Skip to main content

Urea Metabolism: Clinical Chemistry of Urea

  • Chapter
Prescribing Hemodialysis

Part of the book series: Developments in Nephrology ((DINE,volume 29))

Abstract

Urea is a simple compound of low molecular weight that has appeared at the crossroads of scientific discovery. It was first synthesized by Friedrich Wöhler in 1828, a landmark achievement that helped to erase the mystical barriers between organic and inorganic chemistry. Wöhler showed that urea, an organic compound, could be synthesized from ammonium cyanate, an inorganic compound. The synthesis of urea, representing a link between organic and inorganic chemistry was perhaps more significant than the synthesis of DNA. Although technically more difficult, the latter was accepted more readily by the scientific community than was the synthesis of urea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 369.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rapoport J, Chaimovitz C, Hays RM: Active urea transport in toad skin is coupled to H+ gradients. Am J Physiol 256:F830–835, 1989.

    PubMed  CAS  Google Scholar 

  2. Mitch WE, Klahr S (eds): Nutrition and the Kidney, Boston, Little, Brown, 1988.

    Google Scholar 

  3. Mann FC: The effects of complete and of partial removal of the liver. Medicine 6:419–511, 1927.

    Article  Google Scholar 

  4. Rudman D, Difulco TJ, Galambos JT, Smith RB, Salam AA, Warren WD: Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J Clin Invest 52:2241–2249, 1973.

    Article  PubMed  CAS  Google Scholar 

  5. McLean P, Rossi F: Changes in the activities of urea-cycle enzymes after administration of carbon tetrachloride. Biochem J 81:261, 1964.

    Google Scholar 

  6. Walser M, Coulter AW, Dighe S, Crantz FR: The effect of keto-analogues of essential amino acids in severe chronic uremia. J Clin Invest 52:678–690, 1973.

    Article  PubMed  CAS  Google Scholar 

  7. Pittiruti M, Siegel JH, Sganga G, Coleman B, Wiles CE, Placko R: Determinants of urea nitrogen production in sepsis. Arch Surg 124:362–372, 1989.

    PubMed  CAS  Google Scholar 

  8. Rose WC: The amino acid requirements of adult man. Nutr Abstr Rev 27:631–647, 1957.

    CAS  Google Scholar 

  9. Rose WC, Wixom RL, Lockhart HB, Lamberth GF: The amino acid requirements of man. XV. The valine requirement: summary and final observations. J Biol Chem 217:987–995, 1955.

    PubMed  CAS  Google Scholar 

  10. Gulyassy PF, Aviram A, Peters JH: Evaluation of amino acid and protein requirements in chronic uremia. Arch Intern Med 126:855–859, 1970.

    Article  PubMed  CAS  Google Scholar 

  11. Wassner SJ, Bergstrom J, Brusilow SW, Harper A, Mitch W: Protein metabolism in renal failure: abnormalities and possible mechanisms. Am J Kidney Dis 7:285–291, 1986.

    PubMed  CAS  Google Scholar 

  12. Russell A, Levin B, Oberholzer VG, Sinclair L: Hyperammonemia: a new instance of an inborn enzymatic defect of the biosynthesis of urea. Lancet 2:699, 1962.

    Article  PubMed  CAS  Google Scholar 

  13. McMurray WC, Rathburn JC, Mohyuddin F, Koegler SJ: Citrullinuria. Pediatrics 32:347, 1963.

    PubMed  CAS  Google Scholar 

  14. Westall RG: Arginosuccinicaciduria: identification and reactions of the abnormal metabolites in a newly described form of mental disease, with some preliminary metabolic studies. Biochem J 77:135, 1960.

    PubMed  CAS  Google Scholar 

  15. Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED: Neurologic outcome in children with inborn errors of urea synthesis: outcome of urea-cycle enzymopathies. N Engl J Med 310:1500–1505, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Brusilow SW, Danney M, Waber LJ, Batshaw M, Burton B, Levitsky L, Roth K, McKeethren C, Ward J: Treatment of episodic hyperammonemia in children with inborn errors of urea synthesis. N Engl J Med 310:1630–1634, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Bohles H, Harms D, Heid H, Schmid D, Fekl W: Treatment of argininosuccinic aciduria with keto analogues of essential amino acids. Am J Clin Nutr 31:1808–1811, 1978.

    PubMed  CAS  Google Scholar 

  18. Brusilow S, Batshaw M, Walser M: Use of keto acids in inborn errors of urea synthesis. Curr Concepts Nutr 8:65–75, 1979.

    PubMed  CAS  Google Scholar 

  19. Kaplan MA, Hays L, Hays RM: Evolution of a facilitated diffusion pathway for amides in the erythrocyte. Am J Physiol 226:1327–1332, 1974.

    PubMed  CAS  Google Scholar 

  20. Rabinowitz L, Gunther RA: Excretion of urea in sheep during urea, mannitol, and methylurea osmotic diuresis. Am J Physiol 222:807–809, 1972.

    PubMed  CAS  Google Scholar 

  21. Pedrini LA, Zereik S, Rasmy S: Causes, kinetics and clinical implications of post-hemodialysis urea rebound. Kidney Int 34:817–824, 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Walser M, Bodenlos LJ: Urea metabolism in man. J Clin Invest 38:1617, 1959.

    Article  PubMed  CAS  Google Scholar 

  23. Walser M: Urea metabolism in chronic renal failure. J Clin Invest 53:1385, 1974.

    Article  PubMed  CAS  Google Scholar 

  24. Mitch WE, Walser M, Steinman TI, Hill S, Zeger S, Tungsanga K: The effect of a keto acid-amino acid supplement to a restricted diet on the progression of chronic renal failure. N Engl J Med 311:623–629, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Levenson SM, Crowley LV, Horowitz RE, Malm OJ: The metabolism of carbon-labeled urea in the germfree rat. J Biol Chem 234:2061, 1959.

    PubMed  CAS  Google Scholar 

  26. Richards P: Nutritional potential of nitrogen recycling in man. Am J Clin Nutr 25:615–625, 1972.

    PubMed  CAS  Google Scholar 

  27. Walser M: Ketoacids in the treatment of uremia. Clin Nephrol 3:180–186, 1975.

    PubMed  CAS  Google Scholar 

  28. Richards P: The metabolism and clinical relevance of the keto acid analogues of essential amino acids. Clin Sci and Mol Med 54:589–593, 1978.

    CAS  Google Scholar 

  29. Cahill GF Jr: Nitrogen versatility in bats, bears and man. N Engl J Med 290:686–687, 1974.

    Article  PubMed  Google Scholar 

  30. Barsotti G, Guiducci A, Ciardella F, Giovannetti S: Effects on renal function of a low-nitrogen diet supplemented with essential amino acids and ketoanalogues and of hemodialysis and free protein supply in patients with chronic renal failure. Nephron 27:113–117, 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Kaplan LA: Urea, in Methods in Clinical Chemistry, Pesce AJ, Kaplan LA (eds), St. Louis, C.V. Mosby Co, pp 22–26, 1987.

    Google Scholar 

  32. Merrill JP, Legrain M, Hoigne R: Observations on the role of urea in uremia. Am J Med 14:519, 1953.

    Google Scholar 

  33. Johnson WJ, Hagge WW, Wagoner RD, Dinapoli RP, Rosevear JW: Effects of urea loading in patients with far-advanced renal failure. Mayo Clin Proc 47:21–29, 1972.

    PubMed  CAS  Google Scholar 

  34. Bachmann K, Valentovic M, Shapiro R: A possible role for cyanate in the albumin binding defect of uraemia. Biochem Pharmacol 29:1598, 1980.

    Article  PubMed  CAS  Google Scholar 

  35. Flückiger R, Harmon W, Meier W, Loo S, Gabbay KH: Hemoglobin carbamyla-tion in uremia. N Engl J Med 304:823, 1981.

    Article  PubMed  Google Scholar 

  36. Bunn HF, Haney DN, Kamin S, Gabbay KH, Gallop PM: The biosynthesis of human hemoglobin A1: slow glycosylation of hemoglobin in vivo. J Clin Invest 57:1652–1659, 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Clegg LS, Lindup WE: Drug binding defect of uraemic plasma: unlikely involvement of carbamoylated albumin. Biochem Pharmacol 31:2791–2794, 1982.

    Article  PubMed  CAS  Google Scholar 

  38. Bergstrom J, Furst P: Uraemic toxins, in Replacement of Renal Function by Dialysis (2ed), Drukker W, Parsons FM, Maher JF (eds), Boston, Martinus Nijhoff, pp 354–390, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Depner, T.A. (1991). Urea Metabolism: Clinical Chemistry of Urea. In: Prescribing Hemodialysis. Developments in Nephrology, vol 29. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1509-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1509-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8811-4

  • Online ISBN: 978-1-4613-1509-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics