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De Gunst has formulated a stochastic model for the growth of a 
certain type of plant cell population that initially consists of n cells. The 
total cell number Nn(t) as predicted by the model is a non-Markovian 
counting process. The relative growth of the population, n - 1(Nn(t)- n), 
converges almost surely uniformly to a nonrandom function X . In the 
present paper we investigate the behavior of the limit process X(t) as t 
tends to infinity and determine the order of magnitude of the duration of 
the process Nn(t). There are two possible causes for the process Nn to stop 
growing, and correspondingly, the limit process X(t) has a derivative 
X'(t) that is the product of two factors, one or both of which may tend to 
zero as t tends to infinity. It turns out that there is a remarkable 
discontinuity in the tail behavior of the processes. We find that if only one 
factor of X'(t) tends to zero, then the rate at which the limit pro­
cess reaches its final limit is much faster and the order of magnitude 
of the duration of the process Nn is much smaller than when both occur 
approximately at the same time. 

1. Biological background. Much of the research in plant cell biotech­
nology is directed at biosynthesis of secondary metabolites in plant cell 
cultures [Morris, Scragg, Stafford and Fowler (1986)]. Control of the produc­
tivity of these cell cultures in multiliter vessels in industry requires detailed 
knowledge of the kinetics of growth, division, differentiation and product 
formation of cells grown under different environmental conditions. However, 
our understanding of these kinetics is still very incomplete. In collaboration 
with K. R. Libbenga of the Department of Plant Molecular Biology at the 
University of Leiden, we have developed a mathematical model for the 
division, differentiation and population growth of plant cells in a liquid 
medium. This model is based on the presently available experimental knowl­
edge of the behavior of individual cells, and takes into account the influence 
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of the depletion of two components of the medium that are indispensable for 
the growth and division of the cells. 

Before we formulate the model in Section 2, let us first describe the 
biological background. We start at the level of a single plant cell, which is 
transferred at time t = 0 to a fresh liquid medium containing the substances 
needed for the growth, division and survival of the cell. The cell will go 
through a sequence of events called the cell cycle, which starts at time 0 and 
ends with the division of the cell. The cell cycle is illustrated in the diagram 
of Figure 1. The cycle starts with the G1-phase (G for gap) during which the 
biosynthetic activity of the cell proceeds at a high rate. The S-phase (synthe­
sis) that follows starts when DNA synthesis begins and ends when the DNA 
content of the cell nucleus has doubled and the chromosomes have replicated. 
The cell then enters the G2-phase (another gap), which continues until the 
final M-phase (mitosis), which is the brief period of actual cell division. 
During the M-phase, the biosynthetic activity of the cell proceeds very slowly 
and increases again rapidly after division as the two new cells enter the 
G1-phase of their cell cycles. Together, the G1-, S- and G2-phases are also 
called the interphase. 

It is a well verified fact that the duration of the cell cycle varies consider­
ably, even among cells of the same type under the same external conditions. 
Most of the variability is observed in the length of the G1-phase; the remain­
der of the cycle time shows far less variation. Moreover, it is known that the 
G1-phase tends to last longer if the supply of certain nutrients is reduced; the 

FIG. 1. The four successive phases of a typical cell cycle. 
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duration of the other parts of the cycle is scarcely affected [cf. Alberts, Bray, 
Lewis, Raff, Roberts and Watson (1989), page 745]. 

Another well established fact is that once the cell has left the G1-phase, it 
is committed to complete the cell cycle regardless of environmental conditions 
[Alberts, Bray, Lewis, Raff, Roberts and Watson (1989), page 745]. This 
indicates the existence of a point of no return-often called the restriction 
point Slf-somewhere late in the Gcphase. It is thought that, as the cell 
approaches the point Slf, it must "wait" for some endogenous trigger or 
stimulus that moves it past Slf, and that under fixed external conditions the 
probability per unit time of passing .9f is roughly constant. In a mathematical 
model this would correspond to an exponentially distributed waiting time for 
a stimulus to occur, and if the remainder of the length of the G1-phase-like 
that of the other phases-is almost constant, then the total duration of the 
cell cycle would be the sum of a constant time and an exponentially dis­
tributed one. This hypothesis was advanced in a seminal paper by Smith and 
Martin (1973) and verified on the basis of experimental data [see also Shields 
(1977)]. Later authors have criticized this so-called transition probability 
model [cf. Nelson and Green (1981)], but at present the existence of the 
restriction point seems to be firmly established. Others [Brooks, Bennett and 
Smith (1980), Castor (1980) and Cooper (1982)] have proposed alternative 
probability distributions for the duration of the cell cycle, incorporating more 
than one waiting time, for instance, but it seems difficult to distinguish 
between these models on the basis of the existing experimental data. At this 
time the transition probability model appears to be the accepted theory in the 
biological literature [Alberts, Bray, Lewis, Raff, Roberts and Watson (1989), 
pages 733 and 746]. 

We have already noted that the average duration of the Gcphase increases 
as the supply of nutrients is reduced, and when no nutrients are present, 
cells cannot pass the restriction point at all. Hence we shall assume in our 
model that the parameter of the exponential waiting time for a stimulus is an 
increasing function of the concentration of nutrients, which tends to zero as 
the concentration does. The remaining part of the cycle is not affected by the 
concentration of nutrients. Of course, a cell also consumes nutrients, espe­
cially during the first part of the G1-phase leading up to the restriction point 
Sif. In our model we shall telescope this process and assume for simplicity that 
a cell only consumes a fixed amount of nutrient at the time it receives the 
stimulus to pass Slf. 

A plant cell that takes part in the cycling process is usually small and 
spherical, with its nucleus positioned at the center. However, if one watches a 
population of plant cells grow by cell division, one also notices after some 
time the presence of larger, more stretched out cells, with nuclei close to the 
cell wall. These cells are in an early stage of differentiation and do not divide. 
Such a differentiating cell most probably resides in the Gcphase, before the 
restriction point Slf, in a so-called quiescent, or G0-state [Alberts, Bray, 
Lewis, Raff, Roberts and Watson (1989), page 750]. It is possible for such a 
cell to restart its cycle, but it needs a much more powerful trigger to do so 
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than the one needed for passing .9/: it has to dedifferentiate first before it 
resumes its cell cycle. Transfer of a cell to a fresh liquid medium is appar­
ently such a trigger and will make the cell start its cycle almost at once. 

Although the underlying biochemical mechanisms are far from known, 
there are strong indications [Bayliss (1985); Trewavas (1985)] that plant 
hormones play a crucial role in determining differentiation: the higher their 
concentration in the medium, the larger the proportion of cells that are 
actively cycling, and the smaller the proportion of cells that will never divide 
but will differentiate instead. In the absence of hormones, there will be no 
cycling cells. We shall model this phenomenon by assuming that at the time 
of cell division, the two new cells independently become cycling cells (type A 
cells) with probability P or differentiating cells (type B cells) with probability 
(1 - P). Here P is assumed to be an increasing function of the hormone 
concentration in the medium at the time of division, which vanishes as the 
hormone concentration does. A cell also takes up hormones, and we shall 
assume that a fixed amount of hormone is used up by each cell at the time of 
its division. 

Having described the behavior of a single cell, we now turn to the behavior 
of a population of plant cells in a liquid medium. Such populations can occur 
either as batch cultures or as continuous cultures [Street (1973)]. In either 
case, the culture consists of isolated cells-or very small cell aggregates-that 
remain dispersed as they grow in the liquid medium. This is achieved by 
continuous stirring of the fermentor in which the cells grow. A culture is 
started by the transfer of a certain number of cells to a fresh medium 
containing known quantities of nutrients and hormones. In contrast to a 
continuous culture, a batch culture does not have any inflow of fresh medium 
or outflow of culture. As such, the batch culture is the appropriate system to 
study the growth of the number of cells of a population and to investigate the 
influence of the different components of the medium on the population 
growth. In what follows we shall, therefore, restrict our attention to plant 
cells in batch culture. 

The transfer of the cells to a fresh medium at time 0 triggers all cells to 
start their cycles almost at once, and we shall, therefore, assume that at time 
0 all cells are of type A and that their cell cycles· have been synchronized. If 
the amount of nutrient were kept constant or varied over time in a nonran­
dom fashion, it would be reasonable to assume that the duration of the cycles 
of different cells would be independent. However, in batch culture, the 
concentration of nutrient decreases at the random times when stimuli arrive, 
and cells compete for the available nutrient. This creates a complicated type 
of dependence between the division times for different cells. 

Similarly, the hormone concentration decreases at the times of cell divi­
sion. It follows that the cell population will ultimately stop growing, either 
because the nutrient is exhausted and no more stimuli can occur, or because 
the hormone concentration has become so low that the population of cycling 
cells can no longer be sustained. In the model this occurs when the probabil­
ity P of becoming an A cell has fallen below 0.5. 
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In batch culture, cell death is observed only at the beginning when cells 
are transferred to a fresh medium, and at a time when the cell density has 
been very high for a considerable period. The effect of the former is removed 
by simply never counting these dead cells, whereas the latter occurs in 
practice only after the growth of the population has stopped. We shall, 
therefore, assume that cell death does not occur. 

On the basis of this biological description we shall build a mathematical 
model for the growth of a plant cell population in batch culture in Section 2. 
In this model we shall study the duration of the growth process (i.e., the time 
until the population stops growing) when the initial population size n is 
large. We shall find that the duration is usually proportional to log n. 
However, if the nutrient is exhausted at approximately the same time as the 
hormone concentration becomes too low to sustain the process, the duration is 
proportional to n lf2 log n. Similar results are proved for an appropriately 
defined limit process. 

2. The mathematical model. Let us turn this biological description 
into a mathematical model for the growth of a population of plant cells in 
batch culture. We start at time t = 0 with n cells. Because we intend to 
consider the growth of this population as n tends to infinity, we use n as an 
index throughout. The Smith-Martin model tells us that the duration of a 
cell cycle is of the form (W +c), where W is a random waiting time for a 
stimulus to arrive and c > 0 is a constant. In a constant environment W has 
an exponential distribution with parameter A (i.e., with expectation 1/ A) and 
stimuli arrive independently for different cells. To fix thoughts, we assume 
that the cell cycle starts with the exponential waiting time for the stimulus 
and that the cell divides a constant time c after receiving the stimulus. 

At time t, there will be Nn(t) cells, of which NAn(t) are A cells (i.e., cycl­
ing cells). Of these NAn(t) A cells, Nln(t) cells are at time t waiting for a 
stimulus to arrive, whereas the remaining NAn(t) - Nln<t) A cells are some­
where in the time span of length c between arrival of a stimulus and division, 
and will, therefore, divide before or at time (t +c). Thus 

(2.1) 
NAn(t)- Nln(t) = Nn(t +c)- Nn(t) or 

N 1 n ( t) = NAn ( t) - ( Nn (t + c) - Nn ( t)) . 

At time t = 0, all cells are of type A and at the beginning of their cycle, so 

(2.2) 

We shall also need normalized versions of the three processes defined so far, 
and we write 

(2.3) 

X n ( t) = n -l ( Nn ( t) - n), 

XAn(t) = n - 1NAn(t), 

Xln(t) = n - 1Nln(t) . 
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At the time of a cell division, the two new cells independently become A 
cells with probability P and B cells with probability (1 - P). This probability 
P is an increasing function of the hormone concentration immediately before 
the division, and in batch culture this concentration decreases as time goes 
on. Suppose that the amount of hormone at timet= 0 equals [nbh], with bh 
a positive constant, and that an amount 1 is used up at each division. Here 
[ x] denotes the largest integer less than or equal to x. Immediately before 
the ith division, the amount of hormone is ([nbh] - (i- 1)), and hence the 
probability of a cell becoming an A cell at the ith division equals 

(2.4) 
_ ( [ nb h ] - i + 1 ) 

pin -P ' 
n 

i = 1, 2, . . . ' 

where P is increasing on [0, oo) and P(u) = 0 for u s 0. According to Monod 
kinetics, which is the standard model for these biochemical processes [see, for 
instance, Roels (1983)], P is given by 

{
0, 

P(u) = u = 1- ah 
ah + u ah + u' 

us 0, 
(2.5) u > 0, 

where ah denotes a positive constant. Note that Pin = 0 for i ;:::: [ nbh] + 1. 
Because P is nonnegative, nondecreasing and concave, one easily verifies 
that form= 1, 2, ... , [nbh], 

(2.6) I m jm/ n I bh r_pin-n P(bh-u)du .sP(bh)= b sl. 
i = 1 o ah + h 

Let Zn = (Z1n, Z 2 n, ... ) denote a random sequence, where Z 1n, Z 2n, ... are 
independent and zin has a binomial distribution with parameters 2 and pin• 
Here Zin models the number of A cells created at the ith division, and hence 

(2.7) 

N n(t) - n 

NAn(t) = 2n - Nn(t) + r. zin 
i = 1 

Nn(t) - n 

=n+ L (Zin-1). 
i = 1 

In view of (2.1), for t > c, 

Nn(t-c) - n 

(2.8) N}n(t- c)= 2n- Nn(t) + L Zin· 
i = 1 

Note that, conditional on Zn, {NAn(s): s s t} depends only on {Nn(s): s s t}, 
but {N}n(s): s s t} depends on {Nn(s): s s (t + c)}. 

The parameter A of the exponential waiting time for a stimulus is an 
increasing function of the amount of substrate (or nutrients) present, and in 
batch culture this concentration decreases over time. Suppose that the amount 
of substrate at time t = 0 equals [ nbJ, for a positive constant b8 , and that an 



321

1118 M. C. M. DE GUNST AND W. R. VAN ZWET 

amount 1 is used up for each stimulus. At time t, (Nn(t) - n) divisions have 
taken place, and this is also the number of stimuli that have arrived before or 
at time (t - c). Hence, the amount of substrate at time (t - c) equals 

Thus, the time dependent rate at which a stimulus arrives at time (t- c) is 
an increasing function of {[ nb5 ]/n} - Xn(t), say Q({[ nb5 ]/n} - Xn(t)). Accord­
ing to Monod kinetics once more, Q is defined by 

u.::; 0, 

(2.9) u > 0, 

where d and as are positive constants. Note that the rate becomes zero after 
[nbs] stimuli have arrived. 

The amount of substrate n({[nb5 ]jn}- Xn(t)) that is present at time 
(t -c) will remain unchanged until the random time (r- c) when the first 
stimulus after (t - c) arrives. Thus, ( r- c) is distributed as the minimum of 
the times of the first event in independent Poisson processes with intensity 
Q({[nbs]/n}- Xn(t)). For the Njn(t- c) waiting A cells that are already 
present at time (t -c), the corresponding Poisson processes start at time 
(t -c), and for A cells created after time (t - c) the processes start at the 
time of their creation. Thus, given Zn, the conditional intensity of the 
stimulus process at time (t -c) equals the left-continuous version of Njn(t -
c)Q({[ nb5 ]/n} - Xn(t)). Because a stimulus at time (t -c) corresponds to a 
cell division at timet, it follows that, conditional on Zn, the process {Nn(t)- n: 
t :2:. 0} is a counting process with the left-continuous version of 

0.::; t < c, 

t;;:::: c, 

as its conditional intensity. Together with the distribution of Zn given before, 
this determines our mathematical model for the growth of a plant cell 
population in batch culture. 

The process Nn stops growing for one of two entirely different reasons: 
either A cells become extinct or the rate at which the stimuli arrive becomes 
zero. Thus the process Nn(t) reaches its final value at the first time t when 
either NAn(t) = 0 or Nn(t) = n + [nbs]. Note that Njn(t- c)= 0 is not suf­
ficient for Nn to stop growing at time t, because new A cells may be born 
between time (t -c) and t. If Tn denotes the random time of the final cell 
division, then by (2. 7), 

( 
Nn(t) - n ) 

Tn = inf t: .L (Zin- 1) = -n 1\ inf{t: Nn(t) = n + [nb5 ]}, 

t = 1 
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where (a 1\ b) means the smaller of a and b [similarly, the larger of a and b 
will be denoted by (a V b)]. The random level that Nn has reached by then 
equals 
(2.11) Nn(Tn) = n + Mn A [nbs], 
where 

(2.12) Mn = inf{m : .E (Zin- 1) = -n} ~ n. 
!= 1 

Clearly this final level Nn(Tn) depends only on Zn and bs. The process stops 
because N(Tn) = n + [ nbJ or NAn(Tn) = 0, or both, depending on whether 
Mn >[nbs] or Mn <[nbs] or Mn =[nbs], respectively. An alternative expres­
sion for Tn is 

(2.13) 

which shows that given Zn, Tn is the time at which the counting process Nn 
reaches a fixed level. 

Suppose that, for large n, the process Xn(t) = (Nn(t) - n)jn is close 
to a deterministic function X(t) in D[O, oo), the space of right-continuous, 
IR-valued functions on [0, oo) with left-hand limits everywhere. Then by (2.8), 
(2.10) and the fact that 

m m 
-1" -1" Jm/n n L..zin- n L..2Pin- 2 P(bh- u) du 

1 1 0 

by (2.6), we find that Azn(t)jn will be close to F(t, X), where F: [0, oo) X 

D[ 0, oo) ~ IR is defined by 

(2.14) 
{ Jx(t-c) } F(t,x)= 1-x(t)+2

0 
P(bh-u)du 

X Q(bs- x(t))1[c,oo)(t) . 

Here an "' bn means that the quotient of an and bn tends to 1 (in probability) 
as n tends to infinity. Thus it seems plausible that, if a deterministic limit X 
of the processes xn exists, it should satisfy the equation 

{
0, 

x ( t) = f F ( s, x) ds, 

O:::;t<c, 
(2.15) 

t ~c. 

It is shown in De Gunst (1989) that (2.15) has a unique solution X in 
D[O, oo). This function X is continuous, nonnegative, nondecreasing and 
bounded on [0, oo), and differentiable on (c, oo) with a continuous, positive 
and bounded derivative. Hence X(t) tends to a finite limit X(oo) as t tends to 
infinity, and in view of (2.14) and (2.15), it follows that X'(t) also tends to a 
limit, which must necessarily be zero: 

X ( oo) = lim X ( t) < oo, 
t-> 00 

lim X'( t) = 0. 
(2.16) 

t - )00 

For biologically plausible values of the parameters, the graph of X exhibits 
alternating intervals of slow and rapid increase, which level off as time 
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progresses. This reflects the synchronism of cells at time t = 0, which is 
gradually destroyed by the variability of the cycle times. Figure 2 shows a 
graph of X that was obtained by fitting a numerical solution of (2.15) to the 
only experimental data that are available so far, and that are also shown in 
this figure. Figure 2, as well as a statistical analysis of the experimental data, 
shows that for appropriate parameter values, the function X describes actual 
batch culture growth quite well. A detailed description of the experimental 
procedures, the statistical analysis of the data, and a further discussion of the 
relevance of the results can be found in De Gunst, Harkes, Val, Van Zwet and 
Libbenga (1990). 

Having defined X as the nonrandom counterpart of Xn, we proceed to 
define the counterparts of the other processes in (2.3) by 

(2.17) 

t 
~ 

<I> 
0 ...-
X 
0 

I 
.!!l 
Q3 
0 

0 
Q; 
.D 
E 
:::1 
z 

JX(t) 
XA(t) = 1-X(t) + 2 P(bh- u) du, 

0 

X1(t- c)= 1- X(t) + 2 jX(t - c)P(bh- u) du, 
0 

1.60 

1.40 

1.20 

1.00 

0.80 
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0.20 

0 20 40 60 80 100 120 140 
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• 

160 

FIG. 2. Experimental data of the growth of a batch culture of tobacco cells (dots). The curve 
through the data was fitted using numerical solutions of (2.10). The parameter values are 
n = 1.625 X 108 1-1, c = 26h, d = 4 h, b5 = 29.9, k 5 = 2.2 X 10- 11 mol, Ys = 5.4 X 

1010 mol - l, bh = 4.7, kh = 9.7 x 10- 17 mol, Yh = 3.4 x 1015 mol- 1 . 
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in analogy with (2.7) and (2.8). Thus, by (2.10), (2.14) and (2.15) we have the 
two corresponding expressions 

(2.18) 

(2.19) 

Azn(t) = nXJn(t- c)Q({[ nbJ/n} - Xn(t)) fort;;::: c, 

X'(t) = XJ(t- c)Q(bs- X(t)) fort;;::: c, 

for the conditional intensity of (Nn - n) and the derivative of X . 
In De Gunst and Van Zwet (1992) it is shown that indeed Xn converges in 

probability to X at a rate of n -I;z uniformly on [0, oo). Moreover, there is an 
exponential bound for the tail probability. The same holds for XAn and XA, as 
well as for XJn and XJ. Theorem 2.1 summarizes these results. 

THEOREM 2.1. Let X be the solution of (2.15). Then there exist positive 
numbers A and a, such that for n = 1, 2, ... and x;;::: 0, 

(2.20) 9'( sup I Xn( t) -X( t) I ;;::: x) sA exp{- ax 2 n}, 
t ~ O 

and hence 

(2.21) supiXn(t) -X(t)l = &'Y' (n-1 12). 
t ~ O 

The same conclusions hold if Xn and X are replaced by XAn and XA or XJn 
and XJ, respectively. 

To simplify our notation in what follows, we introduce a function 1/J defined 
on [0, oo) by 

(2.22) 

Note that 

(2.23) XA(t) = 1/J(X(t)) for all t. 

By (2.5), P is nondecreasing and vanishes for negative values of its argu­
ment, and hence 1/J is concave on [O,oo) with 1/J(O) = 1 and limv -"'" 1/J(v) = -oo. 
Define a new parameter y as the solution of 

(2.24) 1/J(y)=O. 

Obviously, y is uniquely determined and 1/J is positive (negative) to the left 
(right) of y . Apart from our choice (2.5) for the function P, y depends only on 
bh . By (2.22) and (2.24), y;;::: 1. 

To complete our notation we define 

(2.25) 

(2.26) 

X A ( 00 ) = lim X A ( t) = lim X J ( t) = 1/1 ( X ( oo)) , 
t-+ oo t-+oo 

p = P(bh- X(oo)), 

q = Q(bs- X(oo)), 

q' = Q'( b5 - X(oo)), 

where Q' denotes the derivative of Q. 
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We have already noted that the process Nn will stop because one or both of 
the factors in (2.18) vanish. Similarly, for the deterministic limit function X, 
(2.16), (2.19) and (2.25) imply that 

(2.27) 

so that we have three different cases: either X(oo) = b8 and hence q = Q(b8 -

X(oo)) = 0 or XA(oo) = t/J(X(oo)) = 0 or both. An alternative way to express this 
is to write 

(2.28) X ( oo) = inf{ v : t/J ( v) s 0} 1\ b s = y 1\ b s , 

which is the analogue of (2.11) and (2.12). 
In the present paper, we shall investigate two closely related issues: the 

behavior of X(t) for large values oft and the duration of the process Nn, that 
is, the time Tn to the final cell division. These issues concern the tail behavior 
of the processes X and Xn, respectively, the former being an (easier) deter­
ministic version of the latter. We shall show that, depending on the values of 
the biological parameters, there is a remarkable discontinuity in this tail 
behavior of X and Xn. 

Let us consider more closely the three cases that (2.27) allows and classify 
their occurrence in terms of the parameters y and b s. 

(2.29)(i) 

'}' > bs: 

By (2.28), X(oo) = b8 and q = Q(bs- X(oo)) = 0. 

On the other hand, X A ( oo) = t/1 ( X ( oo)) = t/1 ( b s) > 0; 

Y < bs: 

By (2.28), X(oo) = y and q = Q(bs- X(oo)) = Q(b8 - y) > 0. 

(2.29)(ii) On the other hand, XA(oo) = t/J( X(oo)) = t/J( y) = 0. 

Notethatinthiscasep =P(bh -X(oo)) =P(bh- y) < ~' 
because(2.22) impliesO = t/J(y) ~ 1 + y{2P(bh- y) -1}; 

'}' = bs: 

By (2.28), X(oo) = b8 = y and q = Q(b8 - X(oo)) = 0. 

(2.29)(iii) However, in this case, XA( oo) = t/J( X( oo)) = t/J( y) = 0. 

As in the previous case, p = P ( b h - b s) = P ( b h - y) < ~ . 

We shall show that if y 1= b8 , 

X( oo) -X( t) "'Ae - at as t~ oo, 

T 1 
_n_ ~ - in probability as n ~ 00 

log n a 

and give expressions for a in case ( y - b8 ) is positive or negative. If y = b8 , 
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however, we find a very different behavior: 
1 

n 11 2 log n 

X ( oo) - X ( t ) "' - as t ---? oo, 
at 

is of exact order 1 in probability as n ---? oo 

and, again, we give an expression for a in this case. 

1123 

The biological interest of these results lies in the fact that for . a certain 
balance ( y = b8 ) between the initial amounts of substrate [ nb8 ] and hormone 
[ nb h], the model predicts a much longer duration of the growth process than 
for other parameter values. This phenomenon, which is indeed a very essen­
tial aspect of the model, lends itself to experimental verification. Because the 
experiments considered here are very expensive and time consuming, this 
verification has not yet been carried out. Another aspect of these results that 
is of some practical importance is that some of the secondary metabolites are 
known to be synthesized only at the end of the cell culture's growth process, 
and one would, therefore, like to avoid values of y close to b8 • 

From a mathematical point of view, the results of this paper are rather 
more delicate than those of Theorem 2.1. Though the main feature ofTheorem 
2.1 is the uniformity in t, the theorem still provides very little information 
about the behavior of Xn(t) and X(t) for very large t, which is needed here. 
There seem to be few results on the duration of processes similar to the one 
we study. Kurtz (1982) discusses a case where the limit process X reaches its 
ultimate value in finite time; Barbour (1975) and Nagaev and Mukhomor 
(1975) study the duration of an epidemic. The problems that these authors 
face are very different from ours. 

In Section 3, we prove the results on the behavior of X(oo) - X(t) for large 
t. A result on a class of differential equations that plays a key role in this 
analysis is given in Appendix A. In Section 4 we tackle the estimation of Tn. A 
maximal inequality and a fluctuation inequality that are needed in Section 4 
are given in Appendix B. 

3. Tail behavior of X. In this section we investigate the behavior of 
X(t) for large values of t. Our starting point will be expression (2.19): For 
t ;:::: c, 

X'(t) = XJ(t - c)Q(bs- X(t)) = ( XA(oo) + [ XJ(t - c)- XA(oo)]) 

X ( q + ( Q( bs -X( t)) - q]), 
and Taylor expansion of the terms in square brackets. By (2.17) and because 
both P and Q have bounded derivatives of every order, we find 

XJ(t- c) - XA(oo) = X(oo)- X(t) - 2 J X(oo) P(bh - u) du 
X(t - c ) 

(3 .1) = (X(oo) - X(t)) - 2p(X(oo)- X(t- c)) 

+ &((X(oo) - X(t- c)) 2), 
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(3.2) Q(bs -X(t)) -q =q'(X(oo) -X(t)) +&((X(oo) -X(t)) 2 ). 

Here p, q and q' are defined in (2.26). By (2.27), 

(3.3) XA( oo)q = 0. 
It follows that 

(3.4) 

X'(t) = (q + q'XA(oo))(X(oo)- X(t)) 

- 2pq(X(oo) -X(t- c)) 

+q'(X(oo) -X(t)) 2 

- 2pq'(X(oo)- X(t))(X(oo)- X(t- c)) 

+&(q(X(oo) -X(t-c)) 2 +XA(oo)(X(oo) -X(t)) 2 

+(X(oo) -X(t))(X(oo) -X(t -c)) 2). 

LEMMA 3.1. 

X(oo) -X(t-c) =&(X(oo) -X(t)) ast~oo. 

If y = b8 , then 

X(t) -X(t-c) =&((X(oo) -X(t)) 2) ast~oo. 

PROOF. By (3.3), Xioo)q = 0. If q = 0, then X(oo) = b8 • By (3.1), 
XJ(t - c) ~ X(oo) + XA(oo) ~ 2b8 , and as Q' decreases, Q(bs - X(t)) ~ 
Q'(O)(X(oo) - X(t)). Hence X'(t) ~ 2b8 Q'(O)(X(oo) - X(t)) for t > c and 

t X'(s) (X(oo)-X(t-c)) 
~- cX(oo) -X(s) ds =log X(oo) -X(t) ~ 2cbsQ'(O), 

so that X(oo) - X(t - c) ~ e2 cb,Q'(Ol(X(oo) - X(t)) for t ~ 2c. 
If Xioo) = 0, then (3.1) implies that 0 ~ XJ(t -c)~ X(oo)- X(t), whereas 

Q(bs - X(t)) ~ Q(b8 ) as Q is increasing. Repeating the foregoing argument, 
we see that X(oo)- X(t- c) ~ ecQ(b,l(X(oo) - X(t)) for t ~ 2c. 

Finally, if y = b8 , then we are in case (2.29)(iii) and Xioo) = q = 0. Now 
(3.1) and (3.2) imply that for t ~ c, 

X'(t) ~q'(X(oo) -X(t)) 2 +&((X(oo) -X(t)) 3). 

Integrating over (t - c, t), we find 

X(t)- X(t- c)= &((X(oo)- X(t- c)) 2 ) = &((X(oo)- X(t)) 2 ). o 

Theorems 3.1, 3.2 and 3.3 deal with the three essentially different cases 
(2.29)(i)-(iii) that we discussed in Section 2. We note that 1/J and y are 
defined in (2.22) and (2.24). 

THEOREM 3.1. Let y > bs and define a = r/f(b8 )/(da8 ) > 0. Then X(oo) = bs 
and there exists a positive number A, such that 

(3.5) lim eat ( X ( oo) - X ( t)) = A. 
t~oc 
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PROOF. This is case (2 .29)(i), so that X(oo) = b8 , Xioo) = if!(b8 ) > 0, q = 0 
and q' = Q'(O) = 1j(da8 ). Hence (3.4) and Lemma 3.1 imply that 

(3.6) X'(t) =q'XA( oo)(X(oo) -X(t)) + &((X(oo) -X(t)) 2). 

The theorem follows from Lemma A.1 in Appendix A with v = 0, w =a= 
q'Xioo) = if!(b8 )j(da8 ) and f(t) = X(oo)- X(t). D 

THEOREM 3.2. Let y < b8 and define a E (0, Q(b8 - y )] as the unique 
solution of Q(bs- y)- a= 2P(bh- y)Q(bs - y)eac. Then X(oo) = y and 
there exists a positive number A such that 

(3.7) limeat(X(oo)- X(t)) =A. 
t--'> 00 

PROOF. This is case (2.29)(ii), so that X(oo) = y, XA(oo) = 0, q = 
Q(bs - y) > 0 and p = P(bh - y) < ~. Together with Lemma 3.1, this im­
plies that (3.4) reduces to 

(3.8) 
X' ( t) = q ( X ( oo) - X ( t)) - 2 pq ( X ( oo) - X (t - c)) 

+ &{(X(oo) -X(t)) 2). 

The theorem follows from Lemma A.1 in Appendix A with v = 2pq = 
2P(bh- y)Q(bs- y), w = q = Q(b8 - y) and f(t) = X(oo)- X(t). Note that, 
because p = P(bh- y) <~.we have indeed v < w. D 

THEOREM 3.3. Let y = bs and define a = (1 - 2P(bh - b8 )) j (da 8 ) > 0. 
Then X(oo) = b8 and 

(3.9) limat(X(oo)- X(t)) = 1. 
t--'> 00 

PROOF. We are now in case (2.29)(iii), so that X(oo) = bs = y, Xioo) = 
1/J(y) = 0, q = Q(O) = 0, q' = Q'(O) = 1j(da8 ) > 0 and p = P(bh- b8 ) < ~· 
Hence a = q'(1 - 2p) is positive. Together with Lemma 3.1, this implies that 
(3.4) reduces to 

(3.10) X ' (t) =a(X(oo) -X(t)) 2 + &{(X(oo) -X(t)) 3). 

Dividing by (X(oo)- X(t))2 and integrating, we find for c < s < t, 

1 1 
X(oo) -X(t)- X( oo) -X(s) =a(t -s) + &((t -s)(X(oo) -X(s))). 

Dividing by at and then letting first t and then s tend to infinity, we find 
that (at(X(oo)- X(t))) - 1 tends to 1. D 

4. Duration of the growth process. We now turn to the duration Tn of 
the growth process Nn. To simplify our notation we shall write 

( 4.1) b 8 n = [ n: sJ E ( b s - ~ , b 8 ] , b h n = [ n: h ] E ( b h - ~ , b h] 
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throughout this section. In view of (2.28) and the fact that y ~ 1 on the one 
hand and (2.11) and (2.12) on the other, we know that X(oo) ~ 1 1\ bs and 
Xn(Tn) ~ 1/\ bsn· ForEE (0, 1 1\ b5 ) we may, therefore, define T(e) and Tn(s) 
by 

(4.2) X(oo) -X(T(s)) = E, 

( 4.3) 

LEMMA 4.1. There exist positive numbers A and a such that for 0 < E < 
1 1\ bs and n = 1, 2, ... , 

( 4.4) 

PROOF. 

9 (Tn(s) > T(i)) s9(Xn(Tn) -xn(T(i)) > s) 

s9(supjXn(t) -X(t)j > !...) 
t ~ 0 4 

because X(oo) = X(T(E/2)) + s/2 and Xn(Tn) = Xn(oo). Hence (4.4) follows 
from Theorem 2.1. 0 

Lemma 4.1 ensures that Tn(e) is bounded except on a set of exponentially 
small probability for every fixed E > 0. Of course, Tn tends to infinity in 
probability as n --') oo in view of Theorem 2.1 and the results of Section 3. For 
our study of the first order asymptotic behavior of Tn, any bounded contribu­
tion to Tn will be irrelevant, and we may, therefore, study Tn - Tn(s) instead. 
This implies that we need only take the times needed for the final [ s n] cell 
divisions into account, for arbitrarily small positive s. 

As in Section 3, the cases y > b5 , y < bs and y = bs are essentially differ­
ent and we shall discuss these cases in three separate subsections. 

4.1. The case y > b5 • If y > bs we are in case (2.29)(i), so X(oo) = b5 , 

Xioo) = tjJ(b5 ) > 0, q = Q(O) = 0 and q' = Q'(O) = 1j(da5 ). Theorem 2.1 
implies that, except on a set 11~ of negligible probability for large n, 
Xin(Tn) = XAn(Tn) = XAn(oo) will be close to XJ(oo) = XA(oo) = tjJ(bs) > 0, and 
the same is true for XJn(t - c) for sufficiently large t. In particular, XAn(Tn) 
> 0 on nn. Because the process xn stops when either XAn = 0 or xn = bsn' 
we must have Xn(Tn) = bsn and hence Q(bsn - Xn(t)) is approximately equal 
to q'(Xn(Tn)- Xn(t)) for large t. It follows from (2.10) that on !ln, Azn(t) is 
close to na(Xn(Tn) - Xn(t)) for large t, where a = tjJ(b)j(da 5 ) > 0. But this 
means that, going back in time from Tn, the times between the last [ En] 
consecutive cell divisions are approximately independent and exponentially 
distributed random variables with means 1ja, 1j(2a), 1j(3a), ... , 1/([ sn]a), 
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provided that 8 > 0 is sufficiently small. This implies that (Tn - Tn(s)), which 
is the sum of these variables, is asymptotic to (log n)ja , and by Lemma 4.1 
this remains true for Tn. 

In the remainder of this subsection we make this argument rigorous. In 
Lemma 4.2 we study the appropriate sum of independent exponential random 
variables. Theorem 4.1 provides a precise statement of the result and in its 
proof we fill in the gaps in the heuristic argument given before. 

LEMMA 4.2. Let V1, V2 , •. • be i.i .d. random variables that are exponen­
tially distributed with mean 1. For 8 E (0, 1] and m ;;:.; 1/8, define 

[ em] V. 
(4.5) 8m(8) = L --!- . 

j = l J 

Then for 8 E (0, 1], m ;;:.; 1/8 and x ;;:.; 0, 

.9( I 8 m ( 8) - log m I ;?; x) s ~ exp { - i } . 
PROOF. Writing 8m(s) = 8 we have 

Ee 8 1 2 = fl ~ s 2 fl -.-1 - s 2(8m) 11 2 , 

[ em] • [ em ] ( · ) 1/ 2 

j = l}-2 } = 2 ;-1 

EeS / 2 
.9(8;?; log m + x) s { 1 I 1 } s 28 112e - xl2 , 

exp 2 og m + zX 

[em] j 1 
Ee - s = fl -- < -

J=lj+1-8m' 

Ee - s 1 
.9(8 slog m- x) s ---,{-1----,-} s-e- x. 

exp - og m + x 8 

As 8 11 2 s 8 - 1 , the lemma is proved. D 

THEOREM 4.1. Let y > b8 and define a = ljJ(b8.) j (da 8 ) > 0 as in Theorem 
3.1. Then, for every 8 > 0 there exist positive numbers A and a such that for 
n = 1, 2, . .. and 0 s x s n, 

(4.6) .9(1Tn- lo:nl;;:.; 81ogn +x) sAexp{-ax}, 

and hence 

(4.7) 
Tn 1 
-- ~- inprobability. 
log n a 

PROOF. Choose 8 E (0, 1 1\ bs 1\ XA(oo)) and consider the event 

On= {IXAn(Tn) -XA(oo)l s 8}. 
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In view of (2.3), (2.7), (2.11) and (2.12) this event is measurable with respect 
to the (T-algebra Yzn generated by zn = (Zln• z2n• . .. ). Because XAn<Tn) = 

XAn(oo), Theorem 2.1 ensures that 

(4.8) 

for positive A 1 and a 1. 

As e < Xioo), we have XAn(Tn) > 0 and hence Xn(Tn) = bsn on nn . Also, by 
(2.7), (2.8) and (4.3), 

=XAn(Tn) + sup (XAn(t) -XAn(Tn)) 
t :?. Tn( e ) 

and 

It follows that on n n, 

SUp X 1 n (t - C) :::; X A ( oo) + 2 e, 
l :?. Tn(e) 

inf Xln(t- c)~ XA(oo)- 3e. 
t :?. Tn( e)+ c 

On nn, X n(Tn) = bsn• and hence (2.9) and (4.3) imply that for t ~ Tn(e), 

Define a = Xioo)j(da 8 ) = ljJ(b 8 )j(da) as in the statement of the theorem 
and choose 8 E (0, a - 1). Combining (2.10) and the inequalities derived so far, 
we find that by taking e > 0 sufficiently small, we can make sure that on n n , 

( 4.9) 

( 4.10) 

Conditionally on Zn = z with {Zn = z} c fin, the process (Nn(t) - n) is a 
counting process with intensity Azn(t), which is bounded above and below by 
(4.9) and (4.10). In view of the argument in the first paragraph of this 
subsection, this implies that conditionally on Zn = z with {Zn = z} c nn , 
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(Tn - rn(e)) is stochastically larger than a sum of [en] independent exponen­
tial random variables with means (1 - oa)j(aj), j = 1, 2, ... , [en], or equiva­
lently, than ((1 - oa)ja)Sn(e) with Sn(e) as in Lemma 4.2 with m = n. 
Hence by (4.8), 

9 { Tn - lo: n ~ -o log n - x) 

~ g>( Tn - Tn( e) ~ 1 -a oa log n -X) 

~g>(Sn(e) ~logn- ax ) +A1 exp{-a1e 2 n}. 
. 1- oa 

Similarly, (4.10) implies that conditionally on Zn = z with {Zn = z} c nn, 
(Tn - rn(e)) is stochastically smaller than ((1 + oa)ja)Sn(e) + c, and hence 
by Lemma 4.1 and (4.8), 

( log n ) 
9 Tn - -a- ~ o log n + x 

~9'(Tn- rn(e) ~ 1 +aoalogn +x- r(i)) 
+ A 2 exp{ -a2 e 2 n} 

~g>( Sn( e) ~log n + 1 : oa ( x- r( i) -c)) 

+ A 3 exp{- a 3 e 2 n} 

for appropriate positive A 2 , A 3 , a 2 and a 3 • Combining these results with 
Lemma 4.2, we find that for n = 1, 2, ... and r(e/2) + c ~ x ~ n, 

9 (I Tn - lo: n I ~ o log n + x) 

~ 9 (IS n (e) - log n I ~ 1 : oa ( x - r ( i) - c)) + ~ exp{ - an} 

~ ~exp{ a (r(!.-) + c- x)} +A exp{ -an} 
e 1 + oa 2 2 

~ Aexp{ -ax} 

for appropriately chosen positive A and a. If A ~ exp{a(r(e/2) +c)}, then 
this bound remains valid for 0 ~ x < r(ej2) + c and the proof of (4.6) is 
complete. For x = o log n, (4.6) yields (4.7). 0 

4.2. The case y < b8 • If y < b8 we are in case (2.29)(ii), so X(oo) = y < b8 , 

XA(oo) = 0, q = Q(bs - y) > 0 and p = P(bh - y) < ~· Theorem 2.1 implies 
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that, except on a set D~ of negligible probability for large n, Xn(Tn) = Xn(oo) 
will be close to X(oo) = y, and the same is true for Xn(t) for sufficiently large 
t. In particular, Xn(Tn) < bsn on fin, and hence the process Xn must stop 
because XAn<Tn) = 0. Moreover, on nn, Q(bsn - Xn(t)) is close to q for large t 
and the probabilities Pin of A cells are approximately equal top for the final 
[ 8n] cell divisions if 8 > 0 is small [cf. (2.4)]. It follows that on fin and for 
small 8 > 0, (Tn - Tn(e)) is approximately equal to the duration of a process 
that starts at time Tn(8) with NAn(Tn(8)) A cells-of which N}n(Tn(8)) are 
waiting for a stimulus-and has a fixed stimulus rate q > 0 and a fixed 
probability of A cells p < ~-Both NAn(Tn(e)) and N}n(Tn(8)) are of exact order 
n with probability close to 1, because XAn(Tn(8)) and X.Jn(Tn(e)) are close to 
XA(T(e)) and X_1(T(e)), which are positive. 

Let S(p, q, c) be the duration of a process that starts with a single waiting 
A cell and has a fixed stimulus rate q > 0 and a fixed probability of A cells 
p < ~. In Lemma 4.3 we show that the right tail of the distribution of 
S(p, q, c) behaves like that of an exponential distribution with mean a - 1 , 

where a is the solution of q -a = 2pqeac. Hence (Tn - Tn(8)) is approxi­
mately distributed as the maximum of a (random) number M of independent 
exponentially distributed random variables with mean a - 1 , and this number 
M is of exact order n. But this means that (Tn - Tn(8)) ~(log n)ja, and by 
Lemma 4.1 we also have Tn ~(log n)ja. 

In the remainder of this subsection we first prove Lemma 4.3 concerning 
the distribution of S(p, q, c). Theorem 4.2 provides a precise formulation 
of the result for Tn and some additional details will be found in the proof of 
this theorem. 

Thus in Lemma 4.3 we consider the following situation. At time t = 0 there 
is a single A cell waiting for a stimulus. A cells independently receive a 
stimulus after an exponential waiting time with mean (q) - 1 and divide a 
constant time c later. With each division the new cells independently become 
A cells with probability jJ and B cells with probability (1 - p). B cells do not 
divide. Let S(jJ, q, c) denote the time until the final division. 

LEMMA 4.3. Suppose that q > 0 and 0 s jJ < ~ and define a E (0, q] as 
the unique solution of q - a = 2pqeiic. Then there exists a positive number A 
such that 

(4.11) lime ii 19'(S(jJ,q,c) > t) =A. 
t- oo 

PROOF. Writing f(t) = 9'(S(jJ, q, c)> t) we find fort> c, 

f(t) = e - q(t -c ) + 2jJ(1- jJ)q[ - ce_ iis f(t- c- s) ds 
0 

f t -c - [ 2] + jJ 2q e - qs 2f(t- c- s)- (f(t- c- s)) ds 
0 
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- p 2if[ - ce - qs(f(t- c- s)) 2 ds 
0 

= e - q(t -c)[1 + 2pq~ot -ceqsf(s) ds- p 2if{ - ceqs(f(s)) 2 ds]. 

Multiplying by eti<t- cl, differentiating and dividing again by eti<t-cl, we obtain 
fort> c, 

f'(t) + qf(t) = 2pqf(t- c)- p 2q(f(t- c)) 2 

or 

f' ( t) = 2 pqf( t - c) ( 1 - ~ f( t - c)) - qf( t). 

Obviously, f is strictly decreasing and f' < 0 on [c, oo). Because 0:::;;, p < i, 
we have limt -><=" f(t) = 0 and we may apply Lemma A.1 in Appendix A with 
v = 2 pq and w = q to complete the proof. D 

THEOREM 4.2. Let y < bs and define a E (0, Q(bs - y )] as the unique 
solution ofQ(bs - y)- a= 2P(bh - y)Q(bs - y)eac as in Theorem 3.2. Then, 
for every 8 > 0 there exist positive numbers A and a such that for n = 1, 2, ... 
and 0:::;;, x:::;;, n, 

( 4.12) .9 (I Tn - lo: n I ;::: 8 log n + x) s A exp{ - ax} , 

and hence 

( 4.13) 
Tn 1 
-- ~ - in probability. 
log n a 

PROOF. Choose e E (0, 1 1\ (bs - y )) and define the event 

{ln = {IXn(Tn)- X(oo)l s e}. 

By (2.3), (2.11) and (2.12, nn is measurable with respect to the a -algebra Yzn 
generated by Zn = (Z1n, Z 2 n, .. . ), and by Theorem 2.1, 

( 4.14) 

for positive A1 and a 1. On On, X n(Tn):::;;, X(oo) + e = y + e < bs and hence 
Xn(Tn) < bsn for n ;::: no . It follows that for n ;::: no, XAn<Tn) = 0 on nn. 

As q = Q(bs - y) > 0 and p = P(bh- y) < i, we can choose e' E (0, q 1\ 

( i - p )) and define 

( 4.15) 
P1 = (p- e' ) V 0 E(O,t), 
q 1 = q- e' > 0, 

P2 =p + e' E (O,t), 
q 2 = q + e' > 0. 
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By taking e > 0 sufficiently small we can obviously ensure that on ii n and 
for n ~ n 1 and t ~ Tn(e), 

( 4 .16) 
p1:::;;P(bhn-Xn(t)+ ~):::;;pz, 
q1:::;; Q(bsn- Xn(t)):::;; Qz· 

Consider a process X~(t) obtained by modifying Xn(t) as follows: 
For t > rn(e) the rate Q(bsn - Xn(t)) and the probability P(bhn - Xn(t) + 
1/n) are replaced by q 1 and p 2 , respectively, and all A cells present at 
time Tn(e) are replaced by A cells waiting for a stimulus. On On and for 
n ~ n 1, (4.16) implies that X~ is obtained from Xn by adding a random 
number of A cells and increasing the length of the cell cycle of a number of 
cells by a random amount, and as a result the duration Tn+ of X~ is 
stochastically larger than Tn on fin for n ~ n 1. Moreover, (Tn+ - rn(e)) is 
distributed as the maximum of NAn(rn(e)) independent and identically dis­
tributed random variables, each distributed as S(p 2 , q 1, c) discussed in 
Lemma 4.3. As NAn(rn(e)):::;; n(1 + b8 ), (4.14) and Lemma 4.1 yield for n ~ n 1 , 

9(Tn ~t) :::;;9(T;: ~t) +.9(0~) 

:::;;9(T;:- Tn(e) ~ t- r(e/2)) +A2 exp{-a2 e 2 n} 

:::;; n(1 + b8 )9 (S(p 2 , q 1 , c)~ t- r(e/2)) + A 2 exp{ -a2 e 2 n} 

for positive A 2 and a 2 , and all t . 
Define a as in the statement of the theorem as the solution of q - a = 

2pqeac. Similarly, suppose that a satisfies q 1 -a= 2p 2 q 1eac. As p 2 > p and 
q 1 < q, we have a <a and a j a as e' in (4.15) tends to zero. Hence, for every 
o > 0, we can choose e' > 0 sufficiently small to ensure that a - 1 :::;; a- 1 :::;; 

a - 1 + o. By Lemma 4.3 we find that for n ~ n 1 and 2r(e/2):::;; x:::;; n, 

9 ( Tn - lo! n ~ o log n + x) 

:::;; n(1 + b8 )9 (S(p 2 ,q1,c) ~ (al + o)logn +x- r(e/2)) 
( 4.17) 

_ { ax} +A2 exp{ -a2 e 2 n}:::;; n(1 + bs)Aexp -log n- 2 

+A2 exp{-a2 e 2 n} :::;A3 exp{ -a3 x} 

for positive A, A 3 and a 3 • Obviously an appropriate choice of A 3 will 
guarantee the validity of this bound for all n and 0 :::;; x :::;; n. 

We may also modify the process Xn(t) by replacing Q(bsn - Xn(t)) and 
P(bhn - Xn(t) + 1/n) by q 2 and p 1 for t > Tn(e), and simply removing all A 
cells that have received a stimulus before or at time rn(e). On On and for 
n ~ n 1 , (4.16) obviously implies that the duration T;: of this new process 
X;;(t) is stochastically smaller than Tn. Moreover, (Tn- - rn(e)) is distributed 



336

NON-MARKOVIAN MODEL FOR POPULATION GROWTH 1133 

as the maximum of NJn(T/e)) independent copies of S(p1, q2 , c). As X'(t) > 0 
for all t > c, (2.14), (2.15) and (2.17) imply that for every e > 0 there exists 
YJ > 0 such that XJ(t) ~ 2YJ for 0 .:::;; t.:::;; T(e/2). It follows from Theorem 2.1 
and Lemma 4.1 that 

for positive A4 and a 4 • Hence, for n ~ n 1 , (4.14) yields 

!!!J(Tn.:::;; t) .:::;;!!!J(Tn- .:::;; t) +!!!J(fl~) 

.:::;; [9(S(p1 ,q2 ,c).:::;; t)rn +A5 exp{ -a5 n} 

for positive A 5 and a 5 • 

Define ii as the solution of q 2 - ii = 2p 1q2 eac. As p 1 .:::;; p and q 2 > q, we 
have ii > 0 and ii J, a as e' in (4.15) tends to zero. Hence, for every o > 0 we 
can choose e' > 0 sufficiently small to ensure that a - 1 - o .:::;; ii - 1 .:::;; a - 1 . By 
Lemma 4.3 we find that for n ~ n 1 and 0 .:::;; x .:::;; n, 

!!lJ ( Tn - lo! n .:::;; -o log n - x) 

( 4.18) .:::;; [g;(s(p 1 ,q2 ,c).:::;; (~- o)logn -x)rn +A5 exp{-a5 n} 

.:::;; [ 1 - A exp{ -log n + iix} ] 11 n + A 5 exp{ - a5 YJ} 

.:::;; exp{ -AYJeiix} + A 5 exp{ -a5 n} .:::;; A 6 exp{ -a6 x} 

for positive A, A 6 , and a6 • Obviously the bound will hold for all n and 
0.:::;; x .:::;; n for an appropriate choice of A 6 • Together, (4.17) and (4.18) prove 
(4.12). Taking x = o log n in (4.12) we complete the proof of the theorem. D 

4.3. The casey= b8 • If y = b8 we are in case (2.29Xiii), so X(oo) = b8 = y, 
XA(oo) = 0, q = Q(O) = 0 and p = P(bh - bs) < t. The process xn may stop 
because Xn(Tn) = bsn or XAn(Tn) = 0, and in contrast to the two previous 
cases, neither of these possibilities can be ruled out with large probability. 
We shall, therefore, have to deal with both possibilities and our approach will 
combine the main elements of the proofs in the two previous subsections. 

In the cases y > bs andy < bso either (bsn - Xn(Tn)) or XAn(Tn) equals zero 
and the other one of these two quantities is of exact order 1 with high 
probability. Because now both b8 - X(oo) = 0 and XA(oo) = 0, the latter part 
of this statement is no longer true and we shall have to assess the exact order 
of magnitude of the nonzero quantity among (bsn - Xn(Tn)) and XAn(Tn). In 
view of the complicated dependence of these two random variables, some care 
is needed here. We shall proceed by bounding the nonzero variable in terms of 
Zn = (Z1n, Z 2 n, ... ) in Lemma 4.4, and then showing that this implies that it 
is of exact order n - 112 in probability in Corollary 4.1. 
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LEMMA 4.4. Let y = b8 • If Xn(Tn) = bsn• then 

1 [nbs] 3 
L ( zin - 2Pin) - - :::; XAnCTn) 

n i= 1 n 
( 4.19) 

If XAn(Tn) = 0, then 

1 [nbs] 3 
L (Zin- 2Pin) 

n i=l n 

( 4.20) 

PROOF. Because y = b8 , we have by (2.22) and (2.24), 

( 4.21) 

Because P is nondecreasing, this implies for 0 :::; v:::; b8 , 

( 4.22) 
{bs (bs- 1)v 

21, P(bh- u) du:::; b . 
bs- V S 

3 
+ -. 

n 

If Xn(Tn) = bsn we use (2.7), (4.21) and straightforward algebra to obtain 

XAn(Tn) =- L (Zin- 2Pin) + 2 - L pin- jbsnP(bh- u) du 
1 [nbs] ( 1 nbsn ) 

ni=l ni=l o 

( 4.23) + J,bs(1 - 2P( bh - U)) du 
bsn 

where l.9i'l :::; 3jn by (2.6) and because 0 :::; P(u):::; 1 for all u and 0 :::; bs -
bsn < 1/n. Because XAn(Tn) is nonnegative, it also equals the absolute value 
of the expression on the right in (4.23), and (4.19) follows. 

If XAn(Tn) = 0, we again use (2.7) and (4.21) to obtain 

bsn - Xn(Tn) = 2 jbsP( bh - U) du 
0 

( 4.24) 
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Hence by (4.22), 

bsn -Xn(Tn):::; bsb- 1 (bs -Xn(Tn)) + 2fxnCTn)P(bh- u) du 
s 0 

or 

-2(2.. nXfn) Pin- JXn(Tn)P(bh- u) du))• 
n i=1 o 

and the inequality on the right in (4.20) follows from (2.6). 
To prove the lower bound in (4.20) we start once more with (4.24) and write 

1 [nb 8 ] 

bsn - Xn(Tn) - - L zin 
n i=nXn(Tn)+ 1 

b 1 [nb 8 ] 

= 2 f SP( bh - u) du - - L zin - ( bs - bsn) 
o n i= 1 

1 [nbs] 

= -- L (Zin - 2Pin) -!}f 
n i= 1 

with .9f as in (4.23) so that I!Jfl :::; 3jn. Because o :::; Zin :::; 2 for all i and n, 
this yields 

1 [nb 8 ] 

L (Zin- 2Pin) 
n i= 1 

:::; bsn - Xn(Tn), 
which completes the proof of the lemma. D 

As before, let Yzn denote the u-algebra generated by Zn = (Z1n, Z 2 n, ... ). 

CoROLLARY 4.1. Let y = b8 • For 0 < b < B, define the events 

(4.25) fi 1n = {b:::; n 112XAn(Tn):::; B}, 

(4.26) fi 2n = {b :::;n 112 (bsn -Xn(Tn)) :::;B}. 
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These events are Yzn-measurable and for every e > 0 there exist 0 < b < B 
such that for sufficiently large n, 

( 4.27) 

PROOF. Yzn-measurability follows from (2.11), (2.12) and (2.7). Obviously, 
bsn - Xn(Tn) = 0 on nln and XAn<Tn) = 0 on n2n" Hence (4.27) follows from 
Lemma 4.4, the central limit theorem and Lemma B.1 in Appendix B. D 

So we have shown that both (bsn - Xn(Tn)) and XAn(Tn) = XJn(Tn) are 
either equal to zero or of exact order n -l/2 in probability. However, to 
analyze the process N/t) for large t we shall have to determine the exact 
order of magnitude of both factors Q(bsn- Xn(t)) and Njn(t- c)= nXJ/t­
c) of the conditional intensity Azn(t) of the process [cf. (2.10)]. The factor 
Q(bsn - X/t)) is monotone in t and our knowledge concerning (bsn - Xn(t)) 
will suffice. Determining the exact order of XJn(t -c) for large t is a more 
delicate matter. In Lemma 4.5 we establish an asymptotic expression for 
XJn(t -c) for large n and t in terms of XAn(Tn) and (Xn(Tn)- Xn(t)). A key 
step in obtaining this expression is to show that (Xn(t)- Xn(t- c))-and 
hence the difference between XJn(t -c) and XAn(t)-is negligible for our 
purposes. 

LEMMA 4.5. Let y = bs, sop= P(bh - bs) < ~-Then for every D > 0, 

( 4.28) sup (Xn(t) -Xn(t -c)) =&'go(logn), 
t:Z.rn(Dn - 112)+c n 

sup jXJn(t- c)- {XAn(Tn) 
( 4.29) t:Z.rn(Dn - 112)+c 

PROOF. Take e > 0. In (4.25) and (4.26) we choose 0 < b < B so that (4.27) 
holds for sufficiently large n. On n~ = n1n u n2n we have fort ~ Tn(Dn - 1/ 2), 

nXn(Tn) 

XJn(t- c) =XAn(Tn) + (Xn(Tn) -Xn(t))- L zin 
i=nXn(t-c)+ 1 

~ (B + D)n-112, 

Q(bsn -Xn(t)) ~ Q'(O)(bsn -Xn(t)) ~ (Bd+D) n- 112 , 
as 

because Q'(O) = 1j(da). By (2.10) this implies that on n~, 

(B + D) 2 

sup Azn(t)~A= d 
t:z.rn(Dn-112 ) as 
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Conditionally on Zn = z with {Zn = z} c n~, Nn is a counting process with 
intensity Azn(t):::;; A. Hence, if II(t) denotes a unit Poisson process and k a 
positive integer, 

.9( sup (Xn(t) - Xn(t- c));;:: 2k) 
t ?. T,(Dn - 112 ) +c n 

::; .9( ~~~ (II(At)- II(A(t- c)));;:: 2k) + s 

11 (At )s; Dn 112 

::; ,9( sup (II(t)- IT(t - Ac));;:: 2k) + s 
t ?. Ac 

ll(t h; Dn 112 

Dn1! 2 
:::;; -k-exp{2Ac- k} + s, 

by Lemma B.2 in Appendix B. Because A = A(s) is finite for every e > 0, this 
proves (4.28). 

By (2. 7) and (2.8), 

XJn(t- c)- {XAn(Tn) + (1- 2p)(Xn(Tn) -Xn(t))} 

( 4.30) 

Because 0 :::;; Zin :::;; 2, the first term on the right in (4.30) is bounded in 
absolute value by 2(Xn(t)- X/t -c))= &g((log n)jn) uniformly for t;;:: 
rn(Dn - 112) + c by (4.28). To deal with the next term we note that nXn(Tn):::;; 
[ nbJ and that for t ;;:: rn(Dn - 1/ 2 ) + c, nXn(t) ;;:: [nbs] - ([nbs] - nXn(Tn)) -
[Dn112] = [nbs] - &g(n112) by Corollary 4.1. Application of Lemma B.1 
in Appendix B for M = &(n 11 2 ) yields that the second term on the right in 
(4.30) is &g(n - 314 ) uniformly for t ;;:: rn(Dn - 112 ) + c. Finally, (2.4), (2.5) and 
Corollary 4.1 imply that uniformly for t ;;:: rn(Dn - 112 ) + c, 

1 nX, (T,) 

0 :::;; - L (pin - P) 
n i=nX, (t) + l 

:::;; (X n ( Tn) - X n ( t)) ( P ( b h n - X n ( t)) - P ( b h - b s)) 

::;;Dn-1! 2p'(bh -ps)(~ + bsn -Xn(Tn) +Dn - 112) = &g(n-1). 

Together with (4.30), these estimates establish (4.29) and the lemma. D 
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We are now in a position to determine the exact order of magnitude of Tn. 
Roughly speaking, we shall argue that if Xn(Tn) = bsn' the situation is 
similar to the one in Theorem 4.1, the main difference being that in the 
present case XJn(t - c), and hence Azn(t), is smaller by a factor n 11 2 for 
large t . This implies that Tn is of order n 112 log n rather than log n as is the 
case in Theorem 4.1. Similarly, if XAn(Tn) = 0, the situation is comparable to 
that 
in Theorem 4.2, but now Q(bsn - Xn(t)) is smaller by a factor n 1/ 2 for large t. 
Again the conclusion is that Tn is of order n 11 2 log n instead of log n as in 
Theorem 4.2. The basic reason underlying all of this is that in the case y = bs 
we have Xioo) = bs - X(oo) = 0, and hence the nonzero quantity among 
XAn(Tn) and (bsn - X n(Tn)) is of order n - 1 ; 2 by Corollary 4.1. As we already 
noted, this is essentially different from what happens if y > bs or y < b5 , 

when either XA(oo) or (bs - X(oo)) is positive and hence either XAn(Tn) or 
(bsn - Xn(Tn)) is of exact order 1. 

THEOREM 4.3. Let y = b5 • Then for every e > 0 there exist positive num­
bers a and A such that for n = 2, 3, ... , 

( 4 .31) 

and hence 

( 4.32) 

9'( an112 log n ~ Tn ~ An112 log n) ~ 1- e, 

Tn 
"""-7-=--- is of exact order 1 in probability . 
n 112 log n 

PROOF. Take e > 0 and define fl 1n and fl 2n as in (4.25) and (4.26) with 
0 < b < B such that (4.27) holds for sufficiently large n. By Lemma 4.1, 
Theorem 3.3 and Lemma 4.5, we can also choose positive numbers C and D, 
and an event nn with 9'(fln) ~ 1 - e and such that on nn, 

( 4.33) Tn(Dn-1 12) ~ T( ~ n - 1/2) ~ Cn1f 2, 

sup I XJn(t- c) 
t~ Tn(Dn - l f 2 ) + c 

( 4 .34) 
- {X An ( Tn) + ( 1 - 2 P )(X n ( Tn) - X n ( t))} I 

~ Cn - 3/4 . 

Note that on fl 1n u fl 2 n we also have the trivial inequality 

( 4.35) 
XJn(t -c) ~ XAn( t) ~ XAn(Tn) + ( X(Tn) - X n( t)) 

~ (B + D)n- 112 
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Given Zn = z with {Zn = z} c !1 1n, (Nn(t)- n) is a counting process with 
conditional intensity Azn(t). On !11n n nn, (4.25), (4.34) and (4.35) imply that 
for sufficiently large n, 

Azn(t) 2': (bn 11 2 - Cn11 4 )Q'(b5 )(bsn -Xn(t)) 

fort 2': Tn(Dn - 112 ) + c , 
( 4 .36) 

Azn(t) ~ (B + D)n11 2 Q '(O)(bsn- Xn(t)) 

fort 2': Tn(Dn - 112 ) . 

By redefining Azn on the subset of fl 1n , where these inequalities do not hold, 
we can ensure that (4.36) is satisfied on !11n while changing the process only 
on a subset of n1n n n~. In the proofofTheorem 4.1 we now replace Tn(e) by 
Tn(Dn - 112 ) and (4.9) and (4.10) by (4.36), and repeat the argument following 
(4.10) to conclude that (Tn - Tn(Dn - 112 )) is stochastically bounded above and 
below by two constant multiples of n 112Sm(e), where Sm(e) is as in Lemma 
4.2 with em = Dn112 • Application of Lemma 4.2 yields the existence of 
positive numbers a 1 and A1 such that 

9'( a 1 n 11 2 log n ~ Tn - Tn( Dn - 112) ~ A1 n 11 2 n 11 2 log nl!11n) 
( 4.37) -

e: 1- e - 9'(fl~ l!1 1 n) 

for sufficiently large n. 
On !1 2 n, (4.26) implies that for t e: Tn(Dn - 112 ), 

(4.38) q 1n - 11 2 ~ Q(bsn- Xn(t)) ~ q 2 n - 11 2 

for positive q1 = Q'(b5 )b and q 2 = Q'(O)(B +D). Arguing as in the proof of 
Theorem 4.2, we find that (4.35) and (4.38) imply that on !1 2 n, (Tn -
Tn(Dn - 112)) is stochastically smaller than the maximum of (B + D)n112 

independent copies of S(p2 , q 1 n - 112 , c), with S(jj , q, c) as in Lemma 4.3. 
Moreover, S(p 2 , q 1n - 11 2 , c) is distributed as n 11 2S(p 2 ,q 1,cn - 11 2 ), which is 
stochastically smaller than n 112S(p 2 , q 1, c). 

On the other hand, on n2n• (Tn - Tn(Dn - 112)) is stochastically larger than 
the maximum of Njn(Tn(Dn - l / 2)) independent copies of S(p1, q 2 n - 112, c). 
Also S(p1, q 2 n - 1; 2, c) is stochastically larger than n112S(p1, q 2 , 0) and on 
!1 2 n nOn, Njn(Tn(Dn - 112 )) 2': bn112 - Cn 114 by (4.34). As in the proof of 
Theorem 4.2, we apply Lemma 4.3 to these upper and lower bounds and find 
that there exist positive numbers a 2 and A 2 such that 

( 4.39) 
9'( a 2 n 11 2 log n ~ Tn - Tn( Dn - 112) ~ A 2 n 11 2 log nl!12n) 

2-: 1- e - 9'(!1~1!12n) 

for sufficiently large n. 
Because 9'(!1~) ~ e and 9'(!11n u !12n) e: 1 - e, (4.33), (4.37) and (4.39) 

ensure the validity of (4.31) for large n and, therefore, trivially for all n 2': 2. 
Because (4.32) is merely a restatement of (4.31), this completes the proof of 
the theorem. D 



343

1140 M. C. M. DE GUNST AND W. R. VAN ZWET 

APPENDIX A 

LEMMA A.l. For real numbers c > 0 and 0 ~ v < w, let f: [0, oo)--') (0, oo) 
be continuously differentiable on (c, oo) with derivative f' < 0 and lim t ..... "" 
f(t) = 0, and suppose that as t --') oo, 

(A.l) 
f'(t) = vf(t- c)(l + &(f(t- c))) 

- wf( t) ( 1 + &( f( t - c))) . 
Then the equation w - a = veac has a unique solution a E (0, w] and there 
exists a positive number A such that 

(A.2) limeatf(t) =A. 
t ..... 00 

PRooF. Because w - x > vecx for x = 0, vecx is nonnegative and nonde~ 
creasing in x and ( w - x) decreases strictly to 0 as x j w, the equation 
w - a = veac does indeed have a unique solution a E (0, w ]. Note that a = w 
if v = 0. 

Take 6 = (w - v)/4. As f(t)--') 0 for t--') oo, there exists t 0 > c such that 
for t ~ t 0 , 

f' ( t) ~ ( v + 6) f( t - c) - ( w - 6) f( t)' 

and hence, for t ~ t0 , 

f( t) = - 1oo f' ( u) du ~ - ( v + 6) 1oo f( u) du + ( w - 6) 1oo f( u) du 
t t - c t 

= ( w - v - 2 6) 1oo f( u) du - ( v + 6) J' f( u) du 
t t - c 

w- v 00 

~ -2-~ f(u) du- wcf(t- c). 

As a result, 

(A.3) 
00 2 1 f( u) du ~ --{ f( t) + wcf( t - c)} --') 0 as t --') oo 

t w-v 

and we have shown that f is integrable. 
The lemma is now trivial for v = 0. We have 

f'( t) 
-- = -w + &(f(t- c)) 
f(t) ' 

and for s, t --') oo, 

log(;::~~:~) ~ J,'( j(<:; + w) du ~ &(C,'t( u) du) ~ o(l}. 

Because a = w in this case, this proves (A.2). 
We may therefore assume that 0 < v < w and 0 < a < w, and that 

(A.4) f'(t) = vf(t- c)- wf(t) + &((f(t- c)) 2). 
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g(t) = eatf(t), t ~ 0. 

Rewriting (A.4) in terms of g with the aid of the equation w -a = veac, we 
find for t > c, 

(A.6) g'(t) =(w-a)(g(t-c) -g(t)) + &'(f(t-c)g(t-c)). 

Hence, for an appropriate constant C > 0 and t > c, 

(w- a)[(1- e(t))g(t- c)- g(t)] 
(A.7) 

~ g'(t) ~ (w- a)[(1 + e(t))g(t- c)- g(t)], 

where e(t) = Cf(t -c). 
For k = 1, 2, ... , define 

m k = min g ( t), M k = max g ( t) , 
(k-l)c ~ t ~ kc (k-l)c ,;t~kc 

ek = e(kc). 

Choose k 0 so that eko ~ t. Fork ~ k 0 and kc ~ t ~ (k + 1)c, we have ek ~ t 
and by (A. 7), 

- (w- a)[g(t)- (1- ek)mk] 

~g'(t) ~ (w- a)[(1 + ek)Mk -g(t)]. 
(A.8) 

For t = kc, both [g(t)- (1- ek)mk] and [(1 + ek)Mk - g(t)] are positive 
and the inequalities (A.8) for g'(t) ensure that both remain so throughout the 
interval kc ~ t ~ (k + 1)c. However, this implies that fork ~ k 0 , 

(A.9) 

Because ek ~ t fork ~ k 0 , we find that for every k ~ k 0 , 

TI (1- er) ~ exp(-2 £: er) ~ exp{- 2C [ " f(u) du}, 
r = k r = k C (k - 2)c 

(A.10) 

TI (1 + er) ~ exp( £: er) ~ exp{ C [ " f(u) du}. 
r=k r=k C (k-2)c 

In view of (A.3), this yields the existence of a sequence 8k ~ 0 and M > m > 0 
such that for every k ~ k 0 , 

00 

infmr ~ mk n (1- er) ~ mk(1- 8k) ~ m > 0, 
r?.k r=k 

00 

supMr ~ Mk 0 (1 + er) ~ Mk(1 + 8k) ~ M < oo . 
r ?. k r = k 

It follows that for every k ~ k 0 , 

(A.ll) 
0 < m ~ mk(1- 8k) ~ liminfg(t) ~ limsupg(t) 

t --> 00 t--> 00 
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Let us look at (A.8) somewhat more carefully. Because g(t)- (1 - sk)mk 
> 0 and (1 + sk)Mk - g(t) > 0 for t E [kc, (k + 1)c], we find that for 
kc ~ t ~ (k + 1)c and k ~ k 0 , 

log = ( du > - ( w - a) c ( 
g(t)- (1- sk)mk ) t g'(u) 

g(kc)- (1- sk)mk Jkcg(u)- (1- sk)mk - ' 

and after replacing g(t) by mk+ 1, 

(A.12) mk +1 ~ (1- sk)mk + e-<w-a)c[g(kc)- (1- sk)mk]· 

Similarly, the right-hand inequality in (A.8) ensures that for k ~ k 0 , 

(A.13) 

and subtracting (A.12) from (A.13) we see that fork ~ k 0 , 

Mk +1 - mk +1 ~ (1- e-<w-a)c)[(1 + sk)Mk- (1- sk)mk] 

~ {3(Mk- mk) + 2Msk, 

where {3 = 1 - exp{ -(w - a)c} E (0, 1). By iterating this inequality, we find 
that for r ~ 1, 

r 

Mko +r- mko+r ~ f3r(Mko- mko) +2M L {3r-vsko +v- 1 
v= 1 

00 00 

~ {3 r M + M L {3j + 2M L Bj 
j=[(r+ 1)/2) j=k 0 +[rj2] 

M 2MC oo 

~ {3rM + --[3rf2 + --j f(u) du. 
1 - {3 C 1j2(2k 0 +r-5)c 

As 0 < {3 < 1, (A.3) ensures that 

(A.14) lim (Mk- mk) = 0, 
k->00 

and because Sk ~0, (All) and (A.14) show that g(t) tends to a positive and 
finite limit as t ~ oo. In view of (A.5), the proof is complete. D 

APPENDIX B 

LEMMA B.l. If X1 , X2 , ••• are independent bounded random variables, 
0 ~ XJ ~ a for j = 1, 2, ... , then for all M E N and every x ~ 0, 

(B.1) g( max IE (XJ- EXJ)I ~ x) ~ 4exp{-~}· 
l~m~M j=l 9a M 

PROOF. The lemma follows from Theorem 2 in Hoeffding (1963) combined 
with Levy's ·inequality [Shorack and Wellner (1986), page 844]. 0 



346

NON-MARKOVIAN MODEL FOR POPULATION GROWTH 1143 

LEMMA B.2. If IT(t) is a unit Poisson process, a and b are positive 
numbers and m E 1\1, then 

(B.2) .9'( sup (II(t)- II(t- b))~ 2m) ~ ~exp{2b- m}. 
t>b m 

ll(t)::s;a 

PROOF. Let 0 = Y0 < Y1 < Y2 < 
Then 

be the consecutive jump times of II. 

.9'( sup (II(t)- II(t- b))~ 2m- 1) 
t~b 

ll(t)::s:a 

=.9'( min (Yk- Yk - (2 m-l)) ~b) 
2m -l::s:k::s:a 

~ .9'( min (Yrm - Y{r-l)m) ~ b) 
l::s;r::s;[ajm] 

= {.9(II(b) ~ m- l)}[ajm]. 

Because II(b) has a Poisson distribution with mean b, we have .9'(II(b) ~ m) 
~ exp{2b- m} and hence for a~ m and m ~ 2b, 

.9'( sup (II(t)-II(t-b))~2m-1) 
t~b 

ll(t)sa 

ajm a 
~ (1- exp{2b- m}) ~ 1- -exp{2b- m}, 

m 
which proves (B.2) for a~ m and m ~ 2b. For a < m or m < 2b, (B.2) is 
trivially true. D 
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