Skip to main content

Binaural Directional Hearing—Impairments and Aids

  • Chapter
Book cover Directional Hearing

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

It is apparent, particularly when we close our eyes, that the auditory system creates a spatial representation of the acoustic environment. We are able to monitor sound sources in all directions, determine the nature and positions of the various sound sources, and focus our attention on sounds in a particular direction. In addition, we can determine certain aspects of the environment itself, such as the size and acoustic “liveness” of the space in which the sounds are generated. Although certain aspects of auditory spatial perception and directional hearing can be achieved when listening with a single ear, it is clear that listening is easier and more effective when listening with two ears. This conclusion is supported by subjective reports as well as by objective experiments on both normal and hearing-impaired listeners (e.g., see Durlach and Colburn, 1978; Durlach et al, 1981; Blauert, 1983; Hausler et al, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blauert, J. (1970) Zur Traegheit des Richtunghoeren bei Laufzeit- und Intensitaets- Stereophonie [On the persistence of directional hearing in connection with time–and intensity-difference stereophonic sound], Acustica 23, 287–293; also Int. Audiol. (1972) 11, 265–270

    Google Scholar 

  • Blauert, J. (1983). Spatial Hearing. Cambridge, Mass: MIT Press.

    Google Scholar 

  • Braida, L.D., Lim, J.S., Berliner, J. E., Durlach, N.I., Rabinowitz, W.M., Purks, S.R. (1984). Intensity perception. XIII. Perceptual anchor model of context- coding. J. Acoust. Soc. Am. 76, 722–731.

    Article  CAS  Google Scholar 

  • Colburn, H.S. (1982). Binaural interaction and localization with various hearing impairments. In: Binaural Effects in Normal and Impaired Hearing. Pedersen, O.J., Poulsen, T. (eds.). Scand. Audiol. Suppl. 15.

    Google Scholar 

  • Domnitz, R. (1973). The interaural time jnd as a function of interaural time and interaural amplitude. J. Acoust. Soc. Am. 53, 1549–1552.

    Article  CAS  Google Scholar 

  • Durlach, N.I. (1964). Note on binaural masking-level differences at high frequencies. J. Acoust. Soc. Am. 36, 576–581.

    Article  Google Scholar 

  • Durlach, N.I., Braida, L.D. (1969). Intensity Perception. I. Preliminary Theory of Intensity Resolution. J. Acoust. Soc. Am. 46, 372–383.

    Article  CAS  Google Scholar 

  • Durlach, N.I., Colburn, H.S. (1978). Binaural phenomena. In: Handbook of Perception, Vol. 4. Carterette, E., Friedman, M. (eds.). New York: Academic Press.

    Google Scholar 

  • Durlach, N.I., Pang, X.D. (1986). Interaural magnification. J. Acoust. Soc. Am. 80, 1849–1850.

    Article  CAS  Google Scholar 

  • Durlach, N.I., Thompson, C.L., Colburn, H.S. (1981). Binaural interaction in impaired listeners—A review of past research. Audiology 20, 181–211.

    Article  CAS  Google Scholar 

  • Florentine, M., Thompson, C.L., Colburn, H.S., Durlach, N.I. (1979). Psycho- acoustical studies of a patient with a unilateral vestibular schwannoma. J. Acoust. Soc. Am.—Speech Communication Papers, 579–582.

    Google Scholar 

  • Franklin, B. (1969). The effect on consonant discrimination of combining a low- frequency passband in one ear with a high-frequency passband in the other ear. J. Aud. Res. 9, 365–378.

    Google Scholar 

  • Franklin, B. (1975). The effect of combining low- and high-frequency passbands on consonant recognition in the hearing impaired. J. Speech Hear. Res. 18, 719–727.

    Article  CAS  Google Scholar 

  • Gabriel, K.J. (1983). Binaural interaction in hearing-impaired listeners. Ph.D. Thesis, MIT, Cambridge, Mass.

    Book  Google Scholar 

  • Gelfand, S.A. (1979). Usage of CROS hearing aids by unilaterally deaf patients. Arch. Otolaryngol. 105, 328–332.

    Article  CAS  Google Scholar 

  • Gelfand, S.A., Silman, S. (1981). Use of CROS and IROS hearing aids by patients with high-frequency hearing loss. Ear Hear. 3, 24–29.

    Article  Google Scholar 

  • Grantham, D.W. (1984). Discrimination of dynamic interaural intensity differences. J. Acoust. Soc. Am. 76, 71–76.

    Article  CAS  Google Scholar 

  • Grantham, D.W., Wightman, F.L. (1978). Detectability of varying interaural temporal differences. J. Acoust. Soc. Am. 63, 511–523.

    Article  CAS  Google Scholar 

  • Grantham, D.W., Wightman, F.L. (1980). Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. J. Acoust. Soc. Am. 65, 1509–1517.

    Article  Google Scholar 

  • Haas, G.F. (1982). Impaired listeners recognition of speech presented dichotically through high- and low-pass filters. Audiology 21, 433–453.

    Article  CAS  Google Scholar 

  • Harford, E., Dodds, E. (1974). Versions of the CROS hearing aid. Arch. Otolaryngol. 100, 50–57.

    Article  CAS  Google Scholar 

  • Hausler, R., Colburn, H.S., Marr, E. (1983). Sound localization in subjects with impaired hearing. Acta Oto-Laryngol. Suppl. 400.

    Google Scholar 

  • Hawkins, D.B., Yacullo, W.S. (1984). Signal-to-noise ratio advantage of binaural hearing aids and directional microphones under different levels of reverberation. J. Speech Hear. Disord. 49, 278–286.

    Article  CAS  Google Scholar 

  • Held, R. (1955). Shifts in binaural localization after prolonged exposures to atypical combinations of stimuli. Am. J. Psychol. 68, 526–548.

    Article  CAS  Google Scholar 

  • Hershkowitz, R.M., Durlach, N.I. (1969). Interaural time and amplitude jnds for a 500-Hz tone. J. Acoust. Soc. Am. 46, 1464–1467.

    Article  CAS  Google Scholar 

  • Kaiser, J.F., David, E.E. (1960). Reproducing the cocktail party effect. J. Acoust. Soc. Am. 32, 918.

    Article  Google Scholar 

  • Koenig, W. (1950). Subjective effects in binaural hearing. J. Acoust. Soc. Am. 22, 61–62.

    Article  Google Scholar 

  • Levitt, H., Rabiner, L.R. (1967). Predicting binaural gain in intelligibility and release from masking for speech. J. Acoust. Soc. Am. 42, 820–829.

    Article  CAS  Google Scholar 

  • Libby, E. (1980). Binaural Hearing and Amplification. Chicago: Zenetron.

    Google Scholar 

  • Markides, A. (1977). Binaural Hearing Aids. New York: Academic Press.

    Google Scholar 

  • Mills, A.W. (1958). On the minimum audible angle. J. Acoust. Soc. Am. 30, 237–246.

    Article  Google Scholar 

  • Mitchell, O.M.M., Ross, C.A., Yates, G.H. (1971). Signal processing for a cocktail party effect. J. Acoust. Soc. Am. 50, 656–660.

    Article  Google Scholar 

  • Rosenthal, R.D., Lang, J.K., Levitt, H. (1975). Speech reception with low-frequency speech energy. J. Acoust. Soc. Am. 57, 949–955.

    Article  CAS  Google Scholar 

  • Roser, D. (1966). Directional hearing in persons with hearing disorders. J. Laryngol. Rhinol. 45, 423–440.

    Google Scholar 

  • Searle, C.L., Braida, L.D., Davis, M.F., Colburn, H.S. (1976). A model for auditory localization. J. Acoust. Soc. Am. 60, 1164–1175.

    Article  CAS  Google Scholar 

  • Shaw, E.A.G. (1974). Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J. Acoust. Soc. Am. 56, 1848–1861.

    Article  CAS  Google Scholar 

  • Sung, G.S., Sung, R.J., Angelelli, R.M. (1975). Directional microphone in hearing aids: Effects on speech discrimination in noise. Arch. Otolaryng. 101, 316–319.

    Article  CAS  Google Scholar 

  • Wien, G. (1964). A preliminary investigation of the effect of headwidth on binaural hearing. S.M. Thesis, MIT, Cambridge, Mass.

    Google Scholar 

  • Zurek, P.M. (1979). Measurements of binaural echo suppression. J. Acoust. Soc. Am. 66, 1750–1757.

    Article  Google Scholar 

  • Zurek, P.M. (1983). A predictive model for binaural advantages in speech intelligibility. J. Acoust. Soc. Am. 71, S87.

    Article  Google Scholar 

  • Zurek, P.M., Durlach, N.I., Colburn, H.S., Gabriel, K.J. (1983). Masker bandwidth and the MLD. J. Acoust. Soc. Am. 73, S77.

    Google Scholar 

  • Zurek, P.M. (1986). Consequences of conductive auditory impairment for binaural hearing. J. Acoust. Soc. Am. 80, 466–472.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Colburn, H.S., Zurek, P.M., Durlach, N.I. (1987). Binaural Directional Hearing—Impairments and Aids. In: Yost, W.A., Gourevitch, G. (eds) Directional Hearing. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4738-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4738-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9135-0

  • Online ISBN: 978-1-4612-4738-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics