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A refinement of the Koml6s, Major and Tusnady (1975) inequality for the 
supremum distance between the uniform empirical process and a constructed 
sequence of Brownian bridges is obtained. This inequality leads to a weighted 
approximation of the uniform empirical and quantile processes by a sequence 
of Brownian bridges dual to that recently given by M. C&Orgo, S. C&Orgo, 
Horvath and Mason (1986). The present theory approximates the uniform 
empirical process more closely than the uniform quantile process, whereas the 
former theory more closely approximates the uniform quantile process. 

1. Introduction. Let U1, U2 , • •• , be a sequence of independent uniform 
(0, 1) random variables, and for each n ~ 1, let Gn denote the uniform empirical 
distribution function and ul n ::;; • • • ::;; un n the order statistics based on the 
first n of these uniform (0, i) random vari~bles. Define the uniform empirical 
quantile function to be, for each n ~ 1, 

(k- 1)/n < s::;; kjn, k = 1, .. . , n, 

where Un(O) = U1, n• and the uniform quantile process 

0 ::;; s ::;; 1. 

Also let 

denote the uniform empirical process. 
M. Csorgo, S. C80rgo, Horvath and Mason (Cs-Cs-H-M) (1986) recently 

constructed a probability space on which sit a sequence ul, u2, ... ' of indepen­
dent uniform (0, 1) random variables and a sequence B1, B2 , ••• , of Brownian 
bridges such that for universal positive constants a, b, c and n 0 

{1) P( sup n112!.Bn(s)-Bn(s)!>alogd+x)<be-cx, 
05.s5.d/n . 

for all n0 ::;; d::;; n, 0 ::;; x ::;; d 112 , with the same inequality holding for the 
supremum taken over 1 - djn::;; s::;; 1. Setting d = n in (1) yields the M. 
C80rgo and Revesz (1978) inequality for the Brownian bridge approximation to 
the uniform quantile process. 
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From inequality (1) we obtain immediately that on the Cs-Cs-H-M (1986) 
probability space 

(2) sup n112l !3n( s) - Bn( s) I = O(log n) a.s. 
O!:>s!:>l 

We note that this particular sequence Bn does not approximate the empirical 
process an as closely as it does f3n, since by Kiefer (1970) 

(3) limsup sup (2n)114lan(s)- !3n(s)l/((loglogn)11\logn)112) = 1 a.s., 
n--+oo Oss!:>l 

which in combination with (2) yields 

(4) limsup sup (2n)114lan(s)- Bn(s)l/((loglogn)114(1ogn)112) = 1 a.s. 
n--+oo O!:>s~l 

Inequality (1) leads to the following important weighted approximation state­
ments [cf. Cs-Cs-H-M (1986)]: 

On the Cs-Cs-H-M (1986) probability space we have, for any 0 ~ v1 < ~. 

(5) sup IPn(s)- Bn(s)l/(s(1- s))112 -v1 = Op(n-v1 ), 

1/ (n+ l)~s ~nj(n+ 1) 

and for any 0 ~ P2 < i, 
(6) sup lan(s)- Bn(s)l/(s(1- s))112 -v2 = Op(n-v2), 

O~s~l 

where for n ~ 2, Bn(s) = Bn(s) when 1/n ~ s ~ 1 - 1jn and zero elsewhere. It 
can be shown that statements (5) and (6) do not hold for v1 ~ ~ and v2 ~ i. 

The construction of the Cs-Cs-H-M (1986) probability space is based on the 
Koml6s, Major and Tusnady (KMT) (1976) strong approximation to the partial 
sums of independent random variables. In Cs-Cs-H-M (1986) it was remarked 
that an analogous theory should be feasible starting out instead from the KMT 
(1975) strong approximation to the uniform empirical process. The purpose of 
this paper is to present this alternative theory. 

Just as the key result in the Cs-Cs-H-M (1986) theory is inequality (1), a 
refinement of theM. Csorgo and Revesz (1978) inequality, the key result in the 
present alternative theory is a refinement of the KMT (1975) inequality for the 
Brownian bridge approximation to the uniform empirical process. 

THEOREM 1. There exist a sequence of independent uniform (0, 1) random 
variables U1, U2 , ••• , and a sequence of Brownian bridges B 1, B2 , ••• , sitting on 
the same probability space (0, d, P) such that for universal positive constants 
C, K and;.\., 

(7) P( sup n112lan(s)- Bn(s) I> Clog d + x) < Ke-xx, 
O~s~d/n 

for all - oo < x < oo and 1 ~ d ~ n, with the same inequality holding for the 
supremum taken over 1 - djn ~ s ~ 1. 



417

A REFINED KMT INEQUALITY 873 

Setting d = n in (7) yields the original KMT (1975) inequality. 
From (7) we have immediately that on the probability space of Theorem 1 

(8) sup nlf2lan(s)-Bn(s)I=O(logn) a.s., 
O~s~l 

whereas now by the Kiefer result quoted in (3) 

(9) limsup sup (2n)114IPn(s)- Bn(s)l/((loglogn)114(logn)112) = 1 a.s. 
n--+oo O~s~l 

By essentially copying the proofs of Theorems 2.1 and 2.2 of Cs-Cs-H-M 
(1986), we obtain the following versions of the above weighted approximation 
statements: 

THEOREM 2. On the probability space of Theorem 1, statement (5) holds for 
all 0 ~ v1 < ~and statement (6) holds for all 0 ~ v2 < i· 

We see that not only are the almost sure approximation statements reversed, 
but so are the weighted approximation statements. Hence, we hav:e a theory 
completely dual to that given in Cs-Cs-H-M (1986). In applications of this 
approximation methodology in probability and statistics, one now has the choice 
of working on the Cs-Cs-H-M (1986) probability space or on the probability 
space of Theorem 1 depending on whether in the particular problem in question 
one needs to approximate more closely the uniform empirical or the uniform 
quantile process by a sequence of Brownian bridges. For some of the wide-rang­
ing applications of this weighted approximation theory the reader is referred to 
Cs-Cs-H-M (1986). 

The remainder of this paper is devoted to a proof of Theorem 1. This proof 
resembles that of the KMT (1975) inequality for the empirical process and it 
would have been convenient if we could merely have pointed out the modifica­
tions needed to produce the refinement of Theorem 1. Unfortunately, the proof 
in KMT (1975) contains few details and we shall have to provide these in the 
present paper. The inequality for the tail of a multinomial distribution that is 
given in Lemma 3, may be of independent interest. 

2. Outline of the proof of Theorem 1. Let B denote a fixed Brownian 
bridge. For each integer n ~ 1 we construct n independent uniform (0, 1) random 
variables U1<n>, ... , u~n> as random functions of increments of the Brownian 
bridge B exactly as in KMT (1975), pages 123-124. Let Gn and an denote the 
empirical distribution function and empirical process based on ul<n>, ... ' u~n>. 
For any nonnegative integers i and k such that 0 < (k + 1)2-i ~ 1, write 

ll\71 = n( Gn((k + 1)2-i) - Gn(k2-i)} 

and 

Also let 
6,<n) _ fl(n) _ fl(n) 

i,k- i+1,2k i+1,2k+1 



418

874 D. M. MASON AND W. R. VAN ZWET 

and 

D- (n) - n<n) - n<n) 
i,k- i+1,2k i+1,2k+l' 

For the sequence of random vectors (Ufn>, ... , u;n>, B), n = 1, 2, ... , the follow­
ing fundamental inequality holds: 

LEMMA 1 [Lemma 2 of KMT (1975)]. There exist positive constants cl, c2 
and 11 such that 

ll:,.<.n> - iJ~n)l ~ C 2in-l{(l:,.<.n> )2 + (a<n> - n2-i)2} + C 
I, k I, k 1 I, k 1, k 2' 

whenever 

To prove Theorem 1 it will be enough to show that the following inequality is 
valid: 

INEQUALITY 1. There exist universal positive constants K, C and A such 
that for all - oo < x < oo, n ;;;::; 1 and 1 ~ d ~ n, 

(10) P( sup n112IB(s)- an(s)l > Clogd + x) < Ke->-x, 
O~s~d/n 

with the same inequality holding for the supremum taken over 1 - djn ~ s ~ 1. 

The fact that the second part of Inequality 1 is true follows from the first part 
and the underlying symmetry of the KMT construction, i.e., 

{(an(s), B(s)): 0 ~ s ~ 1} =~{(an(1- s), B(1- s)): 0 ~ s ~ 1}. 

Having established the inequality for (an, B), n = 1, 2, ... , one can then con­
struct a sequence of independent uniform (0, 1) random variables U1, U2 , ••• , and 
a sequence of Brownian bridges B 1, B2 , ••• , sitting on the same probability space 
(Q, d, P), say, such that Inequality 1 holds with an replaced by an and B by 
Bn. The general technique of constructing such a probability space is described in 
Lemma 3.1.2 in M. C80rgo (1983). 

Inequality 1 is almost a direct conSequence of the following inequality: 

INEQUALITY 2. There exist universal positive constants a, b and A such that 
for any n ;;;::; 1 and 1 ~ z ~ n, 

P( sup n 112IB(s)- an(s)l > z) < aexp{b(p- j)- Az}, 
O~s~2-; 

where p is a nonnegative integer such that 

n2-<P+l) < zj32 ~ n2-P 

and j is any integer 0 ~ j ~ p. 
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To see that Inequality 2 implies Inequality 1, we choose any n ~ 1 and 
1 ~ d ~ n. Select an x such that 1 ~Clog d + x ~ n, where C = bj(A log2) 
with b and A as in Inequality 2. Define integers p and j by 

n2-<p+l) < (x + Clogd)/32 ~ n2-P, 

j = min([login/d)], p ), 

where [ y] denotes the integer part of y. 
Now djn ~ 2-i and by Inequality 2 

P( sup n112IB(s)- ais)i > Clogd + x) 
Os.ss.djn 

(ll) ~p( sup n112IB(s)-an(s)i>Clogd+x) 
o s. s s. z-, 

~ a exp { b( p - j) - AC log d - Ax} . 

Since p ~ log 2n + 5, our choice of C and j implies that 

b( p - j) - AC log d ~ b max(log 2d + 6, 0) - b log2d ~ 6b 

and hence (10) holds for 1 ~ Clog d + x ~ n with K =a exp{6b}. If' Clog d + 
x < 1, then necessarily x < 1 and (10) holds with K = exp{A }. 

Finally, let Clog d + x > n. There exists a positive K 0 such that 

P( sup I B( s) I > r) + P( sup I an( s) I > r) < Koexp{- 2r2 }, 
Os.ss.l Os.ss.l 

for all n ~ 1 and r ~ 0 [cf. M. Csorgo and Revesz (1981) and Dvoretzky, Kiefer 
and Wolfowitz (1956)]. Since now (Clog d + x)2jn > x, it follows that (10) holds 
with K = K 0 and A= t. Combining these results we find that Inequality 1 
holds, if we assume the validity of Inequality 2. 

The proof of Theorem 1 will be complete once we establish Inequality 2. This 
will be done in Section 3. 

3. Proof of Inequality 2. The proof of Inequality 2 will consist of a number 
of lemmas. Repeated use will be made of the following special case of Bernstein's 
inequality: Let X have a binomial distribution with parameters n ~ 1 and 
0 < p < 1. Then for any r ~ 0 [cf. Bennett (1962)], 

(12) P(iX- 11PI > (np )'12r) < 2 exp/- ( (' '!2))). 
\ 2 1 + r I 3( np) 

For each i = 1, 2, ... , set 

gi,n = (nGn(2-i)- n2-i)2 

and for any choice of integers 0 ~ j ~ p and l ~ 1, define 
p+l 

sj,p = :E 2t,n, 
i-j+l 

l 

Tz = L 22i-tgi, n. 
i=l 



420

876 D. M. MASON AND W. R. VAN ZWET 

We shall first be concerned with establishing bounds for the tails of the 
distributions of 81, P and T1• 

LEMMA 2. For every A > 0 there exists a positive number :\1 such that for 
all n ~ 1, z ~ 0 and p so that z ~An 2-P, and 1 ~ l ~ p + 1, 

(13) P(n- 1T1 > z) < 2exp{ -X1z}. 

PROOF. Introduce the independent and identically distributed random vec­
tors 

}j = (1{~,;; 2- 1} - 2-t, ... ' 1{~,;;2- 1} - 2- 1), 

and the inner product and norm on IR 1 given by 

j = 1, . .. , n, 

l 

(x, y) = 2-z L 22ixiyi, 
i= 1 

Notice that 
l 

o2 = EiiYtll 2 = L 2i- l(1 - 2- i) = 2- (l + 2)2 - 1, 

so that i ~ o 2 < 2. By HOlder's inequality we have, for m ~ 2, 

( 
z )(m-2)/ 2 

EiiYtiim ~ o2 i~t 22i - l < o2(2U+1)/2)m- 2. 

Applying an exponential bound given by Yurinskii (1976), page 491, we obtain 

P(n- 1T1 > z) = P( f ~· > (nz) 112) 
;~1 

( z [ 1.62 ( 2t+ 12 ) ,1/ 2]- 1) 
~2exp--1+---- . 

2o 2 o2 n 

Since 21+1 ~ 2P+ 2 ~ 4Anjz and t ~ a 2 ~ 2, the lemma follows. D 

In order to bound the tail of the distribution of 81, P we require a technical 
lemma which is likely to be of separate interest. Let (X1, ... , Xk+ 1) have a 
multinomial distribution with parameters n, p 1, ... , Pk+ 1• Assume that Pi> 0 
fori= 1, ... , k and define 

k 

s= LPiE(0,1]. 
i=l 

We shall prove 

LEMMA 3. For every C > 0 and 8 > 0, there exist positive numbers a, b and 
X such that for all n ~ 1, k ~ 1 and positive z, p 1, ••• , Pk satisfying z ~ 
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Cn min{pi: 1 ~ i ~ k} and s ~ 1 - 8, 

(14) p L t t > z < a exp{ bk - Xz}. ( 
k (X.-np .)2 ) 

i=l npi 

PROOF. For every E > 0, (12) and the upper bound on z ensure that 

( !Xi - npil ) k ( e2np ) 
P max ---- > E ~ 2 L exp - ( i ) 

lsisk npi i~l 2 1 + ej3 

~ 2kexp{ -X(e)z} ~ exp{k- X(e)z}, 

with X( e)= e2{2C(1 + e/3)} - 1• Hence, it suffices to show that 

(15) P(.~, Y; > z) < aexp{bk- Az), 

where 

( X.- n'P ·)2 
l.f t t 2 

~ e npi, 
npi 

otherwise, 

for some constant e > 0 to be chosen below. 

877 

Let X1, • •• , Xk+ 1 be independent with Xi having a Poisson distribution with 
parameter npi, and define 

¥. = { (xi- npi)
2

, 
(x.- n'P ·)2 

l.f t t 2 
~ E npi, 

t npi npi 
0, otherwise. 

Clearly there exists e > 0, independent of n, p 1, • • • , Pk; such that fori = 1, ... , k 
and lhl ~ te(npi)112 , 

( xi - npi ) ( ( h ) 1; 2) Ri(h) = Eexp h · 11 2 = exp npiexp 11 2 - npi- h(npJ 
(npJ (npJ 

~ exp{h2 }, 

and this determines our choice of e. Thus, for 0 < y ~ e2npi and h = y 112j2, 

( - ) ( xi - npi ) ( xi - npi ) 
p yi > y ~ p ( ) 1/ 2 > Y112 + p ( ) 1/ 2 < - Y11 2 

npi npi 

~ Ri(h)exp( -hy112 } + Ri( -h)exp{ -hyll2 } 

~ 2exp{ -y/4}. 
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It follows that 

E exp { Yj6} = {XI P( Y; > 6log x) dx 
0 

= 1 + i 1e2np'P( Yi > y) eY/6 dy 
0 

~ 1 + i fooo e-y/12 dy = 5 

and hence 

(16) P( .t Y; > z) ~ Eexp/ t( .t Yj- z)) 
~-1 \ ~=1 

~ exp{k log5- zj6}. 

The transition from (16) to (15) is achieved by conditioning. We have 

(17) 

( 
k ) ( k k+1 ) 

P .I: y; > z = P .I: ¥i > z .I: xi = n 
~-1 ~=1 ~=1 

where 

P('L7=1 Xi= mi'L7~} Xi= n) 
Am= P('L7=1 Xi= m) 

n! n-m 
( )I (1 - S) ens. 
n- m .nm 

Application of Stirling's formula in the form 

{ 
1 } k!ek 

exp 12k + 1 ~ (2'1Tk )112 kk < exp{-1 } - 12k 

to the cases 1 ~ m ~ n- 1 and m = n separately, yields 

Am~ 3{nj(n- m + 1)} 112 forallO ~ m ~ n. 

By considering the ratio Am+ 1/Am one sees that Am attains its maximum value 
form= [ns] + 1. Hence, for all 0 ~ m ~ n, 

Am~ a( n- ~ns] r/2 ~ 3(1- s)-1/2 ~ 38-1/2. 

Together with (17) and (16) this implies 

P(,~, Y; > z) ,; 38-'12 P(,~, Y, > z) ,; 38- 112exp( k log 5 ~ z j6}. 

The proof is complete. 0 
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LEMMA 4. For every A > 0, there exist positive numbers a 2, b2 and ;\ 2 such 
that for aU n ::?: 1, z ::?: 0 and p so that z :s; An2-P, and 0 :s; j :s; p, 

(18) P( n- 1sj,p > z) < a~xp{ b2(p- j) - ;\ 2z}. 

PROOF. Define 

xi= n{ Gn(2-i) - Gn(2-<i+l>) - 2 - <i+l>}, 

X = n{G (2-<P+I>) - 2-(p+I>} p+1 n • 

For v = j + 1, ... , p + 1, we have 

and hence 

p+1 p+1 
:s; L 2 - i/2 L 2i;2 X? 

i=-v i=v 

p+1 p+1 
n-1sj,p :s; 4n-1 .E 2"/2 .E 2ii2Xi2 

v=j+1 i=v 
p+1 

:s; 16n- 1 .E 2iX? 
i=j+1 

i=j+1, ... ,p, 

:s; 16n- 1(. t 2i+lx? + 2p+lx;+ 1). 

1-}+1 

Now (Xi+l• ... , Xp+l• n- Xj+l- · · · -Xp+l) has a multinomial distribution 
with parameters n, 2- U+ 2>, ... , 2-(p+I>, 2-(p+I>, 1 - 2-U+I>. Since z :s; 
2An2-(p+I>, application of Lemma 3 for C = Aj8, k = p- j + 1 and 8 = ! 
yields 

P(n- 1Sj,p > z) < aexp{b(p- j + 1)- ;\z/16} 

and the assertion of the lemma follows. D 

Choose e > 0. For any integers p ::?: 0, 0 :s; l :s; i - 1 and j::?: 0, define the 
events 

c<n> = { max 2il~\n6- n2-il > m}, 
p 1~i~p+1 ' 

Cfn) = { max 2i+ll~(n) - n2-(i+l}l >en}, 
1,l . . 1+l , m 

2-l+•~m~2-l+t+l_1 

p-1 p 

p.<n> = u u cfn) 
}, p 1, l I 

l-i i=l+ 1 
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where Fj~~) = 0 if j ~ p by convention. Finally, for 0 .::;; j .::;; p, set 

E(n> = c<n> u p<n> 
j,p p j , p• 

LEMMA 5. For every A > 0 and e > 0, there exist positive constants a3 , b3 

and A3 such that for all n 2 1, z ~ 0 and p so that z .::;; An2-P, and 0 .::;; j.::;; p, 

P(EJ,")) < aaexp{b3(p- j)- A3z}. 

PRooF. Take A= e2/{4A(l + e/3)} . As n2-P ~ zjA, inequality (12) yields 

P + 1 . 2 exp { -A z} 
P( c<n)) < 2 L exp{ -Az2P-,+l} < ' 

P i= 1 1- exp{ -Xz} 

which is bounded by 2(1- exp{ -A})-Iexp{ -Az} if z ~ 1. For 0.::;; z < 1, 
P(C~n>) < exp{A}exp{ -Xz}, so that for z ~ 0 

P(c~n> ) < aexp{ -Az}, 

with positive a depending only on A and e. 
For j = p, Ft';) = 0. For 0 .::;; j .::;; p - 1, we have 

P(ci:1>).::;; 2-t+i+Iexp{ -Az}, 

for each j .::;; l .::;; p - 1 and l + 1 .::;; i .::;; p. Hence, for 0 .::;; j .::;; p - 1, 
p-1 p 

P(Ft';)).::;; L L 2-l+i+Iexp( -Az}.::;; 2p-J+ 3exp{ -Az}, 
l=j i=l+1 

which completes the proof. D 

For the proof of our next lemma we need the following combinatorial identity 
that can be inferred from a similar identity given on page 118 of KMT (1975): 
Let f be any function on [0, 1]. For nonnegative integers i and m such that 
0 <(2m+ 1)/2i+l < 1 define the second differences 

cp(i, m, f)= 2f((2m + 1)2-(i+l))- f(m2-i)- f((m + 1)2 - i). 

Then for any choice of nonnegative integers k, p and l such that 

2-(l+l) < (2k + 1)2 - (p+l).::;; 2-l, 

we have 

(19) 

t((2k + 1)2-(p+l)) = (2- (2k + 1)21-P)f(2-(l+ 1)) 

+ ((2k + 1)2l-p- 1) /(2- 1) 

p 

+ L c(i, p, k )cp( i, k(i), f), 
i=l+1 

where the sum is defined to be zero if l ~ p and fori= l + 1, ... , p, 

(20) k(i) = [(2k + 1)j2P+l-i), 0.::;; c(i, p, k).::;; 1. 
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In addition, we shall use the elementary identity 
r-1 

(21) f(2-r) = L <P(i,O, f )2-r+i, for r ~ 1, 
i - 0 

valid whenever f(O) = f(1) = 0. 
For any two nonnegative integers j ~ p, let 

~.p = { k ~ 0: (2k + 1)2-(P+ 1) ~ 2-j}. 

LEMMA 6. For every A > 0 there exist positive numbers a 4 , b4 and X4 such 
that for all n ~ 1, z ~ 0 andp so that z ~ An2-P, and 0 ~j ~ p, 

P( max n112 jan((2k + 1)2-(p+l>) - B((2k + 1)2-<P+l>) I > z) 
ke~.p 

< a4exp{bip- j)- X4z}. 

PROOF. Choose positive C1, C2 and 11 for which the assertion of Lemma 1 
holds and take e = 1112 in the definition of the event Et) in Lemma 5. We shall 
write E for EJ~ and Ec for its complement, and we define 

Zk = n112jan((2k + 1)2-<P+ 1>)- B((2k + 1)2-<p+l>) j. 

In view of Lemma 5 it suffices to find positive a, band X such that 

(22) L P(Zk > z, Ec) < aexp{b(p- j)- Xz}. 
ke~.p 

Obviously, 0 E ~.P; if k E ~.P' k * 0, then (2k + 1)2- (p+I) cannot be equal to 
2 -z for any l. It follows that 

p-l 

(23) ~.P = {0} U U / 1, / 1 = { k: 2-(1+ 1> < (2k + 1)2-(p+l) < 2-1}. 

l=j 

We begin by studying Z0 • Identity (21) yields 
p 

Z < .l "jiJ(n)- '£<n>j2-(p-i) 
0 - 2 £... t,O t,O ' 

i=O 

and on the set E c we have 

I A(n) - 2-il .l 2-i f . = 0 + 1 1.1i,o n ~ 2 11n , orz , ... ,p , 

the conclusion for i = 0 being trivial since a<t_b = n. This also ensures that on E c 

(24) 
IK<n>l = i2a<.n> - a<.n>l t,O t+1,0 t,O 

~ j2d<t}1, 0 - n2-ii + jd~~6- n2-ii ~ 11n2-i, 

for i = 0, ... , p and hence Lemma 1 implies that on E c 

(25) 

p 

Z ~ C n- 12-<P+ 1>" 22 i{(K<.n> )2 + (a<.n> - n2-i) 2} + C 0 1 £... t,O t , O 2 
i=O 

p+1 

< 5C n- 12-<P+ 1> " 22i(a<.n> - n2-i) 2 + C - 1 £... t,O 2 
i=l 
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Application of Lemma 2 shows that 

(26) P(Z0 > z, Ec) ~ 2exp{ -X1(z- C2)/(5C1)}. 

Next we consider the case k Ef1 for some l satisfying j ~ l ~ p- 1. Since 
2-(1+ 1) < (2k + 1)2-<P+1) < 2- 1, we have 1 < (2k + 1)21-P < 2 and identities 
(19) and (21) ensure that 

l p 

zk ~ 2 L: li>l.'V- li<r,612-(l-i) + L: li>i<.ni(i>- ii<i~1<i>l 
i=O i=l+l 

where the second inequality follows by the same argument that led to (25). 
Notice that if k ef1, then necessarily 2p-t + 1 ~ 2k + 1 ~ 2p-t+ 1 - 1 and 
hence for each i = l + 1, ... , p, we find 

2-(l+ 1) ~ 2k(i)2-(i+ 1) < (2k(i) + 1)2-(i+1) < 2(k(i) + 1)2-(i+1) ~ 2- 1• 

But this implies that for i = l + 1, ... , p and on the set E c, 

I A(n) I < I A(n) 2 -(i+ 1)1 + I A(n) 2 -(i+ 1)1 Lli, k(i) - Lli+1,2k(i)- n Lli+1,2k(i)+1 - n 

< l.,n2-i 
- 2'1 ' 

I A(n) - n2-il < IA(n) - n2-(i+1)1 + IA(n) - n2-(i+1)1 Lli, k(i) - Lli+1,2k(i) Lli+1,2k(i)+1 

< .l.,n2-i 
- 2'1 ' 

and Lemma 2 yields 

Zk ~ 20C1n - 1T1+1 + 4C2 
p 

+ C1n- 1 L 2i{ ( li\~1(i)) 2 + ( a\~1(i)- n2-i)2} + C2(P- l). 
i=l+l 

Arguing as on page 120 of KMT (1975) it can be shown that 

{(a\~1<i>•(li\~1<i>) 2): i = l+ 1, ... ,p} =§J{(a\~6.(lii.o)l i = l+ 1, ... ,p}. 
and because 

p p+1 

"' 2i{(ii<.n> )2 + (a<!!-> - n2-i)2} ~ 7 "' 2i(a<!l> - n2-i)2 = 78 L.. £,0 £,0 L.. £,0 l,p 
i=l+l i=l+1 

by (24}, we obtain fork Efz, 

P(Zk > z, Ec) 

~ P(20C1n-1T1+1 + 4C2 > z/2) + P(7C1n-1S1,p + C2(p- l) > z/2) 

~ 2 exp{ -X1(z- 8C2)/(40C1)} 

+a2exp{bip- j)- X2(z- 2C2(p -l))/(14C1)} 

~ a exp { b( p - j) - Xz} , 
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for positive a, band X. Notice that ft has 2p-l-l elements, so 
p-1 
.E .E P(Zk > z, Ec) ~ dexp{(b + log2)(p- j)- Xz}. 
l=j kef~ 

Together with (23) and (26) this yields (22) and the lemma. D 

For any 0 ~ j ~ p and n ;;::: 1, let 

an(j,p)= sup sup n112lan(s)-an(s-h)l, 
Os.hs.2 - p hs.ss.2-J 

Bn(j,p)= sup sup n112iB(s)-B(s-h)i. 
Os.hs.2-P hs.ss.2-J 

883 

LEMMA 7. There exist positive constants a5, b5 and >. 5 such that for aU 
n;;::: 1, z > 0 andp so that n2-<P+l) < zj16 ~ n2-P, and 0 ~j ~ p, 

P(an(j, p) + Bn(j, p) > z) < a5exp{b5(p- j)- A5z}. 

PROOF. Whenever (k- 1)2-P ~ s- h ~ k2-P for some k = 1, ... ,-2P-i, then 

-n2-p ~ n112(an(s)- an(s- h)) 

~ n112(an((k + 1)2-P)- an((k- 1)2-P)) + 2n2-P. 

Because zj2 > 4n2-P we find by inequality (12) 

P( an(j, p) > z/2) ~ P( an(j, p) > 4n2-P) 

~ 2P-ip( n112ian(2-<p- 1)) I > n2-<p-1)) 

(27) <2exp{(p-j)log2- 3:2-p} 
~ 2 exp{ ( p - j)log 2 - : 4 z}. 

If W denotes a standard Wiener process, then 

{B(s): 0 ~ s ~ 1} =~{W(s)- sW(1): 0 ~ s ~ 1}, 

and hence 

P(Bn(j, p) > z/2) ~ P( sup sup n112iW(s)- W(s- h) I> z/4) 
Os.hs.2-p hs.ss.2-i 

+P(n1122-PW(1) > zj4). 

It now follows from Lemma 1.2.1 on page 29 of M. Csorgo and Revesz (1981) and 
an elementary bound for the tail of the standard normal distribution [ cf. Feller 
(1968)] that for positive constants a, b and >., 

P(Bn(j, p) > zj2) < aexp{b(p- j)- >.z}. 

Together with (27) this proves the lemma. D 

We are now in a position to prove Inequality 2. Choose any n;;::: 1, 1 ~ z ~ n, 
p so that n2-(p+l) < z/32 ~ n2-P and 0 ~ j ~ p. Since for every 0 ~ s ~ 2-i, 
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there exists an integer k;;:::: 0 such that (2k + 1)2- (p+l) ~ 2-j and 

js- (2k + 1)2-(p+l)l ~ 2-P, 
we see that 

P( sup n 112lan(s)- B(s)l > z) ~ P(an(j,p) + Bn(j,p) > z/2} 
O.,;s.,;2 - ' 

+P( max nll2!an((2k + 1)2-(p+l)) 
kE~,p 

-B((2k + 1)2-(p+l>)! > z/2), 

with ~.p as in Lemma 6. As z/2 satisfies the assumptions of Lemma 6 as well as 
those of Lemma 7, application of these lemmas completes the proof of Inequality 
2 and also of Theorem 1. D 
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