
Chapter 8
Conclusion

All the pieces are there – huge amounts of information, a great need
to clearly and accurately portray them, and the physical means for
doing so. What has been lacking is a broad understanding of how
best to do it.

Wainer (1997, p. 112)

This book has dealt with concepts and methods for visualizing time and time-oriented
data. This chapter will briefly summarize the key aspects that have been discussed in
the previous chapters and shed some light on practical concerns when applying the
described solutions to real-world data analysis problems. We will also consider going
one step further from visualization to visual analytics of time-oriented data, for which
we outline a basic framework. We conclude with a list of research opportunities for
future work.

8.1 Book Summary

Computational analysis and visualization often deal with data that are anchored
in space and time. Depicting a spatial frame of reference and the data within it
are topics of cartography and geo-visualization, which are independent disciplines
with their own books and scientific communities. As there are no such independent
disciplines for the temporal frame of reference, this book focused deliberately on the
visualization of time-oriented data. In fact, visual depictions of time have a long and
venerable history, which has been illustrated by means of several classic examples
from the pre-computer era in Chapter 2.

In order to design appropriate visual representations for time-oriented data, one
needs to consider the characteristics of time and of the data that are related to time.
In Chapter 3, we introduced what these characteristics are and how they can be
categorized. A discussion of the issue of data quality provided some insight into
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what problems one might have to deal with before any reasonable data visualization
can take place.

General principles of how time and time-oriented data can be visualized were
presented in Chapter 4. Yet, to apply the principles successfully, it is necessary to
understand why a visualization is needed, that is, to understand the users’ tasks.
In terms of user tasks, we distinguished the goals to be achieved, the analytical
questions involved, the targets being relevant, and the means to be applied to actually
accomplish a task. In terms of general visualization principles for time-oriented data,
two basic strategies were introduced: mapping time to space and mapping time to
time, which result in static and dynamic visual representations, respectively. On top
of these basic strategies, we explained various examples of concrete visualization
designs addressing specific aspects of the data, the task, and the presentation itself.

Visual exploration and analysis of time-oriented data also require interaction
methods allowing users to manipulate the visual representation in a variety of ways,
including navigation of time and data, adjustment of the visual encoding and the
spatial arrangement, selection of data of interest, filtering out irrelevant data, and
many more. Chapter 5 provided a compact overview of such interaction concepts
and techniques.

Moreover, analytical methods have to be provided for supporting the generation
of expressive visual representations. Among other purposes, analytical methods are
useful for computing data abstractions that may serve to cope with large volumes
of data or to enable visual analysis at different levels of granularity. Chapter 6 was
dedicated to the aspect of analytical support.

As diverse and varied as time and data characteristics and the choice of visualiza-
tion design, interaction concepts, and analysis methods are, as diverse is the range
of visualization techniques for time and time-oriented data. In Chapter 7, we catego-
rized many state-of-the-art techniques according to six major criteria and proposed
some ideas to guide the process of selecting appropriate visualization solutions via
an easy-to-use interactive tool, the TimeViz Browser. For reference, brief descrip-
tions and illustrations of all techniques listed in the TimeViz Browser are given in
Appendix A.

In conclusion, this book suggests that time is indeed an important dimension that
deserves special treatment in visualization with appropriate support for interaction
and analytical computation. In the next sections, we will take a look at selected issues
that are worth considering further but could not be discussed in this book.

8.2 Practical Concerns

A main concern from an application perspective is the gap between the development
of powerful visualization methods on the one hand, and their integration into the
real-life data analysis workflows in different application scenarios on the other hand.
Bridging this gap requires addressing a variety of software-related and user-related
aspects.
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Software systems and research prototypes There are a variety of commercial and
open source visualization systems, for instance, Tableau,1 Spotfire,2 Qlik Sense,3
Redash,4 or vtk.5 Many available systems provide excellent support for visual ex-
ploration and analysis of multivariate data. However, the specifics of time are not
always considered comprehensively. Quite contrary, support for the wide range of
characteristics that are relevant when dealing with time (e.g., support for cyclic time
or for different time primitives) is often lacking. Consequently, it can be difficult
or actually not feasible for users to apply existing visualization systems. As a re-
sult, users may have to design and implement custom solutions that emphasize the
dimension of time as necessary for the task at hand.

On the other hand, the visualization community has developed useful research
prototypes that provide dedicated support for the time aspect. A prominent example
in this regard is the TimeSearcher6 project for visual exploration of time-series
data (↩→ p. 290). However, the integration of such prototypes into the infrastructure
of the day-to-day business is usually problematic and requires additional effort.
Furthermore, research prototypes are usually not designed to cover all aspects of
time, but instead address only particular cases – mostly the visualization of linear
and ordered time domains.

Data interfaces Another significant problem to be solved is caused by the diversity
of existing data formats and interfaces. Processes that generate or collect data and
tools that manipulate or analyze the data often use specific databases and data formats
that meet the requirements of the particular application scenario. Software tools for
visualizing the data and interacting with them often use different formats. This
circumstance requires individual and possibly complex data transformations, which
can represent a substantial obstacle. To overcome this obstacle more comprehensible
and simplified data interfaces need to be developed. Moreover, appropriate tools for
data wrangling (see Kandel et al., 2011; Bors, 2020) can be considered to assist users
in preparing time-oriented data for visual analysis.

Visualization literacy In addition to improving the technical basis of software,
it is also important to take the needs of the users into account. In this regard, an
important point is to improve awareness of modern visualization and interaction
methods. Most of the time, people rely on traditional visualization techniques such
as line plots or bar graphs. These techniques are well-established and have proven to
be useful. However, new innovative visualization methods such as the line density
plot (↩→ p. 307) or the DimpVis (↩→ p. 305) approach go beyond what is possible
with classic techniques. Modern approaches often can represent a larger number of
variables and data values, provide comprehensive interaction functionality, and take

1 https://www.tableau.com

2 https://www.spotfire.com

3 https://www.qlik.com/us/products/qlik-sense

4 https://redash.io

5 https://vtk.org

6 https://www.cs.umd.edu/hcil/timesearcher

https://www.tableau.com
https://www.spotfire.com
https://www.qlik.com/us/products/qlik-sense
https://redash.io
https://vtk.org
https://www.cs.umd.edu/hcil/timesearcher
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the specific aspects of time into account. These new possibilities can improve the
data analysis and lead to new findings.

Another point to mention is that users who are experts in a specific application
domain are not necessarily experts in visualization. However, to be successful in their
data analysis work, the domain experts have to know which visual representation
should be used for which task. If users were better supported in choosing expressive,
effective, and efficient visualization techniques, the quality of information display
and analysis results could greatly improve. Enabling people to browse and filter
for suitable visualization techniques according to different criteria as suggested in
Chapter 7 is only a first step. Visualization recommendation (see Kriglstein et al.,
2014; Wongsuphasawat et al., 2016) and guidance approaches (see Ceneda et al.,
2017; Ceneda et al., 2018) can offer additional support during the data analysis.

Workflow integration In many application domains, visual methods are primarily
used to present previously generated analysis results. That is, the power of visual-
ization is merely used to communicate results at the end of the analysis process.
This can be a sufficient strategy, but only for those analytical problems for which a
solution can be computed automatically without involving the user. However, many
practically-relevant analysis problems are ill-defined and open-ended and as such
require a human-in-the-loop interactive visual exploration process. In such cases, vi-
sual methods can support all stages of data analysis workflows, from data wrangling
to hypothesis generation and falsification to collaborative discussion of findings, and
of course, the final presentation of results.

Yet, such a comprehensive and tight workflow integration is often not achieved
by existing solutions. Instead, data must be transformed and transferred manually
between different analysis and visualization tools. Such extensive switching between
different applications is a substantial obstacle to smooth data analysis workflows.
Ideally, interactive visualization methods for time-oriented data would integrate
seamlessly into existing application portals and systems. Approaching this ideal is
the goal of current research on unified data analysis interfaces (see Nonnemann et al.,
2021; Nonnemann et al., 2022).

To summarize, bridging the gap between research on interactive visualization
methods and their application requires both imparting an awareness of the variety of
possibilities and providing means to effectively use them within a given application
infrastructure.

8.3 From Visualization to Visual Analytics

This book is entitled visualization of time-oriented data. And indeed, we focused
on visualization. Interaction and computational analysis were considered as well,
but merely to support the visualization. In order to optimally facilitate exploration
and analysis of time-oriented data, we should strive for a tight interconnection of
visual, interactive, and computational methods, effectively utilizing their strengths
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and compensating for their weak spots. The field of research that addresses such
tight integration of visualization, interaction, and computational analysis is called
visual analytics. At its core, visual analytics is defined as follows:

Visual analytics is the science of analytical reasoning facilitated by interactive visual inter-
faces. People use visual analytics tools and techniques to synthesize information and derive
insight from massive, dynamic, ambiguous, and often conflicting data; detect the expected
and discover the unexpected; provide timely, defensible, and understandable assessments;
and communicate assessment effectively for action.

Thomas and Cook (2005, p. 4)

Analytical reasoning for real-world problem-solving usually involves the analysis
of huge amounts of heterogeneous, possibly incomplete, conflicting, inconsistent,
and dynamic information (see Andrienko et al., 2020). For this, human judgment is
required to deal with ill-defined problems, synthesize knowledge, and make decisions
based on complex data. Thus, a major tenet of visual analytics is that analytical
reasoning is not a routine activity that can be automated completely (see Wegner,
1997). Instead, it depends heavily on analysts’ initiative and domain experience.
Thus, visual analytics aims to facilitate the collaboration of humans and machines
by combining:

[..] automated analysis techniques with interactive visualisations for an effective understand-
ing, reasoning and decision making on the basis of very large and complex datasets.

Keim et al. (2010, p. 7)

Thus, the discipline puts its focus on the information discovery process and aims
to enable the exploration and understanding of large and complex datasets by com-
bining interactive visualization, automated data analysis, and human-computer inter-
action. Visual analytics is an inherently multi-disciplinary field that aims to combine
the findings of various research areas such as human-computer interaction (HCI),
usability engineering, cognitive and perceptual science, information visualization,
scientific visualization, databases, data mining, statistics, knowledge discovery, data
management, and knowledge representation. Application domains benefiting from
visual analytics are for example health care, biotechnology, security and disaster
management, environmental science, or climate research.

The basic idea of visual analytics is the integration of the outstanding capabilities
of humans in terms of visual information exploration and the enormous processing
power of computers to form a powerful knowledge discovery environment. Both
visual as well as automated methods are combined in an intertwined manner to
fully support this process. Most importantly, the human users are not merely passive
elements who interpret the outcome of visual and automated methods, but rather
they are the core elements.

Visual analytics process and spaces Keim et al. (2010) propose a process-oriented
view of visual analytics as illustrated in Figure 8.1. It focuses on the tight integration
of visual data exploration and automated data analysis and describes the dynamic
process of synthesizing knowledge from data, following the visual analytics mantra
“Analyze First – Show the Important – Zoom and Filter, and Analyze Further –
Details on Demand” as formulated by Keim et al. (2006a).
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Fig. 8.1: The visual analytics process. cb The authors. Adapted from Keim et al. (2010).

Large and usually complex data are the basis of visual analytics systems. In
many cases, these data come in forms that cannot be directly visualized or au-
tomatically analyzed. Therefore, transformation steps are applied to perform data
cleansing, reformatting, preprocessing, and integration measures. After this initial
data transformation, analysts can perform visual exploration and automated analysis.
For automated data analysis, data mining can be applied to create models, which may
need to be adjusted through parameter refinement. This involves user interaction with
visualizations of the models. For visual data exploration, visual mapping is applied to
the input data. Based on the visualization, model building can be performed via user
interactions with the visual interface. In this sense, the interplay between automated
data analysis and visual data exploration inform and support each other throughout
the visual analytics process. By interacting with visualizations and models, analysts
create new knowledge about the data and the underlying phenomena.

Visual analytics can further be conceptualized by considering the different spaces
involved in the visual analytics process. Sedig et al. (2012) proposed a conceptual
model that involves the five spaces shown in Figure 8.2:

• The information space is concerned with modeling, abstracting, and character-
izing the sources of information to be studied.

• The computing space deals with encoding and storing internal representations
of elements from the information space and includes computational operations
carried out on such representations.

• The representation space makes the internal representations accessible to users
using interactive visual representations (IVRs).

• In the interaction space, the dyad of action-reaction takes place and perception
connects to the mental space.

• The mental space is concerned with internal mental events and operations of
human analysts.
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Fig. 8.2: Spaces involved in visual analytics. cb The authors. Adapted from Sedig et al. (2012).

Design issues Through the combined human and computational effort in these five
spaces, visual analytics aims to amplify cognition. But simply producing images is
no guarantee that complex visual representations will be understood and are useful
for gaining insights. Therefore, a human-centered approach is essential and should
follow four main principles:

• Early focus on users and tasks. Understanding the users, the tasks they perform,
and the environment in which users perform these tasks is vital early in the
process (see Munzner, 2009; Kerren et al., 2007).

• Design for human perception and cognition. Artifacts (methods, techniques,
tools, and systems) need to be designed based on established knowledge of
human perception and cognition, including pre-attentive processing (see Ware,
2000), Gestalt principles (see Wertheimer, 1938), and sensemaking theory (see
Pirolli and Card, 2005).

• Continuous evaluation. Visual analytics solutions should be evaluated contin-
uously involving studies on effectiveness, efficiency, and usability to identify
measurable benefits and understand limitations (see Lam et al., 2012).

• Iterative design and refinement. To improve visual analytics solutions, prob-
lems found by experts and users should be corrected iteratively throughout the
design and development life cycle (see Shneiderman and Plaisant, 2004).

As already indicated, implementing human-centric visual analytics solutions is
challenging, and first steps have been taken to tackle this challenge. Among them
are new frameworks to better understand analysis tasks (see Schulz et al., 2013a;
Brehmer and Munzner, 2013), concepts to help characterize data (see Schulz et al.,
2017), guidance methods to assist users during the data analysis (see Ceneda et al.,
2017; Ceneda et al., 2019; Collins et al., 2018), progressive and incremental methods
to cope with large amounts of data (see Stolper et al., 2014; Schulz et al., 2016),
modern ways of interacting with visual representations of data (see Lee et al., 2021),
and onboarding techniques allowing users to get easy access to visual analytics
solutions (see Stoiber et al., 2022).



218 8 Conclusion

8.4 Future Research Opportunities

Despite the progress that has already been made in the context of visual analytics,
there are many open questions to be addressed. In the following, we take a brief look
at topics for future research. Our list of topics is aligned with the contents of this book.
We will be concerned with visualization, interaction, and analytical computations.
Overall, the identified research opportunities aim to advance the interactive visual
exploration and analysis specifically of time and time-oriented data.

Cover the specifics of time more broadly A large diversity of powerful visualiza-
tion techniques for time-oriented data are known in the literature. In Chapter 7, we
outlined a corpus of 158 techniques, each of which is also detailed in Appendix A.
However, still, most of them support only certain parts of the introduced time and
data categorization; in the particular case of visualizing multivariate data, usually
linear, point-based, and ordered time domains. Further investigations are required,
including the development of techniques for interval-based time, branching time, and
multiple perspectives, for simultaneously displaying raw data and data abstractions,
and for showing the time-oriented data in their spatial frame of reference.

Another aspect to be considered originates from the multi-scale nature of time.
New visualization techniques are required to allow analysts to combine different
levels of data and time and to switch between the levels. How this can be done
with a basic line plot of linear time series was indicated in Section 5.4.3. But it
remains unclear how multi-scale data exploration can be carried out with other
visual representations for different categories of time-oriented data.

In light of a diversity of dedicated visual representations for time-oriented data,
there is also the question of how a more comprehensive picture of the data can be
drawn by combining multiple views. Classically, multi-view approaches work with
side-by-side arrangement of views. A promising alternative is to consider smooth
transitions between views as suggested by Tominski et al. (2021). Exploring the
design space for transitioning between multiple non-trivial representations of time-
oriented data while at the same time considering the human capabilities in perceiving
and comprehending such transitions seems a formidable research challenge.

Consider more data aspects Throughout this book, we considered time-oriented
data, either as abstract data or as data with a spatial frame of reference. However,
while being important, space is not the only additional aspect that might be relevant
in analyzing time-oriented data.

On top of temporal and spatial dependencies in the data, as a third data aspect,
there can be semantic relationships between data items, typically modeled as edges
between nodes in a graph. When these relationships change over time, we are dealing
with dynamic graphs or temporal networks (see Holme and Saramäki, 2012). Beck et
al. (2017) provide a comprehensive overview of visualization techniques for dynamic
graphs. However, these techniques primarily represent changes in the graph topology
(i.e., creation and removal of edges) rather than communicating the time-oriented
data being associated with a graph’s nodes and edges. Hence, Beck et al. (2017)
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identified the consideration of multiple (dynamic) data dimensions as an open issue,
which remains an open topic even today.

Parameter dependency and analytic provenance are two closely related and rele-
vant data aspects that should also be considered. These aspects help users understand
how obtained analysis results are influenced by the choice of parameters and how the
involved choices were developed. General concepts for visually analyzing parameter
spaces (see Sedlmair et al., 2014) and incorporating provenance information (see Xu
et al., 2020a) have already been established. There are also techniques specifically
developed in the context of time-oriented data (see Eichner et al., 2020). However,
existing approaches still have difficulties in dealing with multi-scale dependencies
of multiple data variables depending multiple parameters.

Finally, data quality and uncertainty are further important data aspects. We briefly
discussed them in Section 3.4 and Section 6.3.2, respectively. Integrating these data
aspects more tightly into the visual analysis process of time-oriented data is the goal
of ongoing research. For example, Gschwandtner et al. (2016) study different visual
representations for temporal uncertainty. How such representations can be employed
to support the analysis of time-series segmentations was described by Bors et al.
(2020). While these works illustrate the benefit of integrating data quality and related
uncertainties into the visualization, we still do not know how to do this generally
for different applications and different visualization techniques. This is where future
work can improve the expressiveness of visual representations and also strengthen
the user’s confidence in the obtained findings by considering the aforementioned
additional data aspects more broadly.

Communicate on more channels Apart from the numerous options for visualizing
time-oriented data, other forms of communication are possible. The data could
for example be communicated via sound or haptic sensations (e.g., with braille
interfaces). Smell and flavor might also be candidates for alternative communication
channels. Despite the fact that these mappings are in principle imaginable, their
feasibility and usefulness have to be investigated.

Speeth (1961) already showed how seismographic data can be presented in an
auditory display. Another example of attempts in this direction is a system for data
sonification by Zhao et al. (2008a) to explore spatial data for users with visual im-
pairments. It seems there are several similarities between the methods and design
theories of visualization and sonification (e.g., perceptually encoding data attributes).
However, comparatively little is known about combining auditory and visual repre-
sentations for data analysis. First theoretical underpinnings were proposed by Enge
et al. (2021), who conceptualize space as substrate for visualization marks and time
as a substrate for auditory marks. Later, Enge et al. (2022) could instantiate their the-
oretical approach in an exploratory data analysis tool for multivariate data. However,
further research is needed to explore these communication channels, particularly for
time-oriented data.

Support a broader range of interactions Similar to using perceptual channels
more broadly, it would also be interesting to study different ways of interacting with
time-oriented data. Our Chapter 5 on interaction already hinted at new interaction
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modalities such as touch and tangible interaction. These are but two examples of
modern approaches to interacting with data; there are more to be explored.

An interesting question is how to better support the interaction on the different
scales of time-oriented data. New interaction techniques could address the combi-
nation of fine-grained and precise interaction on a local level with coarser, but also
faster interaction on a global level. This would also include providing users the op-
tion to effortlessly switch between different scales of time or even work on multiple
temporal scales simultaneously.

On the technical side, different interaction modalities (Lee et al., 2021) could be
investigated for their usefulness in the context of analyzing time-oriented data. For
example, to address the limited precision of touch interaction, it would make sense to
consider more precise pen-based interaction to support navigation in time or to define
temporal queries. Natural language interaction also seems a promising research
direction. It allows users to formulate temporal queries via spoken commands, which
would significantly reduce interaction costs.

Finally, interaction for collaborative data analysis is a hot research topic. Large
high-resolution displays combined with small mobile displays appear to be partic-
ularly suited for collaboration (see Horak et al., 2018). Large displays naturally
lend themselves to interactively exploring large time-oriented data. Small mobile
displays can be used for detailed inspection of data subsets. However, interacting at
large scale (e.g., via gaze or physical navigation) and small scale (e.g., via touch or
wrist gestures) requires dedicated interaction designs. According to Brehmer et al.
(2021), supporting a seamless interaction experience in such cross-device scenarios
is a challenge for future work.

Better support for computational analysis Computational analysis plays an im-
portant role in understanding large time-oriented data. However, many analytical
methods that are applied to time-oriented data treat time as a flat, ordered sequence
of events. Thus, these methods are lacking information about the time intervals be-
tween events or the reoccurrence of particular temporal patterns. Only few existing
analytical methods, like for example the seasonally adjusted autoregressive inte-
grated moving average (SARIMA), model cyclic temporal behavior adequately. As a
consequence, better support for dealing with the hierarchical and cyclical structures
of time is needed.

Moreover, analytical methods usually behave like black boxes. They accept some
input data and generate some analytic result as output, but it often remains unclear to
users what happens inside the black box. Yet, as already mentioned, understanding
the involved computations and how they are influenced by parameters is essential
to appropriately configure analytical methods with regard to the given data and
tasks. Therefore, Mühlbacher et al. (2014) demand that black boxes be opened to
make computational methods more transparent and steerable for users. This typi-
cally involves parameter space analysis to facilitate understanding and progressive
algorithms to make analytical computations steerable.

General challenges with respect to parameter space analysis were already iden-
tified by Sedlmair et al. (2014). But the particular problems associated with time-
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oriented data were not yet sufficiently addressed. In a recent survey, Piccolotto et al.
(2023) investigate the visual parameter space exploration for spatial and temporal
data in particular. They come to the conclusion that spatial and temporal parame-
ters received comparably little attention in the literature and therefore recommend
studying these types of parameters in particular in the future.

To make analytical computations steerable, long-running calculations must be
split into smaller pieces. This can be achieved via progressive and incremental
methods (see Stolper et al., 2014; Schulz et al., 2016). Given the typically large size
of time-oriented data, such methods could greatly improve the analysis. However,
it is still a task for future work to either develop new temporal analysis methods
that are inherently progressive or to revise and adapt existing methods to give them
progressive capabilities where possible.

Focus more on user needs While advancing individual visualization, interaction,
and computational analysis methods and techniques, it is decisive to take the needs
of users into account. Only if the users’ data analysis workflows are sufficiently
understood can appropriate solutions be developed in a user-centered manner.

In the field of software engineering, it is generally acknowledged that the first
step in developing tools and user interfaces should be a sound requirements analysis
of the given problem domain (see Hackos and Redish, 1998; Courage and Baxter,
2005). The same applies to designing visualization solutions, where a couple of
design recommendations were introduced, general ones by Munzner (2014) and
ones specifically for time-oriented data by Miksch and Aigner (2014). In the first
place, it is necessary to appropriately characterize the visualization problem, which
in the case of visually analyzing time-oriented data includes (1) the characteristics of
time and time-oriented data, (2) the characteristics of users, and (3) the intentions and
tasks of users. Federico et al. (2017) suggest that providing means to appropriately
describe, store, and utilize this knowledge can help in automating the selection or
the development of visualization solutions that suit the users, the data, and the tasks.

Approaches for automatic visualization design have been studied for decades
already (see Mackinlay, 1986; Senay and Ignatius, 1994; Wills and Wilkinson,
2010; Moritz et al., 2019). In this book, we described the TimeViz Browser as a
tool for selecting visualization techniques based on data characteristics. However, a
selection based on analysis tasks is not yet possible, not to mention a selection based
on user characteristics. These would require an easy-to-use way of specifying tasks
and users, and also studies to determine which techniques are suitable for which
specification. Both these aspects bear great potential for future research.

The overall aim is to support the users, rather than burden them with technical
details. Thus, a significant shift could be realized from a technique-centered view to
a user-centered view, where the user is in the focus, similar to what Shneiderman
(2022) proposed for human-centered artificial intelligence.

Guide users better In addition to user-centered design, it is also of great relevance to
support users during the use of visual data analysis solutions, especially in the context
of visual analytics where several visualizations, interactions, and computations play
in concert.
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As we have seen, the special characteristics of time usually require more advanced
visual representations than traditional business charts. However, Börner et al. (2016)
and Börner et al. (2019) found that many people have difficulties interpreting novel
visual representations and comprehending the underlying data. Limited visualization
literacy skills can hamper access to valuable information and complicate problem-
solving and decision-making. To mitigate this in the initial phase of the visual data
analysis, visualization onboarding plays an increasingly important role. The goal
of visualization onboarding is to make people familiar with unknown visual data
representations and to empower them to extract the information they need. A few
onboarding methods exist in the literature but further research is needed to identify
effective designs of onboarding methods for time-oriented data visualization and
to understand user behavior while using onboarding methods. This also involves
creating flexible and adaptive approaches that take the prior knowledge of the users
into account.

Even when users are familiar with a visualization solution, it can still be necessary
to guide users while they are working on visual data analysis tasks. Ceneda et al.
(2017) characterized guidance as a concept to support users in situations where they
have difficulties making analytic progress on their own. In Section 5.4, we briefly
illustrated how such guidance can look like for multi-scale exploration of large
time-oriented data. But still many open questions need to be addressed to arrive at
true mixed-initiative solutions wherein both the system and the user can contribute
to the progress of the data analysis. The overall vision of Ceneda et al. (2020) is
to make guidance effective, available, trustworthy, adaptive, controllable, and non-
disruptive in the future. Yet, how to detect the point where users need assistance?
How to determine an appropriate level of support and how to dynamically adjust it?
How to generate guidance without actually knowing neither the elusive data analysis
problem of the user nor its concrete answer, if it exists at all? While these questions
are generic, the research to solve them must be tailored to the specifics of the problem
domain, which in our case means time and time-oriented data.

Understand what works Finally, to be able to guide users or to suggest appropriate
techniques to users based on data and tasks, we need to know which techniques are
good. This requires evaluation. Evaluation has to be conducted in terms of the three
criteria expressiveness, effectiveness, and efficiency (see Chapter 1). Expressiveness
and effectiveness are related to the data level and the task level, respectively. They
require testing whether the characteristics of time and data are sufficiently commu-
nicated, and whether the visual representation, interaction techniques, and analysis
methods match the tasks, expectations, and cognitive capabilities of users. With
the efficiency criterion, a balance of required resources (technical and human) and
gained benefits in an application domain comes into play.

The literature provides a wealth of methodologies to conduct evaluation studies in
general (see Lazar et al., 2017). There are also specific methods for visualization, for
example, to measure effectiveness (see Zhu, 2007). However, Plaisant (2004) points
out that thorough evaluation is challenging as it requires the combined consideration
of multiple criteria. Addressing this challenge, Munzner (2009) introduced a nested
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model for design and validation where each nested level (i.e., characterization of
data and tasks, abstraction into operation and data types, design of encoding and
interaction, and development of algorithms) is associated with a dedicated method-
ology for evaluation. Lam et al. (2012) outline seven typical scenarios for empirical
studies in the context of visual data analysis. However, neither Munzner’s model
nor Lam et al.’s scenarios consider time and time-oriented data and tasks explicitly.
More research is needed to close this gap in the literature.

Even more advanced evaluation strategies are needed for understanding complex
visual analysis solutions with their interplay of visual, interactive, and computa-
tional components. Adding to standard solutions more sophisticated methods such
as uncertainty visualization, cross-device interaction, or user guidance can make
evaluation studies extremely challenging and expensive. Therefore, it seems reason-
able to investigate new evaluation strategies for their applicability to selected aspects
first. For example, one could look into evaluation heuristics like ICE-T (see Wall
et al., 2019) with a particular focus on guidance-enhanced visual analysis solutions
for time-oriented data. Based on the results of multiple such focused evaluations one
could then develop a better understanding of how to evaluate complex intertwined
visual analysis solutions.

—

With these ideas for future work, we close this book on visualizing time-oriented
data hoping that the next decade of research brings us closer to visual analytics for
time-oriented data, which then might be the title for a potential third edition – or a
completely new book.

References

Andrienko, N., G. Andrienko, G. Fuchs, A. Slingsby, C. Turkay, and S. Wrobel
(2020). Visual Analytics for Data Scientists. Springer. doi: 10.1007/978-3-
030-56146-8.

Beck, F., M. Burch, S. Diehl, and D. Weikopf (2017). “A Taxonomy and Survey
of Dynamic Graph Visualization”. In: Computer Graphics Forum 36.1, pp. 133–
159. doi: 10.1111/cgf.12791.

Börner, K., A. Bueckle, and M. Ginda (2019). “Data Visualization Literacy: Defini-
tions, Conceptual Frameworks, Exercises, and Assessments”. In: Proceedings of
the National Academy of Sciences 116.6, pp. 1857–1864. doi: 10.1073/pnas.
1807180116.

Börner, K., A. Maltese, R. N. Balliet, and J. Heimlich (2016). “Investigating Aspects
of Data Visualization Literacy Using 20 Information Visualizations and 273
Science Museum Visitors”. In: Information Visualization 15.3, pp. 198–213. doi:
10.1177/1473871615594652.

https://doi.org/10.1007/978-3-030-56146-8
https://doi.org/10.1007/978-3-030-56146-8
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1073/pnas.1807180116
https://doi.org/10.1073/pnas.1807180116
https://doi.org/10.1177/1473871615594652


224 8 Conclusion

Bors, C. (2020). “Facilitating Data Quality Assessment Utilizing Visual Analytics:
Tackling Time, Metrics, Uncertainty, and Provenance”. PhD thesis. Institute of
Visual Computing and Human-Centered Technology, TU Wien.

Bors, C., C. Eichner, S. Miksch, C. Tominski, H. Schumann, and T. Gschwandt-
ner (2020). “Exploring Time Series Segmentations Using Uncertainty and Fo-
cus+Context Techniques”. In: Proceedings of the Eurographics / IEEE Conference
on Visualization (EuroVis) - Short Papers. Eurographics Association, pp. 7–11.
doi: 10.2312/evs.20201040.

Brehmer, M., B. Lee, J. Stasko, and C. Tominski (2021). “Interacting with Visu-
alization on Mobile Devices”. In: Mobile Data Visualization. Edited by Lee,
B., Dachselt, R., Isenberg, P., and Choe, E. K. CRC Press, pp. 67–110. doi:
10.1201/9781003090823-3.

Brehmer, M. and T. Munzner (2013). “A Multi-Level Typology of Abstract Visual-
ization Tasks”. In: IEEE Transactions on Visualization and Computer Graphics
19.12, pp. 2376–2385. doi: 10.1109/TVCG.2013.124.

Ceneda, D., N. Andrienko, G. Andrienko, T. Gschwandtner, S. Miksch, N. Piccolotto,
T. Schreck, M. Streit, J. Suschnigg, and C. Tominski (2020). “Guide Me in
Analysis: A Framework for Guidance Designers”. In: Computer Graphics Forum
39.6, pp. 269–288. doi: 10.1111/cgf.14017.

Ceneda, D., T. Gschwandtner, T. May, S. Miksch, H.-J. Schulz, M. Streit, and
C. Tominski (2017). “Characterizing Guidance in Visual Analytics”. In: IEEE
Transactions on Visualization and Computer Graphics 23.1, pp. 111–120. doi:
10.1109/TVCG.2016.2598468.

Ceneda, D., T. Gschwandtner, and S. Miksch (2019). “A Review of Guidance
Approaches in Visual Data Analysis: A Multifocal Perspective”. In: Computer
Graphics Forum 38.3, pp. 861–879. doi: 10.1111/cgf.13730.

Ceneda, D., T. Gschwandtner, S. Miksch, and C. Tominski (2018). “Guided Visual
Exploration of Cyclical Patterns in Time-series”. In: Proceedings of the IEEE
Symposium on Visualization in Data Science (VDS). IEEE Computer Society.

Collins, C., N. Andrienko, T. Schreck, J. Yang, J. Choo, U. Engelke, A. Jena, and T.
Dwyer (2018). “Guidance in the Human-Machine Analytics Process”. In: Visual
Informatics 2.3. doi: 10.1016/j.visinf.2018.09.003.

Courage, C. and K. Baxter (2005). Understanding Your Users. Morgan Kaufmann.
doi: 10.1016/B978-1-55860-935-8.X5029-5.

Eichner, C., H. Schumann, and C. Tominski (2020). “Making Parameter Depen-
dencies of Time-Series Segmentation Visually Understandable”. In: Computer
Graphics Forum 39.1, pp. 607–622. doi: 10.1111/cgf.13894.

Enge, K., A. Rind, M. Iber, R. Höldrich, and W. Aigner (2021). “It’s about Time:
Adopting Theoretical Constructs from Visualization for Sonification”. In: Pro-
ceedings of the International Audio Mostly Conference (AMI). ACM Press,
pp. 64–71. doi: 10.1145/3478384.3478415.

Enge, K., A. Rind, M. Iber, R. Höldrich, and W. Aigner (2022). “Towards Multimodal
Exploratory Data Analysis: SoniScope as a Prototypical Implementation”. In:
Proceedings of the Eurographics / IEEE Conference on Visualization (EuroVis)

https://doi.org/10.2312/evs.20201040
https://doi.org/10.1201/9781003090823-3
https://doi.org/10.1109/TVCG.2013.124
https://doi.org/10.1111/cgf.14017
https://doi.org/10.1109/TVCG.2016.2598468
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1016/j.visinf.2018.09.003
https://doi.org/10.1016/B978-1-55860-935-8.X5029-5
https://doi.org/10.1111/cgf.13894
https://doi.org/10.1145/3478384.3478415


References 225

- Short Papers. Eurographics Association, pp. 67–71. doi: 10 .2312 / evs .
20221095.

Federico, P., M. Wagner, A. Rind, A. Amor-Amoros, S. Miksch, and W. Aigner
(2017). “The Role of Explicit Knowledge: A Conceptual Model of Knowledge-
Assisted Visual Analytics”. In: Proceedings of the IEEE Conference on Visual
Analytics Science and Technology (VAST). IEEE Computer Society, pp. 92–103.
doi: 10.1109/VAST.2017.8585498.
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