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ON THE NUMBER OF SOLUTIONS OF SYSTEMS
OF RANDOM EQUATIONS

By DAVID R. BRILLINGER

University 0/ California, Berkeley

Let {f(x, w); x ERn, wEn } be an n vector-valued stochastic process
defined over a probability space (n , ....W': p). Let N(f IA , y) denote the
number of elements in the set A n f-I(y ), that is the number of distinct
solutions ofthe system ofequationsf(x, w)=y for x, y ERn. We develop
express ions for E {N(f IA , y)} and certain higher-order moments of
N([ IA, y) under regularity conditions.

1. Introduction. A variety of statistical properties have been developed for
the number of solutions of an equation

(1.1 ) /(x) = Y

in the case that x, y E Rand / is a random function. See, for example, Kac
(1943), Rice (1945), Cramer and Leadbetter (1967) . Properties have also been
developed in the case that x, y E C and / is a random analytic function, see
Paley and Wiener (1934, page 178), Littlewood and Offord (1948), Offord
(1965), Offord (1967). In this case (1.1) is equivalent with two real random
equations in two real unknowns . Here we determine the expected value and
the factorial moments of the number of solutions of n real random equations
in n real unknowns under regularity conditions. The results obtained have
application to the investigation of the number of extreme points of a random
surface defined over R», for the extreme points are the solutions of the n
equations resulting from setting the first derivatives of the surface to zero .
We note that Longuett-Higgins (1957) has investigated the expected number
of extreme points for certain random surfaces.

The proofs of the lemmas and theorems of Sections 2 and 3 of the paper
have been collected in Section 4.

2. The non-stochastic case. In this section we develop an expression for the
number of solutions of a system of n fixed equations in n unknowns. The
expression provides a generalization of one due to Kac (1943). In what
follows; if y = (YI'" ',Yn)ERn, the region IYII, "', IYnl < e is denoted
lyl < c. If A c s-, and I maps Rn into s», the restriction of/ to A is denoted
/ 1A. Iffi R: _ Rn is Lipschitz, see Federer (1969), its Jacobian determinant
existing almost everywhere is denoted Jj. The number of elements in the set
A n / -I(y), Y E s -, A c s-, is denoted N(f I A, y). This is the desired number
of distinct solutions of (1.1) in the set A.
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For s > 0, vERn set

535

(2.1 )

Also set

N,(f l A, y) = (2s)-n ~ l vl <' N(f l A, y + v)dv .

(2.2) ¢ ,(v) = 1

=0

for Ivl < s,

otherwise.
Then we have,

LEMMA 2.1 . Let A be a measurable subset of R" and f : A ~ R» be Lipschitz.
Then

(2.3) N,(f I A, y) = (2s)-n ~ A ¢ ,[f(x) - y] !Jf(x)!dx.

If in addition

(2.4)

then

L IJf (x )ldx < 00 ,

(2.5) N(f I A, y) = lim,-.o (2s)-n ~A¢,[f(x) - y] IJf(x)[dx

for almost all y and indeed

(2.6) lim,-.o ~ IN(f I A, y) - N,(f I A, Y)ldy = 0 .

Finally if N(fl A, u) is continuous u = y, then (2.5) folds for that y.

Expression (2.5) is the promised formula for the number of solutions of in­
terest. The next lemma indicates one set of conditions under which N(f l A, u) is
continuous at u = y. We say that a continuously differentiable f: Rn -~ Rn is
normal above y E Rn if Jf(x) "* 0 for x Ef-l(y), (see Whitney (1957), page 145).

LEMMA 2.2 . Let A be an open bounded subset of R" and let f : A -~ R: be
normal over y . Then N(f IA, u) is continuous at u = y.

This lemma, together with Lemma 2.1, indicates that (2.5) holds for given
y if f is normal above y.

3. The stochastic case. We now turn to a determination of the mean number
of solutions of a random equation f(x , w) = y falling in a set A in the case
that f(x, w) is a vector-valued stochastic process. We have,

THEOREM 3.1. Let A be a measurable subset ofR» , Let {f(x, «i); x ERn; W E O}
be an n vector-valued stochastic process defined over a probability space (0, .J¥; p.).
Let f(x, w) be Lipschitz with probability one for x EA. Let the variates a =
f(x, w), (j = Jf(x, w) havejointdensity p(a; (j; x), a ERn, (j E R, XE A, satisfying

(3.1) ~~~ A I{j lp(a;J3;x)dad{jdx< 00.

Then

(3.2) E{N(f IA, y)} = ~ L l{jlp (y ; {j; x)d{jdx

for almost all y E R» ,
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Expression (3.2) was set down by Rice (1945 ) in the case n = 1. We remark
that if pt«; x) denotes the density of a = fix, w), then an alternate form for
(3.2), involving a conditional expected value, is

(3.3) E{N(fl A , y)} = Lp(y; x)E( IJf(x) I:f(x) = y}dx.

The solutions of f(x, w) = y determine a multidimensional point process in
R n . (These are discussed in Srinivasavan (1969 ).) If A is taken to be a small
parallelipiped of volume IAI and x E A, then from (3.2)

(3.4) E{N(f / A , y)} = IAI ~ 1/1 /p (y ; /1 ; x)d/1 ,

showing that the intensity parameter of this point process is ~ 1/1 1p(y; /1; x)d/1.
One application of (3.2) is to provide a bound for crossing probabilities of

the form Prob [f(x, w) = y for some x E A]. Clearly this probability is less
than or equal to E{N(f l A , y )}. We may conclude, for example, that the
probability is zero if (3.2) holds and p(y; /1; x) = 0 for almost all/1 ERn, x E A.

Theorem 3.1 provides the expected number of solutions for almost all y E

R n. If some particular value of y is of interest, then the following result may
be of use.

COROLLARY 3.1. Under the conditions of the theorem and if (i) N(f l A, u) is

continuous at u = y with probability one , (ii) E{N(f l A, u)l+O} < 00 for some

o> 0 and for u in a neighborhood ofy, (iii) ~ L 1/1l p (u; /1; x)d/1dx is continuous
at u = y , then (3.2) holds.

We remark that it follows from Lemma 2.2 that (i ) holds if the sample
paths f (x; w) are normal over y for almost all o»,

We next turn to the investigation of a function related to the higher order
moments of the number of solutions. Given measurable subsets AI' "', A k of
R n and f : R" _ s» consider the number of solutions of the system of equations
(3.5 ) f(xl ) = Yl> ... , f (xk) = Yk

for Yu ... 'Yk E R n with xi E Ai' Xi =t= Xi' 1 s;, i < j < k. In the case that the
Ai are disjoint, the number of solutions is

(3.6) N(f l AUYI) '" N(f l Ak'Yk)'

In the case that Ai = A, Y i = y, N = N(f IA, y) the number of solutions is

(3.7 ) N(N- 1) ... (N + k + 1).

Letting B = {(Xl' ... , xk) : Xi E Ai' Xi =t= Xi' 1 < i < j < k}, denoting the map
of (3.5) by I: R nk - R nk and letting N(f l B, Yu .. " Yk) denote the number of
solutions of (3.5) falling in B we have,

THEOREM 3.2. Let Au .. " A k be measurable subsets of s -. Let {f(x, w);
X E R»; w E O} be an n vector-valued stochastic process defined over the probability

space (0, .J¥; fl ). Let f(x , w) be Lipschitz with probability one for X E Al ... Ak·
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Let the variates a j = f(x j, w), f3j = Jf(xj, w), j = 1, "', k have joint density
p(al' .. " ak; 131' .. " 13k; Xl' .. " Xk) for distinct Xj' Xj E A j with

(3.8) ~ ... ~ ~Al ... ~Ak 11311 ... If3klp(al, .. " ak; 131' .. " 13k; Xl' .. " Xk)

X In (da jdf3jdxj)
finite. Then

E{N(/I E, Yl' .. " Yk)} = ~ ... ~ L
l

••• ~Ak 11311 ••• If3kl

(3.9) X P(Yl' .. " Yk; 131' .. " 13k; Xl' ... , Xk)

X In (df3 jdxj )

(3.10)

for almost all Yl' ... , Yk E R",

As one implication of this theorem, we mention that if A!, .. " Ak are
small disjoint parallelipipeds of volumes IAll, .. " IAkl and x j E Aj , then

E{N(f I AI' Yl) N(f 1 Ak, Yk)}

= JAIl IAkl ~ ... ~ 11311 ••• If3kl

and so

(3.11) ~ ... ~lf3II"'lf3klp(yl'""Yk;f3l' ···,f3k;Xl, ... ,xk)df3l··· df3k

may be interpreted as a product density of order k (see Srinivasavan (1969))
of the multidimensional point process resulting from the solutions of (3.5).

If one is interested in the factorial moment of order k of N = N(f 1 A , y )
for some prespecified Y one has,

COROLLARY3.2 . Under the conditions of the theorem and if (i) N(/ IE, Ul, .. "
Uk) is continuous at (U1 • • " Uk) = (y, ... , Y ) with probability one, (ii) E{N(/ IE,
Ul' .. " uk)l+ O} < 00 for some 0 > 0 and f or Ul' .. " Uk in a neighborhood of
(Y, .. " y), (iii) ~ ... ~ ~A ... ~A 11311 ••• If3klp(ul, .. " Uk; 131' .. " 13k; Xl •• " Xk)
df3l ... df3kdxl ... dx; is continuous at (ul, .. " Uk) = (y, ... ,y), then

E{N(N - 1) (N - k +1)}

(3.12) = ~ ~ L ... L 11311 ••• If3kl

X p(y, .. " y; 131' .. " 13k; Xl' •• " xk)df3l ... df3kdxl ... dx; .

We mention that / will be normal above (y, . . " y ) whenfis normal above
Y and so following Lemma 2.2 (i) above will hold in the case that A!, ... , Ak
are open and bounded andfis normal above Y with probability one. Expression
(3.12) was set down by Cramer and Leadbetter (1967) in the case of Gaussian
f(x, w) and n = 1.

4. Proofs. We begin with a proof of Lemma 2.1.

PROOF OF LEMMA 2.1. Kirszbaum's Theorem (see Federer (1969), page 201)
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indicates the existence of a Lipschitz extension of fwith domain Rr, Theorem
3.2.5 of Federer (1969) (or Theorem 2, page 374 in Rado and Reichelderfer
(1955)) then applies to give

(4.1) L g[f(x)] IJf (x )ldx = ~ Rn g(u)N(f l A, u)du

for measurable g: R» -~ R. Taking g(u) = (2c)-nep,(u - y) in (4.1) gives (2 .3)
after a change in variable.

Taking g(u) = 1, shows that

(4.2) ~ N(f l A, u)du = L IJf (x )ldx

and so N(f IA , u) is integrable in view of (2.4) . The conclusions of the lemma
now follow from a standard convergence theorem (see, for example, Theorems
1.1.1,1.3 .2 in Bochner (1960).)

PROOF OF LEMMA 2.2. Under the stated conditions the set of solutions can
have no limit points for the Jacobian would then vanish at some solution.
The solutions are therefore isolated and finite in number. The Inverse Function
Theorem then applies to give the existence of a continuously differentiable
inverse in the neighborhood of each solution. If y is altered by a sufficiently
small amount, it follows that the number of solutions is unchanged and so N
is continuous.

PROOF OF THEOREM 3.1. We begin by noting, from (2.1), (4.2), that

(4.3) ~ N(f l A, u)du. ~ N,(f l A, u)du = L IJf(x) ldx

and therefore, in view of (3.1) ,

(4.4) EO N(f l A, u)du} , EO N,(f l A , u)du} < 00 •

In consequence, it follows from bounded convergence, Fubini's Theorem and
(2.6) that

lim,_o ~ IE{N(fl A, u)} - E{N,(f l A, u)}ldu

(4.5) = lim,_o EO IN(fl A, u) - N,(f IA, u)ldu}

=0

At the same time, we have from (2.3),

(4.6) E{N,(f l A, y)} = (2c)-n SSL 1-',( 0: - y) It9 lp(a ; t9 ; x)dadt9dx

and so

(4.7) lim,_o ~ IE{JV, (fl A, y)} - ~ L 1t9l p(y ; t9 ; x)dt9dxldy = 0

(by Theorem 1.3.2 of Bochner (1960).) Expressions (4.5) and (4.6) together
now give

(4.8) ~ IE{N(f l A, y)} - ~ ~ A 1t9l p(y ; t9; x)dt9dxldy = 0

and thence the conclusion of the theorem.
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PROOF OF COROLLARY 3.1. Under the sta ted conditions

E{N(f l A , y )} = E{limu~lIN(f l A , un
= limu~ lI E{N(f l A, u)}

= SSA1,Bl p(y ; f3 ; x )d,Bdx .
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PROOF OF THEOREM 3.2. B is a measurable subset of Rr", The Jacobian of
the map! is given by Jj(x1) • • • Jf(x k ) . The conclusion of the theorem now
follows directly from Theorem 3.1 taking n to be nk, A to be Band fto be f.

PROOF OF COROLLARY 3.2 . This result follows directly from Corollary 3.1
in the above manner.

5. Concluding remarks. We note here that the results obtained are easily
modified, in the manner of Leadbetter (1966), to yield the moments of the
number of solutions of the equation

(5.1) f (x ) = g(x)

for a fixed measurable n vector-valued function g.

The reader will have noted that the results obtained required expression
(4.1) in an essential manner. In fact Federer, Theorem 3.2.5 develops ex­
pression (4.1) in the more general setting of maps f: Rm_ R'" with m S n
using Hausdorf m-measure. This suggests the possibility of extending the
Theorems of this paper to apply to n vector-valued stochastic processes
ftx , ill) , x e R", m S n,

In another direction we mention that if A is a bounded open set, f: A _ R'"
is continuously differentiable and p(f IA , y ) is the topological index of the
mapping f with domain A at the point y (see Rado and Reichelderfer (1955),
page 125), then as an analog of (4.1) one has

(5.2) L g[f(x)]Jf(x)dx = Sg(u)p(f IA, u)du

(ibid. page 374) and so one has , for example, under the conditions of Theorem
3.1

(5.3) E{p(f l A, y )} = SSAf3p( y ; f3 ; x )d,Bdx.

I would like to thank Professor M. W. Hirsch for suggesting Lemma 2.2 to
me.
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