
AN INTRODUCTION TO POLYSPECTRA1

By DAVIn R. BRILLINGER

The London School of Economics and Political Science

1. Introduction and summary. The subject of this paper is the higher-order
spectra or polyspectra of multivariate stationary time series. The intent is to
derive (i) certain mathematical properties of polyspectra, (ii) estimates of
polyspectra based on an observed stretch of time series, (iii) certain statistical
properties of the proposed estimates and (iv) several applications of the results
obtained.

As might be expected, in lower order eases the polyspectrum reduces to spectra
already considered. If one is considering a single time series, the first order poly­
spectrum is the usual power spectrum considered in [2J, [14], [22], while the second
order polyspectrum is the bispectrum considered in [12], [23], [28]. Also, if one
is considering a pair of time series the first order polyspectrum is the cross-spec­
trum considered in [6], [10], [15].

For the case of a single time series the idea of a higher-order spectrum occurs
in [3]. The idea has since been developed to a higher level of algebraic and analytic
detail in [24]. Also in [24] the notion of considering a spectral representation for
a cumulant rather than for a product moment occurs and is acknowledged to
be due to Kolmogorov. Another related early paper is [18].

The present paper generalizes the definitions of these papers in the sense that
k-dimensional time series are considered. Another contribution is a theorem
indicating that for a broad class of processes one is wise to restrict consideration
to cumulants rather than product moments .

Finally it should be noted that the term polyspectrum is due to J . W. Tukey.
I have perhaps used the term in a more restricted sense than he would wish in
that I have reserved it for the Fourier transform of a cumulant (at the expense
of other functions of moments).

2. General motivation. In a heuristic sense the harmonic analysis of a time
series X(t) may be looked upon as the consideration of a representation of the
series in the form,

(2.1 )

This consideration gains some validity from a theorem of Cramer's [9] to the
effect that any covariance stationary time series X (t) with mean 0, has a repre­
sentation in the form
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(2.2)
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X(t) = f eiw t dZ(w)

where Z (w) is a sto chastic function.
A further aspect of harmonic analysis is that one often acts as if the various

terms, Rk exp [i( wkt + cPk )], appearing in (2.1) are independent of one another.
This simplifying thought is possibly instigated by the knowledge that Z (tv )
appearing in (2.2) is such that

(2.3) E{dZ(w) dZ*(w')} = 0,
,

w ~ w,

implying independence in the real-valued Gaussian case. Or perhaps it is due to
the fact that one often imagines a series as being generated by a number of linear
time invariant operations on a Wiener process and one knows that such operations
do not mix up frequencies. (See [21], p. 83 for example.)

In practice however the frequency components of a time series do not always
appear to be independent. In a study of ocean wave records, [12], Hasselmann,
Munk and MacDonald have found empirically various wave components related
to one another. In a study of the effect of introducing a signal into the eye [31]
Van der Tweel has found that the responses at 5 ci s and 10 cis are related to one
another. Many economists have noted a seasonal effect in economic time series of
persistent non-cosinusoidal shape. This finding perhaps indicates that the various
harmonics of 1 cycle/year are in some form of fixed relation with one another.

A simple form of tying together of frequency components occurs if a number of
independent frequency components, R k exp [i(Wkt + cPk)], instead of simply
adding together to produce a series X(t), as in (2.1), add together and also
multiply together in pairs to produce the series

(2.4) L s, exp [i(wkt + cPk)]

+ L A ik exp (1'aik)RiRk exp [i(wi + Wk) + i(cPi + cPk)]'

That is, we are moving away from an additive model to a model containing
second order product interactions.

The reader will note that, in the expression (2.4), the correlation between the
product of the components at frequencies Wi and Wk with the component at fre­
quency Wi + Wk is one, provided the sum of no other pair of frequencies present is
Wi + ui; . This observation will later lead us directly to the polyspectrum.

Continuing to consider (2.4), a simple means of producing a time series con­
taining terms such as those in (2.4) is to take a series X(t) with a simple har­
monic analysis and then to form the series

(2.5) Yet) = j[X(t)]

where j is a non-linear function. In a situation in which one is given the series
Y(t), one would like to find the functionjin order to be able to remove the non­
additivity that it has introduced. A coefficient will be proposed for this purpose
in Section 6.

As a final point, people often introduce the power spectrum by noting the ease
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INTRODUCTION TO POLYSPECTRA 1353

with which linear time invariant operations may be described in terms of it. If
one wishes to describe easily the effect of a multilinear or polynomial (in the
sense of [20]) operation, one finds oneself led to higher order spectra. Tukey in
[30] has commenced the development of a calculus relating polynomial operations
to higher order spectra.

3. Definitions. Various classes of stochastic processes have been introduced
in order to deal with higher order spectral moments. Specifically the classes
T(k), s», and <t>(k) defined below have been discussed in [24]. However we shall
require a new class. Before defining this new class '!'(k), let us present the defi­
nitions of r": s», and <t>(k) as they will also be needed in the paper.

Let U(t) be a real measurable random process, - 00 < t < 00.

Then
T(k) denotes the class of processes U(t) for which

(3.1) E IU(t)!k ~ c, < 00;

S(k) denotes the class of processes U(t) belonging to T(k) and such that for
1 ~ j ~ k, - 00 < u < 00,

(3 .2) EU(tl) ... U(t;) = EU(tl + u) ... U(t; + u);

<t>(k) denotes the class of processes U(t) belonging to T (k) and such that for
1 ~ j ~ k, there exist functions M<i)(WI, ... , Wj) of bounded variation such
that

(3.3) EU(tl)··· U(tJ ) = I ... I exp [i(Wlt l + ... +Wjt; ) ] dM<i)(Wl, '" , Wi)'

Before defining '!'(k) the following notation will be required:
(i) (VI, •.• , vJ ) denotes a grouping of the integers 1, 2, ... , k into j groups

VI , ••• , VJ ;

(ii) tv = (th
l

, ••• , th n ) when V corresponds to the grouping (hI, " . , hn ) .

For example if V = (1,8, 9) then tv = (t l, ts , t9 ) ;

(iii) {Xl(t), ... , Xk(t)} stands for a k-dimensional complex-valued stochastic
process;

(iv ) 1nl...k(tl, "', lk) denotes the kth order product moment EXl(tt)
... Xk(tk);

(v) cl..Atl, ... ,tk ) denotes the kth order cumulant

(3.4) L (-1)P-\p - l)!mvl ( tvJ "'1nv p ( tv p )

where the summation extends over all groupings of the integers 1, ... , k.
'!'(k ) is now defined as the class of discrete or continuous time k-dimensional

complex-valued processes fXl(t), , Xk(t) I such that
(a) for 1 ~ j ~ k and 1 ~ hs , , h; ~ k, mhl ...hj(tl, ... , t;) exists,
(b) for 1 ~ j ~ k and - 00 < u < 00 in the continuous case or u = 0, ±1,

±2, .. . in the discrete case

mhl ...hj(lt + u, .,. , tj + u) = mhl ...hj(tl, ... , tj),
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1354 DAVID R. BRILLINGER

(c) for 1 ~ j ~ k there exist measures O(WI + ... + Wj)Ch1 ...hj(WI, .•. ,Wj)
dWI ... dWj absolutely continuous with respect to Lebesgue measure on the
plane WI + '" + io, = 0 such that Chl ...h/tl, •.. , ti) equals

(3.5) f··· f exp [i(Wllt + ... + w}tj)]

'O(WI + ... + Wj)Ch1 ...hj(WI, ... , Wj) dWI .•. dWj.

(Throughout the paper o(w) denotes the Dirac delta function. The reader may
easily see that the condition (b) above implies that the measure must in fact
have support on the plane WI + ... + ui, = 0.)

. (k )
If a process {X1(t), ... , Xk(t)} belongs to 'It then C1 ...k(Wl, ••• , Wk) IS

defined to be the (k - 1) th order polyspectrum of the process.
A number of comments may be made about 'It(k).

(i) In the integrals above, the range of the arguments W is -11" ~ W ~ 1l" in
the discrete case and - 00 < W < 00 in the continuous case.

(ii) If the series involved are real

(3.6)

(iii) If the series are identical, C1 ...k(WI, ... , Wk) is symmetric in its argu­
ments.

(iv) If a process {X1(t), ... , Xk(t)} satisfies (a) and (b) above and for ljJ

equal both c and C,

f ... f IljJh1·· .hj(tl, •.• , ti-l, 0)1 dtl ..• dti-l < 00

in the continuous case, or

L: ... L: /ljJhj.: .hj(tl , ... , tj-l, 0)1 < 00

in the discrete case, then the process belongs to 'It(k). In this case the Fourier rela­
tion (3.5) may in fact be inverted;

(v) C1 ...k(Wl, ... ,Wk) being a complex number, for some purposes it may be
useful to express it in terms of an amplitude and phase;

(vi) If {X1(t), .~. , Xk(t)} is in fact {X(t), ... , X(t)}, i.e. all of the com­
ponents are identical, and if X (t) is real then 'It(k) reduces to the class ~ (k) intro­
duced by Kolmogorov (see [24].)

This section will be concluded with a number of examples of polyspectra.
EXAMPLE 1. Suppose {X(t), X ( t)} denotes a two dimensional real process with

identical components, then the first order polyspectrum Cu( WI , W2) reduces to
the power spectrum of X ( t) .

EXAMPLE 2. Suppose {X1(t), X 2(t)} denotes a two dimensional real process,
then the first order polyspectrum C12( WI, W2) reduces to the cross-spectrum of the
two series X1(t) and X 2( t ) .

EXAMPLE 3. Suppose X(t) = f get - u) dY(u) where f Ig(u)1 du < 00 and
Y (u) is a process with stationary and independent increments. Denote the jth
cumulant of Y(l) - YeO) by K, (it being assumed to exist). The (j - l)th
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INTRODUCTION TO POLYSPECTRA 1355

order polyspectrum of X(t) (really of (X(t), ... , X(t)}) is given by

(3.7) K/l(wl) G(Wi)

where G(w) = f e-iwUg(u) du and WI + + ui, = O.
This result may be demonstrated by making use of the characteristic functional

of the process as derived in [1], p. 148 for example.
EXAMPLE 4. Suppose

(3.8) X(t) = f aCt - u) dW(u) + f f bet - u, t - v) dW(u) dW(v)

where Wet) is a Wiener process, a(u) and b(u, v) have Fourier transforms A(w),
B(WI, W2) respectively and b(u, v) is assumed symmetric in u and v for con­
venience. In this case the second order polyspectrum or bispectrum of X(t) is
given by,

2fA(Wl)A(W2)B( -WI, -W2) + A(W2)A(wa)B( -W2, -Wa)

(3.9) + A(Wa)A(WI)B( -Wa, -WI)]

+ 8 f Bt io, WI - W)B(W2 + 'W, -w)B(w - WI, -w - W2) dw

where the bar denotes the mean of all permutations of (WI, W2 , wa).
This result may be demonstrated by making use of the formula for the kth

order product moment of a Wiener process (see [32]).
EXAMPLE 5. Suppose

XI(t) = f a(t - u) dW1(u ),

(3.10) X 2( t) = f bet - u) dW2(u),

Xa(t) = f f e(t - u, t - v) dWI( u) dW2(v),

where WI(t) and W 2( t) are independent Wiener processes and where a(u), b(u)
and c(u, v) have Fourier transforms A(w), B(w) and C(WI, W2) respectively. In
this case the second order polyspectrum of {XI(t), X 2(t), Xa(t)} is given by,

(3.11)

If in fact W 1( t) and W2(t ) are not independent, but are completely dependent,
WI(t) = W 2(t), then the polyspectrum is given by,

(3.12)

or if c(u, v) is symmetric inu and v by,

(3.13)

4. Estimation. In this section it will be supposed that an observed stretch
{XI(t), ... ,Xk(t); 0 ~ t ~ Tl of a real discrete time series belonging to W(k ),
k ~ 2, is available. (The corresponding procedures for a stretch of a continuous
time series are immediately apparent.) Three distinct techniques for the esti­
mation of polyspeetra will be proposed.
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1356 DAVID R. BRILLINGER

The first technique follows directly from the definition (3.5) which indicates
that the polyspectrum C1...k(WI , ... , Wk), L: Wj = 0, is the (k - 1)-dimensional
Fourier transform of Cl ...k(tl, , tk-l, 0). The technique is the following; esti -
mate the product moment ml k(h, ... , tk- 1 , 0), and all necessary lower order
product moments by formulae of the form,

(4.1) 1Y/.i ...k( t1, · · · , tk-l, 0) = T-1 L::=o X1(t1 + t) •.. X k-1(tk-1+ t )Xk(t)

where s = T - max {tj}, and for (t1, .. . , tk-l) in a set I to be specified later.
The joint cumulant Cl ...k(t1, . .. , tk-1, 0) may now be estimated by substituting
in (3.4), i.e. by forming

(4.2) Cl ...k( tl , · · · , tk-l, 0) = L: (_1y-l(p - 1)! mVl(tvl) ... mv/tvp)

where the summation extends over all grouping of the integers 1, ... , k and
tk = O. (Some workers may wish to divide by T - s + 1 rather than T in the
expression (4.1). For a discussion of this point in the first order case see [29].
Also some workers may perhaps wish to substitute into the formulas for Fisher's
k-statistics. For a definition of these latter see [16].) The estimate (4.2) has
one undesirable property, namely it is not invariant under changes Xj(t) ~
X j(t) + hj , whereas the corresponding population cumulant is. This defect may
be remedied by first subtracting the sample means from the series before calcu­
lating the estimate. In this case the summation in (3.4) extends only over group­
ings containing no first-order elements.

From (3.5) we see that Cl k( tc, ... , tk- 1 , 0) is estimating

(4.3) f··· f exp [i(W1tl + + Wk- ltk- l ) ]C1...k(WI , . .. , wd dWl ... clWk_l

where L: Wj = O. That is it is estimating the coefficient of a term in the Fourier
series expansion of C1 ...k(Wl, . .. ,Wk), L: ui , = O. The sum of a number of such
terms may be used to approximate the function itself; however classical Fourier
analysis indicates that the use of a summability technique may well improve the
approximation (see [13] for example). This leads one to consider estimates of the
form,

(4.4) (1 /211" )k-l L:l A~~')"lk_l exp [-i(Wlt1 + ... + Wk-1tk-d]

.Cl ...k(tl, . . . , tk-l , 0)

where the A~~'>"lk_l are the convergence factors of a summability method.
Convergence factors that seem appropriate for this situation include;
(a) a product of one dimensional convergence factors, i.e.

(4 ) ,,(n ) ,, (n ) ,, (n)
.5 "Il· .. tk_l = "11 ... "Ik_l

where for example (Fejer summability)

(4.6) A~n) = 1 - Itlln,
= 0 otherwise
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INTRODUCTION TO POLYSPECTRA 1357

or (Tukey summability)

(4.7) A~n) = .54 + .46 cos lI"tjn,

= 0 otherwise;

o ~ ItI ~ n

o ~ ItI ~ nA~:.>.. tk_l = (1 - ItI2j n2 )m,

= 0 otherwise

(b) a genuine multidimensional factor such as (Bochner-Riess summability,
see [4])

(4.8)

where Itl2 = t1
2 + ... + tLl .

This last factor has the advantage that the convergence of the approximating
series at a specified point depends only on the behaviour of the function in the
neighborhood of the point.

We see that the set I mentioned earlier is in fact determined by the non-zero
values of the convergence factors.

Before describing the second estimation technique, let us introduce another
means of looking at the polyspectrum. Because '!'(k ) C '!'(2), the series (Xj ( t)} has
a Cramer representation

(4.9)

where Zj(w ) is a stochastic function.
In terms of this representation the cumulant Cl .. .k ( t l , • •• , t k) may be written

(4.10) f··· f exp [i(Wltl + ... + Wktk )]e (dZ l(Wl ), ,dZk(Wk»)

where e(Xl, .. , , Xk) denotes the joint cumulant of Xl , , Xk. (This results
from the fact that the joint cumulant of Yl , . . . , Ym where Yk = L aikkXikk is
given by

(4.11) ~ ... ~a·l···a· ID(X'l ... z. )L.,; L-J '1 l.mmv '1' ,1.mm .

In fact (4.11) would appear to be one of the main reasons why cumulants prove
so useful. It states that one can write down immediately the joint cumulant of a
number of linear combinations of independent or dependent random variables,
in terms of their joint cumulants.)

Comparing (3.5) and (4.10) and assuming that the Fourier transform is
unique almost everywhere,

(4.12) (l(Wl + ... + Wk )Cl...k(Wl, .. , , Wk) dWl ... dWk

= e(dZl(Wl), ... ,dZk(Wk)) (almost everywhere).

This indicates that with realizations of the spectral functions dZ;(w;) and a
proper normalization one can estimate the polyspectrum.

After this introduction, it can be stated that the second proposed technique of
estimating polyspectra is based upon obtaining realizations of the spectral func-
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1358 DAVID R. BRILLINGER

tions by means of the procedure of complex demodulation ([8], [29]). Given an
observed stretch of series IXj(t), 0 ~ t ~ Tl the steps are as follows:

(i) form Xj(t) cos wot and Xj(t) sin wot, 0 ~ t ~ T,
(ii) form the series,

(4.13) Uj(t, wo) = (2k + 1)-1 :L:=-k Ai~.Xj(S) cos WoS,

(4.14) ut(t, wo) = (2k + 1)-1 :L~--k A~~.Xj(S) sin wss,

k ~ t ~ T - k, where for example Aik) is given by (4.6) or (4.7). AZj(Wj) may
now be approximated by Uj(t, Wj) + iUt (t, Wj).

(iii) C,...k(W1, "', 'Wk), :L Wi = 0, is now estimated by forming

(4.15)

the summation extending over all groupings of 1, 2, . .. , k and mv is given by,

(4.16) r: :Li':-kk {Uh1(t, Wh 1) + iUf1(t, Whl)} ... {Uhp(t, Whp) + iUfp(t, Whp)I
where v = (h l , •.. , hp ) .

The final technique proposed for the estimation of a polyspectrum is based
upon the fact that the expression (4.12) is also equal to

(4.17) e(eiw1t dZl(Wl), ... ,eiwkt dZk(Wk».

The polyspectrum can consequently be estimated by obtaining realizations of the
frequency components eiWjtAZj(Wj). These realizations may be obtained by de­
riving estimates of Xj(t, wo), the component of frequency Wo in the series Xj(t)
and xt(t, wo) the corresponding Hilbert transform (see [8]). A useful technique
for obtaining Xj(t, wo) and xt(t, wo) is described below:

eiWjtAZj(wj) may be estimated by Xj(t, Wi) + iXt(t, Wj).

C,...k(Wl, .. . , Wk), :L Wj = 0, may be estimated by forming the expression
(4.15) where U and UH in (4.16) are replaced by X and X H respectively.

The promised technique for obtaining X j( t, wo) and xt(t, wo) evolves from a
procedure suggested in [11], pp. 77-78. Define

(4.18) am(t) = N-1
:L~=-NX(t + s) cos7rms/N, m = 0, 1,, ", N ,

(4.19) bm(t) = N-1 :L~=-N X(t + s) sin 7rms/N, m = 1, .. . , N - 1,
where Wo = 7rm/N . The advantage of this definition is that the am(t), bm(t) may
be generated by recursion,

(4 .20) am(t + 1) = am(t) cos 7rm/N + bm(t) sin 7rm/N

+ [( -1)m/N][X(N + 1 + t) - X( -N + t)],

(4.21) bm(t + 1) = -am(t) sin nmfN + bm(t) cos mnfN,

Use of these recursion relations greatly decreases the number of arithmetical
operations involved.
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The proposed estimates of X(t, wo) and XH(t, wo) are now,

1359

(4.22)

(4.23)

.23am_l(t) + .54am ( t) + .23am+l(t),

.23bm _ 1(t) + .54bm( t) + .23bm+1(t),

respectively. (The coefficients .23 and .54 used here are derived from Tukey's
weights.)

For later reference it is noted here that in terms of the spectral representation
am(t, wo) + ibm(t, wo) may be written,

(4.24) f exp (iwt + i!O) [sin NOjN sin !O] dZ(w)

where 0 = w + wo. This means that X(t, wo) + tx" (i, wo) equals

(4.25 ) J eiW1Q(w + wo) dZ(w)

with an elementary function Q(w).
The final two estimation techniques proposed above have several advantages

over the first. They are easily adapted to obtain running estimates of the poly­
spectrum and so the presence of nonstationarities may be investigated. Also once
an initial effort has been made to obtain the series XCi, wo) + iXH(t, wo) or
Vet, wo) + ar«, wo), they may be put to a variety of uses with few additional
calculations; for example polyspectra of various orders, involving various series
may be calculated. These series should have to be calculated only once in the
history of a series, provided enough foresight is shown in the bandwidths of the
filters employed. The series U + iVH has a further advantage; typically it is
fairly smooth so not every value need necessarily be retained.

5. Some statistical properties of the proposed estimates. The discussion in
this section will be restricted to the discrete case; however the continuous case
follows in an identical manner, sums in the time domain being replaced by
integrals, and integrals in the frequency domain having their range increased
from -7T', 7T' to - 00, 00.

Suppose a stretch of a time series {X1(t), ... Xk(t); - T' ~ t ~ T'I is avail­
able. When the second and third estimates of Section 4 are examined in detail for
this case, it is seen that they have the form,

(5.1) C1 k = L (_l)P-l(p - 1)!nv 1 ••• nv p

where when v = (jl, ,jm),

(5.2)

with

(5.3)

for (complex valued) functions g,(t) related to the filters employed and where
T' > T > O.

We will restrict consideration to estimates of this form throughout this section.
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1360 DA VID R. BRILLINGER

The gj(t) appearing in (5.3) will be said to be absolutely summable if they are
such that

(5.4)

Also if the time series {XI(t), ... , Xk(t)} is such that for joint cumulants of all
orders and all sets of subscripts (iI, , im ) ,

(5.5) Lt2 ... Ltm /ci1 im(0, t2, ... ,tm) 1 < 00.

Then the series is said to satisfy Condition A.
Expressions will be required for the joint cumulants of a number of non­

elementary random variables. Before presenting these expressions however, let us
introduce some terminology of (17].

Consider the two-way table

(5.6)
(1, 1) (1, k l )

(j, 1) (j, k j )

and a partition PI U P 2 U •• • U Ps. of its elements. We shall say that the sets P/
and P i 2 of the partition hook if there exist (il ,jl) E P i1and (i2 ,j2) E Pi2 such that
i l = i«.We shall say that the sets P i' and Pi" communicate if there exists a sequence
of sets P i 1 = P i' , P i2 , ••• , Pi, = Pi" such that P i j and P i j +1 hook for eachj. A
partition is said to be indecomposable if and only if all its sets communicate.

If the rows of table (5.6) are denoted by R I , ••• , Ii, then {PI, ... , Pm} is
indecomposable if and only if there exist no sets P i l , •.. , P c, (r < m) and rows
R· . .. R· (s < J') with11 , 'J.
(5.7)

The indecomposable partitions correspond to the arrays of (16], Rule 3, p. 283,
when the rule is extended to the higher dimensional case.

LEMMA 5.1. Consider a (not necessarily rectangular) array Ilxmnll of random
variables Xmn . Consider the j random variables

(5.8) IIkmYm = n-l Xmn ·

The joint jth order cumulant e(Yl, ... , Yi) is given by

(5.9)

where ev = e(xa 1 , ••• , xam) whenv = (aI, ... , am), (the a's are pairs of integers
selected from table (5.6)), and the summation in (5.9) extends over all the inde­
composable partitions of (5.6).

PROOF. This result follows immediately from a theorem of (17].
LEMMA 5.2. Consider series Zl(t), ... , Zk(t) of the form

(5.10) Zj(t) = L hj(t - u)Xj(u)

with hj(t) complex-valued, bounded2 and absolutely summable. Suppose that the

2 The boundness follows from the absolute summability in fact.
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series {XI(t) , ... , X k(t )} satisfies Condition A and let (VI , ... , Vp) denote an
indecomposable partition of table (5.6) and f v,(sv,), (SI = 0 ), the joint cumulant of
elements selectedfrom the table

(5.11)

ZI(O) . . . Zk(O )

ZI(S2) .. , Zk(S2)

(5.14)

ZI (Sj) ... Zk(Sj )

in accordance with Vi . Under these conditions

L:2=-00 .. . L ::=-oo If"l(sv.) ... f vp(s vp )I < 00.

PROOF. If V = {(iI, jl), ••• , ( im, jm)}, define fi,, (tv) as

(5.12) hh(til.h) ... hjm(tim,jm)'

Now L S2 ... L sifv l(SVl) ... fvp(svp)

(5.13 ) = LtIl ... Ltik L S2 ... LSi i; (SVI - tv1;

... livp(s., - tvp) C"l( tv1) ... CVp(tvp)

Luv • •• L uv L tl'" LIp LS2 ... L Si !i"l (SVl - U"l - tl )
1 p

... !ivp(Svp - UVp - tp)C"l(U"l ) ... cVp( uvp),

where ti is one of the arguments of tv, and U'" = t", - t i • (We are here taking
advantage of the stat ionarity of the process. ) Now in the arguments of the h's
there occur a variety of s, - tm • Since the partition is indecomposable, there exist
p + j - 1 of these such that the relationship

(5. 15) S in - tm n = an,

n = 1, ... , p + j - 1 is non-singular.
Let us substitute the a's into (5 .14 ) retaining p + j - 1 h's with arguments

of the form am - U n and note that the remaining h's are bounded. Thus the
absolute value of (5.13 ) is

(5. 16) s M L u• . .. Luv IC"l(U"l) ... CVp(Uvp)!
1 p

.L al .. . L ap+i-l Ih(al - u 11lJ '" h(ap-H-I - UmP+j _l )1.

That (5 .16) is bounded now follows from the discrete analog of Theorem 33 of
[5]. The interchanges of the various summations in this lemma may be justified
by Fubini's theorem.

Define aT to be

(5 .17) (2T + 1) -1 L'::T YI (t ) ... Y k(t)

- Lp>l II}'=1 L '" L gVj( -tv) C./t"i )·

THEOREM 5.1. Consider the real-valued random variable aaT + a*ar* where the
gj(t) are bounded' and absolutely summable and the series {XI(t), ... , X k(t)}

3 The boundness follows from the absolute summability in fact.
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(5.19)

satisfies Condition A . Under these conditions the jth cumulant of (aaT + a*aT*) .
(2T + 1)1-;-1 approaches

(5.18) L" L, LS2 ... Llj a'i '" a'j e;(S"l) ... d"p( s"p)

where E = (El, ••• , Ej) ranges over Ei = "blank" or "*", v ranges over the indecom ­
posable partitions (VI, ... , vp ) of the table

(1,1) (1, k)

(j, 1) (j, k)

and d".(s",) denotes the joint cumulant of elements selected from the table

Yl<I(O) . .. y k<l(O)

(5.20)

in accordance with Vi •

PROOF. Consider the case j = 1 first.

(5.21) el(aaT + a*aT*) = E(aaT + a*aT*)

= aEaT + a*(EaT)*

where

(5.22) EaT = Ltl ..• Llk gl( -tl) ... gk(-tk)Cl...k(tl, "', tk),

giving the stated result. Next, if j > 1, using the result of Lemma 5.1
ei(aaT + a*aT*) equals

(5.23) (2T + l)-;L'::T ., . L'::TL:"L:< a'l .. . a'j dV1(tVJ ... dVp(tvp)'

Taking advantage of the stationarity of the series involved, (5.23) may be
written

(5.24) (2T + 1)-;L:vL:,L::2=-OO . .. L:j=-ooL~I=-<t>a'l ... a'j dvl(svJ

.. . dvp(svp)ep(tdT)epr(tl + s2)ITj '" ep[(tl + si)ITj

where ep(x) = 1 for Ixl ~ 1 and = 0 otherwise, and where s; = is >: tl. In turn
(5.24) equals

(5.25) (2T + 1)-;+1 L:vL:,L:82 ... LSj a<t ... a'j dV1(SVI)

... dVp(SVp)4!T(S2IT , . . . , SilT)

where 4!T(S2/T, ... , SilT) is given by

(5.26) (2T + I)-IL, ep(tIT)ep[(t + s2)/Tj . . . ep[(t + sJ)IT] .

(5.26) may be seen to be measurable, uniformly bounded in T and convergent
to 1. Taking advantage of the absolute summability result of Lemma 5.2,
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Lebesgue's bounded convergence theorem may be applied and the stated result
seen to be true.

COROLLARY 5.1.1. Under the assumptions of the theorem, aT is asymptotically
complex Gaussian with mean (5.22) and variance covariance matrix

(5.27)

where

(5.28) rn = l:L~L.L. d~l(S~l) dvp(s~p),

(5 .29) r12 = (l/4i) L vL. [d~l(S~l) dvp(s~p) - d:1(svJ . .. d:p(s~p)],

(5.30) r22 = l:LVL:fL:.d~1(SV1) dvp(S~p)exflexf\

with ex = I/i in (5.30). In (5.28), (5.30) E = (EI, E2) extends over Ei = "blank"
or "*". In (5.28), (5.29), (5.30), v extendsover all indecomposable partitions selected
from the table

(5.31) (1, 1)

(2,1)

(1, k)

(2, k) .

In (5.28 ), (5.30) d~i(SV,) denotes the joint cumulant of elements selected from the
table

(5.32) y1fl(0) YA;f1 (0)

Y1
f2(S) YA;f 2(S)

in accordance with v,. In (5.29) d~i (Stl.) denotes the joint cumulant of elements
selected from the table

(5.33) Y1(0) Yk(O)

Y1(s) Yk(s)

in accordance with Vi •

(As in the case of this corollary table (5.31) has but two rows, v extends over
partitions such that at least one set of the partition has an element from both
row 1 and row 2.)

This corollary results from the fact that the cumulants of order > 2 of
(2T + 1 )laT tend to O.

Let

(5.34)

(5.35)

bT = (2T + 1)-1 L:~T Y i 1(t) Yi,(t),

CT = (2T + l)-IL:~T Yh(t) Yj,(t).

COROLLARY 5.1.2. Under the assumptions of the theorem, bT and CT are asymp­
totically joint complex Gaussian.

This result may be demonstrated by considering the joint cumulants of bT
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and CT. The result obviously extends to the case of more than two estimates as
well.

COROLLARY 5.1.3. Under the conditions of the theorem

(5.36) (2T + 1)-lL':T Yj(t)

is asymptotically complex Gaussian for all j.
LEMMA 5.3. The estimate C1 ...k given in (5.1) may be written in the form

l,",T '"' ~ ~(5.37) (2T + 1)- LJ-T Y1(t) ... Yk(t) - LJp>l Cv ! • • • CVp '

PROOF. C1••• k and 11, (as defined in (5.2)) are actually the cumulant and mo­
ments of the random variable taking on the values

(5.38) IY1(t), ... , Yk(t)} , -T ~ t ~ T,

with probability (2T + 1)-1. Applying the moment-cumulantrelation inverse to
(3.4) to the variable (5.38) yields

(5.39)

where the summation extends over all partitions of the integers 1, 2, ... , k.
The stated result is now evident.

THEOREM 5.2. Consider the estimate C1. . .k given at (5.1) where the gj(t) are
boundecf and absolutely summable and where the series {X1(t), "', Xk(t) I
satisfies Condition A. C1•• .k is asymptotically complex Gaussian with mean (5 .22)
and variance-covariance matrix (5.27).

PROOF. Corollary 5.1.3 indicates that the stated result is true for k = 1.
Lemma 5.4 yields the representation (5.37). We will use this representation to

prove the stated result by means of induction. Suppose that the result is true for
K ~ k - 1; therefore the c. appearing on the right hand side of (5.37) are
asymptotically normal. Now on consideration of (2T + 1) iC.. ! ••• C"p, and
the rate at which the c, are tending to asymptotic normality, one sees that

(5.40) C,,!··· c., = II}'=l L ... L g"j( -t"i)CV/tVj) + op(2T + 1)-t.

Thus the asymptotic distribution of CI" ' k is the same as that of

(2T + 1)-1 L':T Y1(t) ... Yk(t) - Lp>l II}'=l
(5.41)

The distribution of (5.41) was derived in Theorem 5.1.
COROLLARY 5.2.1. Consider a pair of estimates CV! , C"2 of lower order poly­

spectra. Under the conditions of the theorem these estimates have asymptotically a
joint complex Gaussian distribution.

THEOREM 5.3. In the frequency domain expressions (5.22), (5.28), (5.29),
(5 .30) take the form

4 The boundness follows from the absolute summability in fact.
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(5.42) f':" ,··· f':" O(U'1 + .. . + Wk)GI(WI)

... Gk(Wk)CI...k(WI, ••• , Wk) dWI '" dWk ,

(5.43) tfWI fW 2GI(Wn) . . . Gk(Wlk)GI(W21) ... Gk(W2k)L<LvDvI(WVl)

. .. Dv/Wvp),

(5.44) (1 /4i) f WI f W2 [GI ( Wll) ••• Gk(Wlk)GI(W21) ••• Gk(W2k)]

' [L v o(wvJ Cvl(wVI) ... o(wvp)Cvp(wvp) - O(-WVI)CVI(-WVI)

... o( -wvp)Cvp(-wvp)] dWn .. , dW2k,

(5.45) tfwi f W2GI(Wll) ... Gk(Wlk)GI(W21) .. . Gk(W2k)L.LvDvI(WVI)

D ( ) <I <2. . . Vp Wvp a a, a = Iii.

(5.46)

In (5.43), (5.45) E = (EI' E2) extends over Ei = "+1" or "-I". In (5.43),
(5.44), (5.45), v extends over all indecomposable partitions selected from table
(5.31) . In (5.43) and (5.45) Dv;(wv;) denotes the joint cumulant of elements
selected from the table

dZI(EIWll) ... dZk(EIWlk)

dZ1( E2W21) ••• dZk(E2W2k)

in accordance with Vi. Zi(W) comes from the spectral representation of X i(t), and
gj(t) is given by

(5.47)

with Gj( w) real.
PROOF. This result may be proved by noting that

(5.48) Yj(t) = f':" eiwtGj(w) dZj(w).

The reader will have noted that throughout this section a limiting process
leading to estimates of averaged polyspectra (as in (5.42» was used rather than
one actually leading to C1" ,k(WI, "', Wk). One could obtain CI"'k in the
limit by letting the g/s employed depend on 'I'; however it is felt that the limiting
procedure employed yields results more representative of the finite Tease.

It is perhaps of interest to mention the paper [1] where it is shown that the
moment estimates derived from a stationary Gaussian process are asymptotically
Gaussian.

6. Applications of the theory. The intention of this section is to present a
number of situations in which the estimation of polyspectra or associated poly­
spectral coefficients may be of use.

Suppose that we are interested in a real-valued time series X(t). Are we wise
to carry out a harmonic analysis of X(t) or does some function of X(t ), say
log X (t) , have a simpler harmonic analysis? This question may be answered
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to a limited extent by evaluating certain polyspectra. To begin, note that many
functional relationships may be approximated by relationships of the form

(6.1 ) k-1
X = Y + ay ,

where a is small. Consider the time series relationship

(6.2) XU) = Yet) + a[Y(t)t-\

where a is small and Yet) is a simpler series than X(t); simpler in the sense that
cumulants of order i, 2 < j ~ k are negligible. Evaluating the (k - 1) th order
polyspectrum of X(t) in terms of the polyspectra of Yet), using (6.2) and re­
taining terms of first and lower order gives

(6.3) C(Wl, "', 10k) = at]: - l)Lf(1Oh) ... f(w1k_J

where C(WI, ... ,10k) denotes the (k - 1)th order polyspectrum of X(t), f( 10)
denotes the power spectrum of X (t), and in (6.3) the summation extends over
the indices 1, ... , k taken (k - 1) at a time. (Remember that in the case of a
single series XU), when we are considering the (k - l)th order polyspectrum
we are really thinking of the series as {X(t), ... ,XU)}.) Thus we see that if a
relationship of the form (6.2) holds, a is given approximately by

(6.4)

This coefficient may be estimated by substituting estimates of the (k - l )th
order polyspectrum and the power spectrum of X (t) into (6.4).

In this connection we have,
THEOREM 6.1. Let X(t) denote a time series satisfying the conditions of Theorems

5.2, 5.3. Let 6(101, '" , 10k), ij(Wj) denote estimates of C(W1, ... ,10k), f(Wj)
respectively of the form of the estimates of Theorem .5.2. The random variable

(6.5) 6(101, ... ,wk)/(k - 1) Lih(WjJ .,. iik_I(Wik_l)

tends to

in probability, where

(6.7)

(6.5) is also asymptotically complex Gaussian.
PROOF. This theorem results from Theorem 5 and Corollary 3 of [19] and

Theorems 5.2 and 5.3 of this paper.
Turning to another application of the theory, consider the following heuristic

model of a frequency component being produced by the beating or multiplica­
tion together of a number of individual frequency components. Suppose we are
considering real-valued time series X 1( t ) , ... , Xk(t) with spectral representa-
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Consider the following question, does the component at frequency Wk in the
series Xk(t) come about as the product of. the components at frequencies -Wi
in the series Xi(t), j = 1, ... , k - 1, where L Wi = O?

In terms of the spectral functions Zi(W), we are wondering if LlZk(Wk) IS

of the approximate form

(6.9)

for some constant {3 where

((3.10 )

(6.13)

Since the series involved are real, (6.9) may be written

(6.11) f3LlZ1*(Wl) ... LlZ:-1(Wk_l).

The linear regression coefficient of LlZk(wd on (6.10) is therefore

(6.12) ELlZl(Wl) ... LlZk(Wk)/EILlZl(i~Jt) . . . LlZk_l(Wk_l)12

and the coefficient of determination is

E III Zl(Wl) ... LlZk-1(Wk-l)1
2E ILlZk(Wk)/2'

If the Wi satisfy no relation of the form

(6.14) (s < k)

and the Llw; are small then (6.12) and (6.13) are given by

(6.15)

and

respectively.
Thus when one is considering the question of frequency components beating

together, one is led to consider the coefficients (6.15) and

(G.17) IC1...,,(Wl, ... ,wdI2/fl(wl) ... fk(wk)'

This latter represents the relative appropriateness at various polyfrequencies of
the beating together of frequency components model. (Relative because of the
additional factor in (6.16).)

These coefficients may be estimated by substituting estimates of the required
polyspectra, and we may prove,

THEOREM 6.2. Let {Xl(t), ... , Xk(t) I denote a time series satisfying the con­
ditions of Theorems 5.2, 5.3. Let C1...k(Wl, ... , Wk), Ji(Wi) denote estimates of
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Cl...k(Wl, ... , Wk), !i(Wj) respectively of the form of the estimates considered in
Theorem 5.2. The random variables

(6.18)

and

(6.19)

(6.20)

tend in probability to

J...JO(Wl + ... +Wk)Gl(Wl) ... Gk(Wk)Cl",k(Wl, ... ,Wk) dWl ... dWk

hl ( Wl) '" hk_l(Wk-l)

and

(6.21)
IJ· ..JO(Wl + ... +Wk)Gl(Wl) Gk(Wk)Cl",k(Wl, ... Wk) dWl '" dW{

hl ( Wl) hk(Wk) ,

respectively where

(6.22)

Moreover, asymptotically the estimates are joint complex Gaussian.

PROOF. The proof proceeds on the same lines as the proof of Theorem 6.1.
It is perhaps of interest to point out the values of (6.15) and (6.17) in the

case of one of the examples considered earlier. Suppose X (t) is the process of
Example 3, Section 3. In this case (6.15) and (6.17) are given by

(6.23) [K k/(K2 )k- l]·Gk(Wk)/ \Gl(Wl) .. , Gk-l(Wk-l) \

and

(6.24)

and we see that an examination of the coefficients (6.19) for constancy provides
a test for the model of this example.

The reader will have noted that in the derivation of the coefficients (6.15)
and (6.17) it was assumed that the ui, satisfy no relation of the form (6.14).
This assumption is reasonable in view of the fact that if the process satisfies
an ergodicity requirement to be presented in the next section, then components
whose frequencies are such that (6.14) is true, are uncorrelated with the remain­
ing components and a relation of the form (6.9) is then inconsistent.

7. Moments or cumulants? At this point the reader is no doubt wondering
why the polyspectrum was defined as the Fourier transform of the cumulant
rather than of the product moment or of the central product moment. In this
section a justification of this definition will be provided for a class of processes.
The essential property that these processes have is a form of ergodicity.
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Let us begin by noting that the Fourier transform of at most one of the product
moment, central product moment or eumulant can be "nice" in the sense of
being a proper function. Suppose for example that the polyspectra are proper
functions and consider the Fourier transform of ml ...k(ll, ... , tk)' As derived
from the relation inverse to (3.4) it is,

(7.1) O(WI + ... + wdM(WI' ... , wd

= L o(WV1) '" o(WVp)CV1(WV1) .. , Cvp(wvp)

where wv = Wil + ... + Wij if v denotes the grouping (iI, .,. , ij ) . 111 (WI,
••• , Wk) is seen to contain many delta functions if the lower order polyspectra
do not vanish (as the ordinary power spectrum must not). Thus we see that
if the polyspectra are proper functions, then the Fourier transforms of the prod­
uct moments are not. The converse of this statement may be seen to be true by
considering the expansion (3.4). By considering similar expansions involving
central moments, we are led to the conclusion that at most one of the definitions
may lead to proper functions.

It will now be shown that for processes satisfying a form of ergodicity re­
quirement, the property of having a proper function as a polyspectrum is not
evidently inconsistent, whereas the corresponding property for moments and
central moments is inconsistent. The class '!'(k) introduced earlier is thus perhaps
a reasonable one so far as ergodic type processes are concerned.

The following notation will be adhered to in the remainder of this section:
(a) if v denotes a group of distinct integers (iI, ... , ij ) selected from

(1, '" ,k), then Xv(tv) denotes the product Xil(ti l) ... Xi;Ctij)'
(b) if u, v denote distinct groupings, then the refinement grouping obtained

by inserting the subdivisions of u into v will be denoted by u ® v,
(c) if u is the grouping (UI, U2) and t = (tl, ... , tk ) , then t will denote

(tl, ... , tk ) where t i = ti + r if i E UI and ti = t, if i E U2 .
The process X(t) = IX1(t), ... , Xk(t)} is said to satisfy Condition I(k)

if the joint moments of order ~ k exist, and for all groupings U and v (u con­
sisting of two subgroups), and the X's corresponding to the different subgroups
Vj of v being from independent realizations of X(t),

(7.2) (2T)-1 f':T U( r ) dr

approaches

(7.3)

in probability where r = UI ® v and U( r ) denotes the product of the individual
X terms in X"l(tVl) ... XVp(tv p) involving r.

Condition I(k) is seen to be a form of ergodicity requirement. In fact if we
are concerned with a univariate weakly mixing process X(t) belonging to
<1>("') n S(",), then X (t) satisfies Condition I (k) for every k (see [7]).

The process X(t) = IX1(t), ... ,Xk(t)} is said to satisfy Condition II(k) if,
(i) there exists 0 > 0 such that for j ~ k and distinct indices is , ... , i k
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selected from 1, . .. , k,

(7.4 ) EjXi\(h) ... X ii (tj)!I+6 < co,

(ii) there exists To and M > 0 such th at for T > To,

(7.5) (2T)-J f~TEIfX"\(t,,J IIH ... E p !X"p(t"p)!I+6 dr < M

for all groupings v, where the subscripts on the expected value operators denote
independent realizations of the process.

The following lemma will be required.
LEMMA 7.1. Let IUn} be a sequence of random. variables tending to p. in probability.

Let V be a random variable such that (i) for some 5 > 0, EIV11H exists, (ii) there
ex ist Nand M > 0 such that for n > N, Ej U; VII+6 < M, then EU n V -+ p.EV.

PROOF.

IEUnV - p.EV! = !E(Un - p.)V1 ~ E!(Un - p.)V!

(7.6) = f Iu, - p.1·1V1 dPn ( U, V)

= f lu-I',;;;.IU - p. j·1V1 dPn(U, V)

+ f lu-I',>. IU - p.1·1V1 dPn(U, V)

where Pn(U, V) denotes the join t cdf of U'; and V . The first term in (7.6) is
~ EElV I and consequently may be made arbitrarily small by a choice of E.

The second term is less than or equal to

(7.7) {f ,u-I' I>. dPn(U, V)}6WH'{f IU - p.11HIVI\H dPn(U, V)Il/u+6'.

The first term in (7.7) may be made arbitrarily small as a result of the con­
vergence in probability of {Un} to p., while the second term remains bounded.
Consequently (7.6) may be made arbitrarily small and the lemma follows.

THEOREM 7.1. Consider the process X(t) = {XI(t), . . . , Xk(t) I that satisfies
Conditions l(k) and lICk). For any groupings (VI, "', vp) and (UI, uz) of
(I, ... , k),

(7.8) limT-+"" (2T)-1 f~Tm,,\(t.,\) ... m"p(tvp) dr

= mTi(tTi) '" 1nrp(trp)1ns\(t.\) ... mSp(t.p)

uhere r = UI ® v and s = uz ® V.
PROOF.

(7.9) (2T)-J f':T m,,\(t,,\) ... m"p(tvp) dr

= (2T )- 1 f':T EIX"I (t,,\) ... E~vp(t"p) dr

(7.10) = EI ... E p(2T)-1 f':TX ,,\(t"l) ... XVp(tvp) tlr ,

since under the stated conditions Tonelli's theorem applies.
The result now follows from the lemma taking U T to be (7.2) and U( r ) to

be the product of the individual X terms in X"l(t,,\) .. , X"p(t"p) involving r.
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Let us next prove,
THEOREM 7.2. Consider the process X(t) = lXl(t), ... , Xk(t)} satisfying

Conditions I(k) and II(k).

(7.11) limT_oo (2T)-1 jr, Cl"'k(t) dr = °
for any grouping (Ul , U2).

PROOF.

(7.12) Cl .. .k(t) = L (_1)P-l(p - 1)!mv1(lvl) ... m"/t,,p) '

Thus,

(7.13) (2T)-1 f::T Cl ...k(t) dr

= L (_1)p-l(p - I)! (2T)-1 f::TmV1(tv1) ... m"p(lvp) dr.

From the preceding theorem this tends to

(7.14) L (_1)P-l(p - 1)! mr1(trJ ... mrp(t'p)m8 1 (t8J ... m'p(t.p)

where r = Ul ® v and s = U2 ® v.
We note that (7.14) is the joint kth order cumulant of the process X(t)

{X1(t), ... ,Xk(t)} wherein the components with subscripts in Ul are statistically
independent of those with subscripts in U2 • The expression must consequently be°as this cumulant is 0.

Before proceeding to the next theorem, let us make one last definition:
cPk(k) denotes the class of k-dimensional processes X(t) = {Xl(t), ... , X k(t)j

with finite kth order absolute moments and such that for v = (il , "', i;)
any group of j distinct integers from 1, ... , k there exist complex totally finite
measures M,,(Q) such that

(7.15) EXi1(tl)'" Xi;(tj)

= f ... f exp [i(wlh + ... + wjtj)]M,,(dwl, ... , dWj).

As in [24] it is possible to introduce in an obvious manner a polyspectral
measure

(7.16) L (_l)P-I(p - I)! M"l X .,. X M"p(Q)

for this class where Q is a Borel set of Rk
•

THEOREM 7.3. Consider the process X(t) = lXl(t),"', Xk(t) j belonging to
tI>k(k) and satisfying Conditions I(k) and II(k). Given the grouping (UI, U2), let Q1 be
thefiat WU 1 = 0, Q2 thefiat WU 2 = 0, and Q a measurable subset of Ql X Q2 , then

(7.17)

PROOF.

(7.18) Cl ...k(tl,···, tk) = f ... f exp [i(t1'W1 + ... + tkWk)]

.L (_l)1'-l(p - I)! M"l X ... X M"p(dw),
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7.19) (2T)-1 f':r Cl ...k(tl, .. . , tk) dT = f . . . f exp [i(t1Wl + ' " + tkWk)]

.L (_l)P-l(p - I)! 111"1 X ... X M"p(dw)(2T)-1 f':r exp [iw"IT]dT.

But

(7.20)

Thus we have

(7.21) f··· f exp [i(tlWl + ... + tkWk)]E(W"I)

.L (-IY-\p - I)! M"1 X ... X lIfv/ dw) = 0 for all t

and

(7.22) f ··· f X(Q)E(W"J L (_l)P-l(p - 1)1 MV1 X ... X M"p(dw) = 0

for any measurable set Q of the flat L ui, = 0, where x(Q) is the characteristic
function of Q, and we see that

L (_ly-l(p - I)! M"1 X ... X M"p(Q) = 0

if in fact Q C Q1 X Q2 •

This argument parallels an argument in [25].
Now the Lebesgue measure of the set Q of this theorem is 0, consequently the

measure L (_l)P-l(p - I)! M", X . .. X M"p(dw) satisfies a necessary con­
dition for it to be absolutely continuous with respect to (k - 1)-dimensional
Lebesgue measure . We conclude that the polyspectrum, which is an attempt to
provide a density of this measure with respect to Lebesgue measure, is not evi­
dently inconsistent.

The ergodicity of stationary processes is also investigated in [26].
A different type of justification of the use of cumulants is the following; in the

Gaussian case all the information is contained in the first two moments. Conse­
quently a kth order product moment k > 2, has no new information to provide,
nor does its Fourier transform. The kth order cumulant is a function of the prod­
uct moments of orders k and less which is zero in the Gaussian case. The con­
sideration of the cumulant in this case is not liable to deceive one into believing
that he has gained some information. In the non-Gaussian case the cumulant pro­
vides an indication of the non-Gaussianity. The cumulants appear to provide a
form of harmonic analysis of the distribution in fact.

It seems appropriate to end the paper on a note of pessimism. Experience with
real random variables indicates that higher order moments are typically not
efficient estimates of scientifically relevant parameters; consequently as the
specifications of stochastic processes become tighter, polyspectra are likely to
prove less pertinent in a similar manner.
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