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Chapter 5
Involving the Human via Interaction

A graphic is not “drawn” once and for all; it is “constructed” and
reconstructed until it reveals all the relationships constituted by the
interplay of the data. The best graphic operations are those carried
out by the decision-maker himself.

Bertin (1981, p. 16)

The previous chapter discussed diverse options for designing visual representations
that help people understand time and time-oriented data. ’Seeing’ trends, correla-
tions, and patterns in a visual representation is indeed a powerful way for people to
extract knowledge from data. Yet, ’seeing’ alone is not sufficient, or as Thomas and
Cook (2005) put it:

Visual representations alone cannot satisfy analytical needs. Interaction techniques are re-
quired to support the dialogue between the analyst and the data.
Thomas and Cook (2005, p. 30)

From the previous chapter, we know that various aspects are involved when
creating a visual representation: the characteristics of time and data, the user tasks,
as well as the choice and the parametrization of visualization techniques. As a
consequence, a generated visual representation might not yield the desired outcome,
particularly when feeding unknown data into a visualization method. A related
problem is that we sometimes do not know exactly what to expect from a visual
representation or whether it is effective with regard to the task to be accomplished.
One way to deal with this problem is to include the human user into the loop. So,
visual exploration and analysis is not a one-way street where data are transformed
into images, but it is in fact a human-in-the-loop process controlled and manipulated
by one or more users.

Having said that, it becomes clear that in addition to visual methods, a high degree
of interactivity and advanced interaction techniques for working with time-oriented
data are important. Interaction helps users not only see the data but also understand
them. By interacting, users can comprehend the visual mapping, realize the effect
of visualization parameters, carve out hidden patterns, and become confident about
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the visualization and its underlying data. Users want and many times need to get
their hands on their data — which is particularly true when engaging in exploratory
data analyses. The importance of interaction is nicely summarized in the following
statement:

While visual representations may provoke curiosity,
interaction provides the means to satisfy it.
Tominski and Schumann (2020, p. 132)

While visualization research is naturally more focused on the visual output, the
interactive operations involved in carrying out data analyses must also be considered.
This chapter provides an overview of how interactivity can support the exploration of
time and time-oriented data. For a deeper discussion of interaction for visualization
in general, the interested reader is referred to Tominski (2015).

5.1 Motivation & User Intents

The constantly increasing size and complexity of today’s datasets are major chal-
lenges for interactive visualization. Large datasets cannot simply be loaded to limited
computer memory and then be mapped to an even smaller display. Users are only
able to digest a fraction of the available information at a time. Complex data contain
many different aspects and may stem from heterogeneous sources. As complexity
increases, so does the number of questions that one might ask about the data and to
which visual representations should help us find answers.

In our particular case, we need to account for the specific aspects of time and
time-oriented data in the context of what, why, and how they are visualized (see
Chapters 3 and 4). Any attempt to indiscriminately encode all facets of a complex
time-oriented dataset into a single visual representation is condemned to failure, as
this would lead to a confusing and overloaded display that users can hardly interpret.

Instead, the big problem has to be split into smaller pieces by focusing on relevant
data aspects and particular tasks per visual representation. Several benefits can be
gained: computational costs are reduced in a kind of divide-and-conquer way, the
visual representations become more effective because they are tailored to emphasize
a particular point, and users find it easier to explore and analyze the data since they
can concentrate on important and task-relevant questions.

Dividing the visualization problem and separating different aspects into individual
views raise the question of how users can visually access and mentally combine these.
The answer is interaction. In an iterative process, the user will focus on different
parts of the data, look at them from alternative perspectives, and actively construct
answers to diverse questions. Typically, this process follows the visual information
seeking mantra:

“Overview first,
zoom and filter,
then details-on-demand.”
Shneiderman (1996, p. 2)
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Starting with an overview, the user will first identify interesting parts of the time
domain to focus on for a more detailed examination. From there, it might make sense
to move on to data that are related or similar, or it might be better to return to the
overview and investigate the data from a different point of view, or with regard to
a different question. In other words, the user forms a mental model of the data by
interactively navigating from one focus to the next, where the focus may be any part
of the time domain, a certain data aspect, or a specific analysis task. While exploring
data in this way, users develop understanding and insight.

The general motivation for interaction is clear now. But what specifically moti-
vates a user to interact? An answer to this question is given in a study by Yi et al.
(2007), who worked toward a deeper understanding of interaction in visualization.
As already briefly mentioned in Section 1.1, they identified several user intents for
interaction and introduced a list of categories that describe on a high level why users
want to or need to interact. In the following, we make use of these categories and
adapt them to the case of interacting with time and time-oriented data:

Select — Mark something as interesting When users spot something interesting
in the visual representation, they want to mark and visually highlight it as such, be
it to temporarily tag an intriguing finding or to permanently memorize important
analysis results. The pieces to be marked can be manifold: interesting points in time,
an entire time-dependent variable, a particular temporal pattern, or certain identified
events.

Explore — Show me something else Time-oriented data are often large and can
be visualized only partially. That is, only a subset of time and a subset of the time-
dependent variables are visible at a time. To arrive at a full view of the data, users
have to explore different subsets of the data. This includes interactively navigating
the time domain to bring different parts of it to the display, and also constructing
different subsets of variables to uncover multivariate temporal dependencies.

Reconfigure — Show me a different arrangement Different arrangements of time
and associated data can communicate completely different aspects, a fact which
becomes obvious when recalling the distinction between linear and cyclic represen-
tations of time. As users want to look at time from different angles, they need to
be provided with facilities that allow them to interactively generate different spatial
arrangements of time-oriented data.

Encode — Show me a different representation Similarly to what was said about the
spatial arrangement, the visual encoding of data values has a major impact on what
can be derived from a visual representation. Because data and tasks are versatile,
users need to be able to adapt the visual encoding to suit their needs, be it to carry out
location or comparison tasks, or to confirm a hypothesis generated from one visual
encoding by checking it against an alternative one.

Abstract/Elaborate — Show me more or less detail During a visual analysis,
users need to look at certain things in detail, while for other things schematic
representations are sufficient. The hierarchically structured levels of granularity of
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time are a natural match to drive such an interactive information drill-down into time-
oriented data. Higher levels contain abstractions and provide aggregated overviews,
whereas lower levels hold the increasingly elaborate details.

Filter — Show me something conditionally When users search for particular in-
formation in the data or evaluate a certain hypothesis about the data, it makes sense
to restrict the visualization to show only those data items that match the conditions
imposed by the search criteria or the hypothesis’ constraints. Interactively filtering
out or attenuating irrelevant data items clears the view for users to focus on those
parts of the data being relevant to the task at hand.

Connect — Show me related items When users make a potentially interesting
finding for one part of the data, they usually ask whether similar or related discoveries
can be made in other parts of the data as well. So, users intend to interactively
find, compare, and evaluate such similarities or relations. For example, for a trend
discovered in one season of a certain year, it could be interesting to investigate if the
trend is repeated at the same time in subsequent years.

These seven intents apply to interactive visualization, and we linked them specif-
ically to interacting with time-oriented data. On top of that, Yi et al. (2007) mention
two general interaction intents that are also relevant when exploring time.

Undo/Redo — Let me go to where I have already been Users have to navigate in
time and study it at different levels of granularity, they have to try different arrange-
ments and visual encodings, and they have to experiment with filtering conditions
and similarity thresholds. A history mechanism for undoing and redoing interactions
enables users to try out new views on the data and to return effortlessly to a previous
visual representation if new ones did not work out as expected.

Change configuration — Let me adjust the interface In addition to adapting the
visual representation to the data and the tasks at hand, it is also often necessary to
configure the overall system that provides the visualization. This includes configuring
not only the user interface (e.g., the arrangement of windows or the items in toolbars),
but also the general management of system resources (e.g., the amount of memory
to be used for undo and redo).

Taken together, the discussed intents represent on a high conceptual level what
interactions a visualization system for time-oriented data should provide. For specific
types of time-oriented data, additional interactions may be worth considering, such
as faceting and warping for multivariate longitudinal data (see Cheng et al., 2016).

Many of the visualization approaches we describe in Appendix A support inter-
action of one kind or another. While marking (or selecting) interesting data items
and navigation in time are quasi-mandatory, facilities for other intents are often
rudimentary or not considered at all. This is often due to the extra effort one has to
expend for designing and implementing effective interaction techniques. But in fact,
all of the outlined user intents are equally important and corresponding techniques
should be provided in order to take full advantage of the synergy of the human’s
skills in creative problem-solving and the machine’s computational capabilities.
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5.2 Interaction Fundamentals

Now that we know about the general motivation and the specific user intents behind
interaction, we can move on and take a look at how interaction is actually performed.
We will next describe fundamental aspects of interaction, which naturally are more
general and less specific to interacting with time-oriented data.

5.2.1 Conceptual Background

Let us first look at aspects that concern interaction on a conceptual level, including
how interaction can be modeled as a loop, what costs are involved when interacting,
how interaction can be performed in a discrete or continues manner, and what the
role of interaction latency is.

The interaction loop When users interact they express their intent to change what
they see on the display, and they expect the visual representation to reflect the
intended change. Consequently, Norman (2013) models interaction as a loop of two
phases: an execution phase and an evaluation phase. The first phase subsumes steps
that are related to the execution of interaction, including the intention to interact, the
mental construction of an interaction plan, and the physical actions (e.g., pressing
a button) to actually execute the plan. The second phase is related to understanding
the system-generated visual feedback and involves perceiving and interpreting the
feedback as well as evaluating the success of the interaction. Figure 5.1 illustrates
Norman’s conceptual model.

Evaluation phase

Interpret

Change in

world

Execution phase

Fig. 5.1: Norman’s model of interaction comprised of the execution and the evaluation phases.
©@Q@ The authors. Adapted from Norman (2013).
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Interaction costs The individual steps of both phases of the loop incur costs (see
Lam, 2008). These costs can be physical or mental. Physical costs relate to flexing
one’s muscles, for example, when moving the hands to press a button or when moving
the eyes to perceive the system response. Mental costs pertain to brain activities when
thinking about how to achieve a goal or when interpreting the visual feedback. In
a sense, the costs are associated with building bridges between the human and the
system. Therefore, Norman (2013) calls the loop’s phases the gulf of execution and
the gulf of evaluation.

A primary goal of interaction design should be to narrow the gulfs by keeping the
interaction costs low. On the execution side, this involves, for example, making in-
teractions easy to discover and avoiding longer pointer movements through cascades
of settings. On the evaluation side, it is important to let the visual response stand out
clearly so that users can understand the effects of their actions easily.

Modes of interaction Technically, Jankun-Kelly et al. (2007) model the loop of user
interaction as adjustments of visualization parameters, where concrete parameters
can be manifold, e.g., the rotation angle of a 3D helix glyph, the focus point of a
fisheye-transformed time axis, thresholds of a filter operation, or parameters that
control a clustering algorithm.

Different modes of interaction can be identified depending on how parameter
changes are performed. Spence (2007) distinguishes two modes of active user inter-
action:

* stepped interaction and
e continuous interaction.

For stepped interaction, a parameter change is executed in a discrete fashion. That
is, the user performs one interaction step and evaluates the visual feedback. Much
later, the user might perform another step of interaction. As an example, one can
imagine a user looking at a visualization of the data at the granularity of years. If
more details are required, the user might take an interaction step to switch to a finer
granularity of months.

The term continuous interaction is used to describe interaction for which a visual-
ization parameter is changed at a higher frequency. The user continuously performs
an action and evaluates the generated feedback for a sustained period of time. This
enables the user to quickly scan a larger range of parameter values and their cor-
responding visual representations. As such, continuous interaction is particularly
useful in the context of exploratory *what if” analyses of time-oriented data.

An example would be the adjustment of the cycle length for a spiral visualization
in order to find out if and if so, which cyclic patterns exist in the data. For stepped
interaction, the user has to explicitly specify different cycle lengths in a successive
manner (e.g., by entering a numeric value). The stepped approach is quite time-
consuming already when exploring only a moderate number of possible parameter
values. Moreover, the discrete stepping does not allow cyclic patterns to emerge
naturally as different cycle lengths are tried out. With continuous interaction (e.g., by
dragging a slider), the user can explore any parameter range at any speed with a single
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continuous action. The risk of missing interesting patterns is reduced because cyclic
patterns would crystallize gradually as suitable parameter values are approached. An
important requirement though is to keep the interaction latency low.

Interaction latency For smooth and efficient interaction, the ensemble of visual
and interaction methods has to generate feedback in a timely manner (within 50 - 100
ms according to Shneiderman (1994) and Spence (2007)). However, time-oriented
data tend to be large and can pose considerable computational challenges. On the
one hand, mapping and rendering the visual representation takes time, particularly if
complex visual abstractions have to be displayed. On the other hand, computational
methods (see Chapter 6) involved in the visualization process consume processing
time before generating results. The adverse implication for interaction is that visual
feedback might lag, disrupting the interaction loop (see Liu and Heer, 2014).

Another aspect adds to the time costs for presenting visual feedback. As inter-
action involves change, we want users to understand what is happening. However,
abrupt changes in the visual display will hurt the mental model that users are devel-
oping while exploring unknown data. Pulo (2007) and Heer and Robertson (2007)
provide evidence that smoothly interpolating the parameter change and applying
animation to present the visual feedback can be a better solution. However, ani-
mation consumes time as well, not to mention the possibly costly calculations for
interpolating parameter changes.

Thus, there are two conflicting requirements. On the one hand, interaction needs
synchronicity. An interactive system has to be responsive at all times and should
provide visual feedback immediately. From the interaction perspective, a system
that is blocked and unresponsive while computing is the worst scenario. On the
other hand, interaction needs asynchronicity — for both generating the feedback
(i.e., computation) and presenting the feedback (i.e., animation). The difficulty is to
integrate synchronicity and asynchronicity. One option to address this difficulty is
to take a progressive approach.

Progressive visualization The goal of progressive visualization is to facilitate a
smooth interaction cycle by generating visual feedback as quickly as possible (see
Stolper et al., 2014; Angelini et al., 2018). This is achieved by a divide & conquer
approach: Long-running computations are subdivided into smaller steps, and these
operate on smaller data chunks rather than the whole dataset. For time-oriented
data, data chunks can be obtained simply by sampling with respect to the dimension
of time, by considering the semantics of time (e.g., workdays vs. weekends or
day vs. night), or based on the increasingly detailed granularities of time (e.g.,
yearly, monthly, or daily data). The subdivision of computations into smaller steps
depends very much on the concrete algorithms involved in the analytical and visual
transformation of the data.

Working in smaller steps and on smaller data, progressive visualization generates
a series of preliminary or partial results of increasing quality until a complete final
image of the entire data is rendered. The quick and incremental generation of partial
results has several advantages. First of all, the system is responsive at all times, and the
interaction loop can run smoothly, even if there are still some computations running in
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the background. Second, users can observe the system computing the visualization.
This makes otherwise hidden calculations more transparent and understandable.
Third, as partial results arrive, users can early on develop an idea of the data and, if
necessary, can steer the running computations to more fruitful results. For example,
if partial results do not show the expected outcome, the computations can be canceled
early to stop wasting time. If partial results already show promising features in the
data, these parts can be prioritized to further crystallize interesting patterns early on.

Overall, we can see that interaction is a human-in-the-loop process during which
adiverse set of user intents have to be satisfied. For the user, costs should be kept low,
which requires interactions that are easy to carry out and visual feedback that is easy
to understand. From a technical perspective, the execution and evaluation phases
of the interaction loop must run smoothly, which can be supported by progressive
visualization. What ultimately counts is that both user concerns and technical aspects
are addressed under the umbrella of an effective and cost-efficient user interface.

5.2.2 User Interface

The user interface is the channel through which a human and a machine exchange
information (i.e., interaction input and visual feedback). This interface is the linch-
pin of interactive visual exploration and analysis of time-oriented data. Any visual
representation is useless if the user interface fails to present it to the user in an
appropriate way, and the diversity of available visualization techniques lies idle if
the user interface fails to provide interactive access to them. In order to succeed, the
user interface has to bridge the gap between the technical aspects of a visualization
approach and the users’ mental models of the problems to be solved. In this regard,
Cooper et al. state:

[...] user interfaces that are consistent with users’ mental models are vastly superior to those
that are merely reflections of the implementation model.
Cooper et al. (2007, p. 30)

The user interface is responsible for numerous tasks. It has to provide visual
access to time-oriented data and to information about the visualization process itself
at different levels of graphical and semantic detail. Appropriate controls need to
be integrated to allow users to steer exploration and analysis with regard to the
interaction intents mentioned before, including marking interesting points in time,
navigating in time at different levels of granularity, rearranging data items and
elements of the visual representation, or filtering for relevant conditions. Moreover,
the user interface has to support bookkeeping in terms of the annotation of findings,
storage of results, and management of the working history (undo/redo).

In general, the user interface has to offer facilities to present information to the
user and to accept interaction input from the user. This separation is reflected in the
model-view-controller (MVC) architecture by Krasner and Pope (1988), where views
provide visual representations of some model (in our case time, time-oriented data,
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and visualization parameters) and controllers serve for interactive (or automatic)
manipulation of the model. Next, we look at visualization views and interaction
controls in more detail.

Visualization views Especially the different temporal granularities make it nec-
essary to present the data at different levels of graphical and semantic detail.
Overview+detail, focus+context, and multiple coordinated views are key strategies
to address this demand.

Overview+detail methods present overview and detail separately. The separation
can be either spatial or temporal. Spatial separation means that separate views show
detail and overview. For example, on the bottom of Figure 5.2, an overview shows
the entire time domain at a high level of abstraction. On top of the overview, there
is a separate detail view, which shows the data in full detail (i.e., detailed planning
information), but only for a narrow time interval. Temporal separation means a view
is capable of showing any level of detail, but only one at a time. This is usually
referred to as zooming, where the user can interactively zoom into details or return
to an overview. Geometric zooming operates solely in the presentation space to
scale a visual representation, whereas semantic zooming denotes zooming that can
go beyond purely geometrical scaling and may involve recoding the data in the
presentation space as well as in the data space depending on the zoom level.

Contrary to overview+detail, focus+context methods smoothly integrate detail
and overview. For the user-chosen focus, full detail is presented, and the focus is
embedded into a less-detailed display of the context. Figure 5.3 shows the perspective
wall technique (= p. 256) as a prominent example of the focus+context approach.
Cockburn et al. (2009) provide a comprehensive survey of overview+detail, zooming,
and focus+context and discuss the advantages and disadvantages of these concepts.
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Fig. 5.2: Overview+detail. The detail view at the top shows individual steps of the construction
phase of a renovation plan. In the overview at the bottom, the entire project is shown, including the
design, pre-renovation, renovation, and construction phases. @@® The authors.
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Fig. 5.3: Focus+context. The center of the perspective wall shows the focus in full detail. The
focus is flanked on both sides by context regions. Due to perspective distortion, the context regions
intentionally decrease in size and show less detail. © Inxight Federal Systems. Used with permission.

When visualizing time-oriented data, it is also often helpful to provide multiple
coordinated views,! each of which is dedicated to particular aspects of time, certain
data subsets, or specific visualization tasks. When there are multiple views, the
user interface obviously needs a strategy for arranging them. One option is to use
a fixed arrangement that has been designed by an expert and has proved to be
efficient. It is also possible to provide users with the full flexibility of windowing
systems, allowing them to move and resize views arbitrarily. Both options have
their advantages and disadvantages and both are actually applied. An interesting
third alternative is to maintain the flexibility of user-controlled arrangements, but to
impose certain constraints in terms of what arrangements are possible (e.g., disallow
partially overlapping views or enforce adjacency of related views). Irrespective of
the strategy applied, the visualization should be responsive in the sense that it
automatically adjusts itself to match the size and the aspect ratio of views (see
Hoftswell et al., 2020).

In addition to arranging multiple views, coordinating the views plays an important
role. Views are coordinated to help develop and maintain a consistent overall image
of the visualized data. This means that an interaction which is initiated in one view is
automatically propagated to all coordinated views, which in turn update themselves
to reflect the change visually. A practical example is browsing in time. When the
user navigates to a particular range of the time axis in one view, all other views
(that are coordinated) follow the navigation automatically, which otherwise would
be a cumbersome task to be manually accomplished by the user on a per-view

! Baldonado et al. (2000) provide general guidelines for when to use multiple coordinated views.
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Fig. 5.4: Multiple coordinated views. Analysts can look at the data from different perspectives.
The views are coordinated, which means selecting objects in one view will automatically highlight
them in all other views as well. @@® The authors. Generated with the VIS-STAMP system by Guo
et al. (2006).

basis. Figure 5.4 shows an example where multiple coordinated views are applied to
visualize spatio-temporal data in the VIS-STAMP system (— p. 380).

Interaction controls In addition to one or several visualization views, the user
interface also consists of various interaction controls to enable users to tune the
visualization process to the data and task at hand. Figure 5.5 shows a simple example
with a single spiral view to its left (see Tominski and Schumann (2008) and —
p- 274). Already this single view depends on a number of parameters for which
a corresponding number of controls must be provided in the control panel to the
right. The control panel contains sliders for continuous adjustments of parameters
such as segments per cycle, spiral width, and center offset. Buttons, drop boxes,
and custom controls are provided for selecting different modes of encoding (e.g.,
adjusting individual colors or choosing different color scales).

In this example, user input (e.g., pressing a button or dragging a slider) is imme-
diately committed to the system, which is a requirement for continuous interaction.
However, this puts high demands on the system in terms of generating visual feed-
back quickly at interactive rates (see Piringer et al., 2009). Therefore, a commonly
applied alternative is to allow users to perform a number of adjustments and to com-
mit the adjustments as a single transaction only when the user presses an “Apply”
button, which corresponds to stepped interaction.
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Fig. 5.5: User interface for a spiral visualization. The interface consists of one spiral view and
one control panel, which in turn consists of various controls to adjust visualization parameters.
@@ The authors.

Certainly, there are visualization parameters that are adjusted more often than
others during interactive visual exploration. Resources should preferably be spent
on facilitating continuous interaction for important parameters. Moreover, Gajos
et al. (2006) provide evidence that duplicating important functionality from an all-
encompassing control panel to an exposed position is a useful way to drive adaptable
user interfaces. For example, toolbars allow for interaction that is most frequently
used, whereas rarely applied tools have to be selected from an otherwise collapsed
menu structure.

5.3 Basic Interaction with Time-Oriented Data

It is clear now that we need visualization views on the one hand, and interaction
controls on the other hand. Views are usually equipped with visual data represen-
tations, of which we described many examples for time and time-oriented data in
the previous chapters. Let us now take a closer look at interactive means of con-
trolling the visualization beyond standard graphical user interface controls. To this
end, we briefly describe navigation in time, direct manipulation, brushing & linking,
and dynamic queries as key methods for the interactive exploration and analysis of
time-oriented data.
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5.3.1 Navigation in Time

Time-oriented data typically contain very many time primitives, often too many to
be displayed in a single visual representation. As a consequence, usually only a part
of the time axis is visible at a time, and users have to navigate in time in order
to develop a comprehensive understanding of the data. This navigation in time is
essential.

Interactive sliders are control elements commonly found in user interfaces facili-
tating the exploration of data. For the case of time-oriented data, standard sliders are
usually not enough for two reasons. First, standard sliders only have one handle to
set a single value. For navigating in time, however, often two handles are required for
defining the time interval to be visualized. One handle is for adjusting the interval’s
start, and the other handle sets the interval’s end. Second, a standard slider can-
not provide precise access to the time domain when the number of time primitives
exceeds the interaction resolution. What is needed is a slider that can operate on
different scales to facilitate quick and still precise access to all parts of time.

Figure 5.6 illustrates how such a slider may work for a time axis that extends
from January 1, 2000 to December 31, 2010. In Figure 5.6b, the right handle has
already been set to October 8, 2010. The figure further shows how the user can easily
and accurately adjust the left handle to August 8, 2006. The interaction starts by
horizontally dragging the handle roughly toward the desired date. Then the cursor
is dragged in a downward movement to trigger the dynamic appearance of a higher-
resolution on-demand slider. The interaction continues there horizontally, and thanks
to the higher precision, the desired start date can be set exactly, which would not
have been possible with the main slider alone.

Navigation in time via dedicated sliders is a widely applied approach. In the
following, we will learn that interaction can also be performed directly on the visual
representation of the data.

01/01/2000 10/01/2002 07/01/2005 03/31/2008 12/31/2010

(a) Two-handle slider for navigating time.

@ |
01/01/2000 10/01/2002 07/01/2005 03/31/2008 12/31/2010

b —o

(b) Interaction gesture for dual-scale interval adjustment.

Fig. 5.6: Navigation in time with a two-handle slider. (a) The slider’s handles define the start and
end of the time interval to be visualized. (b) Using a continuous interaction gesture, the interval start
is adjusted coarsely on the main slider and fine-tuned precisely on a higher-resolution on-demand
slider. @@® The authors. Adapted from Tominski and Schumann (2020).
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5.3.2 Direct Manipulation

Graphical controls in user interfaces often have the advantage of being standardized
components (e.g., buttons, single-handle sliders, and value spinners), which are easy
to integrate and use. However, a disadvantage is that visual feedback usually does
not appear where the interaction is performed. Recall the example from Figure 5.5
where the interaction takes place in the control panel to the right, whereas visual
feedback is displayed in the visualization view to the left. Direct manipulation as
introduced by Shneiderman (1983) is the classic means to address this disadvantage.

The goal is to enable users to manipulate the visual representation directly without
a detour. To this end, a visualization view or its graphical elements are implemented
so as to be responsive to user input. A visualization may for instance allow zooming
into details under the mouse cursor simply by rotating the mouse wheel, or visiting
different parts of the visual representation simply by dragging the view. Such func-
tionality is often present in zoomable user interfaces (see Cockburn et al., 2009).
Virtual trackballs (see Henriksen et al., 2004) are more object-centric in that they
allow users to grab and rotate virtual objects to view them from different angles.

In terms of interacting with visual representations of time-oriented data, we just
learned that navigating time is of particular importance. To support navigation, many
tools rely on standard slider or calendar controls in the user interface. However, for
direct manipulation, the interaction has to be tightly coupled with the display of the
data. We explain what this means by two examples.

First, we take a look at DimpVis (<— p. 305), which facilitates navigation to
points in time (see Kondo and Collins, 2014). Figure 5.7 shows DimpVis in action
on a basic point plot. The interaction works as follows. When the user grabs a dot,
a path shows up indicating the selected data item’s trajectory through time. In order
to navigate, the user can now drag the dot along the path, where intermediate labels
help the user find the desired moment in time. In a sense, DimpVis works like a
slider, only the sliding operates on a curved path, rather than a straight line.

2q@00s

Fig. 5.7: Navigation in time via dragging a data item along its trajectory through time. @@ The
authors. Generated with the DimpVis software by Kondo and Collins (2014).
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(a) Simple axis.

(¢) Focus+context axis. (d) Hierarchical axis.

Fig. 5.8: The TimeWheel’s mapping of time along the time axis can be manipulated directly in
different ways. The simple axis uses a fixed linear mapping of time. The overview+detail axis allows
users to select any particular range of the time domain to be mapped linearly to the time axis. The
focus+context axis can be used to untangle dense parts of the time domain by applying a non-linear
mapping. The hierarchical axis represents time at different levels of granularity, where individual
axis segments can be expanded and collapsed. @@® The authors.

For a second example of direct manipulation, we refer to the TimeWheel (—
p. 298), in particular to its interactive axes (see Tominski et al., 2004). As Fig-
ure 5.8 illustrates, the TimeWheel provides (a) a simple non-interactive axis and
three types of interactive axes: (b) overview+detail axis, (c) focus+context axis, and
(d) hierarchical axis. Each of the axes displays time and the interactive ones offer
different options for direct manipulation. The overview+detail axis basically extends
the simple axis with three interactive handles to control the position and extent of
the time interval to be displayed in the TimeWheel, effectively allowing users to
zoom and scroll into any particular part of the data. The focus+context axis applies a
non-linear distortion to the time axis in order to provide more drawing space for the
user’s focus and less space for the context. This allows users to untangle dense parts
of the data. Finally, for the hierarchical axis, the display is hierarchically subdivided
into segments according to the different granularities of time (e.g., years, quarters,
months, and days). Users can expand or collapse these segments interactively to view
the data at different levels of abstraction.
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The advantage of directly manipulating the visual representation is, as indicated,
that interaction and visual feedback take place at the very same location. However,
direct manipulation always involves some learning and training of the interaction
facilities provided (see Schwab et al., 2019a). This is necessary because most of the
time the interaction is not standardized but custom-made to fit the visual mapping.

5.3.3 Brushing & Linking

Brushing & linking is a classic interaction concept that takes up the idea of direct
manipulation. Becker and Cleveland (1987) describe brushing as a technique that
enables users to select interesting data items directly from a data display. There
are various options for selecting data items. We will often find brushing being
implemented as point and click interaction to select individual data items. Rubber-
band and lasso interaction serve the purpose of brushing subranges in the data or
multiple data items at once. Hauser et al. (2002) introduce brushing based on angles
between data items, and Doleisch and Hauser (2002) go beyond binary selection to
allow for smooth brushing (i.e., data items can be partially selected).

After brushing, selected data items are highlighted in order to make them stand
out against the rest of the data. The key benefit of the linking part of brushing &
linking is that data brushed in one view are automatically highlighted in all other
views. In this sense, brushing & linking is a form of coordination among multiple
views. This is especially useful when visualizing the variables of a multivariate
time-oriented dataset individually in separate views: Brushing a temporal interval of
interest in one view will highlight the same interval and corresponding data values
in all views. This makes it easy for users to compare how the individual variables
develop during the brushed time period.

For complex data, using a single brush is often unsatisfactory. Instead, users need
to perform multiple brushes on different time-dependent variables or in different
views. Compound brushing as explained by Chen (2004) allows users to combine
individual brushes into composite brushes by using various operators, including
logical, analytical, data-centric, and visual operations. With such facilities, brushing
is much like a visual query mechanism.

5.3.4 Dynamic Queries

Shneiderman (1994) describes dynamic queries as a concept for visual information
seeking. It is strongly related to brushing & linking in that the goal is to focus on
data of interest, which in the case of dynamic queries is often realized by filtering
out irrelevant data. Because time-oriented data are often large, dynamically omitting
data with respect to task-specific conditions can be very helpful.
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Fig. 5.9: Several filters can be adjusted in order to dynamically restrict the scatter plot visualization
to data items that conform with the formulated conditions. €©(® The authors.

Depending on the view characteristics and visualization tasks, two alternatives
can be applied to display filtering results: filtered objects can be displayed in less
detail or they can be made invisible. Reducing detail is useful in views that maintain
an overview, where all information needs to be displayed at all times, but filtered
objects need only to be indicated. Making objects invisible is useful in views that
notoriously suffer from cluttering.

Filter conditions are usually specified using dedicated mechanisms. Threshold
or range sliders are effective for filtering time or any particular numerical variable;
textual filters are useful for extracting objects with specific labels (e.g., data tagged
by season). Similar to what has been said for brushing & linking, the next logical step
is to combine filters to provide some form of multidimensional data reduction. For
instance, a logical AND combination generates a filter that can be passed only if an
object obeys all filter conditions; an object can pass a logical Or filter if it satisfies
any of the involved filter conditions. Figure 5.9 shows an example of a dynamic
query interface.

While some systems offer only fixed filter combinations or require users to enter
syntactic constructs of some filter language, others implement a visual interface
where the user can interactively specify filter conditions. Examples of querying
time-oriented data that are visualized as line plot (— p. 233) are timeboxes and
relaxed selection techniques.

Timeboxes (— p. 290) by Hochheiser and Shneiderman (2004) are used to filter
out variables of a multivariate line plot. To this end, the user marks regions in the
visual display by creating one or more elastic rectangles that specify particular value
ranges and time intervals. The system then filters out all variables whose plots do not
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Fig. 5.10: Three timeboxes are used to dynamically query stock data. Only those stocks are displayed
that are high at the beginning, but low in the middle, and again high at the end of the year. @® The
authors. Generated with the TimeSearcher software by Hochheiser and Shneiderman (2004).

overlap with the rectangles, effectively performing multiple AND-combined range
queries on the data. Figure 5.10 depicts a query that combines three timeboxes to
restrict the display to stocks that performed well in the first and the last weeks of the
year, but had a bad performance in the middle of the year.

The relaxed selection techniques by Holz and Feiner (2009) are useful for finding
specific patterns in the data. For that purpose, the user specifies a query pattern by
sketching it directly on the display. When the user is performing the sketching, either
the distance of the sketch to the line plot or the user’s sketching speed is taken into
consideration in order to locally relax the query pattern. This relaxation is necessary
to allow for a certain tolerance when matching the pattern in the data. An interactive
display of the query sketch can be used to fine-tune the query pattern. Once the
query pattern is specified, the system computes corresponding pattern matches and
displays them in the line plot as depicted in Figure 5.11.

We should acknowledge that carrying out interactions directly on the visual
representation as illustrated in this section is definitely useful, but the user can mark
only those things that are already in the data and are actually displayed. Formulating
queries with regard to potential but not yet existing patterns in the data beyond some
tolerance requires additional formal query languages, and their utility hinges on the
interface exposed to the user (see Monroe et al., 2013a).

Overall, navigating in time, direct manipulation, brushing & linking, and dynamic
queries form an interaction vocabulary that any visualization of time-oriented data
should support. Despite the advantages of being able to dynamically focus on data
that are relevant to the task at hand, this vocabulary has still not yet become standard.
While virtually all visualization tools for time-oriented data offer navigation in time,
many do so using only rudimentary means that require users to take discrete steps
rather than allowing them to browse the data in a continuous manner. Brushing the
data directly in the visual representation and constructing more complex dynamic
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Fig. 5.11: The user can sketch a query pattern directly in the line plot and optionally refine it locally
in a dedicated query view. The line plot then shows where in time the query matches with a certain
tolerance. © Courtesy of Christian Holz.

queries are typically reserved for professional visualization systems. Again one can
find a reason for that in the higher development costs for designing and implementing
efficient interaction methods, particularly when direct manipulation and sketching
are involved (see Mannino and Abouzied, 2018). Moreover, because visualization
and interaction must be coupled tightly, it is typically difficult to develop interaction
components that can be interchanged among the different visualization techniques
for time-oriented data. One rare exception is the EazyPZ library (see Schwab et al.,
2019b) whose zoom and pan functionality can be used as a basis for flexible naviga-
tion in time. Finding generally applicable solutions to other interaction problems is
an open research question.

5.4 Advanced Interaction Methods

The previous section was concerned with basic interaction methods. In this section,
we shed some light on advanced ways of interacting with time-oriented data. We
start with interactive lenses as versatile tools for data exploration. When interesting
data portions have been spotted, it is often necessary to compare them. This sec-
tion will illustrate how visual comparison can be supported with naturally inspired
interaction techniques. In order to help users make analytical progress, further ad-
vanced support can be offered in the form of guidance or by integrating automatic
event-based methods. Finally, this section will consider advanced interaction using
modern interaction modalities beyond mouse and keyboard interaction.
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5.4.1 Interactive Lenses

Interactive lenses, originally introduced as magic lenses by Bier et al. (1993), are
related to the focus+context concept discussed on p. 137. Tominski et al. (2017) define
interactive lenses as lightweight tools that provide alternative visual representations
for selected parts of the data on demand. Once activated, working with a lens is as
easy as moving it across the visualization to specify where the lens is to take effect.
The lens effect is automatically computed and merged with the base visualization
to generate a locally enhanced visual representation. When the lens is no longer
needed, it can simply be dismissed and the original visualization is restored.

As such, interactive lenses support scrutinizing the visualized data similar to
using a magnifying glass. The difference though is that an interactive lens is not
limited to enlarging selected parts of the visual representation. Conceptually, the
effect generated by an interactive lens can include (i) the alternation of existing
visualization content (e.g., change the coloring of selected time points), (ii) the
omission of content (e.g., filter out less relevant data), or (iii) the addition of new
content (e.g., add textual labels for clarification).

According to Tominski et al. (2017), more than 50 lens techniques for different
data analysis scenarios are known in the literature, and eight of them are suited for
time-oriented data. An additional example is the regression lens by Shao et al. (2017)
shown in Figure 5.12. It is particularly useful for analyzing temporal trends. The lens’
primary purpose is to enhance point plots (— p. 232) by adding locally computed
regression curves for the data points within the perimeter of the lens. Our example
shows two regression curves calculated by different algorithms. Additionally, the left
and top borders of the lens are enhanced with histograms of the selected data. By

Histogram _

~

| Regression curves

Selected data

Unselected data._ Regression lens

Fig. 5.12: The regression lens computes regression curves of its underlying data points and shows
them as line plots on top of the base visualization. Additional histograms indicate the data distri-
bution at the lens borders. @@ The authors. Adapted from Shao et al. (2017).
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moving and resizing the lens, the user can quickly explore the regression in local
parts of the data without changing the original visualization globally.

While our example of the regression lens is focused on time-oriented data, inter-
active lenses are highly versatile tools in general. The swiftness and naturalness with
which lenses can be operated are their key advantages. How natural interaction can
also benefit the comparison of time-oriented data will be discussed next.

5.4.2 Interactive Visual Comparison

Comparing data is a ubiquitous data analysis activity (see Gleicher et al., 2011;
Gleicher, 2018; LYi et al., 2021). It is particularly relevant in the context of time-
oriented data. For example, the detection of temporal trends requires the comparison
of individual data values along the time axis in the first place. Once promising trends
have been identified, it is usually also of interest to compare them with each other:
Which trend has the steeper slope or which trend peaks at the global maximum?

Without dedicated support, visual comparison can be a demanding task. In Chap-
ter 4, we already discussed visual color-coding specifically to support visual compar-
ison tasks. But still it may be necessary to move the eyes back and forth between the
data to be compared, which is costly and error-prone. In the following, we discuss
interaction techniques that allow users to dynamically re-arrange parts of a visual
representation to facilitate visual comparison.

The interaction techniques to be presented are inspired by natural human behavior
(see Tominski et al., 2012a). When people compare information printed on paper
they usually carry out three steps:

1. Select comparison candidates
2. Arrange candidates for comparison
3. Carry out the actual comparison

In the first step, people specify what they want to compare. The comparison
candidates can be individual data values or data items at different points in time or
sub-ranges of the time axis showing interesting behavior such as trends or recurring
patterns. In the second step, the comparison candidates are arranged so as to enable
or ease their comparison. Finally, the actual comparison is conducted to figure out
what relationships might exist between the compared data. Two requirements should
be fulfilled in this regard. First, the properties of the individual data being compared
should be clearly visible. Second, the similarities and differences between the data
need to be communicated as well. The degree to which both requirements are met
depends largely on the arrangement generated in step two, so let us look at this aspect
in more detail.

Assume two comparison candidates A and B have been selected. When A and
B are printed on paper, people would naturally arrange them as juxtaposition or
superposition. For juxtaposition, A and B are arranged side by side. This allows
us to see the individual data properties of A and B clearly, but in order to detect
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(a) Side-by-side. (b) Shine-through. (¢) Folding.

Fig. 5.13: Natural comparison behavior when comparing information printed on paper. €©® Tomin-
ski and Schumann (2020).

similarities or differences, the eyes have to switch between both sides frequently. For
superposition, A and B are stacked on top of each other. As A and B are now co-
located, similarities and differences are potentially easier to see, but either A occludes
B or the other way around, which hinders the comparison and also deteriorates the
visibility of either A or B. For real-world comparison on paper, the occlusion can
be resolved in two ways. Either the stacked A and B are held against the light to let
the occluded information shine through and generate a merged representation of A
and B. Or the occlusion is resolved by folding the occluding piece of paper back
and forth to reveal A and B in quick succession. Figure 5.13 illustrates these natural
comparison behaviors: side-by-side, shine-through, and folding.

On the computer, this natural comparison between A and B can be replicated via
advanced interaction techniques, as schematically depicted in Figure 5.14. Via simple
drag gestures, side-by-side and overlapping arrangements can be created. For resolv-
ing occlusions, shine-through comparison can be implemented via alpha-blending,
where the occluding view is made partially transparent. The folding technique makes
it possible to peel off the occluding view very much like for real paper. To keep the
interaction costs low, the folding can simply be triggered by clicking at the location
where the occlusion between the views is to be resolved. Based on a heuristic, a
natural fold is calculated and presented via a smooth animation.

Letus take a closer look at Figure 5.14 to understand the advantages and drawbacks
of the different interactions. In the side-by-side variant, the user drags comparison
candidate B next to A. This shows both subsets of the data clearly, however, deter-
mining which trend is steeper might not be so easy to figure out. The shine-through
technique makes the direct comparison of the trends easier by superimposing A and
B and allowing the user to manipulate the degree of occlusion via a vertical drag
gesture or slider. Yet it is no longer clear which line plot belongs to which subset.
The folding variant is a compromise. It clearly separates the superimposed line plots,
and by quickly folding back and forth, the peaks can be compared reasonably well.
Yet, the collateral occlusion caused by the folding need to be dealt with.
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Fig. 5.14: Side-by-side, shine-through, and folding interaction. @@® The authors.

In summary, this section illustrated different interaction techniques for supporting
visual comparison tasks, which are so common when analyzing time-oriented data.
The naturalness of the interactions makes them easy to learn and carry out. Moreover,
the outlined techniques are not limited to comparing line plots, but are generally
applicable to any visual representation.

5.4.3 Guiding the User

The interaction techniques described in this chapter so far provide many degrees of
freedom to enable users to study time-oriented data from different perspectives and
to develop a comprehensive understanding. However, the many degrees of freedom
can also be a challenge. During the data exploration, many questions arise: Where
should I move the lens to identify a local cluster? Which partial trends should I
select for comparison? Where should I navigate to find interesting patterns? These
questions become problematic when there are too many of them and when the user
has too many difficulties answering them. If this is the case, the analytical progress
stalls and the interactive exploration comes to a halt.

To ensure steady progress and to keep the data exploration going, it makes sense
to provide users with guidance. Guidance has been defined as a means to help users
resolve problems they may encounter during interactive data exploration (see Schulz
et al., 2013b; Ceneda et al., 2017; Collins et al., 2018). The important aspect here is
that guidance is there to help and to assist. It is not a means to provide answers to
analytic questions, but to enable and support users to arrive at answers on their own,
that is, the human remains in the loop.
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Fig. 5.15: Overview plot of a time series with 3.6 million time points (top) and color-coded
difference bands (center: slope sign difference; bottom: absolute value difference) indicating where
potentially interesting observations could be made. @® Martin Luboschik. Also see Luboschik
etal. (2012).

In the following, we will demonstrate how large time-oriented data can be explored
at multiple scales with the help of an appropriate guidance strategy. The starting point
is a large time series with millions of data points from a simulation of the cell division
cycle in fission yeast (see Luboschik et al., 2012). We are going to visualize these
data as a classic line plot (< p. 233). The problem though is that about 3.6 million
time points usually do not fit in a line plot. Therefore, the time series has been
aggregated at several levels of granularity, leading to a multi-scale representation of
the data. Such a representation lends itself to being explored via zooming. When the
zoom level changes, the visualization shows the level of granularity that matches the
resolution of the display.

An overview of the whole time series is depicted at the top of Figure 5.15. At
this level of granularity, one can easily see three peaks. But what we are seeing is
only a coarse representation, in fact, the coarsest of our multi-scale time series. We
do not know what is going on at the finer scales on the slopes or at the top of the
peaks. Zooming and panning will allow us to access the details we seek. However,
where in time and at what temporal scale can we make interesting observations?
The guidance approach we are about to demonstrate uses the data themselves as an
input to compute visual cues that provide users with orientation to narrow down their
search on promising parts of the data.

The assumption is that differences between adjacent scales might serve as an
indication for users to look more closely into particular parts of the data. Various
measures can be employed to calculate the differences. Luboschik et al. (2012)
consider absolute value differences and slope sign differences. These measures are
calculated for all pairs of adjacent scales. Aggregating the measures and color-coding
them leads to so-called difference bands that can be attached below our line plot on
demand as shown in Figure 5.15.
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Fig. 5.16: Zoomed view of the tip of the second peak from Figure 5.15. The difference bands are
magnified by means of a focus+context distortion. @@ Martin Luboschik. Also see Luboschik et al.
(2012).

Interestingly, in the bluish bands for slope sign difference (center), we can see
three notches exactly where the three peaks are in the line plot. There are also
three greenish spikes in the absolute value difference bands (bottom). So, both
bands guide the user to the peaks for more detailed inspection. And in fact, some
interesting behavior can be observed. Looking at the notches for slope sign difference
in Figure 5.15 more closely, one can see thin spikes.

To understand what is going on, we study the second notch in more detail. We
magnify the second notch and the tip of its associated peak as shown in Figure 5.16.
From the magnified difference bands, we can see that greater differences, indicated
by darker colors, exist between the temporal scales of finer granularity. The zoomed
line plot confirms that the tip of the peak is not a smooth curve as we might have
thought. There is in fact a rather rough up and down of the curve.

This example of multi-scale exploration of time-oriented data illustrates the ben-
efit of providing guidance. The additional difference bands provide on-demand sup-
port to help users decide which parts of the data are promising to study in detail.
Other examples of guidance exist, where the focus is less on navigation, but on guid-
ing the configuration of visualization techniques, for example, to suggest suitable
cycle lengths of spiral representations (— p. 274) to help users find cyclic patterns
in time-oriented data (see Ceneda et al., 2018). For a broader view on guidance
and more examples, the interested reader is referred to the survey by Ceneda et al.
(2019).
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5.4.4 Integrating Interaction and Automation via Events

With the increasing complexity of data and visualization methods alike, it is not
always easy for users to set visualization parameters appropriately for the analy-
sis task at hand. Particularly if parameters are not self-explanatory, they are not
easily set manually. Guidance can provide a form of support to assist users in the
parametrization process.

Another possible solution is to employ the concept of event-based visualization,
which combines visualization with event methodology (see Reinders et al., 2001;
Tominski, 2011). In diverse application fields, including active databases, software
engineering, and modeling and simulation, events are considered happenings of
interest that trigger some automatic actions. In the context of visualization, such an
event-action-scheme is useful for complementing manual interaction with automatic
parametrization of visual representations.

The basic idea of event-based visualization is (1) to let users specify their interests,
(2) to detect if and where these interests match in the data, and (3) to consider detected
matches when generating the visual representation. This general procedure requires
three main components: (1) event specification, (2) event detection, and (3) event
representation. Figure 5.17 illustrates how they are attached to the visualization
pipeline. Next, we will look at each of these components in more detail.
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Fig. 5.17: The main ingredients of event-based visualization — event specification, event detection,
and event representation — attached to the visualization pipeline. @@ The authors.

Describing User Interests

The event specification is an interactive step where users describe their interests as
event types. To be able to find actual matches of user interests in the data, the event
specification must be based on formal descriptions. Tominski (2011) uses elements
of predicate logic to create well-defined event formulas that express interests with
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respect to relational datasets (e.g., data records whose values exceed a threshold
or attribute with the highest average value). For an analysis of time-oriented data,
sequence-related notations (for instance as introduced by Sadri et al. (2004)) enable
users to specify conditions of interest regarding temporally ordered sequences (e.g.,
sequence of days with rising stock prices). A combination of event types to composite
event types is possible via set operators.

As a simple example, we formulate our interest in “Three successive days where
the number of people diagnosed with influenza increases by more than 15% each
day” as the following event type:

{(x,y,2aate | z-flu >y flu- 115 Ay.flu > x.flu-1.15}

The first part of the formula defines three variables (x, y, 7)4qre that are sequenced
by date. To express the condition of interest, these three variables are set into relation
using predicates, functions, and logical connectors.

Certainly, casual users may find it difficult to describe their interests via event for-
mulas. Therefore, sufficient specification support should consider dedicated means
for experts, regular users, and visualization novices. In this regard, one can think of
three levels of specification: (i) direct specification, (ii) specification by parametriza-
tion, and (iii) specification by selection. All levels are based on the aforementioned
formalism, but the complete functionality is available only to expert users at the level
of direct specification. The second level works with parametrizable templates that
hide the complexity of event formulas from the user. Non-expert users can adjust
the templates via easy-to-set parameters, but otherwise do not need to fiddle with
the internals of event formulas. For example, exposing the increase rate (15% in our
previous example) as a template parameter would be reasonable. At the third level,
users simply select from a predefined collection of event types that are particularly
tailored to the application context.

Finding Relevant Data Portions

The event detection is an automatic step that determines whether the interests defined
interactively are present in the data. The outcome of the event detection is a set of
event instances. They describe where in the data interesting information is located.
That is, entities that match user interests are marked as event instances. For event
detection, the variables used in event formulas are substituted with concrete data
entities. In the second step, predicates, functions, and logical connections are eval-
uated, so that the event formula as a whole can be evaluated as either true or false.
Because this procedure can be quite costly in terms of computation time, efficient
methods must be utilized for the event detection. A combination of the capabilities of
relational database management systems and efficient algorithms (e.g., the OPS al-
gorithm by Sadri et al. (2004)) is useful for static data. When dynamic data (i.e., data
that change over time, see Section 3.3) have to be considered, detection efficiency
becomes even more crucial. Here, incremental detection methods can help. Such
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methods operate on a differential dataset, rather than on the whole data. However,
incremental methods also impose restrictions on possible event types, because they
do not have access to the entire dataset.

Considering User Interests in Visual Representations

The last important step of event-based visualization is the event representation.
The goal of this step is to incorporate detected event instances, which reflect the
interests of the user, into visual representations. The three requirements that have to
be considered are as follows:

1. Communicate the fact that something interesting has been found.
2. Emphasize interesting data among the rest of the data.
3. Convey what makes the data interesting.

Most importantly, the visual representation must clearly express that something
interesting is contained in the data. To meet this requirement, easy-to-perceive visual
cues (e.g., a red frame around the visual representation, exclamation marks, or
annotations) can be used. Alpha-blending can be applied to fade out past events. The
second requirement aims at emphasizing those parts of the visual representation that
are of interest. Additionally, the visualization should communicate what makes the
highlighted parts interesting (i.e., what the particular event type is). However, when
facing arbitrarily definable event formulas, this last requirement is difficult to fulfill.

We can distinguish two basic options for representing events: explicit and implicit
event representation. For the explicit case, the focus is set exclusively on event in-
stances, neglecting the raw data. Since the number of events is usually smaller than
the number of data items, explicit event representation can grant insight even into
very large datasets. For implicit event representation, the goal is to automatically
adjust visualization parameters so as to highlight the points of interest detected in
the data. Assuming that user interests relate to user tasks and vice versa, implicit
event representation can help us obtain better-targeted visual representations. The
big challenge though is to meet the aforesaid requirements solely by adapting visual-
ization parameters. Apparently, the availability of adequate visualization parameters
is a prerequisite for implicit event representation.

Let us illustrate the potential of event-based visualization with an example. As-
sume a user has to analyze multivariate time-dependent human health data for
uncommonly high numbers of cases of influenza. The task at hand is to find out if
and where in time these situations have occurred. A possible way to accomplish this
task is to use the TimeWheel technique (— p. 298).

Figure 5.18a shows a TimeWheel that uses the standard parametrization, where
time is encoded along the central axis and multiple diagnoses are mapped to the
axes surrounding the time axis. In particular, influenza happens to be the diagnosis
that is mapped to the upper right axis (light green). Alpha-blending is applied by
default to reduce visual clutter. Looking at this TimeWheel, the user can only guess
from the labels of the axis showing influenza that there are higher numbers of cases



5.4 Advanced Interaction Methods 157

fluenza

(a) Default parametrization. (b) Targeted parametrization.

Fig. 5.18: Default vs. targeted parametrization of a TimeWheel. (a) TimeWheel representing a
time-dependent health dataset using the default configuration, which aims at showing main trends,
but does not consider the interests of the user. (b) TimeWheel representing the same data, but
matches with the user’s interests have been detected and corresponding data are emphasized via
highlighted lines and automatic rotation and stretching; the presentation is better targeted to the
user’s task at hand. @@ The authors.

because the alpha-blending made the particular lines almost invisible (see question
mark). Several interaction steps are necessary to re-parametrize the TimeWheel to
accomplish the task at hand.

In contrast to this, in an event-based visualization environment, the user can
specify the interest in “Days with a high number of cases of influenza” as the
event type ({x | x.flu > 300}). If the event detection step confirms the existence of
such events in the data, visualization parameters are altered automatically so as to
provide an individually adjusted TimeWheel that reflects the special situation. In our
particular example in Figure 5.18b, we change the color and transparency of line
segments representing event instances: Days with high numbers of influenza cases
are excluded from alpha-blending and are drawn in white (see exclamation mark).
Additionally, rotation and stretching are applied such that the axis representing
influenza is moved gradually to an exposed position and is provided with more
display space. The application of a gradual process is important in this case to
support users in maintaining their mental map of the visual representation. In this
automatically adjusted TimeWheel, the identification of days with higher numbers
of influenza infections is easy.
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5.4.5 Interaction Beyond Mouse and Keyboard

Most of the interaction techniques discussed in this chapter, and also most of the
techniques described in the literature, are designed for the classic desktop computer
workplace where the mouse and keyboard are the dominant input devices. Yet,
technological advances have brought us to a point where new interaction modalities
are becoming more and more commonplace. Interaction beyond mouse and keyboard
brings new possibilities for exploring and analyzing data in various ways (see Lee
et al., 2012; Keefe and Isenberg, 2013). In this section, we briefly look at what
is possible in terms of modern interaction for time-oriented data. In particular, we
consider touch interaction for exploring time-oriented data visualized as stacked
graphs and tangible interaction for exploring space-time cube visualizations.

Touching Stacked Graphs

Touch interaction has become the primary input modality for mobile devices. It can
also be found on laptop computers and larger display surfaces (see Voida et al.,
2009). Touch interaction has the advantage that the action takes place directly on
the display, exactly where the operation is to take effect. Yet, a difficulty with touch
is that the input devices, our fingers, are rather imprecise making it harder to point
at fine details in a visualization. Using the fingers for interaction can also cause the
hand to occlude relevant information on the display. Nonetheless, the directness and
intuitiveness of touch interaction are the key motivation for using it in the context of
visualization.

The example we are looking at here is TouchWave by Baur et al. (2012). Touch-
Wave is specifically designed for direct and fluid interaction with time-oriented
data visualized as stacked graphs (< p. 286). For improving the legibility, com-
parability, and scalability of stacked graphs, several concrete touch interactions and
corresponding visual feedback are offered. Legibility can be improved by touching
the visualization background, which triggers the display of an on-demand vertical
ruler showing the exact value distribution for the time point corresponding to the
finger position. By using more than one finger, which is called multi-touch interac-
tion, additional rulers can be activated to facilitate the visual comparison of several
points in time.

As the order of individual streams in a stacked graph is important, reordering the
streams is an essential operation. By long-pressing the stacked graph, its streams can
be sorted so that the stream with the highest value for the time point being touched
is at the top. Double tapping a stream will make it the baseline stream on top of
which all other streams are stacked. Moreover, individual streams can be pulled out
of the stacked graph via simple drag gestures. These interactive rearrangements are
particularly useful for comparison, as we have already seen in Section 5.4.2.

To support multi-scale data exploration, the TouchWave utilizes pinch gestures.
Pinching horizontally will create a focus+context distortion of the time line revealing
details in the focus, while compressing the context. Vertical pinching can be used to
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Fig. 5.19: Using a pinch gesture for scaling a stacked graph visualization vertically. © Courtesy of
Dominikus Baur. https://do.minik.us/projects/touchwave

perform a hierarchical zoom with respect to the streams in a stacked graph. Such a
vertical pinch gesture is illustrated in Figure 5.19.

TouchWave is designed particularly for stacked graphs. Yet, touch-based interac-
tion also works for other visualizations of time-oriented data. For example, Riehmann
et al. (2018) describe dedicated touch interactions for multiple time series depicted
as horizon graphs (= p. 277). What all touch techniques have in common is that
they facilitate the direct interaction on the display. Next, we will see how tangible
interaction can support interaction with the display.

Exploring Space-Time Cubes with Tangible Interaction

Tangible interaction is a style of interaction where users interact by manipulating
physical objects, so-called tangibles (see Shaer and Hornecker, 2009). This requires
appropriate tracking equipment so that the system knows where the tangibles are
located and how they are oriented in space. The spatial awareness can be utilized
to define whole new interaction vocabularies. Basic interactions include horizontal
and vertical translation and rotation, which in turn can be combined to gestures such
as tilting, flipping, or shaking a tangible. These interactions can then be utilized to
design new data exploration experiences.

In the context of exploring time-oriented data, tangible interaction opens up new
possibilities for navigating the time axis and also for adjusting the visual representa-
tion depending on the user’s tasks. To illustrate the usefulness of tangible interaction,
we present two examples: tangible views and the Uplift system. In both cases, spatio-
temporal data are visualized as a space-time cube (< p. 377) on a horizontal tabletop
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display. The cube’s base plane resides in the horizontal x-y plane of the tabletop and
the dimension of time extends from the base plane along the vertical z-axis. It is
important to realize that the space-time cube is a virtual one, meaning that the space
above the horizontal tabletop defines the space-time cube, but its content is not yet
visible. Initially, there is only a map on the tabletop, but via tangible interaction, one
can access the space-time cube and make different parts of time and space visible.

Tangible views The two terms tangible and views already hint at a duality between
display and interaction: The views serve to show the visualization, and at the same
time, the views are tangible and serve as an input device for interacting with the
visualization. Conceptually, tangible views are spatially-aware lightweight displays.
Spindler et al. (2010) describe an implementation where tangible views are made of
cardboard onto which visual representations can be projected.

(a) Flipping the color-coding. (b) Side-by-side comparison.

Fig. 5.20: Using tangible views for exploring spatio-temporal data in a virtual space-time cube.
@@ The authors.

In order to interactively explore a virtual space-time cube and adjust its visual-
ization, one or more tangible views can be held in the space above the base map as
illustrated in Figure 5.20. Different parts of the map can be accessed by moving a
tangible view horizontally (i.e., navigation in space). The tangible view’s partial map
is then updated according to the horizontal position above the base map. Similarly,
by raising and lowering the tangible view along the vertical axis, one can select
particular time points to be displayed (i.e., navigation in time). By flipping the tan-
gible view, it is possible to switch between two different color-coding strategies, for
example, for identification and location tasks as described in Section 4.2.2. Tangible
views can also facilitate visual comparison. To this end, two tangible views are used
in combination. First, each view is moved individually to select two map regions and
two time points to be compared. Then a lock operation is performed, which makes
both tangible views insensitive to further motion. This in turn allows the user to bring
the two tangible views together forming a side-by-side arrangement for comparison.
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Uplift Our second example of tangible interaction with a space-time cube visual-
ization is the Uplift system by Ens et al. (2021). In this example, the space-time
cube is also located in the space above a tabletop display, but it is displayed virtually
as an augmented-reality representation. This allows several persons to look at the
data simultaneously as shown in Figure 5.21. Several tangibles are used in concert
to interact with the system in various ways. Particularly interesting is the navigation
through time and the unfolding of the space-time cube. By placing a tangible token
on the tabletop, slider widgets with different temporal granularity can be activated.
A physical slider widget can then be used to select a particular point in time. By
using a hinge of the physical widget, the space-time cube can be unfolded to show
several data layers for comparing multiple time steps.

() (b) (©)

Fig. 5.21: Uplift: tangible and immersive tabletop system. (a) Collaborative exploration around a
tabletop display using tangible objects. (b) Physical widget for navigating in time. (c) Unfolded
space-time cube visualization above the tabletop surface. ©) 2021 IEEE. Reprinted, with permission,
from Ens et al. (2021).

What we can learn from tangible views, physical widgets, and TouchWave before
is that there is more to interaction than just mouse and keyboard. Touch and tangible
interaction are but two examples of modern ways of interacting with data. Further
examples are gaze-based interaction (see Duchowski, 2018), where the eyes perform
actions, and proxemic interaction (see Jakobsen et al., 2013), where the distance of
the user to the display is considered. Natural language is another channel to be utilized
for interaction, where combining language with other input modalities seems to be
a quite promising approach (see Srinivasan and Stasko, 2018). Yet, further research
needs to be conducted to take full advantage of these new interaction modalities
and their combination for the particular case of visually exploring and analyzing
time-oriented data.

5.5 Summary

The focus of this chapter was on interaction. We started with a brief overview of
intents that motivate users to interact with the visualization. The most notable intent
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in the context of time-oriented data is the intent to navigate in time in order to visit
different parts of the data. Users also need to view time-oriented data at different
levels of detail, because the data are often given at multiple granularities. Further
intents are related to interactively adjusting the visual mapping according to data
and tasks at hand, and to managing the exploration process.

We explained that interactive visualization is an iterative loop where the user
plans and carries out an interaction, and the computer generates feedback in order
to visually reflect the change that resulted from the user’s actions. This human-in-
the-loop process brings together the computational power of the machine and the
intellectual power of human beings. In order to take full advantage of this synergy, we
need an efficient user interface that bridges the gap between the algorithmic structures
being used for visualizing time and time-oriented data, and the mental models and
analytic workflows of users. This also includes tackling technical challenges to
guarantee the smooth execution of the interaction loop.

This chapter also presented basic interaction concepts, including temporal naviga-
tion, direct manipulation, brushing & linking, and dynamic queries. These concepts
are vital for data exploration tasks where the user performs an undirected search for
potentially interesting data features. Going beyond basic interaction, we considered
interactive lenses, natural visual comparison, guidance, event-based visualization,
and interaction beyond mouse and keyboard. These advanced concepts can further
enhance the visual exploration of time-oriented data. But still, the potential of ad-
vanced interaction methods has not been fully exploited by current visualization
techniques. There is room for future work to better adapt existing interaction meth-
ods or to develop new ones according to the specific needs of time-oriented data.
Moreover, the examples of guidance and event-based visualization indicate that a
combination of visual, interactive, and automatic methods can be quite useful. In
the next chapter, we will take a closer look at computational analysis methods for
supporting the visual analysis of time-oriented data.
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