.

In practice the operator V is only partially known: the projectors
{S,.} are determined by the structure of the design whilst the strata
variances {£,} need to be estimated, and we outline a method for doing
so in the next paragraph. The {£,} are not needed however if we
assume that most of the information on treatments is concentrated in
the lowest stratum in which they are estimable. If attention is restricted
to that stratum only, we let £;=0 in all the other strata and write Ry
for the vector of residuals in that stratum, then

= — [(Ryly Re)]e
Y2 lRelz .

This gives all the usual missing value estimates, see, for example,
Cochran & Cox (1957).

7. Estimation of Strata Variances

When information on some or all treatment terms is available
from more than one stratum, we saw in the previous paragraph that
the missing value estimators involve the strata variances {£,}. We now
outline a method for estimating the {£,} in a generally balanced design.
The method we propose is an extension of Nelder’s way of handling
the problem for a complete design. The main steps are as follows:

(i) complete the data with initial estimates y5 computed using lowest
stratum information only;

(ii) calculate estimates {¢”} using the data completed with y&;
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(iii) calculate y5V using one of the methods indicated in §§4 or 6;

(iv) calculate new estimates {£.} and then go back to (iii), continuing
as often as seems necessary.

Estimates of the {£,} in (ii) and (iv) may be obtained in two ways.
If, after estimating treatments, there are enough degrees of freedom
left in stratum «, equating the error mean square in that stratum to its
expectation easily provides an estimator of £,. Indeed we have under

(6.2)
E|R.y*=¢&, trace R,

= g(trace S, - Z trace TB) 7.1
8

= &da
where the sum is over all 8 such that A,z >0. But d, is often small and

may even be zero, and so we would rather use the actual residual in
stratum « given by S, TVy. If (6.2) holds we have

E|S. TVy|*=¢, trace S, TV
=§°{d,, +Z (1—w,z) trace TB} (7.2)
8

=£.d;

where the sum is again over all 8s such that Az >0. The “degrees of
freedom” d. is larger than d, in (7.1), but, like |[S,TVy[? it involves
the unknown {£} through the w,s;. Nelder suggested an iterative
method, choosing initial va.lues_{&f,f”}, for example from (7.1) in the
lowest stratum, obtaining |S,TY®y|*> and d/®, and then revised
estimators

‘SQTV(O)yP

(1)
§a - d,(o]
(=3

Again this needs to be continued as often as seems necessary.

In our experience the estimates of {£,} do not change very much,
and unless there is a lot of missing data, one would not expect them to.
No result guaranteeing convergence is available even with complete
data.

8. Examples

(i) Split-plot: Let us consider a general split-plot experiment with
r replications of a plots (levels of A) each of b subplots (levels of B).
The block structure determines the spectral form of Dy =V as

V=£4G+ELR-G)+§(P-R)+&(I-P) 8.1
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where G, R and P are respectively the overall averaging operator, the
operator averaging over replications, and the operator averaging over
plots. The factorial treatment structure determines the decomposition
of the treatment space

T=4D(ASYD(RBOYB(TO(A+RB)) (8.2)
corresponding to a decomposition of the vector of means
Ey=1=Gr+(A-G)1+ (B—G)7+ T, T

for ali 1€ J. The operator G is the same as above, A and B average
respectively over the levels of A and over the levels of B, and
T, pg=T—A—-B+G where T is the treatment averaging operator. We
note that G, A, B, T and T, g are orthogonal projectors with respec-
tive ranges 4, &, B, I and TO (A4 + R).

The experiment is generally balanced with respect to the treat-
ment structure (8.2), with a set of eigenvalues all equal to zero or one,
this always being the case for orthogonal designs. All the information
on contrasts comparing levels of A (contrasts in & © %) is contained in
the main plot means adjusted by their replicate means (P—R)y, whilst
all the information on contrasts comparing levels of B (contrasts in
BES%) and on those describing interaction between A and B (con-
trasts in 7 @(s + B)) is contained in the stratum of subplot compari-
sons (I—P)y. And so a single missing value can be estimated using
(6.5) by x where x is

£ (raYp+abYan—ala)t&, X rt+afa—raYp=3g)+& ' (Ts—rir)
EMalr=Db- DI+ & r-Da-D]+£71(r-1)

(8.3)

Here Y p is the total of the observations in the plot containing the
missing observation,

Y r is the sum of all the observations in the replicate containing
the missing observation,

Yap is the total of all the subplots that received the same
treatment combination as the missing unit,

Y 4 is the total of all the subplots that received the same level of
treatment A as the missing one,

Y is the sum of all the observations.

This formula may be compared with the estimate obtained by
Anderson (1946) by minimizing the subplot error only:

/=rZP+bZAB-ZA
(r=1(b-1)
If £ and £ are both very large in comparison with &, then (8.3)

reduces to (8.4). In the example treated in his paper, Anderson obtains
a replacement of 763 whereas (8.3) gives 726 (using (7.1) to estimate

(8.4)
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the strata variances); the latter value is in better harmony with the rest
of the data whose mean was 492.

The correction to the variance var ((t, 7)) where 7 satisfies (3.4),
will be zero whenever the missing value is at another treatment level
than the levels compared in the contrast . When this correction is not
zero we will follow Cochran & Cox (1957, p. 303) and consider four
simple kinds of contrasts. Let us write

t. (resp. tg) = a difference between two A means (resp. B means),
tp, = a difference between two B means at the same level of A,
t., = a difference between two A means at the same level of B,
or at different levels of B.
With the denominator of the correction given in (5.3) equal to [TVel% =
(r=1)(rab) [+ &, (a— D+ £ (b—1)a]=d, we have
var ((ta, 7)) =2£,(rb) 1+ (F*0%ad) 7,
var ((tg, 7)) = 2, (ra) "' + (r*ad)™,
var ((ta,, T)) = 2&r7 1+ (r2d) 77,
var ({tap, ) =[2&,(rb) ' +2£,(b— 1)(rb) "]+ (r2d) 1.
Our corrections (second terms) reduce to the ones obtained by Coch-

ran & Cox (1957, p. 303) and based on a lowest stratum estimate of
the missing value by setting & ! and &, equal to zero.

If we now consider the submodel having no AB-interaction term,
namely Ey € & + %, the apparent sum of squares due to the interaction,
ITY gY@ =& (T—A-B+G)y(9)? must be adjusted. This is done
by subtracting from it the correction term

Py a3 (T) -yt + BN =(d— )2 PY.qeld
where d is the replacement (8.3) under the full model, and f is the
replacement under the submodel given by f where f is

£ (ralp+bYp—2g)tép ILrtaYa—arle—3c)+£ ' To—rizr)
EMra=Db-D+ &N a-Dr—1)+&(r—1) i

(8.5)

The notation is as in (8.3) with Y 5 denoting the sum of the observations
that received the same level of treatment B as the missing one, and

finally
[Py . gely = (abr) & ra~ Db -1+ & (a— D)(r— D)+ £ (r=1)].
(ii) Simple (square) lattice: We consider an experiment per-
formed to compare k? treatments in two replicates of k blocks of k

plots each. As in a split-plot experiment, the block structure here is
doubly nested and so there are three strata (other than the grand
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mean): between replicates, within replicates between blocks, and
within blocks. This defines the spectral decomposition of the dispersion
matrix Dy =V as

V=£G+4R-G)+6(B-G)+£,(I-B) (8.6)
where G, B and R are respectively the overall, block and replicate

averaging operators. This design does not satisfy the conditions (6.2) of
general balance with respect to the natural treatment decomposition

T=G+(T-G)

corresponding to “no structure” on treatments but general balance is
obtained by introducing a factorial “‘pseudo-structure’. This is deter-
mined by the following scheme: the treatments are arranged in a k Xk
square and treatments belonging to the same row (resp. column) of the
square are allocated to the same block in the first (resp. second)
replicate. Let us use M and N for the pseudo-factors corresponding to
the rows and columns of the treatment array. The experiment is
generally balanced with respect to the treatment decomposition

t=GT+M-G)t+(N-G)7+ Ty~ 8.7

where v =[Ey € . The notation here is as in (i) with M and N instead of
A and B. The relationships (6.2) are

TR-G)T=0,
TB-R)T=}M-G)+3N-G),
TI-B)T=iM-G)+i(N-G) +Tynx:
and so the effects are
Qv =3 M(B-R), Q. =(3)"'MI-B),
Q,n =@ 'N(B-R), Q.~ = () 'NI-B),
Qv =0, Qorn = TaynI—B) =Ty,
and the weights are
Wort = Won = W =385 1385 T 36 D T =N ETHE DT
W =W =1-w =&+ D)7
wonen =0, Wonar =1

Assuming known strata variances {£,}, a single missing value may
be estimated using (6.4) by x where x is
UKL r—2 R + 26 —2kC—kC)—=2(& +£,) T (2Y 6 —4Xr —2kC+ kC")
£ (k=12 +4(& + &) (k—1)

(8.8)

where Y5, Yr and Y1 denote respectively the sum of all the observa-
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tions, the total of the observations in the replicate containing the
missing observation and the total of the observations that received the
same treatment as the missing unit. We have borrowed from Cochran
& Cox (1957) the notation

C =[total (over replicates) of all treatments in the block to which
the missing unit belongs]—2 Y g,

where Y is the sum of all the observations in the block containing the
missing unit, and

C’'=sum of the C values for all blocks containing the treatment
that was allocated to the missing unit.

Since there is no natural submodel of the treatment model
assumed, corrections to sums of squares due to treatments will not
usually be needed. And so we only compute the adjustments to be
added to the variances of elementary contrasts (contrasts between pairs
of treatments). For a complete experiment, the usual formulae for
those variances are

klggt+g,t 28" '
if the two treatments belong to the same block (in either replicate) and

2 {# + k-2 } (8.10)

k lggt+ &0 2¢77 o

if the two treatments never appear in the same block. The correction
to those variances, due to the estimation of a single missing value is
given in (5.3) by (¢, TVe)*('T el3) ™" with

D= ITV£I€=2—11(4 (465 (k — 12+ &7k
+ &4k (k= Dw? + (k- D(k —2)%}
+ & 4k (k — D)w(k — 1)k%}] (8.11)

where w = 1—w. Using D for the denominator, the correction to (8.9)
is

1 —\2
ai2p K 72W)

for a comparison between the treatment allocated to the missing unit,

say T,, and a treatment in the same block as the missing unit, and

1

2ip Kk 2wr

for a comparison between T, and a treatment appearing in the same
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block as 7, in the replicate that does not contain the missing unit. The
correction to (8.10) is

1
4D
for a comparison between 7, and a treatment never appearing in the
same block as 7,,; it is

1
ﬁ)‘ (1-2w)?

for a comparison between a treatment appearing in the same block as
T In the same replicate as the missing unit and such a treatment in the
other replicate; finally, it is

5 (0) (=5 )

D \k/ \"™P' B \k
for a comparison between a treatment appearing in the same block as
T,. in the same replicate as the missing unit (resp. in the replicate that

does not contain the missing unit) and a treatment never appearing in
the same block as T,,. The corrections in all other cases are zero.

9. Appendix

(i) Proof of (3.5)
Step 1. We define the vector of residuals

P=T'(y:+52) (A1)
where §, satisfies the missing values equations (3.3), and
first prove that

r=1-P) .1y, (A2)
where P} ., is the projection onto the space @,+J =

{y2+t]|y,€9,,te T}, orthogonal wr.t. (., ).
Using recursion (iv) of Section 4, we have

t= lim (TYDY))"T'y,

=PYr-rva, T Y; Von Neumann (1950, p. 55)
= (I_P;+92)Tvy1-
This last relationship and the previous one both use the

fact that the orthogonal complements w.r.t. (., .}y of &
and 9, are respectively VI + and V2,.
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Step 2.
D,#=D,TV(y, t¥2) where ¥, satisfies (3.3)
=D, (I-T )y, +¥2)
=y,—Dr using (Al)
=y, —-D,(I- P§+92)Tv)’1 using (A2)
=y =Dy +D Ty, -D.PY ., Ty, +D,PS . -y,
=D,P3, .71 since Py 5 TV =T".

Step 3. We first observe that
D+ T =D,+T,=2,5DYT,

where the last sum is orthogonal with respect to (., )y.
Thus the weighted projection onto 2,+J decomposes
into the sum of the weighted projections onto 9, and
A =DYT, respectively. We then have

D,7= DID;IYI + DtAVY1
=D,AVy,.

Now R(AY)=R(V(D,VD,) T,), and so

D,7=D,V(D,VD,)T,[T,(D,VD,) VV!
xV(D,VD,) T,] T,(D,VD,) " VV~ly,
=T,[T,(D,VD,)"T,]"T,(D,VD,)y,
=Ty, (where V,=D,VD,)
=4
which proves (3.5).
(ii) Verification of (5.1)
[CYy(R— 10"y (W)
=(CVy(7), TYy(@)v—(Uy(@), Ty (@)
= (@), Oy (@))y— y(@), TYy(u))y
+ (@), UYy@)v—(y(7), Ty (@))y
=y(7), O'V(T) —y@) Dv + (@) —y@), TVy(@))v.
Now, (y(9)—y (@), U¥y@)v = 32(T) ~y2(u), UVy(u))v
= (D3[y2(T) —y-(W)], Uy @)y
= (¥2(T) ~y2(u), DY O y())v,
and, using (3.6) for the model %, we have DY UVy(%) = 0. Thus we
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may write
[CY(@R -0y @)%
= (), Uly(T) —y (@) Dy~ y(T) —y(@), TVy(@))y
=(y(9), I—Jv[yZ{g) =y2(U) Dy — (y (@), fjv[)’z(?/.) =¥ v
= (¥2(T) —y-(), UV[y2(T) - y,() Dy
= lﬁv[lb(g) ‘h(‘m)]ﬁ-
(iii) Verifications of (5.2) and (5.3)
We start from equation (3.4) giving the vector of fitted values
7 when the data are incomplete, writing the equation in the form
@-1VDYT5 =T'DYy,. (A3)
We will only consider the case where I N@, ={0} so that all the
eigenvalues of TVD3T" are strictly smaller than one and hence all
those of I-TYDYTY = A are strictly positive and the operator A is
invertible. The unique solution of (A3) is thus
*=A7'TDYy,
and so we have
var#=A"'"TVDYD, VD, (DY)*(TV)*[A"1]*
=AT'TYDYTYA™'V
=ATATVATV
=T'I-T'D3ITY) V.

We may re-express this as follows

var"r=Tv[

Y (TVD;’TV)i]v

=0

=TV+ ) (TDYTY)'V
i=1

=T'V+T'DYTY [ 2 (IVDITYy ]v

i=0
=T'V+ T"[ > (D}'TVD;')i]D;’T"V
i=0
=T'V+TY(DYT'DY) DYT"Vu.
From this we have for all t,tae T

cov ((¢, 7, G, ) = (¢, T" V) + (¢, T'(DYT'D3) D; T Vu)

which is (5.2).
Now consider the case where dim %, = 1 so that 9, is spanned
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by the vector € and DYz =[5 (¢, z)ve. Let c € R be such that
(DITDY) DT Vu=ce. (A4)
Since DYTYVu is a vector in @,, premultiplying both sides of (A4)
by DYTVDY gives
DT Vu=cDyT'DYe=cDyT",
and using the above expression for the projector D3 we get
le]52 (&, TV Vu)ve = clely? &, TVe)y.

c ={g, TVVa)y[(e, TVe)y] "
=(TV, w{|T e
Using this value of ¢ in (A4) and substituting (A4) into (5.2), we
see that the latter expression simplifies in this particular case to
{t, TVe)(u, TVe)
[TVely

Hence

cov ({t, 7), (w, 7)) = (¢, TVu) +

This completes the verification.
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RECTANGULAR LATTICE DESIGNS:
EFFICIENCY FACTORS AND ANALYSIS

BY R. A. BAILEY AND T. P. SPEED
Rothamsted Experimental Station and C.S.I.R.O.

Rectangular lattice designs are shown to be generally balanced with
respect to a particular decomposition of the treatment space. Efficiency
factors are calculated, and the analysis, including recovery of interblock
information, is outlined. The ideas are extended to rectangular lattice designs
with an extra blocking factor.

1. Introduction. The class of incomplete block designs known as rectangu-
lar lattice designs was introduced by Harshbarger (1946), with further details and
extensions being given in a subsequent series of papers by Harshbarger (1947,
1949, 1951) and Harshbarger and Davis (1952). Apart from a contribution by
Grundy (1950) concerning the efficient estimation of the stratum variances and
the papers by Nair (1951, 1952, 1953) relating rectangular lattice designs to
partially balanced designs, little further theoretical discussion of this class of
designs seems to have occurred. Expositions of the basic results about rectangular
lattice designs in two and three replicates, as well as tables of designs, can be
found in Robinson and Watson (1949) and Cochran and Cox (1957). Discussions
exist in other standard texts on the design and analysis of experiments, for
example Kempthorne (1952), but, apart from recent contributions by Williams
(1977) and Williams and Ratcliff (1980), the literature seems to end in the early
1950’s. [In his recent note, Thompson (1983) uses the results in the present paper,
as he acknowledges.] A possible explanation of this fact may be the observations
of Nair (1951, 1953) that every 2-replicate rectangular lattice design is a partially
balanced incomplete block design with four associate classes, whilst the obvious
extension of the argument to r-replicate rectangular lattice designs for r > 3 fails
in general, although the classes of rectangular lattice designs for n(n — 1)
treatments in n — 1 or n replicates again turn out to be partially balanced.
Perhaps it was felt that, in not being partially balanced, rectangular lattice
designs were rather too complicated.

In his fundamental papers on designed experiments with simple orthogonal
block structure Nelder (1965a, b) introduced the notion of general balance, this
being a relationship between the treatment structure and the block structure of
the design. It is immediate from his definition that all block experiments (in the
usual sense of the term) are generally balanced for some treatment structure [see
Houtman and Speed (1983)], although here we might more properly use the term
treatment pseudo-structure, and when this structure is elucidated for a given
class of designs they can be regarded as understood and readily analysed. In a
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Key words and phrases. Analysis of variance, block structure, combination of information,
efficiency factor, general balance, Latin square, rectangular lattice, resolvable design, stratum,
treatment decomposition.
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later paper, Nelder (1968) showed the importance of general balance in permit-
ting the straightforward estimation of stratum variances, introducing a method
equivalent to that which has come to be known as restricted maximum likelihood
estimation of variances [see Patterson and Thompson (1971) and Harville (1977)].
The definition of general balance in block designs is intimately connected with
the eigenspaces of a certain linear transformation, denoted by Ly in this paper,
and in this form a number of other authors have recently emphasised the same
concept [see, for example, Pearce, Calinski, and Marshall (1974), who called the
eigenvectors of Ly basic contrasts, and Corsten (1976)].

In Sections 3 and 4 of this paper we obtain an orthogonal decomposition of the
space of all treatment contrasts associated with a general r-replicate rectangular
lattice design. In Section 5 we use this decomposition to identify all the eigen-
spaces of the linear transformation L. An equivalent description of our results is
that we determine the treatment pseudo-structure relative to which the designs
are generally balanced; equivalently again, we describe the basic contrasts of the
design. Using these results, a full analysis, modelled on Nelder’s (1965b, 1968)
general approach, of rectangular lattice designs is given in Section 6, involving
the derivation of a fully orthogonal analysis of variance and estimates of the
stratum variances, and the calculations of estimates of treatment contrasts,
together with their standard errors. A recursive analysis along the lines of
Wilkinson (1970) is most satisfactory, as the eigenspaces are orthogonal comple-
ments of subspaces each of which has a simple formula for its orthogonal
projection in terms of averaging operators, and so these subspaces can be swept
out successively in a quite straightforward manner. Our general approach to the
analysis of designed experiments is framed in vector space terms, similar to that
used by James and Wilkinson (1971) and Bailey (1981), but in the multistratum
framework of Nelder’s papers.

Finally, we use the foregoing ideas to sketch the design and analysis of an
experiment in which an extra blocking factor was imposed on a rectangular
lattice design. Two examples are used throughout the paper to illustrate the
theory.

ExXAMPLE 1. This is a rectangular lattice for 20 treatments in three replicates
of five blocks of four plots. Although this is an entirely abstract example, there
being no associated experiment, it illustrates the general theory well because it
has no special features: the design is not partially balanced, and its construction
does not use a complete set of mutually orthogonal Latin squares. Tables 1, 3-5,
7, and 12-15 refer to Example 1.

ExXAMPLE 2. In an experiment into the digestibility of stubble, 12 feed
treatments were applied to sheep. There were 12 sheep, in three rooms of four
animals each. There were three test periods of four weeks each, separated by
two-week recovery periods. Each sheep was fed three treatments, one in each test
period. During the recovery periods all animals received their usual feed, so that
they would return to normal conditions before being subjected to a new treat-
ment.
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TABLE 1
Transversal of a 5 X 5 Latin square

3
@
1
5
2

- ® s w o

4
5
2
1

®

It was desired that each treatment should be fed once in each room and once
in each period. If periods are ignored, a suitable design is a rectangular lattice
design in which sheep are blocks and rooms are replicates. We shall ignore the
periods until Section 7, where we show how to deal with this extra blocking
factor. Tables 9-11 and 18-19 refer to Example 2.

2. Construction. In this section we review the construction of rectangular
lattice designs, partly in order to establish our terminology and notation.

A rectangular lattice design is a resolvable incomplete block design for ¢
treatments in r replicates of n blocks of size n — 1, where ¢t = n(n — 1) and
2 < r < n, for some integer n. We write b for rn, the total number of blocks, and
N for b(n — 1), the total number of plots. The design has the property that any
pair of treatments occur together in at most one block. The design is constructed
from a set of r — 2 mutually orthogonal n X n Latin squares A,,..., A,_,.

A transversal of such a set of Latin squares is defined [see Dénes and
Keedwell (1974), pages 28 and 331] to be a set of n cells with one cell in each row
and one in each column, which between them have all the letters of all the
squares A,,..., A,_,. In Table 1 a transversal of a single 5 X 5 Latin square is
indicated with circles. Transversals do not always exist: Table 2 shows a 4 X 4
Latin square with no transversal. A sufficient condition for the existence of a
transversal is the existence of a Latin square A,_; orthogonal to each of
A, ..., A, _,, for then each letter of A, _; corresponds to a transversal. Such a set
of mutually orthogonal n X n Latin squares A,,..., A,_, exists whenever n is a
prime or prime power and r is less than or equal to n [see Dénes and Keedwell
(1974), page 165]. However, this condition is not necessary, because the square in
Table 1 has no orthogonal mate.

It is convenient (although not essential) to permute the rows and columns of
Ay, ..., A, _, simultaneously so that the transversal lies down the main diagonal.

TABLE 2
A 4 X 4 Latin square with no transversal

[NSRVCRICN
[
BN
N W o
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TABLE 3a
Table 1 with rows permuted

1 2 3 4 5

3 5 1 2 4

2 1 4 5 3

5 4 2 3 1

4 3 5 1 2
TABLE 3b

Table 3a with letters permuted

O N O W =
ENEVERE VNG )
[ S-S NVUREEY N
[l N < V)
OV - b W N

This is achieved by moving the ith row to the jth row if the unique transversal
cell in row i is in column j. It is also convenient to rename the “letters” of each
square independently so that the letters on the main diagonal are in natural
order. Tables 3a and 3b show the results of applying these processes to the square
in Table 1.

An n X n square array is drawn. The diagonal cells are left blank, and the ¢
treatments are allocated to the remaining cells, as in Table 4. In this example we
have labelled the treatments A, B,..., T, but we shall usually use w to denote a
general treatment, to avoid confusion with other symbols. We denote the n
diagonal cells by i, j,... and the r classifications (that is, rows, columns, letters
of A,,...,lettersof A,_,)bya,b,....

We define subsets of the treatments called spokes and fans. A 1-spoke is the
set of n — 1 treatments in any row; a 2-spoke is the set of n — 1 treatments in
any column. For a = 3,..., r, an a-spoke is the set of n — 1 treatments in the
positions of any one letter of square A,_,. Fora=1,...,rand i=1,...,n we
denote by &,; the unique a-spoke which would naturally go through the ith
diagonal cell if the diagonal cells were not excluded. For each fixed i, the fan %
through the ith diagonal cell is defined to be the union of all spokes through that

TABLE 4
Treatment array for Example 1

B

Oz e
NrXQQ
FuST D

F
*
0
S

QR ~y
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TABLE 5
Rectangular lattice block design (Example 1)
(blocks are columns)

replicate 1 replicate 2 replicate 3
A E I M Q E A B C D F D C B A
B F J N R 1 J F G H | J K H E G
C G K (0] S | M N 0 K L P M N L 1
D H L P T Q R S T P T S Q R (0]

diagonal cell; that is,
F =L, UL U - UF,

The terminology is suggested by the fact that all spokes in a fan have the

corresponding diagonal cell in common, while no two spokes in the same fan have
any further cells in common. In the example given by Tables 3b and 4, we have

<, = {A, B,C, D},
Su={C,G,K,T},
S ={D,K, M, S},
#,={Q,R,S,T,D,H,L,P,A,G,1,0}.

The design is now constructed very easily. For a = 1,..., r, the blocks of the
ath replicate are just the a-spokes. Table 5 shows the (unrandomized) design
which emerges in this way from Tables 3b and 4. Thus spokes have a genuine
statistical meaning, as each spoke gives a block of the design. Fans have no direct
statistical meaning, but they are a combinatorial consequence of the spokes
which prove useful for the analysis of the design.

Orthogonal cyclic Latin squares may be constructed by the automorphism
method of Mann (1942), which is described in Section 7.2 of Dénes and Keedwell
(1974). If p is the smallest prime divisor of n then p — 1 orthogonal squares are
obtained, and hence rectangular lattice designs may be constructed for r < p
(reserving one of the squares for the transversal). The same designs may also be
constructed as a-designs [Patterson and Williams (1976)]. Let ¢, ¢5,..., q,_; be
any integers such that no two are congruent modulo p and none is divisible by p.
Without loss of generality we may take g, = 1. The generating a-array is in
Table 6, in the format used by Patterson and Williams (1976), whose series I, II,
and IV are all examples of the array shown here.

3. Decomposition of the treatment space. Let R’ be the real vector space
of vectors indexed by the ¢ treatments. We need to find an orthogonal decomposi-
tion of R’ that will enable us to analyse data from experiments with the
rectangular lattice design. To this end, we define certain special vectors in and
subspaces of R’

Let u be the vector (1,1,...,1). Fora=1,...,rand i = 1,..., n let v,; be the
characteristic vector of the spoke .%,; that is, the w-entry (v,;), of v,, is 1 if
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TABLE 6
Generators for a-designs which are also rectangular lattice designs
(entries in the array should be reduced modulo n)

0 0 0 0
0 1 2 9r-1
0 2 2q, 29,
0 n—-2 - (n—2)q, (n—-2)q,_,
0 n-1 (n—1)g, e (n-1)g,,

w € %,; and 0 otherwise. Similarly, for i = 1,..., n, let w; be the characteristic
vector of the fan %, so that

w;

=V, Ve v,

Let U, be the subspace spanned by u; let U; be the subspace spanned by the fan
vectors w; let U, be the subspace spanned by the spoke vectors v,; and let U, be
the whole space R’ [Our conventions for labelling the first and last of these
spaces agree with those used by Throckmorton (1961) and Kempthorne (1982).]
Then

U,clclcl.

For Example 1 we display each vector in R? in a two-dimensional array
corresponding to Table 4. Tables 7a and 7b give examples of vectors in U, \ U;
and in U; respectively.

The dimension of U, is 1. The space R’ has an inner product ¢, ) on it defined
by

t
(z,2") = Z 2,2,
w=1

TABLE 7a
The vector v,; — 2Vy, + 53y

* 1 1 -1 6
0 * 0 -2 0
0 0 * 3 0
5 0 0 * 0
0 0 5 -2 *
TABLE 7b
The vector w, + 3wy

* 4 1 1 4
1 * 1 3 3
4 1 * 0 3
1 0 3 * 4
4 3 3 4 *
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We use this to find the dimensions of the spaces U; and Uj,. Note that
(Vais Vi) = S0 0 Sl
n—1 ifa=>b and 1=,
(3.1) 0 ifa=b and i#}],
0 ifa#b and i=],
1 ifa#b and i#j,

so that
<Wi’wj> =|#N -g;jl

(3.2) _[r(n—1) ifi=],
{r(r—l) if i+ .

Moreover, L ,w; = ru. Suppose that X ,A,w; = 0 for some real numbers A,. If

r # n, taking inner products with individual w; shows that A, = --- = A, and
hence that A\, = --- = A, = 0: thus the fan vectors are linearly independent and
so U; has dimension n. On the other hand, if » = n then w; = u for i,..., n: thus

U; = U,. Now suppose that ¥,X;A,.v,, = 0 for some real numbers A ;. Taking
inner products with individual v,, shows that there are real numbers 6§, and ¢;
such that A, = 6, + ¢, for all a and i. Since

Va1 +va2+ +van=u

for a = 1,..., r, this implies that (X 6,)u + ¥,¢;w; = 0. Hence U, has dimension
nr—(r—1Difr#¥nand nr—(r—1)—(n—-1)if r=n.

For Example 1, Equations (3.1) and (3.2) are demonstrated in Tables 7a and
7b, respectively. For example, the six entries equal to 4 in Table 7b correspond to
the elements of #, N %;. In this case the five fan vectors form a basis for U};
while a basis of Uj consists of u and all but three spoke vectors, one being omitted
for each classification.

We can form the orthogonal complements of the U-subspaces, and thus obtain
the subspaces that really interest us. Specifically, we put

V.- U,
V; = the orthogonal complement of U, in Uy,
V, = the orthogonal complement of U; in U,
V. = the orthogonal complement of Uj in U..

Then V; is spanned by vectors of the form w; — w;; while V, is spanned by
vectors of the form v,; — v,,. Now R’ is the orthogonal direct sum

R‘=V,eV,eV, eV,

We record the important facts about this decomposition in Table 8.

In two special cases this decomposition can be described in simpler terms. If
r = n then the set {A,,..., A,_,} is only one square short of a complete set of
mutually orthogonal Latin squares. Thus there exists a (unique) Latin square
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TABLE 8
Decomposition of the treatment subspace

subspace \A Vi V, V.
description mean contrasts contrasts orthogonal
between fans between spokes to spokes
within fans
dimension (r < n) 1 n—1 (n—=1)(r-1 (n=r(rn-1)-1
dimension (r = n) 1 0 (n—1)? n-2

A, _, orthogonal to all the others, by Theorem 1.6.1 of Rhagavarao (1971). One
letter of A,_, must correspond to the transversal. Each other letter of A,_,
occurs just once in each a-spoke, for each classification a. Hence the contrasts
between these n — 1 other letters are orthogonal to spokes, and so they form the
whole space V,. Since V; is null in this case, V, must consist of all treatment
contrasts which are orthogonal to the letters of A, _,. Thus the treatments have
the simple nested structure (r — 1) — n [in the notation of Nelder (1965a)], and
the treatment space decomposition is the familiar one into mean, between letters
of A, _, and within letters.

If r=n—1 and n # 4, the results of Shrikhande (1961) and Bruck (1963)
show that there is a unique complete orthogonal set {A,,..., A, _;} containing
the original set {A,,..., A,,_;} and that the original transversal corresponds to a
letter of one of the two extra squares, say A,_,. The same result is true even
when n = 4, because the existence of the original transversal prevents A, from
being isotopic to the square in Table 2, which is the only 4 X 4 Latin square (up
to isotopy) which is not uniquely embeddable in a complete set of mutually
orthogonal Latin squares [isotopy classes are also called transformation sets (see
Fisher and Yates (1934))]. The treatments now have the simple crossed factorial
structure @, X Q,, where the levels of @, are the n — 1 other letters of A, _, and
the levels of @, are the n letters of A,_;. Now V, is the main effect of @,; while
V; is the main effect of @, and V, is the @,Q, interaction.

Example 2 has r = n — 1 = 3. The rectangular lattice design is constructed
from the set of mutually orthogonal 4 X 4 Latin squares in Table 9 : the rows,
columns, and letters of A, are the three classifications; letter 1 of A, gives the
transversal; the remaining letters of A, and A; give the 3 X 4 factorial treat-
ment structure described above and shown in Table 10. The design is that shown
in Table 11, ignoring periods.

In both these special cases the factorial treatment decomposition has no direct
statistical meaning, but is merely an aid to the analysis. The factors @, and @,
are entirely analogous to the pseudo-factors used in the construction and analysis
of square lattice designs [ Yates (1936)].

4. Treatment projection. Let z be a vector in R®. In order to use the spaces
V., Vi, V,, and V, in the analysis of an experiment we need to know how to
calculate the projections of z onto these spaces. This is done in terms of the
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TABLE 9a
Three mutually orthogonal 4 X 4 Latin squares
A, (“1” gives transversal;
other letters are Aj (letters are
A, (gives 3rd replicate) levels of @,) levels of @,)
1 4 2 3 1 2 3 4 1 2 3 4
3 2 4 1 2 1 4 3 3 4 1 2
4 1 3 2 3 4 1 2 4 3 2 1
2 3 1 4 4 3 2 1 2 1 4 3
TABLE 9b
Array of twelve treatments for Example 2
* A B C
D * E F
G H * 1
J K L *
TABLE 10
3 X 4 factorial structure for Example 2
treatment A B C D E F G H I J K L
level of @, 2 3 4 2 4 3 3 4 2 4 3 2
level of @, 2 3 4 3 1 2 4 3 1 2 1 4
TABLE 11
Design which is not generally balanced
room 1 2 3
sheep 1 2 3 4 5 6 7 8 9 10 11 12
time 1 B D 1 L K E F G A J C H
period 2 C E H K A L 1 J G B D F
3 A F G J H B C D E I K L

following totals:

grand total G(z) = Y. z,,,

spoke total S,;(z) = ). {z,: w € %,;} = (2,V,,),

fan total Fi(z) = ) {z,: w € %} = (z,w,).
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TABLE 12
A particular vector z in R

[ - I

LS B I N |

N o * Ov W

QU x O W

* =3 W

It is immediate that
(4.1)

(4.3)

Y5, - G(2),
(4.2) 2.8,i(z) = Fy(z),
ZE(Z) =rG(z).

Define the fan totals vector f(z) and the spoke totals vector s(z) by

i(z) = LF(@)w,,
8() = ¥ L8, (2)v,..

We also need the grand totals vector g(z), all of whose entries are equal to G(z).
Continuing our Example 1, a vector z is shown in Table 12. Its spoke totals are
in Table 13: the column margins are the fan totals, and the row totals are all the
grand total. The vectors f(z) and s(z) are shown in Table 14.
We aim to give the projections of z onto the spaces V,, V;, V,, and V, in terms
of f(z), s(z), and g(z). The necessary calculations are contained in the following

two lemmas.

LEMMA 1.
@) (8(2),v,,) = nS,i(z) + (r — 1)G(2z) - F,(2),
(ii) (£(2),v,,) = (n = r)F(z) + r(r - 1)G(a),
(iii) (#(z),w;) = r(n — r)F(z) + r*(r - 1)G(z).
TABLE 13
Spoke totals of z
i 1 2 3 4 5 total

row (a =1) 15 24 20 18 13 90
column (a = 2) 17 18 18 22 15 90
letter (a = 3) 13 15 13 20 29 90
fan totals 45 57 51 60 57 270

203
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TABLE 14
fan totals vector {(z) spoke totals vector s(z)

* 159 156 156 159 * 62 53 50 45
162 * 153 174 165 61 * 55 75 52
153 153 * 168 168 66 51 * 57 55
162 168 168 * 162 50 49 65 * 46
153 174 165 162 * 43 51 46 48 *

Proor. To simplify the expressions, we omit “(z)”, the vector z being
understood.

(i) (8, V) = Xb: E_Sbj<vbj’vai>
=(n-1)8,+ bZ Z'Sbj (by (3.1))
=(n-1)8,+ bE (G-8y) (by (4.1))

= nSal. + (r - 1)G - Zsbt
b

— 1S, + (r=1)G - F, (by (42)).
(if) (£,ve) = TF(W,,v00)
= (n-DF+(r-1)TF (by(31)

=(n-r)E+(r-DLE

=(n—r)F,+r(r—1)G (by(4.3)).
(iii) Summing the equation in (ii) over all the spokes in %, gives

12

d,w,) =r(n—-r)F,+r’r-1)G. O

LeMMA 2. The orthogonal projections of z onto U,,U,, U, U,, respectively,
are

(2 ) (- De
n(n-1)’ rin-r) (n-1)(n-r)’
@) (- Vg

n nn-r) (n-1U(n-r)’

when r # n. When r = n then U; = U, and the orthogonal projection of z onto
U, is

s(z) (n-2)g(z)
n n(n—1)
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PrOOF. Put x=[r(n—r)] ¥ —(r— D[(n— 1) (n—r)]"'g when r+n.
Since f and g are both sums of fan vectors, x € U;. Thus it suffices to show that
z — x is orthogonal to U;. This is so if (z — x,w,) = 0 for each fan %, By
Lemma 1(iii) and (3.2),
r(n-r)E+r¥(r-1)G r(n-1)(r-1)G

r(n—r) (n—-1)(n-r)

Similarly, puty = n7's + [n(n — r)]" 4 — (r — D)[(n — 1)(n — r)]"'g. Then
y € U,, because 8, f, and g are all sums of spoke vectors, so it suffices to show
that (z — y, v,;) = 0 for all spokes %,,. Lemmas 1(i) and (ii) show that (y, v,;) is
equal to

nS,, + (r—1)G - F; . (n=r)E+r(r-1)G (n-1)(r-1)G
n n(n-r) (n=-D(n-r)"

<X, wl> = F; = <Z,WE>.

which is S,;, which is (z,v,;).

Nowlet r=nand puty =n"!'s — (n — 2)[n(n — 1)]7'g. Then

nS,; + (n - 2)G ~ (n=2)(n-1)G =8, =(z,v,)

<y:vai> = n n(n _ 1)

so that y € U, and z — y is orthogonal to U,. O
Now subtraction gives the orthogonal projection of z onto V,, V;, V, V..

THEOREM 1. Let T, T}, T,, T, be the operators of orthogonal projection from

R’ onto V,, V;, V,, V,, respectively. Then, for all z in R’,

g(z)
ETCE
f(z rg(z
T,z = (2) - g(2) when r + n and zero otherwise,
rin—r) n(n-r)
s(z) {(z)
sé = n - m ’

T,z =z - (T,z + Tjz + T,z).

In Example 1 we have n =5 and r = 3, so T,z = g(z)/20; T;(z) = f(z)/6 —
3g(z)/10; T,z = s(z)/5 — f(z)/15, and T.z is best obtained by subtraction. For
the particular vector z shown in Table 12, these four components of z are shown
in Table 15. The orthogonality of the decomposition may be verified by noting
that

IIT,z||* + |IT;z||* + |T,2)|” + |[T,z)|®

=405 + 24 + 47.2 + 21.8 = 498 = |jz||%.
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TABLE 15
T“ z Trz
* 4.5 45 4.5 45 * -0.5 -1.0 -1.0 -05
4.5 * 4.5 4.5 4.5 0.0 * -15 2.0 0.5
45 45 * 4.5 45 -15 -1.5 * 1.0 1.0
4.5 4.5 4.5 * 45 0.0 1.0 1.0 * 0.0
4.5 4.5 4.5 4.5 * -15 2.0 0.5 0.0 *
T,z T,z
* 1.8 0.2 -04 -1.6 * 1.2 -0.7 -1.1 0.6
14 * 0.8 3.4 -0.6 0.1 * 1.2 -0.9 —-04
3.0 0.0 * 0.2 -0.2 -1.0 -1.0 * 0.3 1.7
-0.8 -14 1.8 * -1.6 0.3 0.9 0.7 * -19
-1.6 -14 -18 -1.2 * 0.6 -1.1 -1.2 1.7 *

5. General balance. The block structure of a rectangular lattice design is
the double nested classification of plots within blocks within replicates. This is
one of the simple orthogonal block structures defined by Nelder (1965a). In what
follows we retain the notation of Nelder (1965a,b, 1968) and Bailey (1981) as far
as possible.

Let RY be the real vector space associated with the N plots. Each grouping of
the plots according to the block structure defines an averaging operation P on
R™. In our case there are four averaging operators: the grand mean averaging
operator P, = J/N, where J is the all-1’s matrix; the replicates averaging
operator Pp; the blocks averaging operator Pp; and the identity P, = I. Nelder
(1965a) showed that there is an orthogonal direct sum decomposition ® W, of RY
such that each W, is an eigenspace of every P. Let C, be the operator of
orthogonal projection from R™ onto W,. Nelder (1965a) showed that each C, is a
linear combination of the P’s with integer coefficients: Speed and Bailey (1982)
gave explicit formulae for these coefficients. In our case we have

C,=P, Cp=P,-P,
Cy=P,-P, C, =P —P,

The spaces W, are called strata: they play an important role in analysis of
variance [see Nelder (1965b) and Bailey (1981)]. Our covariance model for the
data vector y is

(5.1) Cov(y) = ¢,C, + £xCr + £5Cp + £.C,

for unknown scalars £ Er» Ep,and €.

Denote by X the N X ¢ design matrix; that is, X, is 1 if plot p receives
treatment «w and 0 otherwise. For each stratum W,, the matrix L, defined by
L, = X'C X is called the information matrix for that stratum. For designs with
equal replication r, we have L, = rT,. If L, = 0 there is no information about
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treatments in stratum W,. Strata, other than w,, for which L, # 0, are called
effective strata.

Suppose that &,V; is an orthogonal direct sum decomposition of R’. Nelder
(1965b) defined an equally replicated design to be generally balanced with
respect to this treatment decomposition if each V; is an eigenspace of every
information matrix; that is, there are numbers A, such that L, = X A 4Ty,
where T, denotes orthogonal projection onto V;. We have 0 < A 4, < r for all «
and 6; and ¥ A, = r for all 4. The quantity A ,/r is the efficiency factor for
treatment term V, in the stratum W,. In a simple block design with blocks
stratum Wj, examination of the trace of Ly shows that L,A gdim(Vy)/r =
b/r — 1, the so-called loss of information due to blocks.

Houtman and Speed (1983) have shown that in any design with only two
effective strata there must be some decomposition @V, of R® with respect to
which the design is generally balanced. However, the decomposition may not be
easy to find, use or interpret. Our claim is that a rectangular lattice design is
generally balanced with respect to the treatment decomposition given in Sec-
tion 3.

LEMMA 3. Fora=1,...,randi=1,...,n
X'PpXv,, = (nv,,— w,+ (r— Du)/(n - 1).
Proor. If & is any block and v is any vector in R’ then the entries of Py Xv
for the plots in # are all equal to the average of the entries of v for those
treatments which occur in 4. If v = v,,, and % consists of &,; then this average

is equal to (V,;, vp,;)/(n — 1). Denote the characteristic vector of this block by
,- Then

(n - 1 l)BXV Z Z<vlll7vbj>xbj

Since X'x,; = v,; we have
(n’ - 1)X’PBXV Z Z< Vars vbj>vbj

=(n—-1v,+ bZ (u-w,) (by(3.1))
=nv, +(r—lu-w, ]

THEOREM 2. Rectangular lattice designs are generally balanced with respect
to the treatment decomposition given in Section 3.

Proor. We always have L,u = ru, and L,z = 0 whenever z is orthogonal to
u. By definition of replicate, X'P,Xz = rg(z)/n(n — 1) = X'P,Xz, so Ly = 0.
Moreover, L = X’'PzX — X'P;X, and so
Lp(Ve; — vy) = n(n - 1)—1(".1;' - Vi)
by Lemma 3. Since V; is spanned by vectors of the form v,, — v,,, this shows that



208 5 Anova

R. A. BAILEY AND T. P. SPEED

TABLE 16
Efficiency factors of a rectangular lattice design

treatment subspace

v, v v, v,
stratum
mean W, 1 0 0 0
replicates Wy 0 0 0 0
blocks W, 0 T z

ocks Wa r(n—1) r(n—1)
n(r—-1) m-r—n

plots W, 0 1

r(n—1) r(n—1)

V, is an eigenspace of Ly with eigenvalue A 5, = n/(n — 1). Similarly, Lemma 3
shows that

LB(WL' - W,) =(n-r)(n- 1)_1(Wi - Wj),

so V; is an eigenspace of L with eigenvalue A g, = (n — r)/(n — 1). Whether or
not r = n, Table 8 now shows that A pdim(V,) + A 5;dim(V;) = b — r, so there
can be no further nonzero eigenvalues in the blocks stratum. Thus V, must be an
eigenspace of Lz with A5, = 0.

By the result of Houtman and Speed (1983), the spaces V,,V,,V, are also
eigenspaces of L. O

The eigenvalues in stratum W, are calculated by subtraction. Division by r
gives the efficiency factors, which are shown in Table 16, which is laid out like the
table in Section 4.2 of Nelder (1968).

Block designs are often classified by a single measure of efficiency: the
harmonic mean of the efficiency factors (taking account of multiplicity) in
stratum W,. It follows from Tables 8 and 16, that, whether r = n or r < n, the
harmonic mean efficiency factor for a rectangular lattice design is

n(r—-1)(m-r—n)(n?-n-1)

(r—-1)’n*(n2-n-1)-r(n-1)"+m(r-1)

This efficiency factor is proportional to the reciprocal of the average variance of
the intrablock estimates of simple treatment differences, and so may also be
obtained from this average variance, which is given by Williams (1977, page 413).

6. Analysis. Since rectangular lattice designs are generally balanced, their
analysis follows the pattern described by Nelder (1965b, 1968), Wilkinson (1970),
and James and Wilkinson (1971). In this section we specialize their results to
rectangular lattice designs, retaining most of Nelder’s notation. We outline the
procedure for fitting the model, deriving a complete analysis of variance, estimat-
ing the stratum variances £z, &5, and £, and obtaining minimum variance
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unbiased linear estimates (with estimated weights) of arbitrary treatment con-
trasts, together with their estimated variances.

Let t be the ¢ X 1 vector of individual treatment effects and let y be the N x 1
vector of observations. If A, # 0, the treatment effect Tyt is estimated in
stratum W, by h _,, where h , = T,X"C,y/A 4. The contribution of treatment
term V, to the fitted value in stratum W, is C Xh 4, with the sum of squares
A .ol ll2. Thus the overall fitted value in stratum W, is Y;C,Xh ,, where ¥}
denotes summation over those 8 for which A, # 0. The residual sum of squares,
RSS,, in stratum W,, and its number of degrees of freedom, d, are obtained by
subtraction:

(6.1) RSS, = y'C,y — LA llh0l%,
g
(6.2) d, = dim(W,) — ¥ dim(V}).
]

Thus we obtain the analysis of variance shown in Tables 17a (r < n) and 17b
(r=n).

If the stratum variances £, are known, we put wy, =X A /¢, and define
weights w,g by w,y = A 4/¢,Wy. The weighted effect corresponding to treatment
term V is X w,,h 4, and the overall weighted fitted value tis L, w,oh 4. If x is
any treatment contrast (that is, x € R and (x,u) = 0) then the minimum
variance unbiased linear estimate of (x,t) is (x,1), with variance X,|[Tyx||?/w.

TABLE 17a
Analysis of variance whenr < n

source of
stratum variation df SS EMS
mean 1 y'C.y rITL® + &,
replicates r—1 y'Cry ér
Aps T2
blocks 7 n-1 Mgyl |12 Lrlz“t,li + g
ATt
V. - 1)(r—-1 Aglh g2 —_—+
A (n—1)(r-1) Bslh gl -D(r-1) §
total r(n—1) y'Cpy
A T2
plots 1/ n-1 Aol 112 AT,
n-—1
v, (n=1(r -1 Nlbglt T
s €S €s (n_l)(rgl) €
v, (n=rn-1)—-1  Ah,|? L’wjtg
3 eell™ee (n~r)(n~1)—1 3
error n(rm—2r-n+1)+1 RSS, £,

total rn(n — 2) y'C.y
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TABLE 17b
Analysis of variance whenr = n

source of
stratum variation df SS EMS
mean 1 y'Cy rITLI? + &,
replicates r—1 y'Cry r
A gl Tt
blocks V, (n—1)2 Apslih g 1? Mlg‘ +ép
(n-1)
error n-1 RSS, £p
total n(n—-1) y'Cpy
R T
plots v, (n—17 Agslih gl — &
(n-1)
AT
_ 2
v, n-2 Al otk
error (n—1)(n?-2n-1) RSS, £
total n*(n-2) y'C.y

Usually the stratum variances £, are not known. If d, # 0 then RSS,/d,
provides an unbiased estimate of £, but in general such estimates are based on
too few degrees of freedom, because one or more treatment terms have been fitted
and removed in more than one stratum. For a rectangular lattice design with
r < n there is no such estimate of £z, because dz = 0.

The solution to this difficulty is to estimate the stratum variances and the
weights simultaneously. With the weighted fitted value t given above, the sum of
squares, R, for the residual in stratum W, is given by

(6'3) Ra = RSSa + zg:kaﬂz’zwﬂowyﬂ<ha0 - h,l?0’ha0 - hy0>’
B v
with expected value d/£_, where
(6.4) d; = dim(W,) — ¥ w,dim(V;).
]

Equating observed and expected values of the R, gives a set of equations in the
£, As Nelder (1968) observed, (6.3) simplifies considerably when there are only
two effective strata. Thus for rectangular lattice designs we obtain the following
equations for £z and £

RSS; + YA ggwjlhg, — h g% = 53["(” -1)- ;'wB,,dim(V},)],
9

RSS, + YA qwhgllh,g — hpgy® = 55["”(” -2) - Z'ws,,dim(V,,)}.
9 9

Note that RSS, is zero when r < n, and that the weights w,, also involve the
unknown £,. However, these equations may be solved, iteratively if necessary, to
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give us estimates £ and £,, which, under normality, correspond to the so-called
restricted maximum likelihood estimates, and these may be used to give the best
available estimates of linear combinations (x,t) and the estimated variances of
those estimates.

It is clear that the analysis depends on the availability of the projection
operators C, and T,. The former are quite standard, and correspond to fitting
and removing the grand mean, replicate means, and block means. The latter are
given by the fan and spoke totals, and so are straightforward to calculate, even
by hand. If the statistical programming language GENSTAT is used, spoke
totals are automatically calculated if r treatment pseudo-factors are declared,
one for each classification: the levels of the ath pseudo-factor are the a-spokes.
An alternative strategy is to input r copies of the data and use just two
treatment pseudo-factors, FAN and SPOKE. In the ath copy, treatments in
spoke &,; are declared to have level i of FAN and level a of SPOKE. The
treatment declaration FAN /SPOKE ensures that all the correct major calcula-
tions are done, using the sweeps of Wilkinson (1970), although minor adjust-
ments have to be made to the output to allow for the multiple copies. Thompson
(1983) explains this method, and its difficulties, in more detail, using the general
methods of Thompson (1984), and shows that this type of pseudo-factorial
structure is also useful for diallel experiments.

Thus, apart from the use of estimated weights because the stratum variances
are in general not known, a completely satisfactory analysis of any rectangular
lattice design can be made once the operators T, are available. Given these, the
analysis is analogous to that of a balanced incomplete block design with recovery
of interblock information.

Williams and Ratcliff (1980) gave a procedure for the analysis of rectangular
lattice designs which differs from ours in two respects. In the first place, their
covariance model is of the form

COV[(I - Pr)y] = vsPs + 7.1,

which differs from our equation (5.1). Secondly, our iterative analysis ensures
that the final estimates of £, £, and the treatment effects are consistent with
each other, while the Williams—Ratcliff procedure, which is based on that given
by Yates (1940) and Cochran and Cox (1957, Section 1.3), is, roughly speaking,
only the first cycle of the restricted maximum likelihood analysis of Patterson
and Thompson (1971). The differences between these methods, which apply not
only to rectangular lattice designs, will be discussed in more detail elsewhere.

7. Rectangular lattices with cross-blocking. The foregoing ideas may be
extended to a more complicated block structure.

In Example 2 we have so far ignored the periods. However, it was desirable
that each treatment should be fed once in each period. The experimenter
concerned found that, for the rectangular lattice design constructed at the end of
Section 3, the treatments could be permuted within sheep so that each treatment
occurred once in each period: his proposed design is shown in Table 11.
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Unfortunately, this design takes no account of the grouping of the 36 experi-
mental units into nine room-periods: each room-period consists of the four
observations made in the same test period in the same room. In the notation of
Nelder (1965a), the block structure is

3 periods X (3 rooms — 4 sheep).

The stratum projection matrices are given by

c,-P,
Cr=Pz-P,
Cp=P,— P,
Crp=Prp—Pp— P+ P,
Cs = Ps = Pp,

C,=P, —P,— P, +Pp,

where, for example, P, is the averaging matrix for room-periods. Although
V., V;, V,, and V, are eigenspaces of C,, Cp, Cp, and Cg, they are not eigen-
spaces of Cpp and C,, because the block design given by the room-periods
alone is not in any sense balanced with respect to the treatment decomposition
V., ® V;® V, @ V. Thus the design is not generally balanced.

However, it is possible to permute the treatments given to each sheep so that
each treatment occurs once in each period and the design is generally balanced.
This may be done for n(n — 1) treatments in the simple orthogonal block
structure

(n — 1) periods X [(n — 1) rooms — n sheep]

as follows. Ignoring periods, the design is constructed from a set of mutu-
ally orthogonal Latin squares A,,..., A,_;, as in Section 2. A supplementary
(n — 1) X (n — 1) Latin square A is needed, whose letters are the remaining
letters of A, _,. Let §,, be the letter in row @ and column p of A. Then the
treatment in the pth period and the ith animal of the ath room is the unique
treatment which is in spoke %,, and in letter §,, of A,_,. In our particular
example we may take the supplementary square A shown in Table 18: the
resulting design is in Table 19.

In the notation of Section 3, V, is the main effect of @,, where the levels of @,
are the remaining letters of A,_,. By our construction, @, is completely con-
founded with room-periods, while all treatment vectors which are orthogonal to
Q, are also orthogonal to room-periods. Hence the efficiency factors for this
extension of the rectangular lattice design are those shown in Table 20.

TABLE 18
Supplementary Latin square
2 3 4
3 4 2

4 2 3
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TABLE 19
Generally balanced design for [ periods X (rooms — sheep)]
room 1 2 3
sheep 1 2 3 4 5 6 7 8 9 10 11 12
time 1 A D I L G K B F H J C E
. 2 B F (€] K J H E C L 1 D A
period
3 C E H J D A L I F B K G
TABLE 20

Effictency factors of an extended rectangular lattice design

treatment subspace
V,. Vf =Q, V. =@Q,Q, V.=@

stratum

mean W; 1 0 0 0
rooms Wy 0 0 0 0
periods Wp, 0 0 0 0
room-periods Wpp 0 0 0 1

1 n

o
(=]

sheep W,

(n=1)" (n=1)°
. n(n—2) n?-3n+1
units W, 0 2 3 0
(n-1) (n-1)
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WHAT IS AN ANALYSIS OF VARIANCE?

By T. P. SPEED
CSIRO, Canberra, Australia

The analysis of variance is usually regarded as being concerned with
sums of squares of numbers and independent quadratic forms of random
variables. In this paper, an alternative interpretation is discussed. For certain
classes of dispersion models for finite or infinite arrays of random variables, a
form of generalized spectral analysis is described and its intuitive meaning
explained. The analysis gives a spectral decomposition of each dispersion in
the class, incorporating an analysis of the common variance, and an associ-
ated orthogonal decomposition of each of the random variables. One by-prod-
uct of this approach is a clear understanding of the similarity between the
spectral decomposition for second-order stationary processes and the familiar
linear models with random effects.

“...the analysis of variance, which may perhaps be called a statistical
method, because the term is a very ambiguous one—is not a mathematical
theorem, but rather a convenient method of arranging the arithmetic.”

R. A. Fisher (1934)

1. Introduction. To most of us the expression analysis of variance or anova
conjures up a subset of the following: multiindexed arrays of numbers, sums of
squares, anova tables with lines; perhaps, somewhat more mathematically,
independent quadratic forms of random variables, chi-squared distributions, and
F-tests. We would also think of linear models and the associated notions of main
effects and interactions of various orders; indeed the standard text on the
subject, Scheffé (1959, page 5) essentially defines the analysis of variance to be
regression analysis where the regressor variables (x;;) take only the values 0 or 1,
although he mentions in a footnote that —1 and 2 have also arisen. What is
anova? Is there a variance being analysed? Is there a mathematical theorem,
contrary to Fisher’s assertion? Or is it just a body of techniques, a statistical
method, ..., a convenient method of arranging the arithmetic?

Signs that there might be an underlying mathematical structure began to
appear in the late 1950s and early 1960s. James (1957) emphasised the role of the
algebra of projectors in the analysis of experimental designs, Tukey (1961)
outlined the connection between anova and spectrum analysis [something which
was made more explicit by Hannan (1961, 1965), who focussed on the decomposi-
tion of permutation representations of groups], whilst Graybill and Hultquist

Received February 1986; revised August 1986.

AMS 1980 subject classification. 62J10.
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(1961) gave a definition of anova (assuming joint normality of all random
variables concerned) which incorporated many of the same ideas as the others
mentioned: the commuting of projectors and the spectral decomposition of a
covariance matrix.

Of course, anova is just a word (or three) and people can give it any meaning
they wish, so there is no sense in which the definition I offer in the following text
has any greater claim to be the correct one than any other. What I do believe is
that it is a mathematically fruitful definition, that it covers most if not all
situations which statisticians would regard as being instances of anova and that
its generality and simplicity are both pedagogically and scientifically helpful.
And yes, I believe there are relevant mathematical theorems, although as we will
see it is perhaps unreasonable to expect a single theorem to cover all existing
cases.

2. Two simple examples. Let us begin with an array y = (y;;) of mn
random variables where i = 1,..., m and j = 1,..., n is nested within i, i.e., j
only has meaning within the values of i. The following decomposition of the sum
of squares is familiar to all who have met anova:

(2.1) Y X yh=mnyl+ L (3= 2.) + L X (5, - %)%
ko1 h i

and we denote the three terms on the right by SS,, SS; and SS,. Here
Yie=n"'Y,y,;, y.=m 'Ly, etc. It is not hard to derive (2.1) by the standard
juggling which many believe characterises anova. Of what interest or use is this
decomposition? To answer this question, we must make some assumptions about
the y,;, and one set—the ones Fisher (1934) probably had in mind when he made
the remark quoted—is the following: Ey;; = p;, where (p;) is a set of m
unknown parameters, the (y,;) are pairwise uncorrelated and they have a
common variance o2 i.e., the dispersion matrix Dy of y is just 62I. Under these
assumptions we can prove (see the following text) that E{SS)} = mnp2+ o2,
E(SS,} = (m — 1)o® + nZy(p; — p.)* and E{SS,} = m(n — 1)o> It is here that
we can see the point of Fisher’s remark about “the arithmetic,” for when the
() are jointly normal, SS,/0?, SS,/0? and SS,/0? are mutually independent
with chi-squared distributions on 1, m — 1 and m(n — 1) degrees of freedom,
respectively, and the ratio ¥ = m(n — 1)SS,/(m — 1)SS, permits a test of the
hypothesis H: p, = p, = -+ = p,, having a central F-distribution with (m — 1,
m(n — 1)) degrees of freedom when H is true. The F-test of this hypothesis has
many desirable properties [Hsu (1941, 1945), Wald (1942), Wolfowitz (1949),
Herbach (1959) and Gautschi (1959)] and the decomposition (2.1) is indeed a
convenient method of arranging the arithmetic.

But all of this is just sums of squares—quadratic forms in normal variates if
you wish; the only variance in sight is the common ¢2 and that does not appear
to be undergoing any analysis. However, let us look closely at the proof of some
of the foregoing assertions. How do we see that the quadratic forms SS,, SS, and
SS, are independent under the assumption Dy = ¢2I and joint normality? One
approach, owing to Tang (1938), uses the fact that their (unsquared and un-
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summed) components y.., ¥;.— y.. and y;; — y,. are uncorrelated, and hence, by
the joint normality, independent, and this property is retained when the compo-
nents are squared and summed.

How do we see that these components are uncorrelated? Each is a linear
combination of elements in the array y with easily calculated coefficients and,
with the assumption that Dy = ¢2I, their covariances are simply o2 times the
sums of the products of these coefficients. For example, the coefficient of y,; in
Yp.— Y. is =1/mn if k# h and 1/n — 1/mn if k = h, whilst that of y,, in
Yy~ Y% 1s0ifk+i —1/nifk=iand [#jand 1 - 1/nif k=iand I=.
Thus if A = ¢,

cov( ¥;.— ¥..r Yij — %)

1 1 1 1 1 1 1
ot (2 L Doy e (- L) 2]
mn n mn n n  mn n
which is zero as stated; the case A # i is dealt with similarly. Similar calcula-
tions prove that cov(y.., y,.— y.) = cov(y., ¥;; — ».) =0 and, further, that
E{y2} = u?;(l/mn)oz, E{(yh.*zy-.)2} = ((m — 1)/mn)o® + (p;, — p)* and
E{(y,; — %)%} = (m(n — 1)/mn)s~.
It has just been proved that the three components in the sum

(2:2) Yi=Y. t Yo—y. T Dy~
are uncorrelated; their variances thus add and we may write this as
1 m-—1 m(n—1
(2.3) 02= —o?+ o+ ( )02.
mn mn mn

Here at last is a variance being analysed! But before we examine this any further
let us see with a minimum of further algebra how the sums of squares of the
components in (2.2) must add up and give (2.1). Denoting the coefficients of y,,
in y., y..— y.and y; — 3. by Sy7, kl), S,(¥, kl) and Sy(¥, kl), respectively, we
can easily check that the mn X mn matrices S), S, and S, so defined are
symmetric, idempotent, pairwise orthogonal and sum to the mn X mn identity
matrix I. Symmetry is quickly apparent from their definition; orthogonality is
implicit in the calculation which proved the components in (2.2) uncorrelated,
whilst idempotence is proved by a similar calculation; and clearly they sum to
the identity. Thus we can write y = S;y + S,y + S,y as

(24) (3) = (5. + (.= 3. + (3 — %),

where the S, act on arrays u = (u;;) of real numbers as follows (Su);; =
2.2,S(5, kRDu,,, a = 0,1,2. But then (2.4) is a decomposition of the array into
component arrays which are orthogonal with respect to the inner product
(u, vy = L, ;u;;v;;, whilst (2.1) is simply the Pythagorean relationship

1712 =181 + IS5 + IS, ¥1%,

where |y|2 = (y, y) is the associated squared norm.
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An unexpected bonus. Without any further calculations we may assert that
(2.2) remains an orthogonal decomposition of y;; when the dispersion matrix
Dy =T has the form

(2.5) I=§,S, + &S, + £,S;,
where the eigenvalues £, §, and £, are positive real numbers. A modified version
of (2.3) also holds, namely

1 m—1 m(n —1)

(2.6) var( ;) = Ego + — &+ -~ £,

These assertions are readily checked. For example,
cov( ¥;. = ¥.. Yij — ¥.) = (8TS)(#,4) =0,
and

o .., mn-1)
Var(yij - %)= (Szrs2)(U’ j) = 5282(% i) = ng-
The question this observation now raises is: How wide is the class of matrices of
the form (2.5)? Perhaps unexpectedly, it coincides with a class which arises
frequently, namely the set of all matrices I' having the form

(2-7) I'= 174, + 114, + 14,

where A, = I is the identity matrix, A,(ij, k) =1 if i = k, j # [ and 0 other-
wise, Ay(¥, kl) = 1if i # k and 0 otherwise, and vy,, v, and v, are a variance and
two covariances constrained only to ensure that I' is positive definite. The
easiest way to see that I'’s of the form (2.5) and (2.7) coincide is to list the index
i/ lexicographically and write the matrices in tensor product form. We find that
A, =1,01, A =1,8(J,—1) and A,=(J,—1I,) ®J, whilst S,=
1/m)d, ® 1/n)d,, S, = (I, - (1/m)J,) ® (1/n)d, and S, =1I, @ (I, -
(1/n)dJ,), where I, and J,, are the m X m identity and matrix of 1’s, respec-
tively. The eigenvalues £ and the entries y correspond in the following way:

& 1 n—1 n(m-1)||y,
(2.8a) §i|=|1 n—-1 —-n Y1 |
£, 1 -1 0 Yo
Y2 1 1 m-1 m(n—1) |4
(2.8b) Hhl=—|1 m-1 -m £ .
mn
Yo 1 -1 0 ¢,

Where have we gotten to? We have exhibited a set of covariance matrices (2.7)
for a random array y = (;;) which are simultaneously diagonalisable, cf. (2.5);
their eigenvalues are invertible linear combinations (2.8) of their entries; their
common eigenspace projectors decompose the elements of the array into statisti-
cally orthogonal (i.e., uncorrelated) components (2.2) whilst also decomposing the
arrays themselves into geometrically orthogonal arrays (2.4). Pythagoras’ theo-
rem applied to the decomposition of array elements gives an analysis of variance
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qua variance (2.6), whilst it gives the sum of squares decomposition (2.1) of an
anova table when applied to the decomposition of arrays. We might also add
that these decompositions all make “statistical sense.”

How special is this example? Before answering this question let us look at a
second example, which is not normally regarded as being an instance of anova.

This time our array has a circular nature: A sequence y = (y,: t =0,1,...,n — 1)
of n = 2m + 1 random variables with cov(y,, 3,) = Yie-sp 0 < S, <, ie, I' =
Dy is a symmetric circulant with first row (voy; *** VY = 71)- To emphasize

the similarity with (2.7) we write it as
m

(2.9) F=Yv,A,,
0

where A, is the symmetric circulant having first row (0---010---010---0)
with 1’s in the ath and (n — a)th position, 1 <a <m, and A,=1,the n X n
identity matrix. It is well known that the class of all such matrices is simulta-
neously diagonalisable with common projectors S, = (1/n)J, and S (s, t) =
(2/n)cos(27(s — t)a/n), 0 <a <m, 0 <s, t <n, whilst their eigenvalues are
linear combinations of their entries

m 2@
(2.10a) £.=Y + 2Zyacos(—aa), a=0,...,m,
T n
with inverses
1 2m 2
(2.10b) Yo = ;go + - ;&acos(zaa), a=0,...,m.

Further, we have an orthogonal decomposition of the random variables similar to
(2.2):

(2'11) Y=yt Zsayt)
1

where S, y, = (2/n)L2 'y cos(27(s — t)a/n), 1 < a < m, cf. Hannan (1960, 1.2),
and the variances of each component add, corresponding to a = 0 in (2.10b).

Finally, we remark that a decomposition of the n-dimensional vector space
analogous to (2.4) and its associated sum of squares decomposition may also be
derived; it is just the (real form of the) discrete Fourier transform. The analogy
with the view of the classical anova we have just presented is complete.

3. Sums of squares. ‘Let y=(y: t€T) be a finite array of random
variables with mean Ey = 0 and dispersion matrix Dy =T € V, where V is a
family of positive definite matrices over T. The formal definition of anova given
by Graybill and Hultquist (1961) refers to a decomposition of |y|? into a sum of
quadratic forms under an assumption of joint normality of y. It had two aspects
which we will recall shortly: one which in essence refers to properties of the
individual matrices I' € V, and one which was clearly a property of the model as
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a whole. Later writers on the same topic include Albert (1976), Brown (1984) and
Harville (1984), and in all of these papers the role of anova as a property of a
model V has tended to get emphasised less than the consequences of the
definition for arrays y with Dy € V. In what follows we modify the Graybill and
Hultquist (1961) definition slightly, removing some details without, we hope,
losing its essence. We also express the definition solely in terms of the class V of
dispersion matrices, removing the joint normality assumption. Finally we argue
that the definition is most fruitful when applied to a particular parametrization
of V, one which is not usual in this context, although as we will see it coincides
with that used in developing the spectral theory of second-order stationary
processes over index sets of various kinds.

Initially we will suppose that V is a class of positive definite matrices having
the form

(3.1) r(6) = ¥ 0,4,

where the {A,} are known symmetric matrices and 6 = (6,) is an s-dimensional
real parameter belonging to ® C R®. It will be convenient to suppose that the
{A,} are linearly independent matrices over T and that V contains s linearly
independent elements. Dispersion models of this form have been studied by a
number of authors over the years including Anderson (1969, 1970, 1973) and
Jensen (1975), but our emphasis is quite different from theirs. Essentially
following Graybill and Hultquist (1961) we say that an anova exists for V if there
exists a family {S,} of s known pairwise orthogonal symmetric idempotent
matrices summing to the identity matrix I over T such that

(a) for every § € © and a there exists £ (6) such that
(3:2) I'(6)S, = £,(0)S,;
(b) the map 8 = (6,) — £(8) = (£(0)) is linear and invertible.

Condition (a) replaces the condition that for each § € ® the s quadratic forms
{1S,y|?} are mutually independent scale multiples of chi-squares under the
assumption y ~ N(0, I'(8)) [see Albert (1976, Theorem 1(a))], whilst condition
(b) asserts that the multipliers £,(6) = E{d_'|S,y|?}, where d, = rank S,, are
independent linear functions of the {4,}.

It is clear from (a) that the matrices {S,} simultaneously reduce all T € V,
ie., that T = £ _£,S,, where we omit the dependence on ¢ if no confusion can
result, and thus every element of V commutes with every other. As long as V
contains s linearly independent elements, these conclusions extend to all matrices
of the form ¥,0,A, with § € R® and in particular we deduce that the {A,}
commute. It also follows from (b) that, in general, I'(#) has s distinct eigenval-
ues.

Conversely, if the {A,} all commute, a well known theorem in linear algebra
tells us that there is a family {S,} of ¢ (say) pairwise orthogonal symmetric
idempotent matrices summing to I such that A,S, = p,,S, for constants p,,,
a=1,...,t, a=1,...,s. It follows that an element I' € V will have spectral
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decomposition I' = ¥ £,S,, where £, = ¥ p,.0,, and if, in general, such a I has
s distinct eigenvalues, then we deduce that ¢t=s and that P=(p,,) is an
invertible s X s matrix.

Where have we gotten to? Without giving full details we have seen the reason
why the preceding (a) and (b) are jointly equivalent to the two conditions

(c) the matrices {A,} commute,
(d) in general, I'(#) has s distinct eigenvalues.

This is in essence the content of Graybill and Hultquist (1961, Theorem 6). Note
that under (c) and (d) we can write A, =X, p..S, and S, = (1/n)L,q,. 4.
where we have inserted a scale factor n = |T| for later convenience, and where
Y oPua9ap = 8 and Zaqaa Doy = nd%, 8 here being Kronecker’s delta. These
equations combine to give

(33) AaAb = AbAa = Z{(l/n)zpaapacha}Ac’
implying that V may be extended to the linear algebra generated by the {A,)}
without invalidating anything we have said to date.

If the {A,} all have the property that all their row (column) sums are the
same, i.e., if for each a there exists £, such that ¥ A (s,t) = L, A (s, t) =k
then the matrix S, = (1/n)<J, where ¢/ is the matrix of 1’s over T, is always one
of the {S,}.

Let us leave the matrices I' € V for a moment and turn to the elements y, of
random array y = (y,: t € T) with Dy = I’ € V, still assuming that V satisfies
(¢) and (d). The prescription S,y, = X.S(s, t)y, defines a family of random
variables such that

(3-4) N = Zsayr

Now cov(S, ¥, Sgy,) = (S.ISe)(¢t, u) = §,S(t,u)d¢ =0 if a# B and so the
different terms on the R.H.S. of (3.4) are uncorrelated. Further var(S,y,) =
£,S,(t, t). Next suppose that var(y,) = o2 is the same for all ¢t € T, i.e,, that the
matrices {A,} are all constant down their diagonals. Then S,(¢,¢)=n"'d,,
where d, = rank(S,) = trace(S,), and we can sum the variances in (3.4) obtain-
ing

(3.5) 0% = Ve,

where ¢, = n7d, ¢, = var(S, y,), independent of ¢ € T. Clearly this is an analy-
sis of variance. The connection between it and the sum of squares decomposition

(3.6) 171% = XISu?

resulting from the geometric orthogonality of the terms in

(3.7) y=287
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is clear: The eigenvalues £, are the expected mean squares:

(3.8) ¢, = E{d;"S,y%}.

Is this the correct anova? Does it have all the properties one might hope for? I
would like to suggest that the answer to these questions is no, and that although
the definition is basically correct, it is really only appropriate for a particular
class {A,} of basis matrices and parameters {6,}, namely, when the entries of
the basis matrices are either 0 or 1 and the parameters are covariances. With this

class we will find that we have a notion that extends fruitfully far beyond sums
of squares.

4. Anova: Finite arrays. In this section we will sketch the most natural
framework within which the special properties of our examples hold generally.
The restriction to finite arrays is vital because there are many sorts of infinities
and, perhaps surprisingly, no single mathematical framework is yet available
which covers all the cases.

As before we begin with an array y = (y,: ¢ € T') of random variables indexed
by a finite set T with Ey =0 and we will consider a very special sort of
parametrization of its dispersion matrix I' = Dy, namely that defined by equality
constraints among the elements of I'. More fully, we will suppose that

(4.1) r=>Yy,A,,

where {A,: a € X} is a class of matrices over T whose elements are 0 and 1 only
satisfying (i) each matrix A, is symmetric; (ii) ¥,A, = JJ, the matrix of 1’s over
T; (iii) one of these matrices, A, say, is the identity matrix I over T; and (iv)
there exist integers (n,,.), @, b,c € X such that A,A, =X .n,,. A, Finally,
{¥s: @ € X} is a set of covariances which are such that T given by (4.1) is
positive definite.

Such matrices {A,} are the adjacency matrices of the association scheme over
T defined by saying that s and ¢ are a-associates, a(s, t) = a, say, if A (s, t) =1,
s,te€T, a€ X; see MacWilliams and Sloane (1977, Chapter 21) for fuller
background and the theory which follows.

We proceed to analyse the class of all T of the form (4.1). From (i) all such T
are symmetric; .from (ii) the {A,} are linearly independent and hence the
dimension of the vector space A of all such T (forgetting positive definiteness for
the moment) is s = |X|; from (iii) A contains the identity and from (iv) we
deduce that A is a commutative algebra. The theorem in linear algebra already
cited tells us that there exists a unique basis of A of primitive idempotents {S,:
a € Z}, where S,=82=8;, 5,5;= $S, =0, a# B, L,S,=1, containing
(1/n)d = §,, say. Further the transformation from this basis to the original one
consisting of the {A_,} is linear and invertible:

1
(4.23) Sa = ; anaAa’

(4'2b) Aa = Zpaasa’
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where P = (p,,) and @ = (q,,) are matrices of coeflicients satisfying PQ =
QP = nl, n = |T| and I here is the identity matrix of order s = | X| = |Z|. Since
the eigenvalues of A, are (p,,) from (4.2b), those of ' = ¥ y,A, = L £,S, are

(433.) ga = ZpaaYa

whilst the entries y, of I' in (4.1) are recoverable from the eigenvalues via

(4.3b) Ya=(1/7) L qucka

Writing &k, = |{t € T: A(s, t) = 1}, independent of s € T, and d, = rank(S,),
we summarise some basic facts concerning these numbers and the matrices P
and Q. Here 8 denotes the Kronecker delta.

THEOREM (cf. MacWilliams and Sloane 1977, Chapter 21, Section 2).

(i) Pae = an = 1; pOa = ka; Qea = da; dapaa = kaqaa‘
(i) LodoPaaPab = MRSE; LakaGaalap = NS
(111) PoaPup = chabcpac'

All of these facts give us great insight into the structure of matrices of the
form (4.1) and many examples can be found in the literature; see MacWilliams
and Sloane (1977) and references therein. Speed and Bailey (1982) show that all
standard (“balanced complete,” “orthogonal”) anova models arise from such
schemes where X is a modular lattice of equivalence relations on 7, and the
Mbobius function on X (together with the number of levels of each index)
determines the matrices P and @. These results are summarized in Section 6. For
most but not all classical anova models, results equivalent to the preceding were
given by Nelder (1954, 1965) when I' is induced by randomisation; see Speed
(1985) for more details concerning the connexions. Early forms of (3.4) and (3.6)
can be found in Kempthorne (1952, Chapter 8), again with a randomisation
distribution defining T'.

Let us turn now to the elements y, of the array y. As in Section 3 we write
S,y, = L,S(t, u)y,, and find that (3.4) is a decomposition of y, into uncorrelated
components which in this context satisfies

(4'4) E{(Sayt)(sﬂyu)} = n~1§aQa(l, u)aaa’

and in particular this equals n~'d ¢, = ¢, say, if ¢t = u and « = B. Here a(t, u)
is the unique a € X such that A (¢, u) = 1. With this notation we may write
(4.3b) in the form

(4.5) Yo = (e '000) ba

[:3
noting that the special case a = e (the identity association) gives us the analysis
of variance (3.5) corresponding to the decomposition (3.4). The index « labels the
“lines” of the anova table—we call them strata—and the projectors S, will be
termed stratum projectors.
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Summarising, we have seen that if I' = Dy has the form (4.1) where the {A )
satisfy conditions (i), (ii), (iii) and (iv) following (4.1), then, from Section 3, our
variants (a) and (b) [equivalently, (c) and (d)] of Graybill and Hultquist’s (1961)
definition are certainly satisfied. Do we get anything extra which might justify
our belief that it is only with these sorts of basis matrices and corresponding
parameters that the term anova is appropriate? I believe we do, and make the
following supporting observations:

(i) the present framework has a common variance (that to be analysed) as
part of its formulation;
(ii) the {A,} matrices already have the property that their row (column)
sums are the same, which implies that S, = (1/n)J is one of the {S,};
(iii) the {A,} matrices are all constant down their diagonal, a property which
combines with (i) to give the analysis of the common variance;
(iv) we have the compact and extremely useful formula (4.4).

In the more general discussion of Section 3 each of the preceding (i), (ii) and (iii)
had to be assumed in order to obtain the desired consequences, whilst (iv) shows
the great simplification which results from covariance parametrization: With it,
we need only know {A4,}, {d,}, {k,} and the function s (a) = &, D, = d3'q .
without it (cf. Section 3) we need the entries of the {A,}, the {S,} and the
change-of-basis matrices ( p,,) and (q,,)-

In a sense the reasons just given for selecting this formulation as the one
deserving the title anova are mere details; the real reason is the fact that almost
all examples and the natural generalisations and variants all derive from the
present and no other approach. This will become more apparent in the next
section, but first we give an example.

EXAMPLE. Suppose that T'=TI{{1,..., n;} and that the indices are nested
in a hierarchical structure ¢, nesting ¢, which nests ¢;, etc. If we write ¢ =
(¢,...,t,) then there is an obvious way to define a set of matrices {A,:
a=0,...,r} satisfying (i), (ii), (iii) and (iv), namely, A (s,¢) =1 if s, = ¢,
h=1,...,a, Sg.1Fty.1, As,t) =0 otherwise, 0 <a<r; A, =1 (=4),).
When working with this example it is helpful to introduce the equivalence
matrices {R,: a=0,...,r} defined by R (s,8)=1if s,=¢, h=1,..., a,
R (s, t) = 0 otherwise; clearly R, = A, + --- +A,,0<a <r,whileA, =R, —
R, ,0<a<r and A, =R, =1 This is because the primitive idempotents
{S,} are now readily defined by

So=(ny -+ n,) 'Ry,
Se=(ngy - n) 'Ry—(n,---n,) 'R,,, l<a<r,
S,=I-n;'R,_,.

It is easy to calculate that b, = 1 =d, b, = (g, — Digiy - n,,0<a<r,
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dy=ny -+ (n,—1,0<a<r,and
0, a=0,...,a— 2,
' ={ —(n,-1)7", a=a-1,
1, a=a,...,r.

The decomposition of y, =y, ..., is totally straightforward:
Vet oty sty = Yoo oo F (P e — Ve )

o (Yt = Yty oty )

and the other results follow immediately. This is one of the examples where X
(and hence Z) have a lattice structure, namely the (r + 1)-chain {¢,{1},
{1,2},...,{1,2,..., r}}; see Section 6.

5. Anova for infinite arrays. From the viewpoint presented in this paper
one of the earliest instances of anova in statistics was the spectral representation
of weakly stationary time series y = (y,;: ¢t € Z), essentially put in its modern
form by Cramér (1940) following earlier work by Khinchin (1934). Here
the covariance matrix I'(s, ) = cov(y,, ¥,) satisfies I'(s, ¢t) = I'(z, v) whenever
t — s = v — u and so may, formally at least, be written

(5.1) r=YvyA,,
0

where A, = I is the doubly infinite identity matrix and A, is the doubly infinite
symmetric circulant having zerothrow (---010---0--- 010 --- ) with a 1 in the
ath and —ath position, a = 1,2,... . Because T is positive definite, a theorem of
Herglotz tells us that for such a matrix there exists a uniquely defined positive
measure on [ — 7, 7) whose Fourier coefficients are the {v,}. Since y_, = v,, this
measure must be symmetric about 0 and so we can obtain the real spectral
representation

(5.2) Y. = ][‘0 77)cos((zor)q)(doz), acZ,

a formula which can readily be compared with (2.10b). The corresponding (real)
representation of y, with E{y,} = 0 takes the form

(5.3) Y=y +2 j(o ﬂ)[cos(ta)u(da) + sin(ta)o(da)],

where u and v are additive and mean-square continuous random set functions
defined on the Borel subsets of (0, 7), spanning the Hilbert space generated by
¥y = (3, t € Z) having zero means and satisfying

E{u(A)u(B)} = E{v(A)v(B)} = ¢(A N B),
E{u(A)v(B)} =0,
for A, B Borel subsets of (0, 7). Finally y. is the mean-square limit of T7'X7y, as

(5.4)
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T — oo, which is easily shown to exist. To compare (5.3) and (2.11) one simply
expands the cos(27(s — t)a/n) and separates out random variables from non-
random coefficients.

This is one kind of “infinite anova”; there are many similar ones in the
literature of stochastic processes; see Hannan (1970, Chapter 1) and references
therein.

At this point we do not stop to consider the method of proof of (5.3); in
essence it reduces to the spectral decomposition of a unitary operator in Hilbert
space and this will be covered by the discussion in Section 6. Rather we turn to
another kind of infinite array.

Our original example y = (y;: i=1,...,m; j=1,...,n) with j nested
within ¢ and having ' = Dy of the form (2.7) makes perfect sense if m or n (or
both) is (are) countably infinite. Indeed one such example is the “random effects
model”

(5.5) Yij=¢& te&te,

where (¢;) and (¢;;) are uncorrelated infinite sequences of uncorrelated random
variables with zero means and variances o2 and o2, respectively, and ¢, is a zero
mean random variable uncorrelated with the ¢; and the e,; with variance ol. In
this case the parameters v,, v, and vy, of (2.7) are

(5.6) Yo=of +of +oi, v =of+of, y=05.

What is the analogue of (2.4), (2.5) and (2.6) for an array y = (y,;) with
I’ = Dy satisfying (2.7) for m = n = o0? Clearly we can truncate ¢ and j (within
i) to the ranges 1,...,m and 1,..., n, respectively, and see what results as
m, n — oo, and doing this leads to some simple and interesting conclusions.
Denoting the parameters and other objects associated with the truncated array
by a superscript (m, n), we can prove directly that ¢{™™ = (mn) 'd{™ »¢(m»
and [d(™™] 1g{™™ both converge as m and n — « to ¢, and s (a) say,
a=0,1,2 and a = 0,1,2. It follows that the terms £_S, in the spectral represen-
tation (2.5) also converge as m and n — oo, since &(™™MS{™ )(yj, kl) =
£ ™ (mn) " 'q {7y and we find that the limiting form of (2.5) is

(5.7) F=¢J®J+¢,1QJ + I ® I,

where I and o are the infinite identity matrix and matrix of all 1’s, respectively.
Although (5.7) is not a spectral representation in any obvious sense, it can be
proved that the most general positive definite matrix of the form

(5.8) T=vIQI+yI®(J-I)+y(J-1)®J

has a unique representation in the form (5.7) with ¢,, ¢, and ¢, all positive. The
relations between ¢’s and y’s are simple enough:

(5.9a) Yo =+ ¢ + ¢, Y1=¢ t+ ¢y, Yo = o

with inverse

(59b) b = Yo — Y1» $1 =71~ Yo, b0 = Yo-
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In an obvious notation we can also prove that for m’ > m and n’ > n,

a0 rn sl g L )G L2
mn mn m m

(i m = ymm) = (= yimam) |

B

1 1

n n

2 B4

(5.100) (5™ = 3mm) = (7m0 = ) | = 4’2[

from which it follows that y(™™), y(™™ — y(™™ and yi™™» — yl™™—the
components in (2.2)—all converge in mean square as m, n — oo. Denoting their
limits by &, ¢; and ¢;;, respectively, it can also be proved that not only are ¢, ¢,
and ¢;; pairwise orthogonal—they come from different strata in the limiting
form of (2.2)—but also ¢, and e, are orthogonal if & # i, and similarly ¢;; and e,
are orthogonal if i # 2 or i = k and j # [. But all this has proved that (5.5) is
(up to second order) the most general form for an array y = (y;;) with Dy =T
satisfying (5.8), and that (5.7) is the most general form for such I'. In this sense
the standard random effects models arise naturally as the spectral decomposi-
tions of infinite arrays of multiindexed random variables with the appropriate
dispersion models. For further details including a proof of this general result we
refer to Speed (1986).

For our final illustration of an anova for an infinite array we return to the
Example at the end of Section 4 and suppose that the repeated nesting goes on
ad infinitum, i.e, that T =TI(1,..., n;} with each index of ¢ = (¢,,¢,,...) € T
nesting all subsequent ones. As with the finite version, we can define association
matrices {A,: @ =0,1,...} to which we must add A, = I (= A, in our general
notation). The relationship matrices {R,: a =0,1,...,0} are defined in the
same way as we did earlier and the passage from A-matrices to R-matrices is as
before. We now look for a spectral representation for the positive definite
matrices of the form

a=o0
(5.11) L= Y v,A,.
a=0

As with our previous discussion, it is instructive to look at a truncated version of
T, and the obvious candidate here is T = (t € T: t,,, = t,, o= --- =1}

Denoting parameters and other expressions associated with the subarray
¥ = (y: te€ T™) with a superscript (r), we note that s (a) = [d{"] ¢
does not depend upon r as long as 0 < a, a < r. Furthermore, a straightforward
calculation proves that ¢{” = (n, -+ n,) 'd{V¢ satisfies

(512) ¢ -V =(1-nYnzl - n7 (1 - ni)(Ye - V),

which is nonnegative since v, < v, for all a. Since 0 < ¢{” <y, forall r > 1 and
a < r, we deduce that ¢{” converges, to ¢, say, as r — 0. Thus the elements of
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¢(7S(" also converge as r — oo and so we conjecture a unique representation for
I in (5.11) taking the form of an ordinary infinite series

(5.13) I'=3 6,8,

where the ¢, are positive (summing to y,—the anova) and the S, satisfy
Sﬁ(s7 t) = sa(a(s’ t))’ i'e')

a=oo
(5.14) S,= Y s(a)A,.

a=0
These facts are readily proved and are perhaps most easily seen by using formal
infinite tensor products. In an obvious notation S, = J = J, ® J, ® ---, whilst
for a > 0 we can use the expression for s (a) to get
S = Z Aa - (na - 1)71Aa—1

a
aza

I, ® - ---®I ®

-1 n; Moy

1
This completes our discussion of the spectral decomposition of Dy and we turn
to that of y,, t € T. As with our previous example, its components are defined as
mean-square limits, and in this case it is perhaps no surprise to see that these
exist for

Ny = -
SaVYe = Yoy ooty e tysrtyg e Vet e o tytyag

as r > . Indeed ||S{"y, — S{My||2 = ¢” — ¢ for 1 < r < r’, and by (5.12)
this converges to zero as r, r’ — oo (assuming n, > 2 for all r). Of course the
mean-square limit S, y,, say, of S{"y,, satisfies ||S, y,/|2 = ¢,, and so the spectral
representation of y, is the infinite sum, defined as a mean-square limit

(515) yt = Zsayts

with associated anova y, = X ¢, Note that (5.15) is not the same as the
expression
Yityty - = €0 T & T &g, T &y T 00,

where {&,}, {€,}, {¢,,,}, {€44,¢,},- - - are uncorrelated sets of uncorrelated effects
having variances ¢, ¢,, ¢,, ¢5,...; to get such a representation we would also
need to let n, = o0, ny, > o0, ny > 0,... in the preceding discussion.

These three examples of anovas for infinite arrays give a good idea of the
range of possibilities. With the finite cyclic structure going over to the infinite
one, we obtain a “continuous infinity” of strata; with the classical anova models
illustrated by our second example, we simply recover standard random effects
models, the number of strata remaining constant; whilst our final example shows
how limits can be taken along infinite chains in the partially-ordered subset
defining the nesting relationships on the set of indices, with the number of strata
going to a countable infinity.
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In none of these infinite examples does there appear to be a full analogue of
the geometrically orthogonal decomposition of arrays y of real numbers, nor any
associated sum of squares decompositions. Given that we never observe an
infinite array of real numbers, this is no real limitation of the theory, and for
many examples—most importantly the standard anova models in statistics—
these decompositions for finite subarrays give useful information concerning
aspects of the full array. Some details are sketched in Speed (1985) in a
discussion relating the anova of a subarray, where it exists, to the anova of a full
array.

The conclusion we come to after this discussion is that there is more to anova
than sums of squares. Our view, already stated in the previous section, is that
anova is a feature of certain models V which impose equality constraints on the
covariances between pairs of elements of arrays of random variables.

6. Classical anova: Factorial dispersion models. The historically im-
portant anovas with multiply indexed arrays are the random effects models,
dating back beyond Fisher (1925) to the last century, the randomization or
permutation models following those discussed by Neyman, Iwaskiewicz and
Kolodziejczyk (1935) and the more recent generalisations of de Finetti’s ex-
changeability, studied by Aldous (1981) and others. Because of the importance of
these ideas in statistics, I will sketch their common second-order theory.

We begin with a set F of factors f,, f,,..., and a partial order < on F where
f1 < f, means that the factor f, is nested within the factor f,; cf. Nelder (1965).
A subset a C F issaid to be a filterif f, € @ and f, < f, implies that f, € q, the
need for such subsets arising because it is frequently necessary, when referring to
the levels of a given factor f, to refer at the same time to all factors within which
f is nested. The set of all filters of the partially ordered set (F; <) forms a
distributive lattice L(F') under the operations of set union and intersection [see
Aigner (1979, page 33)] and we refer to this book for all other order-theoretic
terminology and results used in what follows. We remark in passing that our use
of partially ordered sets in this context is closely related to, but does not coincide
with, that of Throckmorton (1961), adopted by Kempthorne and Folks (1971,
Section 16.11).

Next we suppose that the set of levels of factor f is T;, f € F, and we write
T =T1;T; for the set of all combinations of levels of factors in F, denoting a
typical element by ¢ = (¢;: f € F). For any pair s, t € T we write a(s, ¢) for the
largest filter @ € L(F) such that s;=¢; for all f€a; eg., if s =k and
t = i’j’k’, where we have three factors whose levels are denoted by the usual 7k
rather than (s,, s,, s3), and the second factor j is nested within the first i, then
a(s,t)={1,2}ifi=1i, j=j and k # R, whereas a(s, t) = (3}if i+, j=J
and & = &', for {2, 3} is not a filter of the partially ordered set of factors.

With these preliminaries we turn to the definition of factorial dispersion
models. These are for arrays y = (y,: t € T') of real random variables indexed by
the set T of all combinations of levels of a set F of factors whose nesting
relationships are defined by the partially ordered set (F; <). The factorial
dispersion model V = V(F, T) is the class of all covariance matrices I' = Dy over
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T which satisfy
(6'1) COV( ys’ yt) = COV( yu’ yu)

whenever a(s, t) = a(u, v), s, t, u, v € T. Such classes are slightly more general
than ones introduced by Nelder (1965), and we note that it has not yet been
necessary to state whether or not the sets 7} are finite. For our summary of the
structure of these models, we consider the two cases |T;| < oo for all f € F, and
|T;| = o for all f € F.

Finite factorial dispersion models. 1f |T;|=n; < co for all f € F, and we
write n =1II;n;, then V(F,T) is a class of n X n matrices whose structure is
readily exhibited; see Speed and Bailey (1982) for full details. First we define the
family {A,: @ € L(F)} of matrices over T by writing A (s,¢) = 1lif a(s,¢) = a
and A(s, t) =0 otherwise, s,t € T, a € L(F). Each element T € V(F,T)
satisfying (6.1) may then be represented uniquely in the form I' = ¥ _y,A,, the
sum being over L(F), with the parameters {vy,: a € L(F)} being covariances.

It can be shown that the {A,} so defined form an association scheme, i.e., that
(i), (i), (iii) and (iv) of Section 4 and hence the consequences of these conditions
hold, but here we can construct the structure constants {k,},{d,} and the
functions {s(a)} directly. To do this we introduce a second representation of
V(F, T) involving relationship matrices {R,: b € L(F)}, where R,(s, t) =1 if
s;=1t; forall f € band R,(s,t) = 0 otherwise, s,¢ € T and b € L(F). Clearly
R,=1Y,,,A, and the representation we refer to is

(6.2) [ =Y fyRs,
b

where the parameters { f,: b € L(F)} have been called canonical components of
variance by Fairfield-Smith (1955), 2-quantities by Wilk and Kempthorne (1956),
and f-quantities by Nelder (1965), although he later called them components of
excess variance [Nelder (1977)]. Unfortunately it would take us too far afield to
explain fully the frameworks of these other writers and the correspondence of
the different parameters.

Relating the {f,} to the {y,} requires the zeta function of the lattice L(F),
defined by {(a, b) = 1if a C b, {(a, b) = 0 otherwise, and the associated Mobius
function p defined by ¥{(a, b)u(b, c) = Zu(a, b)§(b,c) =8(a,c)=1if a=c
and O otherwise; here a, b and ¢ € L(F) and the sums are over all b € L(F);
see Aigner (1979, page 141) for further details. In this notation

(6.3a) fr=2r(a, b)y,
and
(6.3b) - Yo= 28(b,a)f, = bZ fo-

It can be shown that for all lattices of the form L(F) the Mébius function p
takes only the values 1, —1 or 0; indeed the following concise formula for p can
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be proved:

(6.4) w(a, b) = {(—1)"’\“', if 52 aand b\a C b,
, otherwise,

where b,, denotes the set of minimal elements of b C F.

The final representation of elements of V(F, T') we present is an explicit form
of their common spectral decomposition. If we write n, = [1{n;: f ¢ a} for an
element a € L(F), then the formula

(6.5) S, =Yula,a)n;'R,, a«€L(F)

defines a set of pairwise orthogonal symmetric idempotent matrices summing to
the identity matrix I over T. Further the formula

(6.6) €, = Li(a,b)nyf,
b

gives the eigenvalues of T'=1%,f,R, and its spectral decomposition is then
I'=%£.S,. Thus the eigenvalues {{,: a € L(F)} constitute a third set of
parameters whose positivity succinctly defines the parameter space, and there
are two related sets of parameters which also have been used: the specific
components of variance {02: a € L(F)} of Cornfield and Tukey (1956), given by

ol = 7, ',, and the spectral components of variance {¢,: @ € L(F)}, cf. Daniels

(1939), given by ¢, = n"'d_¢,, where d, = rank(S,).

If we combine the relationships between the {vy,} and the {f,} with those
connecting the {f,} and the {{,} we can obtain (4.3a) and (4.3b) where a and
a € L(F) and the sums are over L(F), and of course (4.2a) and (4.2b) also hold
with the same coefficients (p,,) and (q,,). The following formulas give expres-
sions for the key quantities:

(6.7) d,= I1 nyx IT (n;-1),

fea\ay, f€ay,

where «,, denotes the set of minimal elements of «,

(6.8) ko= TI1 n; 11 (n;-1),

feaN\am™ fea™
where a™ denotes the set of maximal elements of @ = F\ a, and the common
value s (a) of d;’q,, = k; Py, is

(6.9) s(a) = ,GD\.,{-I/M—U}, if a\a, C a,

0, otherwise,

where an empty product is defined to be unity.

The foregoing discussion enables a fairly complete analysis of finite factorial
dispersion models to be given and we now indicate the changes necessary when
|T;] = n; = oo for all f € F. The main conclusion is the fact that the first two
representations, I' = ¥ y,A, and I' = X, f,R,, continue to apply because we
never need to multiply these matrices. After a suitable normalization and
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limiting argument, the third representation turns out to coincide with the
second. In particular the limiting forms of the two parametrizations, which are
essentially normalized eigenvalues {62} and {¢,}, coincide with the correspond-
ing { f,}. Finally, the limiting form of the function s(a) is just the zeta function
{(a,a) = 1if a« C a and 0 otherwise.

We turn now to the spectral decompositions (3.4) and (3.6) in our classical
anova context. It is easy to see that for finite arrays the matrices {7,'R,:
a € L(F)} act on y,(t € T) by simply averaging out all indices ¢, with f & a,
and so by (6.4) the expression (6.5) for S, reduces to an alternating sum of
averaging operators starting with 72, 'R_. For infinite arrays it all carries through
using mean-square limits; cf. Section 5. In the finite case this is just the familiar
anova decomposition of multi-indexed arrays into admissible main effects and
interactions termed the population identity by Kempthorne (1952, Chapter 8)
(his arrays having permutation or sampling distributions) and called the yield
identity by Nelder (1965). For infinite arrays we recover the standard random
effects linear models appropriate to the nesting structure on the indices: the
components S, y, are not only uncorrelated across strata but (when n; = o) also,
when distinct, within strata. Again we refer to Speed (1986) for more details.

7. Anova and groups. In all the particular examples we have given so far,
and in the vast majority of those which occur in practice, there is an underlying
group G acting transitively on the index set T, denoted (g, t) — ¢4, in such a
way that the class of covariance matrices I' = Dy of y = (y,; t € T') which we
consider for our anovas coincides with the class of positive definite functions T
on T X T which are G-invariant in the sense that

(7.1) I(s,t) =T(s5t%), (s,t)eTxT,gea.

It will follow from a few simple manipulations that the mathematical parts of
our anovas, getting the spectral representation of the matrices I' and the
corresponding orthogonal decompositions of the array elements y, (¢ € T'), are
only a slightly disguised form of a standard problem in harmonic analysis. This
should hardly come as a surprise given the earlier discussion of finite and infinite
circular arrays (y,: £t =0,1,...,n — 1) and (y,: t € Z).

We will only sketch the connexion here; the interested reader is referred to
Hannan (1965, Section 5) and Dieudonné (1978) for further details. Choosing and
fixing an arbitrary ¢, € T, we define the subgroup K = {g € G: ¢t = t,} of G
and observe that the homogeneous space G/K of cosets of G modulo K
corresponds naturally with T, gK corresponding to ¢ iff t8 = ¢,. Now a function
® on T is said to be spherically symmetric (relative to K) if ®(¢) = ®(¢%),
te T, k € K; similarly a function ¥ on G is said to be bi-invariant (relative to
K)if Y(kgk’) = ¥(g), g € G, k, k' € K, whilst we have called a function T on
T X T G-invariant if it satisfied (7.1). The simple manipulations previously
referred to show that these three classes of functions are essentially the same
one, e.g., if I' is G-invariant on T X T, then ¥(g) = I'(¢§, t,) is bi-invariant on G
whilst ®(t) = I'(¢, t,) is spherically symmetric on 7. Conversely, if ¥ is bi-
invariant on G and g,, g, are elements g and k € G for which s€ = ¢, t" = ¢,
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respectively, then I'(s, t) = ¥(g;'g,) is G-invariant on T X T. Finally, we let Y
denote the space of all orbits of G over T X T, clearly functions y over Y
correspond in an obvious way to G-invariant functions I on 7' X T and hence to
the other classes previously mentioned. With this background our initial anova
problems take the form: Describe the class of all functions y on Y, in particular
those for which I'(s, ) = vy, , is positive definite over T, where b(s, t) is the
unique element of Y containing (s,¢) € T X T.

Solutions to the problem just posed exist for many group actions, the most
elegant case apparently being when (G, K ) is a Gel'fand pair [ Dieudonné (1978,
page 55)] usually discussed when G is a unimodular separable metrizable locally
compact group and K a compact subgroup. When (G, K) is a Gel'fand pair there
is a class Z of functions called zonal spherical functions which plays a prominent
role and in our terms these are the functions on Y defined by s (a) = d,'q,,,
a € Y, a € Z. We note in passing that this class includes all characters of locally
compact abelian groups, so our anova decomposition of the matrix I' is a form of
generalised Bochner-Godement theorem.

In his expositions Letac (1981, 1982) presents a wide range of applications of
the theory of Gel'fand pairs in probability theory and we can clearly add anova
to his list. The example in Letac (1982) which he calls the infinite symmetric tree
is just the third example we discussed in the previous section—the infinitely
nested hierarchical anova model—and so we have given an alternative approach
to its harmonic analysis. It is also of interest to note that the theory of discrete
Gel’fand pairs which Letac summarises in his paper is included within the theory
of association schemes: All of his formulas can be found in the theorem we cited
in Section 4, e.g., m(a) = k, is the measure on X induced by the uniform
measure on T, the spherical functions are s (a) = d,’q,, as has already been
noted and the Plancherel measure on Z is v(a) = n"'d,.

What of the spectral decompositions for the elements y, (¢ € T') of the
arrays? These arise from the decomposition of the permutation representation
& — U, of G into its irreducible constituents, where U, is defined on the Hilbert
space H spanned by the (y,: ¢t € T') [using the inner product {y,, 3,) = I'(s, ¢)]
by extending the assignment U,y, = y«, t €T, g € G to the whole of H. In
seeking to derive the decomposition in any particular case there are issues
concerning the compactness of K, separability and local compactness of G, the
nature of the representation {U,} and so on, which must be verified before
general theory can be applied; we refer to Dieudonné (1978, 1980) for details.
Perhaps surprisingly, none of the simple (infinite) classical anova models gives
rise to pairs (G, K ) for which these conditions hold, and so the ad hoc approach
adopted in Speed (1986) still seems to be necessary. Even defining the groups for
these classical anova models is a formidable task; see Bailey, Praeger, Rowley
and Speed (1983) for details of the finite cases and Speed (1986) for some remarks
on their infinite analogues.

8. Manova. The multivariate analysis of variance or manova does for arrays
of random vectors what anova does for arrays of (real-valued) random variables,
that is, gives suitable spectral decompositions of their dispersion matrices,
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orthogonal decompositions of both the elements of the arrays and the arrays
themselves; associated with these are analysis of the variances and covariances
and decompositions of the sums of squares and products. There are some twists,
however, which require us to generalise slightly our earlier formulation involving
association matrices. For example, suppose that w = (w,: £=0,...,n— 1) is a
circular array of zero mean random vectors w, = (x,, 3,) with dispersion matrix
X I‘XI ny
I'= D[y] = [ryx I‘yy]'

We assume that I'"* = Dx and T'>? = Dy both have the form (2.9) whilst
I'*Y = cov(x, y) satisfies (s, ¢) = I'*(u,v) if t—s=v—u, ie, I'* is a
circulant, although not necessarily a symmetric one. Indeed cov(x,, y,) and
cov( y,, x,) are in general different. What is the decomposition of T'*” analogous
to the diagonalisation of I'** and I'???

The solution in this case is easy enough because the structure of arbitrary
circulants is as transparent as that of symmetric circulants: Write I'*? =
Yo~ 'y§7B,, where B, is the n X n circulant having a single 1 in the bth position
and 0’s elsewhere in its first row. Assuming that n = 2m + 1 as before—the case
n = 2m is just as readily dealt with—we recover our earlier association matrices
by noting that A, = B,, whilst A, =B, + B,, a=1,...,m. The (m + 1) X
(m + 1) structural matrices P = (p,,) and @ = (g,,) are best described by the
equations

27
(8.1) k'Pea = d'q0a = COS(7aa),
where ky=d,=1, k,=d,=2, 1 <a, a <m. We now need to introduce
another inverse pair of m X m matrices of structural constants, namely T = (¢,,)
and L = (I,,):
: 2
(8.2) by = lop = 2sin(7ba), l1<a,b<m.
It is not hard to prove that TL = LT = nl,,. With these constants defined, we
supplement the {S,} defined following (2.9) with T, defined by T (s,?) =
(1/n)tys 1o Where b(s, t) = (¢ — s) (mod n). This is equivalent to
m
(8.3) T,=1/n) Yty (B, — B;), a=1,...,m.
1
In these terms we have
(8'4) Bb=SD+%E(pabSa+labTa)’ b=1""’m!
1
which, incidentally, agrees with our earlier notation since

m m
A,=B,+B,=28+ Y P0uSa= YoPecSe» a=1,...,m.
1 0

Also we see that B, — B} = L7, ,T,, a consequence of the relation LT = TL =
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nl,. It is not hard to check that T/ = —T,, T2 = —8S,, a = 1,... m, and with
all these preliminaries we can write the real form of the spectral decomposition
of I'*” as

(8.5) [ = 9y + L8, + ¢2°T.),
1

where c¢Z” and gZ” are given by

m 2
(8.6a) Y=y + ) cos(—;—aa)[yjy +v52.1,
a=1
m 2
(8.6b) =X Sin(—aa)[v,’fi"a -y,
a=1 n
with inverse
(8.:6¢) 5 1 ) 2 i y 27rb S 27rb
.6c 7= —c3r + — cXcos| — + g sin| — .
Yo n 0 Pt aCO( n «a qasn( n lX)
In fact ¢l = Re(§}”) and ¢ = —Im(£3Y), a =0,1,..., m, where {7, a =
0,..., n, are the eigenvalues of I'*?, in general complex, although they do satisfy

the reality constraint £ = £X7
The element y;” can be viewed as the bth entry in I'*? or as the xy entry in
Ty, the lag b cross covariance matrix of the two sequences (x,) and (y,):

5T Y
T, = . e
v
Grouping the ¢, and g, into matrices we may combine (8.6¢c) with the corre-
sponding results for y;* and y2” to get

8.7 T,= ! C 2 C 2 ba| + in[ 27 b }
. = — + — _— —_ .
(8.7) p=C+ Ea acos( - a) Qasm( - a)

This is the real spectral representation of I', with {C,} and {Q,} being termed
the cospectral and quadrature spectral matrices, respectively. The former are
positive definite and the latter antisymmetric, as we will see in due course.
Either (8.5) (together with the corresponding result for I'** or I'*?) or (8.7) leads
to the real spectral representation of a I' having the form

(8.8) r=A,9r,+Y[B,®T,+B, ,®T,_,],
1
which is
(8.9) r=8®C+[S,eC +T,®Q,].
1

Now that we have the equivalent of the relations (4.2a) and (4.3a) for this
class of cavariance matrices, we can consider the corresponding decomposition of
the elements w, and the arrays w. The orthogonal decomposition of elements is
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just what one would expect, namely

x tl _ Suxt
(8.10) [yl] B ;[Sayt],
where S,x, = ¥,5,(¢, u)x, are similar for S, y,; cf. (2.11). The terms are of course
orthogonal across strata and obey the following rules within strata:

(8.11)  cov(S,x,, S,y,) =n"d.c2,  cov(Tx,,S,y,) =n"'d,qg>.

We can combine (8.11) with the corresponding results for x, and y, alone and
obtain the formulas

Sux, Txtjl [Saxt] -
8.12 D =n'd,c,, D||, "], -n"'d,Q,,
( ) [Sayt] " o H:Tayt Snyl " aQ

from which it is clear that C, is positive definite; since T,/ = —T,, T,x, is
orthogonal to S,x, and so @, is antisymmetric.

The preceding discussion gives a good illustration of the extra difficulties
encountered when nonsymmetric elements B, appear in the class of basis
matrices describing the cross covariances between different components of a
vector element of a random array. How general can the class of {B,} of matrices
be and still permit a satisfactory manova? Condition (i) of symmetry on our
family of adjacency matrices can be modified—the matrices would then be
described as the adjacency matrices of a homogeneous coherent configuration
[Higman (1975, 1976)], but more is needed to give a reasonable theory. The
appropriate conditions on a class {B,: b € Y} of matrices over a set T with
entries 0 and 1 only are the following:

(i) the transpose Bj belongs to the class { B,}, i.e., there exists b" such that
B{ = B,.;
(ii)) X,B, = J, the matrix of 1’s over T;
(iii) one of the matrices, B, say, is the identity matrix over T;
(iv) B,B, = ¥ n,.4B, for suitable integers (n,.,);
(v) the symmetric elements of the algebra B of all linear combinations of the
{B,} commute, i.e., (B, + B;)(B, + B!) = (B, + B.)(B, + B}).

The last condition was introduced in a similar context by McLaren (1963).
Some of the B, may already be symmetric: Let us list them first and write
them as A,; the remaining A-matrices are the symmetrized B-matrices A, =
B, + B/, and we can list the remaining B-matrices in transpose pairs.
A dispersion model for an array w = (w,: ¢t € T') of random vectors which has
the form

(8.13) r=YA,9T,+ Y[B,®T, + B, ®T,.],
a b
where the first sum is over the symmetric relations and the second over the

appropriate half of the nonsymmetric relations will have a manova decomposi-
tion provided that (v) is satisfied as well as (i), (ii), (iii) and (iv). The general
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spectral decomposition of such a I' then takes the form
r=Yy%s eC,+Y?[S,®C, +T,®Q,]

(8.14)
+Y®[S,eC,+T,®Q,+U,®D,+V,®E,],

where the sums ¥, ¥® and £® are over what we term the real, complex and
quaternionic types of strata, respectively; T, = ~-T,, U/ = -U,, V)= -V,
T?=U2=V:=-8,T.U, =V,UV, =T, and V,T, = U,. In the representa-
tion (8.14) the parameter matrices {C,} are positive definite whilst {@,}, {D,}
and {E,} are all antisymmetric; cf. (8.12). There are further sets of structure
matrices beyond P = (p,,) and @ = (q,,) which continue to relate the {S,} and
the {A,}; where complex strata occur we need matrices T = (¢,,) and L = (I,,)
to pass from the {B,} to the {T,} as we did in the cyclic example; and where
quaternionic strata arise we also need two further pairs of mutually inverse
structure matrices to permit the passage between the {B,} and the {U,} and
{V.}. The details are straightforward but lengthy and will not be given here;
they will appear in Chapter 11 of Bailey, Praeger, Speed and Taylor (1987).

When the structure of the vector space B spanned by the {B,} is fully
exhibited, the decompositions of w, and (w,) follow as before. We have the
familiar expression

(8.15) w,= Y. S,w,

where, as usual, S,w, = ¥,S,(¢, v)w, (i.e., S, effectively acts componentwise) and
the terms in (8.15) are orthogonal across strata and satisfy relations similar to
(8.12) within complex or quaternionic strata. For example, if « is quaternionic we
have

a a

d d
D(Sawt) = 7Ca’ D(Tuwt’ Sawt) = FQa!

a 34

d d
D(U,w,, S,w,) = 7“0 ,  D(Vow, S,w,) = 7E

whereas D(U,w,, V,w,) must be worked out from (8.14) using the formulas given
after it. The anova in this context is simply

(8.16) r,=Yo,

where ®, = n~'d_C, is the (matrix) spectral component of variance of stratum
acX.

9. What is an anova? It must be abundantly clear by now that we regard
anova as a property of certain special classes of dispersion models for arrays of
random variables, or vectors, namely, for certain models defined by equality
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constraints amongst (co)variances. There should be an appropriate (real) spectral
decomposition for all the dispersion matrices in the model, and a corresponding
orthogonal decomposition for elements of the array. The components in these
decompositions have interpretations which range from the notions of (random)
main effects and interactions, in the classical anovas, through to harmonics at
different wavelengths, wave numbers, etc.,, in the more classical harmonic
analyses. For finite arrays there are also decompositions of sums of squares.

All of this is in marked contrast to the current use of the term in regression
analysis and variance component analysis, where analysis of variance decomposi-
tions is more-or-less arbitrary orthogonal decomposition of sums of squares
relating to “fixed” or “random” effects in assumed linear models. At this point it
is worth explaining why our theory concerns only those structures described as
“balanced” or “orthogonal.” The reason is simple: Arrays with an anova as we
use the term—one might add unique and complete—all have a high degree of
symmetry, and in a sense the underlying index set is “complete.” By comparison,
the so-called “unbalanced” or “nonorthogonal” (random effects) anova models
are in general rather messy subarrays of arrays with anova, and do not have an
anova in their own right. For some further discussion of these points, see Speed
(1985).

Although the vast majority of anova decompositions—of the matrices (or
functions) and the random variables—are associated with a group action, and
hence could be viewed as a part of a theory of generalised harmonic analysis, this
line of thinking is by no means the best or the most general approach. For many
arrays of random variables, including the standard multi-indexed ones of classi-
cal anova, the permutation groups are extremely complicated, whilst a direct
combinatorial approach by-passing all representation theory is quite efficient;
see Speed and Bailey (1982). Also in the reference just cited, an example of an
association scheme which is not induced by a group action is given which shows
that there are cases without an underlying group action.

Is there a single general theorem? It is hard to believe that one theorem will
ever be formulated which covers all the examples mentioned so far. It would
have to include all homogeneous coherent configurations satisfying condition (v)
of Section 8, all limits of finite association schemes such as those illustrated in
Section 5, the theory of Gel’fand pairs mentioned in Section 7, and much more.
For example James (1982) has discussed the classical diallel cross in genetics from
essentially our viewpoint; the triallel, double cross and other genetic structures
give further interesting examples.

In closing we state what must be quite obvious to the reader: This paper has
concentrated on the question, “What is an anova?”’ We have not discussed any
of the many questions, which are both mathematically and statistically interest-
ing, which arise when the array of random variables has an anova.
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Factorial Dispersion Models
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Summary

A class of dispersion models for multi-indexed arrays of random variables is introduced and
discussed. These models generalize the second-order properties of variance component, randomiza-
tion and exchangeability models, and lead naturally to general techniques for calculating the
orthogonal decompositions, expected mean squares and other aspects of the analysis of variance of
such arrays.

Key words: Analysis of variance; Association scheme; Canonical component of variance; Exchange-
ability; Linear model; Permutation model; Randomization; Sample; Symmetry; Variance
components.

1 Introduction

The analysis of variance of multi-indexed arrays, i.e. data from factorial experiments,
interpreting this expression in the widest possible sense, had its origins in the
quantitative genetic research of R.A. Fisher. By the time of the publication of Fisher
(1925) these ideas had also been applied to comparative experiments in agriculture and in
the following 15 years the range of applications was broadened to include sampling (Yates
& Zacopanay, 1935; Youden & Mehlich 1937; Cochran, 1939) and industrial statistics
(Daniels, 1938, 1939). Over the same period the models and assumptions underlying the
analysis of variance were closely scrutinized: see especially Eden & Yates (1933), who
examined the z-test using nonnormal data, and the later work of Pitman (1938) and
Welch (1937) on the same topic, and the critical study by Neyman et al. (1935) of the use
of Fisher’s methods in agricultural experiments. Somewhat different problems were being
tackled within a similar framework in psychometrics (Spearman, 1910; Brown, 1913) and
animal breeding (Lush, 1931; Lush et al., 1933). In both of these fields there were
measurements with two components of error; in modern terms they were concerned with
the estimation in the presence of random effects, a topic whose origins can be found in
nineteenth century astronomy: see Scheffé (1956) for further details.

Many modern writers on what has come to be called variance component analysis take
as their starting point a linear model for their data array built up from independent sets of
independent random effects, with one set of effects for each appropriate index or set of
indices: some of these effects are termed main effects, the remainder interactions. Such
effects induce a variety of covariances between elements of the array, although it is not
common to regard the estimation of these covariances as an issue of particular statistical
interest. This linear model approach is not appropriate if the underlying distribution of
the array is a permutation distribution, a viewpoint adopted by a number of writers from
Fisher onwards, including Kempthorne (1952) and Nelder (1965), who have chosen to
emphasize the randomization aspects of analysis of variance. Nor is it appropriate if the
effects or indeed the whole array are to be regarded as randomly sampled without
replacement from one or more finite populations, an approach also adopted by Fairfield
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Smith (1955), Cornfield & Tukey (1956) and Hooke (1956a,b). Finally, we mention that a
statistician may wish to assume nothing more than a certain amount of symmetry,
invariance or stationarity, such as the generalization to multi-indexed arrays of de
Finetti’s exchangeability: see, for example, Dawid (1977) and Aldous (1981). Do these
symmetry assumptions still permit us to carry out the usual analysis of variance
calculations in a meaningful way?

All of the different views or models mentioned above lead to the same structure for the
covariance matrix of the data, although the form and interpretation of the parameters and
the problems attacked naturally differ between models. Our approach is therefore based
upon this common dispersion model. We shall see that all of the second-order calculations
associated with analysis of variance can be derived straightforwardly from the relevant
aspects of the dispersion model. Here we are taking the point of view of Cox (1960) and
Speed (1987) that the term ‘analysis of variance’ means the decomposition of the common
variance of several random variables into variance components which are of intrinsic
interest, rather than the calculations required to analyse data from a so-called ‘fixed
effects model” with a single variance which is a nuisance parameter. Of course, many of
the calculations are the same for both cases, because they are merely the mathematical
decompositions of quadratic forms or geometric projections, as Bryant (1984) and Saville
& Wood (1986) have recently pointed out. However, the underlying philosophy is quite
different.

The work reported in this paper had as its starting point the paper by Nelder (1965),
which concerns the second-order properties of the class of multi-indexed arrays which can
be built up by successively nesting and crossing simpler ones, starting from a single
unstructured factor. Although ostensibly set within a randomization framework, Nelder’s
results have a broader applicability, and §2 below refines them somewhat and extends
them to random arrays with more general (not necessarily permutation) distributions, to a
wider class of index sets, and to the case where the number of values, or levels, of the
indices, or factors, may be countably infinite. Nelder’s (1965) work was primarily
motivated by the need to systematize analysis of variance techniques so that a general
computer program could be written to replace large collections of subroutines, each
appropriate for a particular ‘design’. An independent stream of work, initiated by
Kempthorne (1952) and continued throughout the 1950’s and early 1960’s, see for
example Wilk (1955), Wilk & Kempthorne (1956a,b; 1957), was concerned with the
objective development and interpretation of linear models for randomized experiments.
This body of research, from what we shall call the Iowa (State University) school,
includes a number of valuable techniques for calculating the averages of certain quadratic
forms over random sampling and randomly selecting designs. At around the same time
Cornfield & Tukey (1956) reported on work done by them some years earlier addressing
essentially the same problem: the calculation of expected mean squares in analysis of
variance tables, or, as they term it, ‘average values of mean squares in factorials’. One of
our aims was to derive the main results of these authors within the modified Nelder
framework outlined above.

Much of the paper is devoted to the broad problem of relating the characteristics of a
subset of a multi-indexed array, which we can think of as a sample, to those of the full
array, thought of as the population. The results of Cornfield & Tukey (1956) and the Iowa
school do come out naturally, as do some less familiar ones concerning the prediction of
unobserved from observed random variables, a topic usually referred to in this context as
the estimation of random effects; see, for example, Harville (1976).

We hope that our methods, which attempt to treat finite and infinite populations, the
different models or approaches noted above, as well as various kinds of samples, in a



244 5 Anova

Factorial Dispersion Models

uniform manner, will lead to:

(i) an understanding of the different parameterizations of factorial dispersion
models, together with their interpretations;

(ii) the various orthogonal decompositions of random variables, of arrays of
numbers, and of sums of squares, including the associated numbers of degrees of
freedom;

(iii) techniques for calculating expected values of mean squares under a range of
assumptions including linear models, over randomization, random sampling, and
symmetry, obtaining answers in terms of the desired parameters;

(iv) procedures for getting ‘best’ estimates of all parameters;

(v) formulae for obtaining ‘best’ linear predictors of key unobserved random
variables.

Throughout the paper we illustrate our results with a triply indexed array y = (y;%) and
its associated dispersion matrix I'= Dy, assuming that the second index, j, is nested
within the first, i, and that these two are crossed with the third, k. As well as being
complicated enough to exhibit most of the possibilities, this example allows the reader to
specialize the results to a simple nesting, by suppressing k, and to a simple crossing, by
suppressing j.

A good deal of the new work reported here is closely related to joint work with C.E.
Praeger and D.E. Taylor which we hope will appear soon in a monograph entitled
Analysis of Variance. We should like to thank them both for their collaboration over the
years.

2 Factorial dispersion models

2.1 Preliminaries

We will suppose given a set IT of factors p, ¢, ... and a partial order < on II, where
q <p means that the factor g is nested in the factor p, in the sense of Nelder (1965). It is
helpful to draw the partially ordered set (IT; <), which we term the nesting poset, with p
above q if ¢ <p and connected to g if there is no r distinct from p and g for which g <r
and r <p; this is the so-called Hasse diagram; see Fig. 1. We refer to Aigner (1979) for
terminology and further details concerning ordered sets. A subset a c IT is said to be a
filter if p ea whenever both g<p and q €a; such subsets have also been termed
admissible by the Iowa school, but we shall adhere to (one) standard order-theoretic
terminology. The need for such subsets arises because, in referring to the levels of a
factor, it is frequently necessary to refer at the same time to all factors within which that
factor is nested. The class L(IT) of all filters of a poset (II; <) is readily found to be a
distributive lattice under the operations of set union and set intersection, containing the
empty set & and the whole set IT (Aigner, 1979, p. 33). The lattice L(IT) is also a poset
under set-inclusion and so we can draw its Hasse diagram as well. It is convenient for our
purposes to draw the subset lattice diagram ‘upside down’, using the reverse ordering
from set inclusion. Figures 1 and 2 depict an example of a simple poset of three factors
and its associated distributive lattice of filters; note that 2<1 (meaning2<1and 2 #1) is
the sole nontrivial nesting relationship. This example will be used to illustrate much of
what follows. Note that our use of Hasse diagrams in this context is quite different from
that of Throckmorton (1961).

In a completely general factorial model, if factor g is nested in factor p then there is no
need for g to have the same number of levels within each level of p. However, models
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%]
1 (3} {1}
o 1,3} (1,2}
2 {1,2,3)
Figure 1. The poset Il in the example. Figure 2. The lattice L(I1) in the example.

based on assumptions of exchangeability or randomization do imply that ¢ has the same
number of levels with each level of p, and § 4 makes it clear that models based on random
sampling also imply this balance condition if all the random variables are to have the
same variance. Of all the viewpoints discussed in § 1, only the linear model approach
permits g to have different numbers of levels within different levels of p. Since this paper
is concerned with the theory that is common to all the approaches in § 1, we may assume
that g has the same number of levels within each level of p; this paper has nothing to say
about so-called ‘unbalanced’ data.

Next we suppose that the set of levels of factor p is T, for p in II. Of course, if g is
nested in p then the levels of g at different levels of p bear no relation to one another at
all even if the number of levels is constant. Nevertheless, it is extremely common to use
the same set T; to denote the levels of g within each level of p; see, for example, John
(1971) or Kempthorne (1952). Although this might appear somewhat confusing, there are
two good reasons for this convention: it facilitates both the algorithm for analysis of
variance calculations (Nelder, 1965) and some of the formal mathematics (Bailey et
al.,1983). We write T =], T, for the set of all combinations of levels of factors in II,
denoting a typical element of T by ¢ = (t,:p e IT). For any pair ¢, u in T we write a(t, u)
for the largest filter @ in L(IT) such that ¢, = u, for all p in a.

Example. With II as in Fig. 1, let t =ijk and u =i'j'k’. Then a(t, u)={1,2} if i=i’,
j=j" and k#k’'; whilst a(t, u) = {3} if i#i’, j=j' and k =k’, since {2, 3} is not a filter
of IT in this case. Here and below, when discussing our example, it is convenient to write
(t1, t2, t3) as (i, j, k) and abbreviate this to ijk.

With these preliminaries we can now define the dispersion models of our title. They are
for arrays y = (y,:t € T) of real random variables indexed by the set T of combinations of
levels of a set IT of factors whose nesting relationships are described by the partially
ordered set (IT; <). The covariance matrix Dy is defined over T and is said to be factorial
if cov (y,, y.) =cov (y,, y») whenever a(t, u) =a(v, w) for ¢, u, v, win T, and the class of
all such covariance matrices is denoted by V(II, T); briefly, a covariance matrix is
factorial if the covariance between any two elements y, and y, depends only on the
(largest) subset (filter) of the factors corresponding to the components on which the
indices ¢ and u agree. This class is more general than that introduced by Nelder (1965),
and we note that it has not yet been necessary to state whether or not the sets 7, are finite
for p in I1. See Tjur (1984) for a discussion of an even wider class of models, and Bailey
(1984) for a discussion of the relationship between Tjur’s work and the present paper:
factorial dispersion models correspond to Bailey’s poset block structures.

2.2 Finite index sets: Algebraic theory

If |T,| = n, < for p in II, and we write n =], n,, then V(II, T) is a class of n X n
positive-definite matrices whose structure is readily exhibited: see Speed & Bailey (1982)



246 5 Anova

Factorial Dispersion Models

for fuller details and proofs. Firstly, we can define the association matrices {A,:a € L(IT)}
over T by writing A,(t, u) =1 if a(t, u) = a, and A,(t, u) =0 otherwise. A general element
T of V(II, T) thus has the form I'=Y%,y,A,, the sum being over L(II), with the
parameters {y,:a € L(IT)} being covariances.
For reference in §4, we note that the set of matrices {A,:a € L(I)} forms an
association scheme. This means that the following conditions are satisfied:
(i) for all a in L(IT), every entry in A, is equal to 0 or 1, but A, is not the zero
matrix;
(ii) for all a in L(IT), the matrix A, is symmetric;
(iii) the sum ¥,c.m A, is the matrix J with every entry equal to 1;
(iv) one of the matrices (in this case Ap) is equal to the identity matrix I;
(v) there are integers n,, for a, b, ¢ in L(IT) such that, for all a, b in L(II),

A A= 2 naA.
celL(IT)
See, for example, MacWilliams & Sloane (1977, Ch. 21) for a good discussion of the
general theory of association schemes.

A second, useful representation of elements of V(II, T) involves the relationship
matrices {R,:b e L(IT)}, where R,(t,u)=1 if t,=u, for all p in b, and R,(t, u)=0
otherwise. Clearly

Ry=2 A,

axb

and the representation we refer to is I' = X, fyR,, where the parameters {f;:b € L(IT)}
are called canonical components of variance by Fairfield Smith (1955), Z-quantities by
Wilk & Kempthorne (1956a); and simply f-quantities by Nelder (1965), although later he
called them components of excess variance (Nelder, 1977). Relating the f’s to the y’s
requires the zeta function of the lattice L(IT) given by {(a, b)=1if ac b and {(a, b) =0
otherwise, and the associated Mobius function u defined by

; &(a, b)u(b, c) = Eb: u(a, b)(b, c) = 6(a, c),

where 6(a, c) =1 if a =c, and 6(a, c) = 0 otherwise; the sums are over all b in L(II): see
Aigner (1979, p. 141) for further details. In this notation f, = ¥, u(a, b)y,.

Because it plays such a prominent role in the discussion which follows, we explain
briefly how the Mobius function u of a lattice L is calculated from a Hasse diagram. An
easy reformulation of the definition is the following: u(a, ¢) =0 unless a c c; u(a, a) =1;
and for a cc:

u(a, C) == g l‘(a: b)y
equivalently,

p@a,c)== 2 u(b,c).

acbgcce

Example (cont.). Let us calculate some values of u. From u(J, &) =u({1}, {1}) =1
and either of the above, we deduce that u(J, {1}) = —1. A similar argument applies to
any pair connected by an edge in the Hasse diagram. Turning to u(J, {1, 3}) we can use
the first of the above formulae to find that

1@, {1, 3}) = —(u(@, D) + u(@, {1} + u(@, 3P = +1,
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Table 1
The matrices of the zeta and Mobius functions for the example.
(@) Z )z
@ {1y {12} {3} (1,3} {1,2,3} g {1 {1L2} 3 {13} {1,2,3}

%] 1 1 1 1 1 1 1 -1 0 -1 1 0
{1} 0 1 1 0 1 1 0 1 -1 0 -1 1
{1,2} 0 0 1 0 0 1 0 0 1 0 0 -1
{3} 0 0 0 1 1 1 0 0 0 1 -1 0
{1,3} 0 0 0 0 1 1 0 0 0 0 1 -1
{1,2,3} 0 0 0 0 0 1 0 0 0 0 0 1

whilst similar reasoning shows that

r(@, {1, 2}) = —[u(@, D)+ u(@, {1p] =0.

Alternatively, the Mobius function may be calculated by matrix inversion. Let Z be the
L(IT) X L(IT) matrix with entries {(a, b): Table 1(a) shows Z for our example. Since Z is
upper triangular (if the elements of L(IT) are written in a suitable order), it is easily
inverted. The values of u are simply the entries of Z~". For example, Table 1(b) shows
that u({1}, {1,2,3})=1.

It can be shown that, for all lattices of the form L(II) that we are considering, u takes
only the values 0, +1 or —1. A concise formula for the values of u can be given but we do
not need it here.

The final representation of elements of V(II, T) is the explicit form of their common
spectral decomposition. If we write 7, = II(n,:p ¢ a) for a in L(IT), then the formula

S. =2 u(a, ®)i;'R,, aeL(I),

gives a set of pairwise orthogonal, that is S,S5; = 0= S35, if & # f, idempotent ($2=5,)
symmetric matrices which sum to the identity (I =¥, S,). Further, the formula

Ea= ; C(a’: b)ﬁbﬁ» o€ L(H)’

gives the eigenvalues of T', whose spectral decomposition is then I'= Y« &S, Thus the
eigenvalues {&,:a € L(IT)} constitute a third set of parameters for V(II, T), and there
are two related sets of parameters which have also been used: the specific components of
variance {0%:a e L(I1)} of Cornfield & Tukey (1956), where o%=7;'€,, and the
spectral components of variance {¢,: a € L(I1)}, of Daniels (1939), where ¢, =n"" d,&,
and d,, = rank (S, ). Table 2 summarizes the main representations of a factorial covariance
matrix.

The nonnegativity of the eigenvalues {&,:a € L(IT)} or, equivalently, {0%: a € L(I)}
or {¢:a e L(IT)}, succintly defines the parameter space for V(II, T). There is no such
simple characterization in terms of the covariances {y,:a € L(IT)}, nor, in general, of the
{f,:b € L(I)}. In the linear model approach the latter parameters are the variances of

Table 2
Representations of a factorial covariance matrix

2 VA, 2 foRs 2 &S,

aeL(I) beL(IT) aeL()

Using Association matrices Relationship matrices Orthogonal projectors
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independent sets of random variables, and so are constrained to be nonnegative. This
constraint is stronger than the nonnegative-definiteness of I', and so the linear model
approach is, in general, a proper subset of V(I1, T). We shall show in §2.4 that the
classes coincide when T, is infinite for all p in I1.

It is convenient to combine the relationships between y’s and f’s and f’s and &’s to give

gﬁ’ =2paa7a’ Ya=n—12 qaa&a: (1)

where a, « € L(IT) and the sums are over L(IT). It is also true that
S&‘ =n_12 qaaAm Aa =2paasa (2)

and the matrices P.= (p,,) and Q = (q,,) thus hold the key to the solution of many later
problems.

The B-row of the matrix P consists of the elements pg, =k, =|{u:a(t, u)=a}|,
independent of ¢, whilst the IT-row of Q consists of gp, = d,, = rank (S,), the number of
so-called degrees of freedom in the stratum «: see below for an explanation of this
terminology.

It can be shown that k,q,, = d,p,, and the simplest way to describe the entries of P
and Q is via formulae for d,, k, and the common value s,(a) of d;'q., =k 'p,.. These
are as follows:

de= [I n,x [ (n,-1),

pea\a, PEQ,

where «,, denotes the set of minimal elements of «;

ko= H n, X H (n,—1),

pea\a™ pea™
where a = I1\a and @™ denotes the set of maximal elements of a; and
[I (-1/(n,-1)} if a\a,,, ca,

\a
sa@)=y 7
0 otherwise,

where an empty product is defined to be unity.

For our example given in Fig. 1 and 2 the values of d,, k, and s,(a) are shown in
Table 3.

2.3 Finite index sets: Decomposition of arrays

The preceding approach permits a full discussion of the structure of matrices in the
class V(I1, T). We now turn to the random array y = (y,:¢ € T') with dispersion matrix T
in V(I1, T). The matrices {S,: & € L(IT)} are pairwise orthogonal projectors summing to
the identity and so define an orthogonal decomposition of the n-dimensional space R” of
T-indexed arrays of real numbers, and hence also of the space of random arrays taking
values in R”. Thus the decomposition

y= 2 Sy ©))
aeL(IT)
of the array y into component arrays S,y is orthogonal with respect to the standard inner
product (x,y) =X, x.y. Therefore we have the sum of squares decomposition |y|>=
LaS.yl?, where |yl = (y,y) =%, y?.
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Table 3

(a) Values of d and k in the Example

a d, k,
@ 1 (ny = Dny(ny— 1)
(1) n—1 (n= D(ns—1)
{1,2) ny(ny—1) (ns—1)
3} ny—1 (= D,
{1,3) (1= 1)(n3—1) ny—1
(1,2,3}  m—-1)n,—1) 1

(b) Values of s,(a) in the Example

« a=0 a={l)  a={1,2} a={3} a={13} a={1,23)
@ 1 1 1 1 ! !
1 n,_—ll 1 ! nl_—ll ! '
{1,2) 0 P ! s 1
{3} "3_—11 "3__11 na_-ll ! ' '
R e = S 1
R v o = R

By taking components of equation (3) and writing S,y, for (S,y), we obtain the
decomposition

%= 2 Sun @

aeL(IT)

of the element y,, for ¢t in T, into components S,y, which depend only on indices in a. This
is the population identity of Kempthorne (1952, Ch. 8), his arrays having permutation or
sampling distributions, which we discuss below; it is also called the yield identity by
Nelder (1965).

Example (cont.). This decomposition is the familiar one:
Yk =Y.t Yi.—y.)+ 5=y )Yk =y. )t Gik=Yi.—y.xty.)
+ (Vi =Y.~ ik +yi), (4a)

where the terms correspond to a =, {1}, {1, 2}, {3}, {1, 3} and {1, 2, 3} respectively,
and we denote the averaging over an index by a dot in that position.
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For simplicity, suppose that Ey =0. Since I'=}, &,S,, the components of (3) are
uncorrelated, as are the components of (4); thus the S,y, are the principal components of
y. We find that E(S,y,)*= ¢, for & in L(II) and so var (y,) = ¥, ¢.. Moreover, since
¢, =n"1d,E,, we have

E{dZ' 1Sy} = &a- ©)

Example (cont.) As an illustration we consider & = {1, 2, 3}. From Table 3 we have
d (12,3 =n1(n,— 1)(n3 — 1) whilst (4a) gives S 2,3y = (Vs — ¥y — Yir +¥:.); hence for
any array y = (y;;) with zero mean and dispersion matrix in V(II, T) we have

1
E{——l) Z ; ; (Vi = Yi. = Vi +}’i“)2} =&1,23)-

ny(ny — 1)(ns

From (1) and the values of k, and s,(a) in Table 3 we find that

123 = Y23~ Ya3y — Ya T Yoy

It should now be apparent from our Example, if not the general discussion, that we are
providing an alternative interpretation of the analysis of variance of a multi-indexed array
y = (y,). We have indicated how the components S,y, of (4) are the principal components
of the random array y, provided that Dy e V(I1, T), and seen that their variances ¢, are,
when suitably normalized by their multiplicities d, and the array size n, the eigenvalues
&, of Dy. Because of the double role of the projectors S, these components are also the
terms which, when squared and summed, give the sums of squares decompositions that
are such a familiar feature of analysis of variance tables. The lines of the analysis of
variance table, termed strata by analogy with stratified sampling, are labelled by the filters
of I1, that is by the elements « of the lattice L(IT), and the number of degrees of freedom
for the line labelled « is d,, coinciding with the multiplicity of the corresponding
eigenvalue &,. And, finally, the expected mean square in line « given by (5) is the link
between the principal components and the sum of squares decompositions. All this has
been done by assuming only that Dy € V(I1, T); we have not assumed any linear model
for the array y, although (4) is in a sense an implicit linear model. Note that we have
assumed throughout that Ey = 0 and so our discussion is truly an analysis of variance qua
variance; the introduction of structured mean values is an additional complication which
we do not discuss here. All of this seems very similar to the discussion by Hannan (1965,
§5.2) and indeed the connection with spectral analysis can be made complete.

2.4 Infinite index sets

Most of the foregoing extends to the situation where some or all of the factors have
countably infinitely many levels, and for simplicity we discuss the case that T, is countably
infinite for all p in II. The representations I' =¥, y,A, = ¥, f, R, continue to hold (as
these matrices are never multiplied), and we find that the spectral representation
™=y, g®s® of the truncation I'™ of T, converges, after a suitable normalization, to
the representation X, f,R,. Here we use the superscript (n) to denote the truncation to
t,<n, for all p in IT and our limits are all as n,— for all p in II. Indeed
¢®=n"1dWE® converges to f,, as does 7izE™=(0™)? and we find that the
components Sy, of y,, where t, <n, for all p in II, also converge in mean square. The
decomposition (4) of y, continues to hold in the limit with the additional property that
E{(S:Y:)(Say.)} =0if (t,:p € @) # (4, :p € «), and so in this case (4) is (to second-order)
just the often assumed linear model with random effects used in variance component
analysis with the set IT of factors exhibiting the nesting structure characterized by (IT; <).
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Example (cont.). The above implies that the linear model
Yie =+ &+ By + Vi + O + €

where u, {a;}, {B;}, {v«}, {0} and {&;} are uncorrelated sets of uncorrelated effects
with zero means and variances 0%, 0%y, 0712, O%3), 0%1,3 and 0%, 3) respectively is, to
second order, the most general array y with Ey =0, Dy € V(I1, T) with IT as in Fig. 1 and
T,=T=T,={1,2,...}.

3 Permutation distributions

Suppose that 7 =(7n,:t€T) is a finite array of real numbers indexed by T as in §2
above and that we define an array of random variables y = (y,:t € T) by the rule y, = 1,
for t in T, where 7 is a random permutation of the index set T which respects the nesting
relationships; see Bailey et al. (1983) for full details of the group G of all such
permutations. Following Nelder (1954, 1965) we ask: What are the covariances induced
by this randomization? It is not hard to see that to answer this question we do not need to
know anything about the group G other than the following facts:

P(y,=m)=n"", P(y.=n.|y=n)=kato(a u),a(v, w)),

where ¢, u, v and w are in T. With this information it is clear that Ey, =n~'Y, n,, and, if
a(t,u)=a,

Eyy.= (nka)_lz 2 A(v, w)n,m,.

By using the relations between the matrices {A,} and {S,} given in (2) above, we find
that I'= Dy = ¥,z E.S,, where &, =d;"|S,n|>. Since ¥, y, has the constant value %, 7,
and Szy =y, the eigenvalue & is equal to zero. Using (1) we can obtain the covariances
{v.} of y in terms of the {&,}.

Example (cont.). We might ask for the covariance y 3y, which is cov (y;, yi;«) with
i#i'. Since y(3y=n"'L4 q(3),4E., Table 3 shows that

ninansy sy =8z — Eqy + (na — 1)(E5y — §1.3)-

We therefore need expressions for §(;y, &3y and &, 3, as = 0. From (4a) and (5) we
see that (n, — 1)y, = nons T; (. — n..)? and the corresponding expressions for &5 and
&1,3) are as readily obtained.

4 Restricting to subsets

In many situations, including all of those for which T is infinite, we can observe only a
finite part y> = (y,:u € U) of our random array y = (y,:t€ T), where U is some subset
of T. What can we learn from y) about the various sets of parameters {y,}, {f,} and
{&.} of Dy? It is evident from the simplest examples that the restriction of a factorial
dispersion model V(I1, T) to a subset U of T does not necessarily result in a factorial
dispersion model over U, so we are led into some broader aspects of analysis of variance
which it is beyond our scope to cover fully here. For a in L(IT), let A{Y be the restriction
A, |uxu of the association matrix A, over T to the subset U. The restriction A{” may be
zero for some values of a: however, if A and A{Y are both nonzero for distinct filters a,
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b in L(IT), then A # A, Let M = {a € L(IT): ALV #0}. It is clear that {4{"’:a € M}
satisfies conditions (i)—(iv) of § 2.2. It may happen that condition (v) is also satisfied, so
that {A{":a e M} forms an association scheme over U: in this case we shall call U a
tractable subset of T. We note that, even if U is a tractable subset of 7, the association
scheme over U is not necessarily of the same kind as that over T: indeed, it may not even
be a factorial association scheme.

Example (cont.). Let U be the subset {(i, j,j):1<i<r, 1<j<wv}, where r and v are
integers with r<n,, v<n, and v<ns. Then A}, =A% =0 and M ={g, {1}, {3},
{1,2,3}}. It may be checked that {A{"’:a € M} satisfies condition (v), and so U is
tractable. In fact, the association scheme over U is the factorial one corresponding to the
simple crossed structure obtained from the poset IT in Fig. 1 omitting the factor 2. In § 5
we shall give an example where the association schemes on U and T are given by the same
poset II. '

For simplicity let us suppose T to be finite; the extension to infinite T is quite
straightforward. The standard theory of association schemes (MacWilliams & Sloane,
1977, p. 655) shows that, if U is a tractable subset of 7, the set {A{”:ae M} of
association matrices can be simultaneously diagonalized, with |M| distinct common
eigenspaces. Thus there are orthogonal projectors {S{: 1 € A}, where |A| =|M|, and, as
in §2.2, a A X M matrix PV and M x A matrix QY such that

S =1UI"1 Y qPAY, AP =3 piDs.
aeM AeA
We shall comment later on how the coefficients ¢$3’ and p{%’ may be found explicitly.

Just as in §2.3, the projectors {S{¥’:1 €A} define orthogonal decompositions of
random arrays y” and of elements y, of y*” for u in U, and sum of squares
decompositions with known expressions for expected mean squares. In short, when U is
tractable then the dispersion model {T'|yxy:T € V(I1, T)} exhibits the main features of
an analysis of variance.

Write & for the eigenvalue of Dy corresponding to the projector S§°, where
AeA. Then EY is not, in general, equal to an eigenvalue of Dy. However, since
Dy = Dy |yxu, We know that every covariance y<” in Dy‘”’ must appear, as v, in Dy.
Thus we can combine the expression £ = ¥, p{2y{Y for £{” with the formula (1) for
v, to relate the expected mean square parameters {£{”): 1 € A} in the analysis of variance
of y¥ to the analogous parameters {&,:a € L(IT)} of y. This relationship may be
expressed in matrix form as

£ = PO T|7 O, ©)

where IY"D is an M x L(IT) matrix with IV"T)(a, b) = 6.

A sufficient condition for tractability is that the restricted relationship matrices
{RW:a € L(IT)}, where R\’ =R, |yxy, arise from a lattice of commuting uniform
equivalence relations on U; see Speed & Bailey (1982) for definitions and fuller details.
We note that in such cases, if at least one of AL, A{Y is zero, then R{” may be equal to
R{Y) even if a # b. For convenience let L* be any subset of L(IT) containing M such that
{RV:aeL*}={R{M:ae L(I1)} but that R{’ # R whenever a and b are distinct
elements of L*. Then, for a in L(IT), let a* be the unique element of L* such that
RV=RY®. In many cases L* is a (not necessarily distributive) lattice of the type
considered by Speed & Bailey (1982, § 2), who proved that analogues of all the earlier
formulae and results hold with x and { replaced by the Mobius and zeta functions of the
lattice L*. In particular, we have the following simple relationship between the
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f-parameters of the two systems:

f9=3 f (@eL?) ™

In most examples M = L* and the theory of § 2 applies to y‘“” with no difficulty: we shall
give an example of such a subset U in § 5. However, there are minor technical difficulties
when M < L*. One example where this happens is a 3 X 3 Graeco-Latin square viewed as
a subset of a full 3 x 3 X 3 X 3 array. The difficulties are caused by the facts that AS) = 0 for
a € L*\M, and, correspondingly, some of the projectors defined in terms of the R{") and
the Mobius function of L* are zero.

It should be clear that the foregoing discussion covers classical variance component
estimates, at least in principle, although we do not discuss any general ways of
disentangling estimates of population (that is, T) parameters from, say, quadratic forms
in observed subsets. Equations (6) and (7) are most useful in the so-called ‘balanced’ or
‘orthogonal’ cases, where the observed subarray has a high degree of symmetry closely
related to that of the full array. In most recent literature the full array is taken to be
infinite, arising from an assumed linear model rather than an assumed covariance
structure, but the results quoted in §2.4 show that these two sets of assumptions are
equivalent for our present purposes; see also Speed (1986).

5 Random sampling from structured populations

As in § 3, suppose that n =(n,:t € T) is a finite population of real numbers indexed by
T, and let U be an arbitrary subset of T. Let us consider sampling a random copy of U
within T; that is, obtaining a random subset y(U) of T which is labelled by U via the
random injection . Note that different choices of 9 may give rise to the same set y(U)
and yet must be considered different samples, because the labelling by the elements of U
is a crucial feature of the sample. Thus random sampling amounts to random choice of y
from some set W of injections from U to 7. We can now define a random array
y@=(y,:ueU) indexed by U by putting y, =10, for u in U. The randomness
underlying the distribution of y“ is provided by the random sampling of .

If we take W to be (the restriction to U of) the group G mentioned in § 3, then y is
identical to the array obtained by restricting to U the random array y = (y,:¢ € T) having
the permutation distribution defined in §3. Since all our results depend only on
second-order properties, it follows from § 3 that all we require of W is that it satisfy the
following condition: for all u, vin U and all ¢, win T,

P(y)==n"",
P(y(u) =t| y(v) = w) =k d(a(t, w), a(u, v)). ®

Thus *-random sampling an array of numbers is (to second order) the same as
restricting to a subset of an array of random variables having an appropriate permutation
distribution. Indeed the array 7 could well consist itself of random variables; provided
that Dy e V(I1, T), a sampling procedure satisfying (*) has no effect on the form of the
dispersion matrix of the random variables selected, although the values of the individual
covariances will change if E7 is not constant. If # has zero mean and dispersion matrix in
V(I1, T) then we may restrict at the outset to the subarray n“’=(n,:u e U) of the
desired form.

With this background we can carry out calculations concerning the sampled array using
the structure on U derived from that on 7. If U is a tractable subset of T then we may use
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(6) and (7) to derive many expressions for average values of mean squares over sampling
distributions: compare this with the work of Cornfield & Tukey (1956), Wilk (1955) and
Wilk & Kempthorne (1956a,b; 1957).

Example. A triply-indexed population of numbers,
n=Mpx:I=1,...,N,J=1,...,N,, K=1,..., N;),
where the three factors ‘rows’, ‘subrows’ and ‘columns’ have the nesting relationship
shown in Fig. 1, may be sampled as follows. Using simple random sampling without
replacement, obtain n; rows ¥,(1), . .., ¥,(n,), and, independently within each of these,

n, subrows Y,(1, 1), ..., ¥o(1, ny), ..., PYa(ny, 1), ..., ¥on,, ny), and, independently
of all the foregoing, ns columns (1), . . ., Ys(ns;). We then form the array

(yijk) = (nWI(i)Wz(iJ)'PJ(k):i= 1, ceey nl,j= 1, A (7] k= 1, ey n3).

By the equivalence above, this is no different from restricting to the first n, rows, the first
n, subrows within each row, and the first ny columns of the array (y;x) having the
appropriate permutation distribution, for condition (*) is easily checked in this case. For
example, if I #1' and i #i' then

P(y,(")=1', o(i", ) =T', Ya(k) =K [ 91()) =L, 96, /) =J, ys(k)=K)
is equal to 1/(N;—1)N,, which is as it should be since Table 3 shows that k=
(Nl - 1)N2.

In this case it is clear that the sample y = (y;;) has the same lattice structure as the
population: we may therefore use (6) to relate the two sets of parameters. For example, if
we write the §-parameters for the population as (£, : @ € L(IT)) and those for the sample
as (&, : a € L(IT)), Table 3 shows that

E,3) =N3'[nEw3 + (Vo= n2)E (23] ®)
In other words

E{;E ; Ek: Oik—Yi.=Y.x +Y...)2}

(n—D(ns—1)4
mz 2 2 (711 K—MNi-——MN__x+ 17___)2

(Nz nz)
Nle(Nz -1)(N;—-1) ; §,: % Mk = M- — N+ 112)%

where we are using . and - to denote the sample and population averages respectively. If
the array 7 were random with zero mean, we would simply enclose an expectation
operator around the right-hand side. Similarly (7) shows that & 2 = nsf 1,2) + f1.2,3),
sample and population f’s, and y’s, coinciding because M = L* = L(II) and neither set of
parameters directly involves the sizes of the arrays.

The foregoing example is a regular sample in the sense that U =[], U,, where U, c T,
for p in I1. Using the results and notation of § 2.2 with n, = |U,| and N, = |T,,| for p in I,
it can be shown that, for a regular sample, the coeﬁiaent of & in the expansion (6) of
&Y is bg,, which is equal to

(g/Ng) I (1-n,/N,) ©)

PEBm\x

if @ =B, and zero otherwise. This formula is given (in words) by Cornfield & Tukey
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(1956) and may be used to derive the coefficients in (8). The first proof was given by
Haberman (1975, Th. 2).

Example (cont.). Suppose that our rows and sub-rows are blocks and plots,
respectively, and that our columns correspond to treatments. Then we may regard our
initial sampling 1y as the selection of n;n, experimental units, in n; blocks of n, plots per
block, together with n; treatments. Now put n, =r and suppose that n,=n;=v, and
allocate treatments to plots in such a way that plots in the same block receive different
treatments, all such allocations being equally probable. There are many ways of doing
this; we are in effect choosing a complete block design at random. As before, the labelling
of the sample by i, j, k is important, and we do not want this labelling to destroy the
relationship of having the same treatment. Thus we denote a complete block design by
the function 8, where 0(i, k) =j if treatment k is assigned to plot j of block i. This
procedure now defines a doubly-indexed array 7,y 66,k)w,x) Which is a random
(1/v)th fraction (subject to certain constraints) of our originally selected sample.
However, it is easy to check that this (combined) sampling procedure still satisfies (*): for
example,

P(6(G, k)=j| 6@, k) =j)=v""
whenever i #i’, and so

Py (i) =1', o', 8", k) =T, ¥s(k) =K [ 9:1(i) =1, ¥(i, 6(, k) =J, 3(k) = K)

is equal to 1/(r — 1)v whenever [ #1' and i #i'. Note that, if we had replaced 8 by the
more natural function 6* allocating treatments to plots, so that 8*(j, j) = k whenever
6(i, k) =j, and obtained the array

Nwr @O ws0* @)
then our combined sampling procedure would not have satisfied (*). This illustrates the
care that is necessary in considering a random sample as a labelled subset.

By the equivalence given at the beginning of the section, we may regard the sample as
being the first r blocks, the first v plots within each of these blocks, and the first v
treatments, with the fraction selected being given by any one complete block design. It is
convenient to use the complete block design in which the treatments have the same labels
as the plots, in every block. Thus, our sampled array is y’, where U={(i, ], j):
i=1,...r,j=1,...,v} and (y,:t € T) has the permutation distribution based on 7. We
showed in § 4 that U is a tractable subset of T and that M = {{J, {1}, {3}, {1, 2, 3}}.
Moreover, R{Y%, =R{Y%, = R{Y) 5), whilst RS, R{Y), RY) and R{} 5, are distinct: thus
L* = M. Equation (7) gives

& =fo f@=Ffayp f&=fe fn=fon+fan+fus
These identities were first derived by Wilk (1955).

The techniques of this and §§ 3 and 4 allow us to re-derive the results of Throckmorton
(1961) and White (1963, 1975) in a unified and direct way which fully exploits the under-
lying combinatorial structure; but see also the Appendix of Neymann et al. (1935). We
make no comments here on the relative merits of these as compared with other

approaches to the analysis of experimental data; a discussion which did justice to the topic
would take us too far from the main subject of this paper.

6 Prediction

Our final topic is the best (that is, minimum mean-squared error linear) prediction of
linear combinations of elements of an array y = (y,:¢t € T) with Ey =0, and known Dy in
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V(II, T), based upon the observation of a finite subarrary y” where Uc T. As an
illustration from many possible results we shall suppose that U=1II,{1,...,n,} is a
regular sample from T =]I, {1, ..., N,} where n, <N, < for p in IT and even here we
shall consider the prediction of only the components (S,y,: a € L(IT), ¢ € U) in (4) above.
In this case it can be shown that the best predictor of S,y, based upon y¥) when t € U is

gsx”% [E%U)]_lbaﬁsgu) (3] (10)

where, for B € L(IT), S§” denotes the matrix introduced in § 2 above for the array y. If
t ¢ U a more complicated expression can be derived. Predictors of more general linear
combinations of elements of y are best derived using (10) and linearity. If any of the N, is
infinite we must pass to a limit in (10) by combining £ with the b,z which, of course,
depend upon the N, for p in II.

Example (cont.). Let us compute the best predictor of y,._—y___; that is, let us
evaluate (10) with IT as in Fig. 1 and o = {1}. Note that the averages we are predicting
are in the population (7-indexed) array, and this will be done using averages from the
sample (U-indexed) array. From (9) we find that b, (1) = nyns/ NNy whilst by o=
nyn3(1 —ny/N;)/N,N; and so

=R

NoN; [(}'i.. _}'.“)/55111)) + (1 _:_{>Y.../§&U)].

If we let N;, N, and N; all tend to infinity and expand the &’s in terms of f’s, this
expression simplifies to
nansf {1}
nanaf qy +naf oy +naf sy + a2

yi.—y.)

+ nanf(l) y
ninansfo + nonsf y + naf g oy Fmnaf sy e f st fazs”

It is clear that the above discussion is essentially what some writers term the estimation
of random effects (Harville, 1976). Our approach places it firmly within a prediction
framework, of unobserved random variables by observed ones, but the two are, of
course, equivalent. As we remarked earlier, matters become more complicated in the
presence of a structured mean value (fixed effects), and we shall say nothing further about
this topic here.

7 Closing remarks

There are many more aspects of this topic which could be addressed if space permitted.
For example, concise rules for forming analysis of variance tables, that is sums of squares,
degrees of freedom and expected mean squares and so on, can be formulated and proved
in the above framework. Other randomization analyses can be obtained with a minimum
of effort, for example, for split plot and other more complex designs. These topics and a
number of others will be expounded together with a fuller exposition of the material we
have surveyed in a forthcoming monograph mentioned in § 1.
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Résumé

On étudie un ensemble de modeles de structure des covariances pour des tableaux multi-indexés (i.e. indexés
par les €léments d’un produit cartésien) de variables aléatoires. Par leurs propriétés au second ordre, ces
modeles généralisent les modeles de composantes de la variance, les modeles de randomisation, ainsi que les
modeles d’échangeabilité. Ils conduisent de fagon naturclle 3 des techniques générales pour effectuer des
décompositions orthogonales, calculer les espérances des carrés moyens et évaluer les autres quantités
intervenant dans I’analyse de variance de ce type de tableaux.

[Received April 1986, revised March 1987)
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John Tukey connected the theory underlying simple random sampling
without replacement, cumulants, expected mean squares and spectrum
analysis. He gave us one degree of freedom for nonadditivity, and he
pioneered finite population models for understanding ANOVA. He wrote
widely on the nature and purpose of ANOVA, and he illustrated his approach.
In this appreciation of Tukey’s work on ANOVA we summarize and comment
on his contributions, and refer to some relevant recent literature.

1. Introduction. Most (9/15) of John Tukey’s contributions to analysis of
variance (hereafter ANOVA) can be found in Volume 7 of The Collected Works of
John W. Tukey [17]. Also in that volume are two items which will be of interest
to readers of this paper. One is a six-page foreword to the nine collected papers
by John Tukey himself. The other is an historical introduction to and remarks
on the roles of analysis of variance, and some brief comments on the individual
papers by the volume editor, David R. Cox. However, Tukey being Tukey, there
is no substitute for reading the papers themselves. Every one of them advances
our knowledge, at times dramatically, while seeming to be no more than a lucid
exposition from first principles of some well-established part of our subject. There
are exceptions to this last statement.

John Tukey’s main published contributions to ANOVA were made in a little
over a decade, from 1949 to 1961. They constitute approximately 20% of his
output over this period, and so about 5% of his total output. In subject matter
these papers range from the foundational to the computational, from the algebraic
to the interpretational, and contain some strikingly original views of the topics he
discusses. How many of us see a clear connection between finite-population simple
random sampling as in books on sampling, Fisher’s k-statistics and cumulants
for calculating moments of sample moments, the moments of mean squares in
ANOVA tables and the arithmetic of spectrum analysis? At the same time as he
was clarifying the analysis of variance qua variance, he highlighted the importance
of scale to the notion of interaction in the analysis of means, and gave us a tool
for identifying and removing removable nonadditivity. He also showed us how
to analyze a complex multifactorial data set; indeed in no fewer than four of the

Received January 2002; revised March 2002.

AMS 2000 subject classifications. Primary 62J10; secondary 94A20.

Key words and phrases. Odoffna, ANOVA, moments, cumulants, k-statistics, polykays, vari-
ances, components of variance, mean squares, factorials, interactions, pigeonhole model.
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papers below we get his views on the nature and purpose of ANOVA. It was much
broader than the usual one which focusses on testing.

In my opinion much of Tukey’s work on ANOVA is underappreciated, and
much of that which was appreciated at the time has been forgotten. He laments
[17, page lii], wrongly as it turns out, “Perhaps regrettably, I am not aware of very
much that extends papers 5, 6, 7, and 9” (of [17]). Some of his work on ANOVA,
for example, his “dyadic ANOVA” and his “components in regression,” was never
followed up. Neither of these titles scores a hit (with Tukey’s meaning) in Current
Index to Statistics. Fashions change, and the foundational worries or solutions of
one generation of statisticians can cease to be of interest to a later generation. It
is for this reason as well as to celebrate Tukey’s genius that it is a real pleasure
to be able to remind readers of his wonderful contributions to ANOVA, including
creating the abbreviation itself.

2. ODOFFNA. How we will miss Tukey’s neologisms. His one degree of
freedom for nonadditivity (ODOFFNA) paper [2] is perhaps his best-known and
most striking contribution to the analysis of variance and needs little introduction
here. Whereas others had paid attention to nonconstancy of the variance or
nonnormality of the “errors” in ANOVA, Tukey was concerned with nonadditivity.
Explaining his ideas in the context of a singly replicated row-by-column table,
he showed how to isolate a single degree of freedom from the “residual,” “error”
or “interaction” sum of squares (“call it what you will” he said), and so test the
null hypothesis of additivity using a statistic which gave power against a restricted
class of multiplicative alternatives. The statistic was motivated by the idea of a
power transformation; it was illustrated graphically through three examples, and
some elegant distribution theory was presented. This is a gem of a paper and amply
deserves its place in the texts [see, e.g., Scheffé (1959) or Seber (1977)]. Tukey’s
later papers [5, 13] on the same topic present no new ideas; rather they illustrate
the earlier ideas in more general contexts, something he pointed out was possible
in [2].

What has happened to ODOFFNA since the 1960s? These days most people
concerned about the possibility that their linear model might better satisfy the
standard assumptions of additivity, homoscedasticity and normality of errors after
a transformation will make use of the Box and Cox (1964) theory. However, their
approach to transformations is not a complete substitute for ODOFENA, as can
be seen in Tukey’s [14] discussion of additive and multiplicative fits to two-way
tables (see especially [14], Section 10F). It is likely that we will continue to extract
ODOFFNA in new contexts in the future, and for more on this, see Tukey’s own
comments on the follow-up to ODOFFNA in his foreword to [17].

3. Complex analyses of variance: general problems [11]. In[11] Green and
Tukey made a number of general points concerning complex analyses of variance
in the course of analyzing a specific experimental data set. Some of the points are
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familiar, some were new at the time but most are still of interest today. The authors
explain that the purpose of their analysis is “to provide a simple summary of the
variation in the experimental data, and to indicate the stability of means and other
meaningful quantities extracted from the data.” They intended their approach to be
in opposition to the view that the sole purpose of ANOVA is to provide tests of
significance. It was aimed at researchers in psychology and followed a review of
the use of ANOVA in that field a few years earlier.

The experiment is from psychophysics and involves six factors: sex (S, two
levels), sight (1, two levels), persons (P, eight levels), rate (R, four levels), weight
(W, seven levels) and date (D, two levels). All of S, I, R, W and D are crossed,
while P is nested in a balanced way within § x I so we may describe the factor
relationships by the formula ((§ x I)/P) x R x W x D. The response was a
difference limen, a kind of threshold of perception, which could be expressed
as a difference in weights, a squared difference in weights, a ratio of weights,
a logarithm of a ratio of weights or even a response time.

One novel aspect of this paper is that the authors discuss not only what scale to
use for the dependent variable; that is, possible transformations, but also just what
the dependent variable should be in that context: a difference, a squared difference,
a ratio, a log ratio, etc. After an initial analysis with one response variable, they
choose another and obtain a new, and to their minds better, analysis. Another
novelty at that time was the careful discussion of the nesting and crossing between
factors and their implications for the analysis. This was no doubt inspired by the
discussion of these matters Tukey and Cornfield gave in [8], which was published
some four years before [11].

Perhaps the most interesting part of this paper is the extended section “Variance
components and the proper error term” and the section “Variance components in
the illustrative example” which follows it. The first of these discusses an example
simpler than the actual experiment and draws heavily on material concerning the
pigeonhole model in [8]; see Section 4.3. Then they turn to the experiment and
things get interesting when they seek to impose a sampling model on the factors.
The four levels of rate (50, 100, 150 and 200 g/s) and the seven levels of weight
(100, 150, ...,400 g) are admitted to present a problem for their pigeonhole
model. Are they exhaustive samples from finite populations, that is, fixed; are
they small samples from large populations of levels, that is, random; or are they
something else? Whereas it was easy for them to view sex and sight (blind or not)
as fixed, and person as random, the choice for R and W was far less obvious. After
some discussion of various options, including a mention of using polynomials to fit
responses to rate and weight, they decide to regard R and W as random “although
we recommend against this procedure [for scaled variables] in general.” The ideal
that one ANOVA theory fits all cases seems hard to live up to, even when you are
the creator of the theory.

As soon as all factors are assigned the category fixed or random, it is possible
to write out all 39 expected mean square lines of the ANOVA table, and this they
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do. Next follows an illuminating discussion of “aggregation and pooling” of lines
in the table, which, when implemented with the illustrative data, reduces the 39
lines to 15. They make use of a modified version of a procedure of Paull (1950)
which Tukey highlights in his Introduction to [17] and seems to be of interest
today. There are two useful graphical representations of the relative contributions
of the different sources of variability, one in two dimensions which is especially
appealing, but on the whole there is relatively little plotting of the data, a large
contrast with Tukey’s later work, for example, in [14].

A later analysis of this same data set can be found in Johnson and Tukey [15].
Looking back on this paper after four decades, and bearing in mind all that
Tukey wrote on ANOVA before and after that time, one cannot help but be
struck by how little use he made in this paper of the processes and procedures
he recommended when considering such an analysis. Referring to matters to
be discussed in Section 4, he made no attempt to assign standard errors to his
estimated variance components, under either normality or any other assumptions,
the scientific purpose of the experiment was nowhere mentioned, the situations or
populations to which inference was to be made were nowhere mentioned, even
the means he calculated and plotted were not assigned any measures of their
stability, something that was stated at the beginning of the paper to be one of the
major purposes of ANOVA. Granted this was an expository paper with a limited
objective, and probably already long by the standards of the journal, but I think the
point remains that it is hard to put Tukey’s ANOVA theory into practice, even for
Tukey himself.

4. Some moment calculations. Tukey wanted to derive average values and
variances and later a third moment of consider later. He tells us [17, page liv]
that his first attempt at deriving the variance of the between variance component
in an unbalanced one-way design took five or six full days “using old-fashioned
clumsy methods.” He was “convinced that it ought not to be so hard” and so “went
looking for better tools, and eventually came out with the polykays.” Polykays are
generalizations of Fisher’s k-statistics and we now outline the main points from
the papers in which they were introduced.

4.1. Some sampling simplified; keeping moment-like computations simple
[3, 6]. In 1929 Fisher introduced k-statistics as unbiased estimators of cumulants
and a computational technique which radically simplified much previous research
on moments of moments. It would take us too far astray to describe his technique
in detail [see Speed (1986a)], but we can describe the simplest of his results in
this area as soon as we recall the following well-known facts. If X, ..., X, are
i.i.d. random variables with common first two cumulants «; and «, (the mean and
variance, respectively), then

1 - 1 -
k==Y X; = = . —X)?
=22 Xi=X and k=-—=3(Xi - X)
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satisfy
Eki =k; and Ek; =«k).

Now the k’s are Fisher’s k-statistics, that is, unbiased estimates of the correspond-
ing cumulants. The key results of Fisher (1929) were the general definition of
k-statistics and a procedure for calculating their joint cumulants whose core was a
rule for calculating the coefficients of lower order k-statistics in an expansion for
the product of two k-statistics. The relationships above are the simplest relevant re-
sults: the expected values or first cumulants of the first two k-statistics. Next would
come the results which come from replacing E by var or covar; that is, replacing
first by second cumulant in the sample-population calculation.

We all know that var(k;) = «2/n, but what about var(k;)? This result, first
derived by Gauss, is not quite so well known, but turns out to be

var(kp) = K22 —+ -1-K4.

n—1 n
Deriving this last fact is already messy enough to warrant thinking very carefully
about the algebraic formulation one adopts, and any desire to obtain more general
expressions of the same kind focusses the mind greatly on the same issue. Fisher
had his approach, Tukey simplified it as we shall see and it can be simplified yet
again; see Speed (1983) and McCullagh (1987).

Tukey’s main aim in [3] and [6] was to extend these results (and others like
them) to the finite population case. Apparently unknown to Tukey, this task had
been begun by Neyman in 1923 [see Neyman (1925)], though far less elegantly
or generally. To achieve his aim Tukey extended Fisher’s entire machinery.
He named the tool he developed polykays—multiply-indexed generalizations of
k-statistics—later noting that these same functions had been introduced earlier by
Dressel (1940) in a paper that was not noticed at the time. For Tukey polykays of
order or weight r are indexed by partitions of the natural number r. For example,
there are two of order 2, indexed by (1, 1) and (2); three of order 3, indexed by
(1,1, 1), (1,2) and (3); four of order 4, indexed by (1,1,1,1), (1,1,2), (1,3)
and (4); and so on. Fisher’s k-statistics are the single subscript versions of the
polykays, (1), (2), (3), (4) etc., hence Tukey’s name. In what follows we drop the
commas and parentheses in the partition notation, writing 1, 11, 2, etc.

How are polykays defined in general? To do this Tukey made use of an
auxiliary class of symmetric functions also labelled by partitions, which he called
symmetric means or, more simply, brackets, denoted by (1), (11), (2), etc. These
functions had the appealing property of rather transparently being “inherited on the
average,” which means that the average of the sample function over simple random
sampling without replacement from a finite population was just the corresponding
population function. Tukey avoided using the term “unbiased” as (so he said)
“there are now so many kinds of unbiasedness!” The sample mean

=3
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is clearly inherited on the average, as is

(11)=n(n-1)

Z XiXj.

i#]

The value of brackets lies in the fact that [3, page 111] “every expression which is
(i) a polynomial, (ii) symmetric, (iii) inherited in the average, can be written as a
linear combination of brackets with coefficients which do not depend on the size of
the set of numbers involved.” As one illustration we give the following well-known
and useful representation:

1 1 1

Py DU e D i PO
i#]
where the last two terms are transparently inherited in the average, neatly proving
that the first term is also, a standard fact from sampling theory. Tukey would write
this last relationship (2) = (2) — (11), and in general he needed a rule giving the
coefficients of brackets in the expansion of his parentheses (polykays). As he said
([3], page 124) “the single-index brackets have the coefficients for moments in
terms of cumulants (given numerically by Kendall [(1943), Section 3.13] up to the
10th moment). The coefficients of brackets with several indices can be found by
formal multiplication.”

How do we use all this machinery? Elegant though it is, there is still some hard
work: the multiplication tables need to be derived. Tukey derived his own, but by
the time of publication of [3, 6] comprehensive tables had independently appeared
[Wishart (1952a, b)]. A simple instance of a multiplication rule is

%) 2P =)+ 1)+ 22
n n—1

Let us see how this leads very painlessly to the main result of Neyman (1925).
First, note that the preceding identity has a version connecting population
k-statistics which is of the same form, but with n replaced by N. Next recall that
the polykays (22), (4), etc. are all “inherited on the average.” We now take the
expectation (i.e., average) of (x) over all samples and subtract from the result the
population version of (x). This leaves us with
1 1 1 1
@)=z - 5|+ 77 - 5 |-

which is the formula Neyman worked hard to obtain. This was indeed “sampling
simplified.” Note also that if we let N — oo (so-called infinite population) and use
the easily proved fact that, in this case, (22) is just (2)2, we obtain Gauss’ result.

Tukey certainly simplified sampling. He demonstrated clearly that indeed finite
populations are simpler to deal with, and more powerful, and he now had the
machinery to carry out certain calculations in ANOVA.



5 Anova 265

TUKEY: ANALYSIS OF VARIANCE

Later developments cast Tukey’s work in the framework of tensors [cf. Kaplan
(1952) and, most recently within the general theory of symmetric functions, Speed
(1986a)]. The gains from so doing are modest, but I think definitely worthwhile.
One consequence of the tensor formulation is that some of Tukey’s formal
calculations (e.g., his symbolic o-multiplication) cease to be “tricks.” Another
is the greater simplicity which comes from allowing all random variables to be
potentially different. For example, instead of calculating variances of variances, we
calculate covariances of distinct covariances, and obtain variances by appropriately
equating arguments. With this slightly greater generality, (x) above becomes
[Speed (1986a), page 43]

(12) ® (34) = (12)34) + %(1234) + n—i—I[(13|24) + (14]23)],

where 1, 2, 3 and 4 all label distinct variables. This simplification removes certain
multiplicity factors and then reveals the coefficients defining polykays to be values
of the Mobius function over a partition lattice, which I think is a real step forward;
see Speed (1983) and McCullagh (1987).

Where are polykays now? There was a little theoretical development of them
after Tukey’s work, but he left no major problems unaddressed. I extended them
to multiply-indexed arrays in Speed (1986a, b) and Speed and Silcock (1988a),
and used the extensions to generalize the calculations of Tukey discussed in the
next section. Apart from my own work the most recent references to polykays are
Tracy (1973) and, an application of them, McCullagh and Pregibon (1987). To my
knowledge there have been no other publications concerning polykays since then.
In short, it seems that after about 25 years of life, polykays have been dead or
sleeping for 25 years. Apparently they have served their purpose, though I have no
doubt that they will be resurrected, awakened or reborn at some time in the future,
when another problem comes along for whose solution they are the natural tool.

4.2. Variances of variance components [7, 9, 10]. Why did Tukey go to all
the trouble of inventing polykays and their calculus, and what did he learn from so
doing? Giving as one purpose of the analysis of variance “to estimate the sizes of
the various components contributed to the overall variance from the corresponding
sources,” he wanted “to obtain formulas for the variances of the natural estimates
of these variance components.” Along with Gauss, Fisher and many others, Tukey
wanted to go beyond normality, but almost uniquely he did so in dispensing with
infinite populations. He regretted ([7], page 157) that he still had to leave “the
customary (and dangerous) independence assumptions” concerning the terms in
his linear population models. This answers the question “Why?” Let us now
see some of what he learned in a simple case: the balanced single (or one-way)
classification. Tukey’s model for this takes the form

xij=ﬂ+77i+wij’ i=1,...,c,j:l,...,r,
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where the {7;} are sampled from a population of size n with k-statistics ki, k2, . ..,
the {w;;} are from a population of size N with k-statistics Ky, K2, ... and the
samplings are independent and order randomized. If we denote by B and W the
usual between-class and within-class mean squares, respectively, with expectations
ks and K>, then Tukey showed, among other results, that

var(B) = (% - %)ka, +2I: ! - —J—]kzz

c—1 n-1

4 2(rc—1)
kK Ky,
+r(c—1) 202 rZe(r— (c—1) 2
2
B,W)y=———K>»,
cov( ) re(r—1) 22
(W)"[l lle +2[ — ! :IK
var(W) = | — — — | K4 -0 N_1 2.

The remainder of [7] consists of more formulae of this kind, derived for
other variance component models: row-by-column classifications, Latin squares,
balanced incomplete blocks and more general balanced models.

Paper [9] considers the special, more complicated case of an unbalanced one-
way classification. One novelty here is that there is no single compelling estimate
of the between-class component of variance, and so Tukey considers a class
of estimates involving weights which need to be specified. He then derives the
variances and covariances as before, generalizing those just given, and presents
numerical examples. Lastly, paper [10] does what its title says: it presents the third
moment about the mean, that is, the third cumulant of the quantity W given above.

What can we learn from or do with such formulae? In the first place, we can
obtain qualitative insights by comparing the general finite population results with
the special case of infinite normal populations. There k4 and K4 vanish, while
kop and Ko, are k% and K22, respectively, and of course N = oco. In this case the
results are familiar, and the extent to which the normal variances for the estimated
variance components are too small or too large could, in principle, be examined.
Interestingly, Tukey does not present formulae giving unbiased estimates of either
the individual terms in his expressions for the variances of the estimated variance
components, or for the variance expression as a whole. I would be very surprised
if he did not have such formulae, for example, for k4 and K4 and k7 and K»»
above, but he makes no mention of them. Without them, his aim of calculating
estimates of the precision of estimated variance components under these more
general assumptions must remain unfulfilled.

What has been done since the 1950s in this area? There has been more work
on the topic of variances of estimated components and variance; see, for example,
Harville (1969), but there, as in all other such cases that I know, the calculations
are carried out under an assumption of normality. In some of my own work [Speed
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(19864, b), Speed and Silcock (1988a, b)] I have tried to extend Tukey’s work to
ANOVA models which are not built up additively from independent components.

4.3. Average values of mean squares in factorials [8]. This is an interesting
and important paper: broad in coverage, profound in its analysis, beautifully
written and elegant in its dealing with messy algebraic details. It is arguably
Tukey’s most important contribution to ANOVA. By the early to mid-1950s it
was becoming clear that the concise description in Eisenhart (1947) of models
for ANOVA did not provide a foundation for all uses of ANOVA. The now well-
known mixed-model ambiguity concerning the interaction component of variance
when (say) rows are “fixed” and columns “random” had emerged: in some linear
model formulations this component appeared in the expected mean square line for
both rows and columns, while in others it did not. It was apparent to many that
the combining of linear models and ANOVA was not as simple as might have
seemed at first. Neyman and his Polish colleagues found this out the hard way
in 1935, but made no later attempt at a broad synthesis. Kempthorne (1952) in
Ames, building on the work of Neyman and co-workers, Fairfield Smith in Raleigh,
Tukey in Princeton, Cornfield at the National Institutes of Health in Bethesda and
no doubt others elsewhere all sought to devise models of differing breadth and
flexibility which would specialize appropriately under different assumptions, and
lead to the desired analyses and inferences. Throughout all this, Fisher was silent
on the topic, apparently holding to his view that “the analysis of variance is ... a
convenient method of arranging the arithmetic.”

Anyone who reads the five sections comprising the Initial discussion of [8]
quickly realizes that providing a general framework for ANOVA is no mean task.
The subsequent six sections spelling out Cornfield and Tukey’s approach prior to
their presenting any average values shows that theirs is not an easy resolution. So
it should come as no surprise when I say that the situation today is hardly any
better than it was then in the mid-1950s. Cornfield and Tukey’s paper should be
essential reading for all those who care about these matters. But it is not read, and
neither their approach nor any other has taken root among the legions of users of
ANOVA and linear models. No treatment of the issues that prompted them to write
that paper has yet gained acceptance; see below.

What are the issues? Although in most of his writings on ANOVA Tukey
emphasized estimation of variance components above significance testing, this
paper is very much motivated by testing. Expressions for average values of mean
squares in factorials are the primary basis for testing: they tell us which mean
squares can usefully be compared with which; that is, they dictate the choice of
error term. So attention focuses sharply on the model assumptions leading to these
averages. As Tukey and Cornfield point out in Section 2 of their paper, the choice
among assumptions is important and is not simple. It includes but goes beyond
empirical questions about the behavior of the experimental material. Assumptions
must also depend on the nature of the sampling and randomization involved in
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obtaining the data, and the purpose of the analysis, as expressed by the situations
or populations to which one wishes to make statistical inference.

Cornfield and Tukey’s way ahead is by the use of what they call a pigeonhole
model, in which combinations of experimental factors (rows, columns, etc.) define
pigeonholes containing a finite or infinite population. If, like them, we illustrate
ideas with the replicated row-by-column classification, then their assumption
is that a sample of r rows is drawn from a possible R, and a sample of
¢ columns is drawn from a possible C. These rc intersections define the pigeon-
holes which are the cells of the actual experiment, and from each of the rc cells
a sample of n elements is drawn. “All the samplings—of rows, of columns, and
within pigeonholes—are at random and independent of one another.” This is their
approach. They discuss at considerable length the way in which an equivalent
linear model can be defined, making it clear just how different their linear model
was from those previously used (and used today). Of particular significance was
their notion of “tied” interaction, their avoidance of what they term the “special
and dangerous” assumption of independence of the variation of interaction terms
of main effects terms.

After their lengthy preliminaries it is almost a relief to get to the algebraic
part of the paper: definitions of components of variance and rules for calculating
what we now term expected mean squares. They discuss two-way and three-
way designs in detail and give rules for designs with factors nested or crossed
in arbitrary ways. There is an interesting discussion of the nature of the various
proofs then extant of the formulae. At that time there were two types: “Proofs using
special machinery or indirect methods (e.g., symmetry arguments and equating
of coefficients for special assumptions),” the approach preferred by Tukey, and
“proofs using relatively straightforward algebra,” which was the preferred way of
Comnfield. Neither of these was particularly effective in full generality.

The mathematical content of [8] has been revisited at least twice since 1956.
The first time was by Haberman (1975), in a dense paper which does not seem to
have been widely read. He makes effective use of the calculus of tensor products
of vector spaces to give very concise proofs of the main results. A quite different
approach was used in Speed (1985) [see also Speed and Bailey (1987)] (also not
widely read), where the discussion was expressed in terms of the eigenvalues of
the associated dispersion matrices. Other, less general formulations can be found in
books on linear models and ANOVA, for example, Searle, Casella and McCulloch
(1992).

As suggested earlier, all attempts at providing a general framework for ANOVA
since 1956 should have come to terms with the material in [8]: they should either
incorporate it or suggest an alternative approach. There have been many such
attempts over the last 45 years, with Nelder (1977) providing the most far-reaching
alternative, building on Nelder (1965a, b). This paper and especially the discussion
of it are well worth reading, especially today. The most recent discussions of
the “mixed models controversy” [see, e.g., Schwarz (1993) and Voss (1999) and



5 Anova 269

TUKEY: ANALYSIS OF VARIANCE

references therein] refer to neither Cornfield and Tukey, Kempthorne, Nelder nor
any other of the earlier generation of researchers in this area. Plackett (1960) gives
an excellent review of this early work.

Tukey’s contribution to the discussion of Nelder (1977) is particularly inter-
esting, in part because it reveals so clearly his distrust in models. It should be
read in full, but here are some tantalizing excerpts, all the more relevant when
one bears in mind that all recent discussion of this issue is a discussion of mod-
els:

I join with the speaker in hoping for an eventual and agreed-upon description. I hope
the present paper will help us approach this ideal state, but I must say that it has not
brought us there.

Three types of variability arise in almost any question about a set of comparative
measurements, experimental or not: measurement variability, sampling variability and
contextual variability.

A major point, on which I cannot yet hope for universal agreement, is that our focus
must be on questions, not models.

One conclusion I draw from such examples is this: Models can—and will—get us into
deep trouble if we expect them to tell us what the unique proper questions are.

I close this section with some personal comments, but before I do so, I should
confess that I too have attempted to publish a description of ANOVA which I
had hoped might have become “agreed-upon.” It did not even get accepted for
publication. However, I think I represent more than myself when I say that, for
all my admiration of [8] and what it attempted to do, that solution was simply
too far away from the world of linear models most of us inhabit. In my view, and
I suspect that of many others, linear models are most readily specified through a
model for the expected values and a model for the variances and covariances of the
observables. After all, we are simply specifying (apart from the values of certain
unknown parameters) the first two moments of our observables. Had their approach
been in these terms, I believe it might still be discussed. Nelder (1977) had a
related objection when he pointed out that randomization models (involving finite
populations but random effects) could not be seen as a special case of the approach
in [8]. The matter of providing linear unbiased estimates of quantities of interest
figured nowhere in [8], and I believe this reduces many people’s willingness to
see its solution as general and relevant to their use of linear models and ANOVA.
But perhaps the real reason that the description in [8] is not yet agreed upon is
this: the majority of statisticians these days (perhaps even 50 years ago) are not
interested in the issues that concerned Tukey, Cornfield, Kempthorne, Fairfield
Smith and Neyman and co-workers, before them, and Nelder and others, including
me, after them. Perhaps it is just too hard, connecting assumptions and models to
the subject matter, to the data collection process, to the questions one is asking
and the kinds of answers one seeks. “Does it really matter? Does it make any
practical difference?” I get asked. It is so much easier discussing models and
parameterizations.
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5. Other ANOVA papers by Tukey.

5.1. Dyadic ANOVA [1]. This paper was based on a talk Tukey gave in
November 1946, and is more interesting for what it tells us about the development
of his thinking concerning ANOVA than for the material related to its title.
Ostensibly about ANOVA for vectors, that is, what we would now call multivariate
analysis of variance (MANOVA), the paper also contains a wealth of interesting
material only marginally related to that topic. The reason he wrote it, he says,
was that other accounts of MANOVA concentrate too much on tests and too little
on that which is most useful and revealing in ordinary ANOVA. It is impossible to
resist passing on one of his introductory remarks, presumably aimed at the average
reader of Human Biology. He writes:

It is a maxim of arithmetic that it is not proper to add 2 oranges to 1 apple; this is good
arithmetic but may be poor vector algebra. For

(2oranges, 0) 4 (0, 1 apple) = (2oranges, 1 apple)
is a meaningful and useful statement.
Later, he goes on:
If we are to have an analysis of variance, we must have squares, and the solution is

4orange2 2 (orange) (apple)
2 _
(2 oranges, 1 apple)” =
2 (orange)(apple) 1 apple2

The paper includes a concise discussion of components of variance, initially in
the context of Eisenhart’s (1947) models, but also including the finite population
pigeonhole models which were to play such a big role in his later work. Rather
surprisingly in view of his later disdain for F-tests, and his stated motivation for
writing the paper, he makes a start on tests of significance for dyadic ANOVA, that
is, the distribution of eigenvalues in 2 x 2 MANOVA. He even attempts to give
fiducial intervals for quantities of interest, but concludes that more distribution
theory is required.

A topic not obviously related to dyadic ANOVA is what he calls choice of terms,
that is, choice of the response variable to be analyzed in a given experiment.
He castigates Fisher for not paying more attention to this point, illustrating it
dramatically by carrying out the same analysis on some hydrogen spectrum
data using both wavelength and its reciprocal, wave number, as responses. In
a fascinating analysis foreshadowing the power transformation underpinnings of
ODOFFNA, he uses his newly developed dyadic ANOVA to find that linear
combination of a response variate and the variate squared which minimizes the
ratio of row plus column sums of squares to interaction sum of squares in an
unreplicated row-by-column array. Illustrating the method on one of the data sets
which he uses in his later paper on ODOFFNA, Tukey shows the considerable
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gain in efficiency he achieves with his transformation. The eigenvalue problem he
solves is reminiscent of canonical variate analysis, and he ends that discussion with
some interesting speculations on alternative criteria to optimize in the definition of
discriminant functions.

A further point of interest in this paper can be found in the Appendix, headed
“Two identities and a lemma.” The lemma gives the variance of the average and the
expectation of the sample variance of a set of variates which have different means
and different variances, but a common covariance A, a simple enough variant on
the result which is well known for i.i.d. variates. He goes on to apply this result to
his pigeonhole models, illustrating once more what was to be a recurrent theme in
his statistical research: a desire to weaken standard assumptions wherever possible.
He finds that, under these more general assumptions, the formulae are essentially
ur;changed, with a common variance 0% being replaced by the average variance
ol — A

5.2. Components in regression [4]. This paper is about simple linear regres-
sion when both variates are subject to “error,” and the use of instrumental variates
in this context. The fields of application discussed include precision of measure-
ment, psychology and econometrics, and, as is so often the case with Tukey, the
paper demonstrates the prodigious breadth of his knowledge. The connection with
ANOVA is slight, really only arising because he discusses an example in which
measurements are taken in replicate. As he says, “We could have avoided mention
of variance components . . . since we only deal with the simplest sorts . . . between-
vs-within or regression-vs-balance. However, we have chosen to bring them in for
two reasons. Mainly to set the analysis in terms which can easily be carried over
to more complicated analyses where the correct procedure might otherwise be a
mystery. Secondarily, to stress the analogy with variance components for a single
variate.” The paper is not easy reading and, since its connection to other material
here is not great, we do not discuss it any further.

5.3. ANOVA and spectral analysis [12]. As might be expected from its
context—the discussion of two papers on the spectral analysis of time series—
[12] is much more about spectral analysis than ANOVA. It was placed in one of
the time series volumes [21], not in [17], yet I want to mention it here, in part for
its influence on me personally. What Tukey makes very clear in this discussion is
that spectrum analysis, with a line for each frequency, is ANOVA. More fully, he
says “the spectrum analysis of a single time series is just a branch of variance
component analysis.” This was one of his inspired connections which proved
illuminating in both directions. It is clear from his remarks that Tukey supposed
that his statistical audience knew something about ANOVA and could read [8] if
they wished, and that this would enlarge their understanding of spectrum analysis,
the topic of the papers. What was probably not apparent at the time was that there
were people, myself included, for whom spectrum analysis was straightforward,
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but variance component analysis a mystery, and that his connection would be
helpful to such people in the other direction. For evidence of the impact of this
paper on me, see Speed (1987); for a valuable introduction to this paper, see the
comments by Brillinger in [21].

5.4. Toward robust ANOVA [16]. This paper offers “a recipe for robust/
resistant analysis of variance of data from factorial experiments in which all factors
have three or more versions.” Its motivation is eloquently explained as follows:

Analysis of variance continues to be one of the most widely used statistical methods.
Not only the form of the analysis of variance table with its lines of mean squares and
degrees-of-freedom associated with each of several sorts of variation, but the entire
analysis, including confidence statements, is classically supposed to be determined by
the design—the hierarchical structure, conduct, and the intent of the experiment—
alone. The behaviour of the data itself is, classically, not supposed to influence how
its description is formatted. Hardly an exploratory attitude. ... In this account, rather
than using a data-free structure to define our procedure, we provide a further stage
of responding to the data’s behaviour, one where summarization is based on a robust
alternative to the mean.

The recipe is explained by its application to a particular 5 x 3 x 8 array of data
from an experiment concerning the hardness of gold alloy fillings. It begins with a
pre-decomposition, this being a multiway analogue of median polish, and proceeds
through the identification of so-called exotic entries, to a re-decomposition dealing
with these, and a robust analysis of variance with the familiar sums of squares
and degrees-of-freedom calculated from the re-decomposition. Next, a process of
downsweeping is carried out, this being a variant of the pooling of mean squares
which we met in Section 3 above, and the recipe concludes with the calculation of
error mean squares, standard errors and confidence statements.

5.5. Methods, comments, challenges [18-20]. Tukey expounded and dis-
cussed ANOVA in a number of his many overview papers, and I will single out
three of these for brief mention.

In [18] he goes over “some methods that form sort of a general core of the sta-
tistical techniques” that were used at that time. He aimed “to supply background:
statistical, algebraic and perhaps intuitive,” and he succeeded admirably. The ex-
position could hardly be improved upon, indeed is better than most we see today,
in that it contains possibly the first instance of the “analysis of variance diagram”
mentioned in the discussion of paper [11] in Section 3 above. This diagram surely
deserves to be more widely used. Also noteworthy is a remark which may well be
the first appearance in print of the abbreviation ANOVA.

In [19] Tukey offers 37 methodological comments about statistics on topics
ranging from exploration versus confirmation, re-expression and causation, to
spectrum analysis, and naturally he has something so say about ANOVA. Relevant
comments concern regression and analysis of variance, nonorthogonal analysis and
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MANOVA, and can only be described as stimulating and provocative. For example,
in seeking a replacement of conventional MANOVA: “We could calculate principal
components, but they are not likely to be simply interpretable. So let us not”; and:
“Much the same could be said of ‘dust bowl empiricists factor analysis’.”

In Section 21 of the last of these three overview papers [20], Tukey foreshadows
the issues dealt with more fully in [16] discussed above. We see clearly how
keen Tukey was to unify his understanding of and approach to ANOVA with his
robust/resistant and exploratory data analysis paradigms. While [16] is a fine start,
it seems clear that there is much more to be said on this unification.

6. Concluding remarks. John Tukey was an extraordinarily able and creative
statistician. He made a number of lasting contributions to ANOVA: to our
understanding of what it is and what it can do for us; to the algebraic
and computational aspects of the subject; and, perhaps most important and
characteristic to showing us how to go beyond the usual assumptions. The impact
of all this work on the subject today is less than it should be, perhaps in part
because Tukey set his standards rather high. However, his papers are all there for
anyone to read, and if this appreciation of them encourages one person who would
not otherwise, to do so, its purpose will have been achieved.
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