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14.1 � Introduction

The nucleolus is a dynamic sub-nuclear structure with roles in ribosome subunit 
biogenesis, mediation of cell stress responses and regulation of cell growth (Boulon 
et al. 2010). The proteome and structure of the nucleolus are constantly changing in 
response to metabolic conditions, and virus infection represents one of the major 
challenges to nucleolar function (Greco 2009; Hiscox 2002, 2003, 2007; Hiscox 
et al. 2010). Viruses are obligate intracellular parasites and rely on the host cell for 
genome replication, protein expression and assembly of new virus particles. During 
infection there is a constant war between viruses trying to subvert the host cell and 
host-mediated anti-viral activity and interaction with the nucleolus is likely to be a 
key stage in this.

Interaction with the nucleolus is a pan-virus phenomenon and evidence suggests 
that proteins from many different types of viruses, such as those with DNA, RNA or 
RNA/DNA (e.g. retroviruses) genomes, encode proteins that can localise to the 
nucleolus during infection (Table 14.1). These examples include viruses with DNA 
genomes including the poxviruses, which replicate in the cytoplasm, as well as the 
herpes and adenoviruses, which replicate in the nucleus. HIV-1, perhaps the classic 
example of a retrovirus, undergoes an initial replication event in the cytoplasm and 
then further activity in the nucleus. RNA viruses encompass genomes of single-
stranded positive and negative polarity and also double-stranded RNA. Established 
dogma suggests that positive strand-RNA viral genome synthesis and transcription 
occur in the cytoplasm. Examples of negative strand RNA viruses can be found, 
which replicate in the cytoplasm (most of the Mononegavirales) and the nucleus 
(e.g. influenza viruses).
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The reason why RNA viruses, and positive-strand RNA viruses in particular, 
interact with the nucleolus when the site of genome replication is in the cytoplasm 
is less intuitive. In this latter case, viral proteins that are normally required in the 
cytoplasm must transit through the nuclear pore complex both to and from the 
nucleus. This process is crucial for virus biology because if the viral proteins that 
are required for cytoplasmic functions such as RNA synthesis and encapsidation are 
sequestered in the nucleolus or nucleus, then progeny virus production will be 
affected as has been revealed by inhibitor and genetic studies (Lee et al. 2006; Tijms 
et al. 2002). Viruses may interact with the nucleolus to usurp host cell functions and 
recruit nucleolar proteins to facilitate virus replication. Investigating the interac-
tions between viruses and the nucleolus may facilitate the design of novel anti-viral 
therapies both in terms of recombinant vaccines (Pei et  al. 2008) and molecular 
intervention (Rossi et al. 2007), and also contribute to a more detailed understanding 
of the cell biology of the nucleolus.

For many years our understanding of the interaction of viruses and the nucleolus 
was phenomenological and focused on identifying viral proteins that localised to 
this structure, their mechanisms of trafficking and potential interaction with 
nucleolar proteins (e.g. see Table 14.1). However, recent research capitalising on 
advances in proteomics, viral genetics and cellular imaging techniques are begin-
ning to increase our understanding of the mechanisms viruses use to subvert host 
cell nucleoli and facilitate virus biology (Hiscox et al. 2010).

New data are now emerging that support the view that many viruses interact with 
the nucleus and nucleolus, particularly to facilitate virus replication. One of the 
best-studied viruses in terms of viral interactions with the nucleolus is HIV-1 and is 
described in detail in Chap. 17. Although HIV has clearly defined cytoplasmic and 
nuclear replication strategies, the virus has a positive-sense RNA genome in the 
sense that the viral capsid contains two copies of positive-sense RNA, but these are 
reverse transcribed in the cytoplasm and then trafficked to the nucleus, where 
ultimately the new genome is transcribed and trafficked back to the cytoplasm. Part 
of the reasoning for the interaction of HIV-1 with the nucleolus is the trafficking of 
intronless mRNA from the nucleus into the cytoplasm (Michienzi et al. 2000). This 
is a property shared with herpes viruses and indicated that different viruses have 
evolved similar strategies involving subversion of nucleolar function for the benefit 
of virus biology (Boyne and Whitehouse 2006). In the case of HIV-1, this knowl-
edge has also led to the design and implementation of effective genetic therapies 
against the virus (Unwalla et al. 2008).

14.2 � DNA Virus Interactions with the Nucleolus

A large number of viruses with DNA genomes have been shown to interact with 
nucleolus, and this perhaps is not surprising as most DNA viruses replicate in the 
nucleus. A genome-wide screen of three distinct herpesviruses, herpes simplex 
virus 1 (HSV-1), cytomegalovirus (CMV) and Epstein–Barr virus (EBV), has shown 
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that at least 12 herpesvirus-encoded proteins specifically localise to the nucleolus 
(Salsman et al. 2008), which are implicated in many aspects of the herpesvirus life 
cycle. Therefore, a number of proteomic studies are currently being undertaken to 
study changes, in a global context, within the nucleolar proteome during virus infec-
tions, and are discussed later (Lam et  al. 2010). Several different herpes virus 
proteins have been shown to cause the redistribution of nucleolar proteins and hence 
disruption of the nucleolus. These include herpes simplex virus 1, the major tegu-
ment structural protein VP22 (Lopez et al. 2008), and the US11 (Xing et al. 2010) 
and UL24 proteins (Bertrand and Pearson 2008; Lymberopoulos and Pearson 2007). 
Such disruption in many cases may have a direct effect on nucleolar function.

A significant area of virus biology that has been investigated is the role of viral 
proteins that traffic through the nucleolus. For example, a number of HIV proteins 
that traffic through the nucleolus have been implicated in virus mRNA processing 
(Dundr et  al. 1995). Similar observations have also been made in herpesviruses 
(Boyne and Whitehouse 2006, 2009; Leenadevi and Dalziel 2009). Initial studies 
utilising the prototype g-2 herpesvirus, herpes virus saimiri (HVS), demonstrated 
that the HVS nucleolar trafficking ORF57 protein induces nucleolar redistribution 
of the host cell human TREX proteins, which are involved in mRNA nuclear export 
(Boyne and Whitehouse 2006). Intriguingly, ablating ORF57 nucleolar trafficking 
led to a failure of ORF57-mediated viral mRNA nuclear export (Boyne and 
Whitehouse 2006). The precise role of this nucleolar sequestration is yet to be deter-
mined, but possible effects on viral mRNA/protein processing and viral ribonucleo-
protein particle assembly are currently being investigated.

This property may also be conserved in other ORF57 homologues as recent 
analysis has shown that the ORF57 protein from Kaposi’s sarcoma associated her-
pesvirus (KSHV) also dynamically traffics through the nucleolus (Boyne et  al. 
2008b). Moreover, on the rapid disorganisation of the nucleolus a reduction is 
observed in virus mRNA nuclear export (Boyne and Whitehouse 2009). The forma-
tion of an ORF57-mediated export competent ribonucleoprotein particle within the 
nucleolus may also have implications for the translation of viral mRNAs. For exam-
ple, it has recently been demonstrated that the cellular nucleo-cytoplasmic shuttle 
protein, PYM, which is involved in translation enhancement, is redistributed to the 
nucleolus in the presence of the KSHV ORF57 protein (Boyne et al. 2010). This 
interaction effectively enhances the translation of the predominantly intronless 
transcripts made by KSHV, and draws parallels with potential translation enhance-
ment of positive strand RNA virus genomes through their interaction with the 
nucleolus (discussed later).

A second area of virus replication where nucleolar proteins are sequestered 
involves the replication of the virus DNA genome. For example, we (Matthews) 
and others have observed that nucleolar antigens upstream binding factor (UBF) 
and nucleophosmin (B23.1) are both sequestered into adenovirus DNA replication 
centres where they promote viral DNA replication (Hindley et al. 2007; Lawrence 
et al. 2006; Okuwaki et al. 2001). Similarly, in HSV-1 infected cells, a number of 
nucleolar proteins including nucleolin and UBF are recruited into viral DNA repli-
cation centres (Lymberopoulos and Pearson 2010). These are specific sites where 
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replication and encapsidation of the HSV-1 genome occurs. Evidence suggests that 
sequestration of UBF is essential for viral DNA replication as overexpression of 
tagged version of UBF acts in a dominant-negative manner inhibiting virus DNA 
replication (Stow et al. 2009). Moreover, depletion of nucleolin results in reduced 
virus gene expression and infectious virion production (Calle et al. 2008; Sagou 
et al. 2010).

In addition to enhancing virus replication, nucleolar proteins are redistributed to 
alter cellular pathways during infection. For example, the nucleolar targeted HSV-1 
US11 protein has been shown to interact with homeodomain-interacting protein 
kinase 2 (HIPK2), which plays a role in p53-mediated cellular apoptosis and 
hypoxic response (Calzado et al. 2009) and also participates in the regulation of the 
cell cycle (Calzado et al. 2007). This interaction alters the sub-cellular localisation 
of HIPK2 and protects against HIPK2-mediated cell cycle arrest (Giraud et al. 2004). 
In contrast, the cellular protein, protein interacting with the carboxyl terminus-1 
(PICT-1), can sequester the virally encoded apoptosis suppressor protein, KS-Bcl-2 
protein, from the mitochondria into the nucleolus to down-regulate its anti-apoptotic 
activity (Kalt et  al. 2010). This is a potential interesting interplay between 
two sub-cellular structures involved in the viral stress response (Olson 2009), and 
maybe more common and widespread. For example, bacterial infection has been 
shown to disrupt the nucleolus through regulating mitochondrial dysfunction (Dean 
et al. 2010).

14.3 � Interactions of RNA Viruses with the Nucleolus

Although many RNA virus proteins have been shown to localise to the nucleolus, 
most attention has focused on viral capsid proteins. These are proteins that associate 
with the viral genome for encapsidation and assembly of new virus particles. These 
proteins may also modulate replication (and transcription, where appropriate) of the 
viral genome. Increasingly, capsid proteins have also been shown to have a number 
of roles in modulating host cell signalling pathways and functions. These capsid 
proteins are referred to as capsid, nucleoproteins or nucleocapsid proteins, depend-
ing on the virus. In many cases, they are phosphorylated (Chen et al. 2005), which 
can modulate activity (Spencer et al. 2008).

Many examples of these proteins have been shown to localise to the nucleolus 
both when over-expressed and also in infected cells. These include proteins from 
positive-strand animal and plant RNA viruses, including the coronavirus nucleo-
capsid protein (Chen et al. 2002; Hiscox et al. 2001; Wurm et al. 2001), the arterivi-
rus nucleocapsid protein (Rowland et al. 1999), the alphavirus capsid protein (Jakob 
1994) and non-structural protein nsP2 (Rikkonen et al. 1992, 1994) and the umbra-
virus ORF3 protein (Ryabov et  al. 2004). Capsid proteins from negative-strand 
RNA viruses also localise to the nucleolus. These have strain dependent localisation 
of a number of different influenza virus proteins (Emmott et al. 2010c; Han et al. 
2010; Melen et al. 2007; Volmer et al. 2010).
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For many years this has followed a phenomenological pattern and viral capsid 
and RNA-binding proteins might simply localise to the nucleolus because they 
diffuse through the nuclear pore complex and associate with compartments in the 
nucleus that have high RNA contents – the nucleolus in particular because it is tran-
scriptionally active. In this case, sub-cellular localisation to the nucleolus would 
have no physiological consequence for the virus or the cell. However, RNA virus 
replication is error prone and selection pressure might apply to such a fortuitous 
localisation (given the ~4,500+ nucleolar proteins and their diverse roles (Ahmad 
et al. 2009)), with the concomitant effect that the virus could select for changes that 
ultimately disrupt nucleolar function and/or recruit nucleolar proteins to aid virus 
replication.

There is a potential correlation between the nucleolar localisation of a viral pro-
tein and the loss of an essential nucleolar function. The molecular mechanisms 
responsible for this effect are unknown, but the displacement and re-localisation of 
nucleolar proteins by viral proteins could increase or decrease the nucleolar, nuclear 
and/or cytoplasmic pool of these proteins. Certainly, the accumulation of viral pro-
teins in the nucleolus could potentially cause volume exclusion or crowding effects, 
which have been proposed to play a fundamental role in the formation of nuclear 
compartments including the nucleolus, and can be addressed by proteomic strate-
gies. Therefore, disruption of nucleolar architecture and function might be common 
in virus-infected cells if viral proteins target the nucleolus or a stage of the virus 
lifecycle disrupts nucleolar proteins. For example, poliovirus infection results in the 
selective redistribution of nucleolin from the nucleolus to the cytoplasm (Waggoner 
and Sarnow 1998) and inactivation of UBF, which shuts off RNA polymerase I 
transcription in the host cell. The infection of cells with IBV has been shown to 
disrupt nucleolar architecture (Dove et al. 2006b) and cause arrest of the cell cycle 
in the G2/M phase and failure of cytokinesis (Dove et  al. 2006a). The IBV and 
arterivirus nucleocapsid proteins associate with nucleolin and fibrillarin, respec-
tively. Similarly, the HIV-1 Rev protein has been shown to localise to the DFC and 
GC and over-expression of Rev protein alters the nucleolar architecture and is asso-
ciated with the accumulation of nucleophosmin (Dundr et al. 1995).

14.4 � Trafficking of Virus Proteins to the Nucleolus

Many different virus proteins localise to the nucleolus (Table  14.1). However, 
predicting viral (and cellular) nucleolar targeting signals has historically been prob-
lematic and only recently has bioinformatic software been developed to fascilitate 
this (Scott et al. 2011). Nucleolar trafficking might be mediated by virtue of the 
fact that viral proteins that are trafficked to the nucleolus contain motifs that 
resemble host nucleolar targeting signals, that is, a form of molecular mimicry is 
used (Rowland and Yoo 2003). The discovery of specific nucleolar trafficking 
signals in viral proteins has indicated a functional mechanism behind this observed 
localisation (Lee et al. 2003; Reed et al. 2006; Rowland et al. 2003). Analysis of the 
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different nucleolar trafficking signals identified in viral proteins using dynamic 
live-cell imaging has certainly demonstrated that different proteins can confer 
differential trafficking rates and localisation patterns (Emmott et al. 2008). This is 
very similar to cellular nucleolar proteins (Lechertier et al. 2007).

In some virus proteins, both NLSs and nucleolar targeting signals act in concert to 
direct a protein to the nucleolus. The arterivirus porcine reproductive and respiratory 
syndrome virus (PRRSV) nucleocapsid protein localises to the nucleolus and has 
been shown to contain two potential NLSs, a pat4 and a downstream pat7 motif 
(Rowland et al. 1999, 2003). Analysis revealed that a 31 amino acid sequence incor-
porating the pat7 motif could direct the nucleocapsid protein to both the nucleus and 
nucleolus. The protein also contains a predicted NES, presumably to allow the pro-
tein to traffic back into the cytoplasm to contribute to viral function in this compart-
ment. This is common with other similar related proteins. For example, in the avian 
coronavirus nucleocapsid protein an eight amino acid sequence is necessary and 
sufficient to target the protein to the nucleolus (Reed et al. 2006) and contains an 
NES (Reed et al. 2007). Intriguingly, genetic analysis (Lee et al. 2006), dynamic live-
cell imaging (You et al. 2008) and use of trafficking inhibitors (Tijms et al. 2002) 
paint a picture of the requirement of these positive sense RNA virus capsid proteins 
localising to the nucleolus as soon as they are translated, prior to their involvement in 
virus replication or assembly. This may be related to subversion of host cell function, 
protein modification (e.g. phosphorylation) or recruitment of nucleolar proteins.

Viral proteins might also traffic to the nucleolus through association with cellular 
nucleolar proteins (Yoo et al. 2003). For example, the hepatitis delta antigen has 
been shown to contain a nucleolar targeting signal that also corresponded to a site 
that promoted binding to nucleolin (Lee et al. 1998). Mutating this region prevented 
nucleolin binding to the delta antigen and nucleolar trafficking. By implication, this 
relates nucleolin binding to nucleolar trafficking (Lee et  al. 1998). Certainly, 
interaction with nucleophosmin and hepatitis delta antigens can modulate viral 
replication (Huang et  al. 2001) and more recently combined proteomic-RNAi 
screens have revealed many other nucleolar proteins that can be associated with this 
viral protein (Cao et al. 2009). Trafficking and accumulation of viral proteins to and 
from the nucleolus, similar to cellular proteins, may also be cell cycle related. For 
example, the coronavirus nucleocapsid protein localises preferentially to the nucle-
olus in the G2 phase of the cell cycle (Cawood et  al. 2007), as does the human 
cytomegalovirus protein UL83 in the G1 phase (Arcangeletti et al. 2011). Again 
these trafficking profiles may be related to the interaction with cellular nucleolar 
proteins (Emmott and Hiscox 2009).

14.5 � Functional Relevance of Nucleolar Interactions  
to the Viral Life Cycle

Many different examples now exist to show that the disruption of nuclear or nucleo-
lar trafficking of viral proteins affects viral pathogenesis, and argues against 
nucleolar localisation as a purely phenomenological observation. For example, the 
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Semliki Forest virus non-structural protein nsP2 can localise to the nucleolus 
(Peranen et al. 1990; Rikkonen et al. 1992, 1994) and disruption of this localisation 
through a single amino acid change results in a reduction in neurovirulence 
(Fazakerley et al. 2002). Such in vitro data has also been backed up by persuasive 
in vivo data. Mutation of the arterivirus nucleocapsid protein pat7 NLS motif in the 
context of a full-length clone revealed that this sequence could have a key role in 
virus pathogenesis in  vivo, as animals infected with mutant viruses had shorter 
viraemia than wild-type viruses (Lee et  al. 2006; Pei et  al. 2008). Interestingly, 
reversions occurred in the mutated nucleocapsid gene sequence and although the 
amino acid sequence of the pat7 motif was altered, its function was not; this new 
signal was defined as a pat8 motif (Lee et al. 2006). The clear implications of this 
groundbreaking work is that disruption of nucleolar trafficking of a viral protein 
proves functional relevance and illustrates the potential of exploiting this knowl-
edge for the generation of growth attenuated recombinant vaccines (Pei et al. 2008; 
Reed et al. 2006, 2007).

Similarly, point mutations in the Japanese encephalitis virus (JEV) core protein 
that abolished nuclear and nucleolar localisation resulted in recombinant viruses 
with impaired replication in mammalian cells, compared to wild type virus (Mori 
et al. 2005; Tsuda et al. 2006). Curiously, replication of recombinant viruses was not 
impaired in insect cells, illustrating this could potentially be related to differences in 
nucleolar architecture and proteomes between these cell types (Thiry and Lafontaine 
2005). The JEV core protein has been shown to interact with nucleophosmin and is 
translocated from the nucleolus to the cytoplasm.

Flaviviruses in general (JEV, Dengue virus and West Nile virus) appear to have 
a part-nuclear stage to the synthesis of viral RNA and several components of the 
viral replicase together with newly synthesised RNA have been found in the nucleus 
of infected cells (Uchil et  al. 2006). One intriguing question that has yet to be 
elucidated is how such viral RNA traffics from the nucleus to the cytoplasm. Most 
cellular mRNAs are spliced and it is part of the splicing process that signals nuclear 
export. Certain DNA viruses, such as herpesvirus saimiri, produce intron-less 
mRNA and these viruses have evolved specific viral proteins (such as herpesvirus 
saimiri ORF57 (Boyne et al. 2008a)), which interact with the cellular mRNA export 
machinery (e.g. the mRNA processing and export factor ALY) to traffic viral mRNA 
from the nucleus to the cytoplasm (Boyne et al. 2008b, 2010; Boyne and Whitehouse 
2006) and a similar process might be required by RNA viruses. For example, tomato 
bushy stunt virus (TBSV) redistributes ALY from the nucleus to the cytoplasm, and 
this might be a way the virus mediates host cell protein synthesis (Uhrig et al. 2004). 
In plants RNA silencing, a host defence mechanism targets virus RNAs for degrada-
tion in a sequence-specific manner and viruses use several mechanisms to counter-
act this system (Canto et al. 2006). TBSV encodes a protein, P19, which interferes 
with this pathway. However, ALY might transport P19 from the cytoplasm to the 
nucleus or nucleolus and disrupt its silencing suppression activity. Nucleolin has 
also been shown to be involved in the trafficking of herpes simplex virus type 1 
nucleocapsids from the nucleus to the cytoplasm (Sagou et  al. 2010), drawing 
parallels with the involvement of nucleolar proteins in the movement of plant viruses 
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(Kim et  al. 2007a, b). Different plant virus proteins involved in long-distance 
phloem-associated movement of virus particles or with roles in binding to the RNA 
virus genomes localise to the nucleolus and other sub-nuclear structures (Kim et al. 
2007b; Ryabov et  al. 2004). This may be mediated by association with nuclear 
proteins, as is the case with fibrillarin and the ORF3 protein of plant umbraviruses 
(Kim et al. 2007a).

Hijacking the nucleolus is not exclusive to plant viruses and may also occur with 
mammalian viruses. Similar to the plant rhabdovirus maize fine streak virus 
(MFSV), whose nucleocapsid and phosphoproteins localise to the nucleolus (Tsai 
et al. 2005), the animal negative-stranded RNA virus Borna disease virus has been 
reported to use the nucleolus as a site for genome replication, and its RNA-binding 
protein has the appropriate trafficking signals for import to and export from the 
cytoplasm to the nucleus (Pyper et al. 1998). The hepatitis delta virus genome also 
has differential synthesis in the nucleus with RNA being transcribed in the nucleo-
lus (Huang et  al. 2001); this is similar to the potato spindle tuber viroid where 
RNAs of opposite polarity are sequestered in different nuclear compartments, with 
the positive-sense RNA being transported to the nucleolus. Again localisation to 
different sub-nuclear strcutures may have different roles in the virus life cycle  
(Li et al. 2006). An intriguing recent discovery has been made showing that adeno-
associated virus (AAV) encodes an additional protein called assembly-activating 
protein (AAP) that localises to the nucleolus and promotes assembly of the viral 
capsid (Sonntag et al. 2010).

As a result of their limited genomes and coding capacities, recruitment of cellu-
lar proteins with defined functions in RNA metabolism would be a logical step to 
facilitate RNA virus infection. As nucleolar proteins have many crucial functions in 
cellular RNA biosynthesis, processing and translation, it comes as no surprise that 
nucleolar proteins are incorporated into the replication and/or translation complexes 
formed by RNA viruses. Given that some nucleolar proteins have many different 
functions, the same nucleolar protein might be used by a virus for different aspects 
of the replication pathway. Studies suggest that the human rhinovirus 3 C protease 
(3Cpro) pre-cursors, 3CD’ and/or 3CD, localise in the nucleoli of infected cells 
early in infection and inhibit cellular RNA transcription via proteolytic mechanisms 
(Amineva et al. 2004). This general property is not restricted to human rhinovirus 
and in terms of the inhibition of cellular translation has also been described for 
encephalomyocarditis virus (Aminev et  al. 2003a, b), again suggesting roles in 
translational regulation.

14.6 � Applying Quantitative Proteomics to Study Viral 
Interactions with the Nucleolar Proteome

Given the many roles of the nucleolus in the life cycle of the cell, including as stress 
sensor (Boulon et al. 2010; Mayer and Grummt 2005), it would seem reasonable that 
comprehensive unbiased analysis of the nucleolar proteome would yield interesting 
data, particularly, with providing clues as to what cellular nucleolar functions may 
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be altered by virus infection and what mechanisms the nucleolus may use to respond 
to this. How the nucleolar proteome changes in response to virus-infection has been 
investigated using stable isotope labelling with amino acids in cell culture (SILAC) 
coupled to LC-MS/MS and bioinformatics (Fig.  14.1). These studies, led by our 
laboratories, have analysed purified nucleoli and the nucleus, and have directly 
stemmed from the pioneering work of the Lamond laboratory in analysing purified 
nucleoli using quantitative proteomics (Andersen et al. 2005). Viruses investigated 
so far have included human adenovirus (Lam et al. 2010), avian coronavirus (Emmott 
et al. 2010a, b), different strains of influenza virus (Emmott et al. 2010c) and human 
respiratory syncytial virus (Munday et al. 2010). Overall, our data indicates that only 
a small proportion of nucleolar proteins change in abundance in virus-infected cells, 

Fig. 14.1  Diagram of a “classic” SILAC experiment. This technology allows high-throughput 
quantitative proteomics and has been readily applied to the nucleolus, especially when coupled 
with dynamic live-cell imaging (Andersen et al. 2005). The ability to simultaneously compare up 
to three different conditions through selection of the appropriate isotope label has enabled the 
recent studies of how the nucleolar proteome changes in virus-infected cells (Emmott et al. 2010a; 
Emmott et al. 2010b; Emmott et al. 2010c; Hiscox et al. 2010; Lam et al. 2010)
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and these tend to be virus-specific. For example, in adenovirus infected cells just 7% 
of proteins identified show a twofold or greater change compared to almost a third 
of nucleolar antigens showing a greater than twofold change when cells are treated 
with ActD which inhibits rRNA synthesis (Lam et al. 2010). What is notable is that 
direct comparison between the adenovirus data set and the ActD dataset shows no 
clear correlation (Hiscox et al. 2010; Lam et al. 2010), further supporting the case 
that adenovirus induces effects on the nucleolus distinct from that of a generalised, 
non-specific shut down of nucleolar function. This fits well with a previous observa-
tion that adenovirus infection does not affect rRNA synthesis even 36 h post-infection 
(Lawrence et al. 2006). These results were initially surprising given the number of 
different viral proteins that can localise to this structure and how they interact with 
nucleolar proteins. This suggests that the nucleolar proteome and architecture is 
resilient during early stages of infection but may become disrupted as more and 
more damage accumulates inside cells because of virus activity, as clearly evidenced 
in live-cell imaging experiments (Bertrand and Pearson 2008; Dove et al. 2006b; 
Lymberopoulos et al. 2010).

14.7 � Future Research Directions

Coupling quantitative proteomic analysis of the nucleolus and deep sequencing 
throughout infection in time-course experiments of lytic, latent, acute and persistent 
viruses would reveal valuable insights into the response of the nucleolus to virus 
infection. Likewise, being able to move from studying cell culture-adapted labora-
tory strains into clinical isolates replicating in primary cells would yield more bio-
logically relevant information, particularly with regard to the severity of disease and 
nucleolar changes. These technologies could also be applied to large-scale analysis 
of viral proteins that traffic to the nucleolus and the cellular nucleolar proteins that 
they associate with (e.g. using SILAC and EGFP-traps (Trinkle-Mulcahy et  al. 
2008)), thus generating and integrating interactome networks with the nucleolar 
proteome during infection.
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