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        Introduction 

 Successful medical management of the organ donor is critical 
to actualizing the individual or family’s intent to donate and 
maximizing the benefi t of that intent. This interval of care in 
the PICU begins with brain death and consent to donation 
and culminates with surgical organ procurement. It gener-
ally ranges from 12 to 48 h or longer and is related to the 

time required for repeated brain death declarations,  consent 
discussions with the family, procurement logistics of donor/
organ evaluation, and donor/recipient matching. During this 
phase, risks for hemodynamic instability and compromise of 
end organ function are high (Table  38.1 ). There is a signifi -
cant opportunity for enhancing donor multi- organ function 
and improving organ utilization with appropriate medical 
management [ 1 ].

   The brain dead organ donor is in a distinct and challeng-
ing pathophysiological condition that culminates in a state of 
multifactorial shock. The current level of evidence support-
ing practices in pediatric donor management is limited by the 
inherent lack of prospective trial data, and based largely on 
adult human and animal studies; however, donor manage-
ment practice is of increasing importance [ 2 – 5 ]. PICU care 
should be tailored by principles similar to the management 
of any patient with multifactorial shock. It is important to 
treat the donor as one would treat the transplant recipient. 
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    Abstract 

 Brain death is associated with complex physiologic changes that may impact the manage-
ment of the potential organ donor. Medical management is critical to actualizing the indi-
vidual or family’s intent to donate and maximizing the benefi t of that intent. This interval 
of care in the PICU begins with brain death and consent to donation and culminates with 
surgical organ procurement. During this phase, risks for hemodynamic instability and com-
promise of end organ function are high. The brain dead organ donor is in a distinct and 
challenging pathophysiologic condition that culminates in multifactorial shock. The poten-
tial benefi ts of aggressive medical management of the organ donor may include increased 
number of donors providing transplantable organs and increased number of organs trans-
planted per donor. This may improve graft function, graft survival, and patient survival in 
those transplanted. In this chapter, pathophysiologic changes occurring after brain death 
are reviewed. General and organ specifi c donor management strategies and logistic consid-
erations are discussed. There is a signifi cant opportunity for enhancing donor multi-organ 
function and improving organ utilization with appropriate PICU management.  
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This can be accomplished by understanding the physiology 
of brain death coupled with aggressive and attentive PICU 
management. 

 Figure  38.1  shows the Canadian experience of organ uti-
lization across all age groups, comparable to international 
rates [ 6 – 8 ]. Utilization rates vary from region to region and 
transplant center to transplant center. Rates for heart and 
lung utilization have the greatest capacity for quantitative 
improvement. For the purposes of most international reports, 
a “donor” is one who has provided at least one organ that has 
been transplanted (Table  38.2 ). Initial interventions to 
increase transplantation focused on identifi cation, referral, 
and consent of the donor, recent pursuit of organ yield has 

gained importance [ 9 ]. Pediatric investigators have reported 
rates of 3.6 organs per donor (of eight possible organs), but 
22 % of consented pediatric donors failed to provide  any  
transplantable organs primarily due to hemodynamic insta-
bility during the phase of PICU donor care [ 10 ].

    The goal of PICU based donor management is to improve 
the utilization of organs from consented donors to transplant 
recipients. The potential benefi ts of aggressive medical man-
agement of the organ donor may include increased number 
of donors providing transplantable organs and increased 
number of organs transplanted per donor. This may improve 
graft function, graft survival and patient survival in those 
transplanted [ 11 ].  

   Table 38.1    Incidence of pathophysiologic changes occurring after 
brain stem death requiring intensive care management of the potential 
organ donor   

 Hypotension  81 % 
 Diabetes insipidus  65 % 
 Disseminated intravascular coagulation  28 % 
 Cardiac arrhythmias  25 % 
 Pulmonary edema  18 % 
 Metabolic acidosis  11 % 

  [Based on data from ref.  298 ]  
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  Fig. 38.1    Organ-specifi c utilization rates for deceased donors, Canada, 1993–2002 (Reprinted from Badovinac et al. [ 6 ]. With permission from 
Springer Science + Business Media.)       

   Table 38.2    Organ-specifi c donation numbers for pediatric deceased 
brain dead donors in United States, UNOS   

 2010  2009 

 All donors  841  916 
 Kidney  792  854 
 Liver  739  794 
 Heart  477  480 
 Pancreas  321  365 
 Lung  212  204 
 Intestine  100  138 

  [Based on data from Ref.  299 ]  
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    The Physiology of Brain Death 

 The deterioration of cardiovascular and pulmonary function 
associated with intracranial hypertension will vary with the 
rapidity of rise of intracranial pressure (ICP) [ 12 ], time after 
herniation, and presence of coexisting forms of myocardial 
injury e.g., traumatic myocardial contusion, ischemia after 
cardiac arrest, shock, or hypoxemia [ 13 ,  14 ]. In the face 
of markedly elevated ICP, mean arterial pressure (MAP) 
rises in an effort to maintain cerebral perfusion pressure. 
As ICP rises further, cerebral herniation into the brainstem 
ensues, and brainstem ischemia is initiated in an orderly, 
rostral- caudal fashion. Initial apnea, bradycardia, hypo-
tension and drop in cardiac output are mediated by vagal 
(parasympathetic) activation resulting from midbrain isch-
emia. Brainstem ischemia then progresses toward the pons, 
where sympathetic stimulation is superimposed on the initial 
vagal response, resulting in bradycardia and hypertension 
(the classic Cushing’s refl ex) [ 15 ]. During this period, the 
ECG may be characterized by sinus bradycardia, junctional 
escape beats, and even complete heart block [ 16 ]. Further 
extension into the medulla oblongata occurs, at which point 
the vagal cardiomotor nucleus becomes ischemic, preventing 
tonic vagal stimuli. This results in unopposed sympathetic 
stimulation which may last for minutes to hours and mani-
fests as arterial hypertension with elevated cardiac output 
with the potential for tachyarrhythymias [ 16 ]. This period 
of unopposed sympathetic stimulation is often termed the 
 “autonomic” or “sympathetic storm” during which time 
cardiotoxicity occurs and severe vasoconstriction may com-
promise end organ perfusion [ 17 ,  18 ]. Subsequent changes 
occur in oxygen consumption and delivery [ 19 ]. Herniation 
triggers an infl ammatory cascade that affects cardiorespira-
tory function, and hormonal regulation [ 20 ]. This cascade 
affects pituitary and hypothalamic function resulting in cat-
echolamine, thyroid, and vasopressin abnormalities [ 21 – 24 ]. 

    Neurogenic Myocardial Dysfunction 

 The sympathetic storm is responsible for potentially revers-
ible myocardial injury and has been best studied in sub-
arachnoid hemorrhage [ 25 ], where is called “neurogenically 
stunned myocardium” [ 26 ,  27 ]. Endogenous catecholamine- 
related increases in peripheral resistance may result in a sud-
den increase in myocardial work and oxygen consumption 
leading to myocardial ischemia or infarction and subsequent 
elevation of cardiac troponin I and T [ 15 ,  28 ]. Patients dying 
of acute intracranial events show scattered foci of transmural 
myocardial injury that are not seen in patients dying of non-
cerebral causes [ 29 ]. Myocardial necrosis after subarachnoid 
hemorrhage is a neurally mediated process that is depen-
dent on the severity of neurological injury [ 30 ]. Brain dead 

 cardiac donors with elevations in cardiac troponin I have 
been shown to have diffuse subendocardial myocytolysis 
and coagulative necrosis and a high incidence of graft failure 
after transplantation [ 31 ]. The magnitude of the rise of epi-
nephrine after brain death and the extent of myocardial dam-
age have also been shown to depend on the rate of rise in ICP 
in a canine model [ 12 ,  32 ]. Dogs given a sudden rise in ICP 
demonstrated a higher epinephrine surge and poorly func-
tioning donor hearts. Surgical sympathectomy [ 33 ] or phar-
macologic sympathetic blockade in humans [ 34 ] and animals 
[ 35 ,  36 ] effectively prevents the ICP-related catecholamine 
cardiotoxicity and the electrophysiologic, biochemical and 
pathologic changes characteristic of neurogenic injury in the 
heart. While the ICP-related sympathetic storm is character-
ized by myocardial injury and high systemic vascular resis-
tance, it is soon followed by period of sympathetic depletion 
and a low SVR state. Brain dead patients become function-
ally decapitated and the sympathetic system is anatomically 
interrupted, similar to high spinal cord injuries [ 37 ].  

    Neurogenic Pulmonary Edema 

 This unopposed sympathetic stimulation mediates the myo-
cardial injury and is also likely responsible for the neuro-
genic pulmonary edema often seen in the management 
of patients with acute elevations of ICP (Fig.  38.2 ) [ 38 ]. 
Practitioners should be aware of this fulminant presentation 
of sudden onset respiratory failure with large volume, frothy 
tracheal secretions. In primate models of acute intracranial 
hypertension, acute heart failure ensues with reversal of fl ow 
in the pulmonary circulation due to massive rises in left atrial 

  Fig. 38.2    Chest x-ray showing neurogenic pulmonary edema in an 
adolescent with acute intracranial hypertension       
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pressure [ 33 ]. Rupture of pulmonary capillaries can occur 
from this retrograde increase in vascular hydrostatic pres-
sure [ 39 ]. This hydrostatic pulmonary edema is responsive 
to high PEEP and is generally reversible with time [ 40 ,  41 ].

       Infl ammatory State 

 Brain death is also associated with the up-regulation and 
induction of the infl ammatory response in all somatic organs 
[ 42 ], triggering a cascade of mediators that may affect graft 
function [ 43 ]. Transient focal cerebral ischemia upregulates 
the transcriptional levels of TNF-α, IL-6, and other markers 
[ 44 ,  45 ]. Rapid rises of ICP causes immune activation in 
peripheral organs resulting in enhanced immunogenicity 
[ 32 ]. In animal models, brain death has a detrimental effect 
on hepatic dysfunction related to immune activation and 
appears to be independent of hemodynamic instability [ 46 ] 
and magnifi ed by longer ischemic times [ 47 ]. In comparison 
to living related kidney donors, kidneys from brain dead 
donors have signifi cantly higher levels of pro-infl ammatory 
mediators on biopsy (endothelial E-selectin and proximal 
tubular expression of HLA-DR antigens, intracellular adhe-
sion molecule-1, and vascular cell adhesion molecule-1) [ 48 , 
 49 ]. Delayed renal graft function and acute rejection in the 
recipient is correlated to higher indices of free radical medi-
ated injury in the donor [ 50 ,  51 ]. Evidence that neurogenic 
pulmonary edema may be alleviated with glucocorticoids 
also suggests that an infl ammatory component exists in this 
process [ 52 ,  53 ]. Recent animal work suggests that this 
infl ammation is triggered by the acute hemodynamic effects 
of ICP-related neurogenic myocardial dysfunction, resulting 
in hydrostatic pressure based neurogenic pulmonary edema 
and rupture of the alveolar-capillary membrane [ 39 ,  54 ]. 

 Brain death is an important risk factor itself and infl uences 
graft outcomes, mediated by postischemic reperfusion injury 
and other nonantigen-dependent infl ammatory pathways [ 55 , 
 56 ]. Deleterious processes such as infl ammation and fi brosis 
occur in donor organs [ 57 ] potentiating graft immunogenic-
ity and increases host alloresponsiveness organs, developing 
and contributing to reduced graft survival [ 58 ]. These fi nd-
ings may used to introduce specifi c cytoprotective interven-
tions in the brain dead donor to reduce the immunogenicity 
or the pro-infl ammatory status of the graft and better main-
tain or increase organ viability. Anti- infl ammatory therapies 
may be benefi cial on eventual graft status [ 45 ].   

    Donor Management: General 

    Cardiovascular Performance and Monitoring 

 The etiology of low cardiac output in brain dead patients 
is complex and time dependent. It may be characterized by 
low preload due to vascular volume depletion, contractile 

 myocardial dysfunction, and variable SVR states ranging 
from extreme vasoconstriction from ICP-related sympathetic 
storm to vasodilation from sympathetic arrest. Resuscitation 
of the cardiopulmonary system benefi ts the function of all 
end organs in the brain dead donor. The variety of changes in 
volume status, cardiac inotropy, and peripheral vascular resis-
tance that occur after brain death are similar to those in any 
pediatric critically ill patient with shock of diverse etiology. 
Intensivists should titrate cardiovascular therapy to clinical, 
biochemical and hemodynamic endpoints that ensure restora-
tion of intravascular volume status, and appropriate support 
of the myocardium and vascular system to ensure optimal 
cardiac output for organ perfusion. Optimization with aggres-
sive intensive care can optimize transplantation [ 59 ]. 

 Evaluation of cardiocirculatory status is a global assess-
ment of multiple variables. Traditional and vigilant hemody-
namic assessments should be provided, based on physical 
fi ndings, vital signs, central venous pressure, urine output, 
central or mixed venous oximetry and serial lactate measure-
ments. Escalation of support should be accompanied by 
escalation of hemodynamic monitoring. 

 Echocardiographic parameters have also been demon-
strated to be benefi cial in predicting successful cardiac 
transplant outcomes [ 60 ,  61 ]. Echocardiographic systolic 
myocardial dysfunction is present in 42 % of adult brain 
death and associated with ventricular arrhythmias [ 60 ]. 
Diffuse wall motion abnormalities are a risk factor for 
30-day heart transplant mortality [ 62 ]. Evaluation of left 
ventricular end diastolic diameter, ventricular wall thickness, 
and coronary fl ow are felt to infl uence transplantation [ 63 ]. 
Single echocardiographic evaluations may have limitations 
in detecting the reversible myocardial dysfunction often 
seen after brain injury [ 26 ]. Recent studies advocate phar-
macologic stress evaluation for organ suitability [ 64 ]. The 
utility of serial echocardiograms to evaluate improvement in 
myocardial dysfunction in the brain dead donor and to better 
predict cardiac allograft survival has been reported in adults 
[ 65 ] and is evolving into routine practice. Studies show that 
serial echocardiogram lacked specifi city but was particularly 
useful in showing improvements following aggressive donor 
management [ 66 ]. 

 Right-sided pressures may underestimate left-sided pres-
sures after brain death and may increase risk for elevated 
left-sided fi lling pressures and pulmonary edema [ 67 ]. 
Expert consensus supports pulmonary arterial catheteriza-
tion (PAC) and cardiac output monitoring in adults, particu-
larly if the donors are hemodynamically unstable or initial 
ejection fraction is less than 40–45 % [ 68 ,  69 ]. PAC and 
goal-directed hemodynamic therapy of initially unaccept-
able donors, in conjunction with hormonal therapy may 
improve the rate of organ procurement without compromis-
ing transplant outcomes [ 70 ]. A signifi cant increase in heart 
recovery was seen with the use of PAC in adult studies [ 71 ]. 
The Transplantation Committee of the American College of 
Cardiology has recommended titrating volume infusions and 
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dopamine to thermodilution indices [ 72 ]. Justifi cations for 
PAC are not limited to the precise titration of hemodynamic 
support but are also required for the evaluation of suitability 
for heart and lung transplantation. As the use of PAC in 
PICU care is limited, serial echocardiography at q6-12 
hourly intervals has been recommended [ 69 ]. 

 Newer non-invasive methods of monitoring cardiac 
output are becoming more common because of their ease 
of use and safety, but are still not well validated for use in 
donor management, especially in children [ 73 ,  74 ]. Though 
management of the donor is similar to other shock states, 
monitoring of central venous saturations has not been rec-
ommended because of the lack of normal values in the donor 
patient [ 75 ]. Monitoring of other biochemical markers such 
as acidosis, lactates, and electrolytes is essential [ 76 ].  

    Hemodynamic Targets and Supports 

 Following the sympathetic storm, a subsequent reduction in 
catecholamines and sympathetic hormones result in a 
 normotensive or hypotensive phase. This stage is character-
ized by impaired cardiac inotropy and chronotropy, impaired 
vascular tone and a reduced cardiac output. Clinical deterio-
ration (progressive hypotension, hypoxia, anuria ± cardiac 
arrest) during the interval from brain death to procurement is 
common without aggressive intervention [ 77 ]. Cardiovascular 
support should be based on rational physiology and should 
be preceded by volume resuscitation to normovolemia. 

    Preload 
 Signifi cant volume depletion is anticipated in brain-injured 
patients after brain death due to fl uid restriction, diuretics, 
hyperosmolar therapy, third space losses, hemorrhage and/or 
diabetes insipidus. In addition, a low SVR state may result in 
relative hypovolemia. In a Canadian study of 77 pediatric 
organ donors [ 2 ], 53 % suffered sustained hypotension and 
35 % deteriorated to cardiac arrest. This was more common 
in patients treated with inotropic agents in the presence of a 
low central venous pressure and in those without anti-diuretic 
hormone replacement, emphasizing the importance adequate 
restoration of intravascular volume. Organ transplantation 
may be less favourable in preload dependent donors, possi-
bly related to higher infl ammatory response [ 78 ]. 

 The optimal volume status of the brain dead patient 
is controversial and transplant-organ specifi c. Disparity 
exists between lung and kidney interests (“dry lungs” ver-
sus “wet kidneys”). In a study of crystalloid fl uid manage-
ment in 26 brain dead donors, a signifi cant increase in the 
alveolar- arterial oxygen gradient was seen in those who 
achieved a central venous pressure (CVP) of 8–10 compared 
to those whose CVP was maintained at 4–6 mmHg [ 67 ]. 
Some authors advocate maintaining a CVP of 10–12 mmHg 
to volume replete those patients in whom only abdominal 
organs are to be procured, a CVP < 8 mmHg for potential 

lung donors and a CVP of 8–10 mmHg if both thoracic and 
abdominal organs are to be harvested [ 79 ]. This approach 
is impractical since all organs should initially be considered 
potentially transplantable. Effectively, euvolemia is the rea-
sonable goal and the assessment of volume status should be 
based on experienced clinical evaluation [ 80 – 82 ].  

    Contractility 
 The preferred choice of contractility agents in PICU practice 
varies according to individual center. Traditionally, dopa-
mine or dobutamine has been used as the initial inotrope of 
choice in the brain dead patient. However, no randomized 
trials exist comparing the hemodynamic effects of dopamine 
to other inotropes or vasopressors and their infl uence on 
graft survival.  β -agonist therapy should be used with caution 
in potential heart donors given concerns about myocardial 
adenosine triphosphate (ATP) depletion and desensitization 
of  β -receptors [ 83 ]. If the heart is being considered for dona-
tion, dopamine or its equivalent should not be escalated 
beyond 10 μg/kg/min due to risks of increases oxygen 
demand [ 69 ]. High dose dopamine has been related to poor 
graft survival for hearts but favourable for other organs such 
kidneys [ 84 ,  85 ]. Use of epinephrine alone or as an adjunct 
may be appropriate in these cases.  

    Systemic Vascular Resistance 
 The functional sympathectomy associated with brain death 
results in low SVR that often requires the use of vasocon-
stricting agents. The concern over the use of alpha-agonists 
such as norepinephrine or phenylephrine has arisen because 
of the fear of inducing central and peripheral vasoconstric-
tion and subsequent ischemia in coronary and vascular beds 
supplying potentially transplantable organs. However, in 
studies of other causes of shock states with low SVR (septic 
patients), norepinephrine, as compared to dopamine, was 
demonstrated to increase mean perfusion pressures without 
adverse effects to renal and splanchnic blood fl ow [ 86 – 88 ]. 
Early use of vasoconstrictor agents alone or in adjunction 
with inotropes is suggested [ 69 ].  

    Vasopressin and Catecholamine Sparing 
in Brain Death  
 Arginine vasopressin (AVP) is a unique agent because it can 
be used for a variety of applications in donor management, 
e.g. hemodynamic vasopressor support, diabetes insipidus 
therapy, and hormonal therapy. Brain death and hypoten-
sion are often associated with vasopressin defi ciency [ 89 ]. 
Low- dose AVP infusions have been shown to improve 
hemodynamic stability and spare catecholamine use [ 89 , 
 90 ]. Prolonged hemodynamic stability can be maintained 
after brain death with low-dose AVP (1–2 units/h), per-
mitting a signifi cant decrease in epinephrine and extended 
preservation of renal function [ 91 ]. In a rigorous, random-
ized study of volume-resuscitated brain dead organ donors 
supported with dopamine, 0.30 mU/kg/min infusion of AVP 
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 signifi cantly increased MAP and SVR and spared dopamine 
use compared to further fl uid loading [ 92 ]. Pediatric donors 
given AVP (41 ± 69 mU/kg/h) respond by increasing MAP 
and weaning alpha-agonists (norepinephrine, epinephrine, 
phenylephrine) without signifi cant differences in the qual-
ity of kidneys, livers and hearts recovered [ 21 ,  93 ]. Similar 
catecholamine- sparing effects of AVP have been demon-
strated in septic shock patients with low SVR [ 94 ,  95 ]. 

