Skip to main content

A Geometric Method for Periodic Orbits in Singularly-Perturbed Systems

  • Conference paper
Multiple-Time-Scale Dynamical Systems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 122))

Abstract

In this work, we establish a modular geometric method to demonstrate the existence of periodic orbits in singularly perturbed systems of differential equations. These orbits have alternating fast and slow segments, reflecting the two time scales in the problems. The method involves converting the periodic orbit problem into a boundary value problem in an appropriately augmented system, and it employs several versions of the exchange lemmas due to Jones, Kopell, Kaper and Tin. It is applicable to models that arise in a wide variety of scientific disciplines, and applications are given to the FitzHugh-Nagumo, Hodgkin-Huxley, and Gray-Scott systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.B. Angenent, J. Mallet-Paret, and L. A. Peletier. Stable transition layers in semilinear boundary value problems. J. Diff. Eq., 67:212ā€“242, 1987.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. D. Aronson and H. Weinberger. Nonlinear diffusions in population genetics, combustion and nerve propagation. In J. Goldstein, editor, Partial Differential Equations and related topics, Volume 446 of Lecture Notes in Math. Springer Verlag, 1975.

    Google ScholarĀ 

  3. T.B. Benjamin. Instability of periodic wavetrains in dispersive systems. Proc. Roy. Soc. London, Series A, 299:59ā€“75, 1967.

    ArticleĀ  Google ScholarĀ 

  4. C. Bonet. Singular perturbation of relaxed periodic orbits. J. Diff. Eq., 66:301ā€“339, 1987.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  5. R.Cam Ass A, G. Kovacic, and S. K. Tin. A Melnikov method for homoclinic orbits with many pulses. Arch. Rat. Mech. Analysis, 143:105ā€“193, 1998.

    ArticleĀ  Google ScholarĀ 

  6. G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Diff. Eq., 23:335ā€“367, 1977.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. G. Carpenter. Periodic solutions of nerve impulse equations. J. Math. Anal. Appl., 58:152ā€“173, 1977.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. S.N. Chow and X.-B. Lin. Bifurcation of a homoclinic orbit with a saddle-node equilibrium. Diff. Int. Eq., 3:435ā€“466, 1990.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. A. Doelman, T.J. Kaper, and P. Zegeling. Pattern formation in the 1-d Gray-Scott model. Nonlinearity, 10:523ā€“563, 1997.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  10. S. R. Dunbar. Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits. SIAM J. Appl. Math., 46:1057ā€“1078, 1986.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  11. W. Eckhaus. Studies in nonlinear stability theory. Springer-Verlag, New York, 1965.

    BookĀ  MATHĀ  Google ScholarĀ 

  12. E. Eszter. On the stability of periodic traveling waves solutions associated with the FitzHugh-Nagumo system. PhD thesis, Department of Mathematics, University of Massachusetts, 1999.

    Google ScholarĀ 

  13. N. Fenichel. Geometrical singular perturbation theory for ordinary differential equations. J. Diff. Eq., 31:53ā€“98, 1979.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. P.C. Fife. Boundary and interior transition layer phenomena for pairs of second order differential equations. J. Math. Anal. Appl., 54:497ā€“521, 1976.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. P.C. Fife. Mathematical aspects of reacting and diffusing systems. Springer Verlag, New York, 1979.

    BookĀ  MATHĀ  Google ScholarĀ 

  16. R. Fitzhugh. Impulses and physiological states in models of nerve membrane. Biophys. J., 1:445ā€“466, 1961.

    ArticleĀ  Google ScholarĀ 

  17. R.A. Gardner. On the structure of the spectra of periodic traveling waves. J. Math. Pures Appl., 72:415ā€“439, 1993.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. R.A. Gardner. Spectral analysis of long wavelength periodic waves and applications. J. reine u angew. Math., 491:149ā€“181, 1997.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  19. R.A. Gardner and J. Smoller. The existence of periodic travelling waves for singularly perturbed predatory-prey equations via the conley index. J. Diff. Eq., 47:133ā€“161, 1983.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer Verlag, New York, 1983.

    MATHĀ  Google ScholarĀ 

  21. J. Hale. Ordinary differential equations. Robert E. Krieger Publishing Company, Inc., Malabar, FLA, 1980. Ch. 3.

    MATHĀ  Google ScholarĀ 

  22. G.H Aller and S. Wiggins. N-Pulse homoclinic orbits in perturbations of resonant Hamiltonian systems. Arch. Rational Mech. Anal., 130:25ā€“101, 1995.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  23. S. Hastings. The existence of periodic solutions to Nagumoā€™s equation. Quart. J. Math. Oxford, 3(25):369ā€“378, 1974.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. S. Hastings. On traveling wave solutions of the Hodgkin-Huxley equations. Arch. Rat. Mech. Anal., 60:229ā€“257, 1976.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  25. S.P. Hastings and J.B. Mcleod. Periodic solutions of a forced second order differential equation. J. Nonlinear Science, 1:225ā€“245, 1991.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  26. S.P. Hastings and J.B. Mcleod. Chaotic motion of a pendulum with oscillatory forcing. Am. Math. Monthly, 100:563ā€“572, 1993.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  27. M. Hayes, K. Ono, T.J. Kaper, and N. Kopell. On the application of geometric singular perturbation theory to some classical two-point boundary value problems. Intl. J. Bif Chaos, 8:189ā€“209, 1998.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  28. A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physio. (London), 117:500ā€“542, 1952.

    Google ScholarĀ 

  29. D. Johnston and S. M. Wu. Foundations of cellular neurophysiology. The MIT Press, Cambridge, MA; London, England, 1995.

    Google ScholarĀ 

  30. C.K.R.T. Jones. Geometric singular perturbation theory. In R. Johnson, editor, Dynamical Systems, Montecatibi Terme, Volume 1609 of Lecture Notes in Mathematics. Springer Verlag, 1994.

    Google ScholarĀ 

  31. C.K.R.T. Jones, T.J. Kaper, and N. Kopell. Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal., 27(2):558ā€“577, 1996.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  32. C.K.R.T. Jones and N. Kopell. Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Diff. Eq., 108:64ā€“88, 1994.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  33. C.K.R.T. Jones, N. Kopell, and R. Langer. Construction of the FitzHugh-Nagumo pulse using differential forms. In G. Aris H. Swinney and D. Aronson, editors, Patterns and dynamics in reactive media, Volume 37 of IMA Volumes in Mathematics and its Applications, New York, 1991. Springer Verlag.

    Google ScholarĀ 

  34. T.J. Kaper and G. Kovačič. Multi-bump orbits homoclinic to resonance bands. Trans. A. M. S., 348(10):3835ā€“3887, 1996.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  35. T.J. Kaper and S. Wiggins. A commentary on ā€œPeriodic solutions of a forced second-order equationā€ by S. P. Hastings and J. B. McLeod. J. Nonlinear Sei., 1:247ā€“253, 1991.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  36. J. Kevorkian and J.D. Cole. Perturbation methods in applied mathematics. Springer-Verlag, New York, 1981.

    MATHĀ  Google ScholarĀ 

  37. N. Kopell and L. Howard. Target patterns and horseshoes from a perturbed central-force problem: some temporally-periodic solutions to reaction-diffusion equations. Stud, in Appl. Math., 64:1ā€“56, 1981.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  38. M. Krupa, B. Sandstede, and P. Szmolyan. Fast and slow waves in the fitzhughnagumo equation. J. Diff. Eq., 133:49ā€“97, 1997.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  39. J.J. Levin and N. Levinson. Singular perturbations of nonlinear systems of differential equations and an associated boundary layer equation. J. Rat. Mech. Analysis, 3:247ā€“270, 1954.

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  40. N. Levinson. A second order equation with singular solutions. Ann. Math., 50:127ā€“153, 1949.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  41. N. Levinson. Perturbations of discontinuous solutions of nonlinear systems of differential equations. Acta Math., 82:71ā€“106, 1950.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  42. K. Maginu. Existence and stability of periodic traveling wave solutions to Nagumoā€™s equation. J. Math. Bio., 10:133ā€“153, 1980.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  43. K. Maginu. Stability of periodic traveling wave solutions with large spatial periods in reaction diffusion systems. J. Diff. Eq., 39:73ā€“99, 1981.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  44. E.F. Mischenko and N. Rozov. Differential equations with small parameters and relaxation oscillations. Plenum Press, New York, 1980.

    Google ScholarĀ 

  45. D. Morgan, A. Doelman, and T.J. Kaper. Stationary periodic patterns in the 1-d Gray-Scott model. Technical Report 13, Center for BioDynamics, Boston University, November 1998.

    Google ScholarĀ 

  46. H. Ockendon, J.R. Ockendon, and A.D. Johnson. Resonant sloshing in shallow water. J. Fluid Mech., 167:465ā€“479, 1986.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  47. J. Rinzel and J.B. Keller. Traveling wave solutions of a nerve conduction equation. Biophys. J., 13:1313ā€“1337, 1973.

    ArticleĀ  Google ScholarĀ 

  48. C. Robinson. Sustained resonance for a nonlinear system with slowly varying coefficients. SIAM J. Math. Anal, 14(5):847ā€“860, 1983.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  49. K. Sakamoto. Invariant manifolds in singular perturbation problems for ordinary differential equations. Proc. Roy. Soc. Edin, 116A:45ā€“78, 1990.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  50. J. Smoller. Shock waves and reaction-diffusion equations. Springer Verlag, New York, 1983.

    BookĀ  MATHĀ  Google ScholarĀ 

  51. C. Soto-trevrho and T.J. Kaper. Periodic orbits in singularly perturbed systems. In A. Doelman and A. V. Harten, editors, Pattern formation in the natural environment, Pitman Research Notes in Mathematics, 295ā€“314, 1995.

    Google ScholarĀ 

  52. C. Soto-treviĆ»o and T.J. Kaper. Higher-order Melnikov theory for adiabatic systems. J. Math. Phys., 37(12):6220ā€“6249, 1996.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  53. C. Soto-Trevifio. Geometric methods for periodic orbits in singularly perturbed systems. PhD thesis, Department of Mathematics, Boston University, 1998.

    Google ScholarĀ 

  54. D. Term An. Chaotic spikes arising from a model for bursting in excitable membranes. SIAM J. Appl. Math, 51:1418ā€“1450, 1991.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  55. A.N. Tikhonov. On the dependence of the solutions of differential equations on a small parameter. Mat. Sb., 31:575ā€“586, 1948.

    Google ScholarĀ 

  56. S.K. Tin. On the dynamics of tangent spaces near normally hyperbolic invariant manifolds. PhD thesis, Division of Applied Mathematics, Brown University, 1994.

    Google ScholarĀ 

  57. S.K. Tin, N. Kopell, and C.K.R.T. Jones. Invariant manifolds and singularly perturbed boundary value problems. SIAM J. Numer. Anal, 31(6):1558ā€“1576, 1994.

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  58. A.M. Turing. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond., Series B, 237:37ā€“72, 1952.

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2001 Springer Science+Business Media New York

About this paper

Cite this paper

Soto-TreviƱo, C. (2001). A Geometric Method for Periodic Orbits in Singularly-Perturbed Systems. In: Jones, C.K.R.T., Khibnik, A.I. (eds) Multiple-Time-Scale Dynamical Systems. The IMA Volumes in Mathematics and its Applications, vol 122. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0117-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0117-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6529-0

  • Online ISBN: 978-1-4613-0117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics