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1. INTRODUCTION 

A bound of Cramer-Rao type is provided for an estimator of a real-valued 
parameter 0 in the presence of an abstract nuisance parameter TJ, such as an 
unknown distributional shape, on the basis of N i.i.d. observations. The bound 
consists of the reciprocal of the effective Fisher information in the sample, plus 
a term involving the integrated mean squared error of an estimator of a multiple 
of the so-called conditional score function for 0, for the case where 0 is known. 
This implies that an estimator of 0 can only perform well over a class of shapes 
TJ if it is possible to estimate the conditional score function for 0 accurately over 
this class. For the special case where fully adaptive estimation may be possible, 
this result was given in a companion paper (Klaassen and van Zwet (1985)). 

2. AN INEQUALITY OF CRAMER-RAO TYPE 

Let Xr, ... , XN be independent and identically distributed (i.i.d.) random 
variables taking values in some measurable space (X, A), with a common density 
f( ·; 17, 0) with respect to a a-finite measure J.L on (X, A). The parameter of 
interest 0 belongs to an open subset e of R and the nuisance parameter TJ 

ranges over an arbitrary set H. For unknown TJ and 0, it is required to estimate 
9 and this is done by means of an estimator TN = TN(XI> ... , XN) for some 
measurable function TN: X N --+ IR. We are interested in finding a lower bound 
for the variance of TN under f( ·; TJ, 0). We shall write P11 o, E 11 o and a~ 8 for 
probabilities, expectations and variances under this model. 

For every fixed 0 E e and j = 1, ... ,N, let tj;(Xj; 0) be a sufficient statistic 
for Xj with respect to TJ E H. According to the factorization theorem this is 
equivalent to assuming that 

f(x; TJ, 0) = g(tf;(x; 0); TJ,O)h(x; 0) a.e. [J.L], (2.1) 

where g(·;TJ,O) may be chosen to be the density of t/;(X1;0) with respect to a 
u-finite measure vo. 

We shall assume that jt is differentiable in quadratic mean with respect 
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to 0 with a derivative which is not essentially zero, thus for every (TJ, 0) 

J 11 1 1 1 2 
lim [(0'-o)- {f2(x;7],0 1)-f2(x;TJ,0)}--r(x;TJ,O)f2(x;TJ,0)] dJL(x) =0, 
~-8 2 

(2.2) 

(2.3) 

Obviously (2.2) implies that I(TJ, 0) < oo. Note that r(·; 7], 0) is simply an 

£2-version of the classical score function for 0, a log f(x; TJ' 0) I ao; I(TJ, 0) is the 
Fisher information concerning 0 which is contained in a single observation X1 
and measures how well 0 can be estimated when TJ is known. However, since 7J is 
unknown, one expects the information concerning 0 to be smaller. As discussed 
in Begun, Hall, Huang and Wellner (1983), the information loss results from a 

reduction of the score function. 
First we define score functions in the 7]-direction. We shall say that f3(·; 7], B) 

is an 7]-score function if there exists a sequence TJ k E H such that 

lim J[k{ft (x; TJk. 0)- jt (x; 7], 0)}- ~f3(x; 7], O)ft (x; 7], 0)] 2 dJL(x) = 0. (2.4) 
k-oo 2 

It is easy to see that, in view of (2.1), (2.4) implies that 

f3(x; 7], 0) = b(tj~(x; 0); TJ, 0) a.e. [P17 o], (2.5) 

where b satisfies . J 1 I 1 1 2 hm [k{g2 (v; TJk, 0)- g2 (v; TJ, 0)}- -b(v; 7], O)g2 (v; 7], 0)] dvo(v) = 0, (2.6) 
k-oo 2 

so that b is an 7]-score function for the model {g(· ;TJ,O): TJ E H,O E 0}. Let 
B(TJ, 0) denote the set of all 7]-score functions for the original model - i.e. 
functions f3 for which (2.4)-(2.5) hold for an appropriate sequence TJk E H -

and let B ( 7J, 0) be the closure in L 2 of the linear span of B ( TJ, 0). 
The effective score function TE for 0 in the presence of the nuisance param­

eter 7J, is defined as 

rE(x; 7], 0) = r(x; 7], 0) - bE(tJ1(x; 0); 7], 0), 

where bE ( t/1 ( x; 0); 7J, 0) is the £ 2-projection of r on B ( TJ, 0), thus 

IE(TJ,O) = E 11 o{r(X1;7J,O)- bE(tJ1(Xl;O);TJ,0)} 2 

IIJ.in E 11 o{r(X1 ;TJ,0)- f3(XI)} 2 • 

/3EB(17,8) 

(2.7) 

(2.8) 

IE(TJ, 0) is the effective Fisher information, which measures how well 0 can be 
estimated when 7J is unknown (cf. Begun et al. (1983), but note that we do not 

assume that B ( 7J, 0) itself is a linear space). 
Let C(TJ, 0) denote the set of all square-integrable functions b(tj~(x; 0)) with 

E118 b(tj~(X1 ;0)) = 0. In the special case where B(TJ,O) = C(TJ,O), bE(v;7J,B) 
equals the conditional expectation E 11 o ( r(X1; TJ, 0) lt/I{Xl; 0) = v) andrE and IE 
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reduce to 

rc(x;1J,O) = r(x;1J,O)- E 71 e(r(XI;1J,O)I1/J(XI;O) = 1/J(x;O)), 

lc(1J,O) = E 71 er6(XI;1J,O), 

(2.9) 

(2.10) 

which are called the conditional score function and the conditional Fisher infor­
mation for 0. In general, however, B(17,0) may be a proper subset of C(17,0), 
and hence 

as is clear from figure 1. Of course, we still have rc = TE and Ic = IE if 
E71 e(r(XI;1J,O)i1P(XI;O) = 1/1(·;0)) happens to be in B(17,0). 

(2.11) 

So far we have discussed various aspects of the model. Concerning the 
estimator TN, we assume that, whenever E 71 e T'fv < oo for a certain (17,8), then 

for some c: > 0, where 

sup E 71 •e• T'fv < oo 
( 71 1 ,8') EAe 

Ae: = {(11',0'): J if(x;1J',O')- f(x;1],0)idJ.t(x) < c:} 

(2.12) 

(2.13) 

consists of parameter values "close" to ( 17, 0). For simplicity we shall also assume 
that TN is an unbiased estimator of 0, i.e. for all ( 1], 0), 

(2.14) 

C(n,e) 

Figure 1. 
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The role of assumption (2.12)-(2.13) is to ensure that (2 .14) implies that 

N 

E 11 eTN L r(Xj; 1}, 0) = 1, 
j=l 

N 

E 11 eTN L (3(Xj) = 0 
j=l 

for all (3 E B ( 1J, 0), 

and hence in particular 
N 

E 11 eTN L rE(Xj; 1}, 0) = 1 
j=l 

in view of (2.7)-(2.8). If we define 

1 N 

SN(1J,O) = NI ( 0) LTE(Xj;'T],O) 
E 1}, j=l 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

then (2.17) asserts that SN(1J, 0) and TN- SN(1J, 0) are uncorrelated under P11 e. 
As a consequence 

u~ 8 (TN) = u~ 8 (SN(1J,0)) + u~ 8(TN- SN(1J,0)) (2.19) 

and hence 

(2.20) 

which is the form the Cramer-Rao inequality takes for unbiased estimation of 0 
in the presence of the nuisance parameter 1]. Note that this is the fixed sample 
size version of the corresponding asymptotic results in Begun et al. (1983). 

However, (2.19) contains essentially more information than inequality (2.20). 
It implies that u~ 8 (TN) can only come close to the Cramer-Rao bound (2.20) if 

(TN- 0) is close to SN(1J, 0) under P11 e. It follows that if TN performs well as 
an estimator of 0 for all'T} E H, then (TN- 0) must resemble SN(1J,O) under 
P11 e for all'T} E H and 0 E 0. It would seem therefore that (TN - 0) contains 
information about the unknown function TE ( · ; 1}, 0). Let us try to extract this 

information. 
For SN(1J,0) as defined in (2.18) we have 

E 11 e(SN (1J, 0) 11/i(Xj; 0) for j =/= i; Xi = x) (2.21) 
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1 
N I ( fJ) rc(x; TJ, fJ) 

E T], 

in view of (2.7) and (2.9). If (TN- fJ) resembles SN(TJ,fJ) under P.,e, we may 
hope that 

N 

JN(x;fJ) = L{E.,e(TNit/I(Xj;fJ) for j I i;Xi = x) (2.22) 
i=l 

can serve as an estimator of 

(2.23) 

Note that since for each j, 1/I(Xj; fJ) is sufficient for Xj with respect to TJ E H 
for fixed f) E e' J N is indeed independent of TJ. For known f)' it is therefore a 
legitimate estimator of J. 

We shall prove the following result. 

Theorem 2.1. Suppose that assumptions (2.1)-(2.3) and (2.12)-(2.14) are sat­
isfied for every ( TJ, fJ). Then, for every ( TJ, fJ), 

1 1 J 2 a~o(TN) 2: N lE(TJfJ) + NE.,e {JN(x;fJ)-J(x;TJ,fJ)} f(x;TJ,fJ)dJi-(x). (2.24) 

The theorem asserts that the Cramer-Rao bound (2.20) may be improved by 
adding N-1 times the integrated mean squared error (MSE) of the estimator 
J N of the function J, which is an unknown multiple of the conditional score 
function rc. For practical purposes it is unsatisfactory that the right-hand side 
of (2.24) depends on the choice of TN. However, one may obviously rephrase 
the theorem to assert only the existence of an estimator JN such that (2.24) 
holds. The message of the theorem is then clear: the accuracy with which one 
can estimate f) for unknown TJ is delimited by the effective Fisher information 
on the one hand and by how well one can estimate J(·; T], fJ) for known 0 on 
the other. Clearly the latter depends heavily on the class H. If J ( · ; TJ, 0) runs 
through a large class of functions as TJ ranges over H, then the integrated MSE 
of any estimator of J may be quite large, especially for particularly irregular 
choices of J. If J is restricted to a smaller class of nicely behaved functions as 
'rJ E H, then the integrated MSE may be much smaller. Finally, if TJ is known 
so that H consists of a single element, then J ( · ; TJ, 0) can serve as an estimator 
of itself and (2.24) reduces to the Cramer-Rao inequality (2.20). 

In a sense, the result of the theorem is not surprising. Estimation of a 
parameter 0 for an unknown distributional shape is based typically on a pre­
liminary estimate of an unknown score function followed by a good estimate 
of f) for the distributional shape corresponding to the estimated score function. 
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For such estimators a result like (2.24) is to be expected. The interesting as­
pect of the theorem, however, is that it is not assumed that the estimator TN 
is based on a preliminary estimate of a score function, but that an estimate 

of J for known 0 is derived from TN. In effect we are saying that a successful 

estimation procedure for 0 must involve - either explicitly or implicitly - the 

estimation of J and that because of this, the accuracy of estimating J enters 

into the lower bound for the variance of the estimator of 0. 
Although the theorem is purely a finite sample result, it obviously has 

asymptotic implications. An asymptotic analogue would imply that effective 

estimation of e' i.e. 
1 D 

{N IE(fJ, B)} 2 (TN -B) ---t N(O, 1), (2.25) 

is possible only if the function J can be estimated consistently with respect to 

integrated MSE for known B. In this context it is unsatisfactory that J involves 

the conditional score function rc rather than the effective score function TE 

and, indeed, Klaassen (1987) has shown that a somewhat stronger version of 

(2.25) does entail consistent estimation of rEI IE(Tl, B). 
Of course this discrepancy disappears if rc = TE, i.e. if the function 

E 11 o(r(XtirJ,O)!?/J(X1 ;B) = 7/J(x;O)) is an element of B(rJ,B). This situation is 
rather common and examples, including non-i.i.d. models, are given by van der 

Vaart (1986), who also explicitly constructs an effective estimator of B based 

on a preliminary consistent estimator of rc for such models. 

An even more special case occurs if rc = r, so that IE = I and J = 
r I I. Now (2.24) provides a finite sample analogue of the statement that fully 
adaptive estimation of B is possible only if r I I can be estimated consistently. 

This situation was discussed in the companion paper Klaassen and van Zwet 

(1985). 

3. PROOF OF THE THEOREM 

The proof resembles that of theorem 1.1 in Klaassen and van Zwet (1985). 

Let 
N 

!N(x) =IT f(xj;rJ,B) 
j=l 

denote the density of X = (X11 ••• , XN) with respect to the N-fold product 

measure J.LN taken at the point x = (x 1 , ... , XN) and write 
1 1 

f"J;(x; rJ, O')- f"J;(x; fJ, B) = ~ ( . O) + ~ ( . B B') (3.1) 
(B'- B) 2PN x, fJ, N x, fJ, ' ' 
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with 
N 

PN(x; 17, 0) = f~(x; 17, 0) L r(xi; 17, 0). 
i=l 

Since N is fixed, a standard argument shows that (2.2) implies 

lim J Ll~(x;17,0,0')dJ.LN(x) = 0. 
(}'--.(} 

In view of (2.14) we have 
1 1 

(3.2) 

(3.3) 

J ( )JJ(x;11,0')-f"J(x;11,0){ !.( ') !.( )} () ( ) 
1 = TN x (O'-O) flv x;17,0 +fl. x;17,0 dJ.LN x 3.4 

= J TN(x){ ~PN(x; 17, 0) + LlN(x; 17, 0, O')}{f~(x; 17, O') + f~(x; 17, O)}dJ.LN(x). 

If E11 (JTJ., = oo, there is nothing to prove. Suppose therefore that E 11 fJTJ., < oo. 
Since (2.2) ensures that 

lim J if(x; 17, O')- f(x; 17, 0) idJ.L(x) = 0, 
(}'--.(} 

(2.12) and (2.13) yield 

lim sup E 11 fJ'TJ., < oo. (3.5) 
(}'--.(} 

Together, (3.3), (3.5) and the Cauchy-Schwarz inequality show that 

J 1 1 

lim TN(x)LlN(x; 17, 0, O'){J"J(x; 17, 0') + f"J(x; 17, O)}dJ.LN(x) = 0, 
(}'--.(} 

(3.6) 

I J TN(x)pN(x;17,0){f~(x;11,0')- f~(x;17,0)}dJ.LN(x)l 

::; {C2 J {J~(x;17,0')- f~(x;11,0)}2dJ.LN(x) J p~(x;17,0)dJ.LN(x)}t (3.7) 

+{! Tj,(x){f~(x; 17, O')- f~ (x; 17, 0)} 2 dJ.LN(x) { p~(x; 17, O)dJ.LN(x)} t 
j{ITNI>C} 

for every C > 0. As O' tends to 0, the first term on the right tends to zero 

for every C in view of (2.2). Since E11 fJTJ., < oo and E 118 r2 (X1 ;17,0) < oo, the 
second term converges to zero as C -+ oo. It follows that the left-hand side of 

(3.7) converges to zero, and together with (3.4) and (3.6) this proves (2.15). A 

similar argument produces (2.16) and (2.19) follows. 
It remains to show that 

a~ 8 (TN- SN(11, 0)) ~ ~E11 (} J {JN(x; 0)- J(x; 17, 0)} 2 f(x; 17, O)dJ.L(x). (3.8) 

To see this, we copy the argument leading from (2.9) to (2.11) in Klaassen and 
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van Zwet (1985), even though SN (rJ, 0) is defined differently in that paper. We 
find 

a~ 8 (TN- SN(rJ, 0)) (3.9) 

N 

~ N- 1 E11 e J (2=[E11 e(TN - SN(rJ, 0)11/J(Xi; 0) for J ::/= i; Xi = x) 
i=l 

- E 11 e(TN- SN(rJ,O)It/l(Xj;O) for J ::/= i;t/l(Xi;O) = 1/J(x;0))]}2 f(x;rJ,O)dJ.t(x). 

In view of (2.21)-(2.23), (3.9) is identical to (3.8) and the proof complete. 
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