 Optimal dosing of AVP in relation to its effects on organ 
procurement and graft survival are unclear. Concern has 
been expressed regarding risks of splanchnic ischemia in 
vasodilatory shock [ 96 ,  97 ]. Practitioners should be cau-
tioned regarding the multiple and confusing dosing units 
used throughout the literature. Although it is suggested that 
doses of AVP exceeding 0.04 U/min (approx. 40 mU/kg/h) 
may be associated with excessive vasoconstriction in sepsis 
[ 94 ] brain dead donors respond to AVP infusions of 0.04–
0.1 U/min (40–100 mU/kg/h) [ 89 ] without histologic evi-
dence of cardiac damage [ 98 ]. Recent evidence shows that 
systemic and SMA fl ow may be compromised with AVP ver-
sus dopamine [ 99 ]. Available literature suggests that the use 
of AVP at doses up to 0.04 U/min in adults (2.4 U/h) and 
0.0003–0.0007 U/kg/min (0.3–0.7 mU/kg/min) in children 
can be recommended to support the MAP and spare cate-
cholamines [ 69 ].   

    Oxygenation and Ventilation Strategies 

 Many potential donors have various etiologies of donor- 
related lung injury and dysfunction that may include neuro-
genic pulmonary edema, aspiration, atelectasis, pulmonary 
contusion, bronchopulmonary infection, alveolar-capillary 
infl ammation, and diffuse alveolar damage [ 59 ]. Pulse oxim-
etry, serial arterial blood gas monitoring, endotracheal tube 
suctioning, and serial chest x-rays are considered standard in 
donors [ 100 ]. Mechanical ventilation should be tailored to 
the following empirical recommendations: fraction of 
inspired oxygen (FiO 2 ) titrated to keep oxygen saturation ≥ 
95 %, partial pressure of arterial oxygen (PaO 2 ) ≥ 80 mmHg, 
pH 7.35–7.45, PaCO 2  35–45 mmHg, positive end expiratory 
pressure (PEEP) of 5 cm H 2 O [ 69 ,  101 ,  102 ]. A prospective, 
randomized control trial in potential adult donors, ARDS- 
type lung protective strategies with tidal volumes of 6–8 mL/
kg and 8–10 cmH2O PEEP signifi cantly increased lung uti-
lization for transplantation [ 103 ].  

    Metabolic and Endocrine 

    Glycemia and Nutrition 
 Hyperglycemia is common in brain dead donors [ 77 ]. It 
may be secondary to insulin resistance as pancreatic func-
tion appears to be preserved [ 104 ], which may be aggravated 

by corticosteroid therapy and dextrose-based fl uid replace-
ments used for diabetes insipidus. Insulin is variably and 
inconsistently considered as part of hormonal resuscitation 
cocktails. The hypothesis that tight glycemic control in the 
brain dead donor improves graft survival has not been tested, 
but has been recommended by expert consensus [ 68 ,  69 ]. 
Hyperglycemia has been shown to be an independent risk 
factor for poor outcome after severe brain injury in children 
[ 105 ] and adults [ 106 ]. 

 Dextrose infusions and nutrition are generally withheld 
in the acute PICU management after brain injury [ 107 ], 
a  practice supported by animal models [ 108 ]. Malnutrition or 
depletion of cellular glycogen stores may be common during 
the phase of care leading to brain death [ 109 ]. The infl uence 
of donor nutrition on graft survival has been studied in sev-
eral animal studies but not formally in humans. In a rabbit and 
porcine model, improved liver transplant survival was shown 
from donors receiving enteral nutrition versus fasting donors 
[ 110 ]. A signifi cant improvement in hepatic sinusoidal lining 
cell viability has been demonstrated in rats with liver grafts 
from donors receiving enteral feeding and intraperitoneal 
glucose prior to liver procurement. Glycogen appears to pro-
tect the hepatic graft upon rewarming in rats [ 111 ]. 

 The importance of nutritional support in the human multi- 
organ donor, however, is not clear but is of increased interest 
[ 112 ]. Studies of donor-specifi c predictors of graft function 
following liver transplantation suggested a length of stay in 
the ICU of greater than 3 days as a risk factor [ 113 ]. A con-
tributing factor to this association may be the effect of starva-
tion on the liver with depletion of glycogen stores. In a 
controlled prospective randomized study of 32 patients it 
was shown that an intraportal infusion of insulin (1 IU/kg/h) 
and glucose reglycogenates the liver, increases glycogen uti-
lization during cold and rewarming periods, and improves 
transaminase levels [ 114 ]. However, the only human series 
of liver transplants that included donor nutritional status 
failed to identify an independent effect of donor nutrition on 
postoperative liver graft function [ 115 ]. As a general 
approach, intravenous dextrose infusions should be given 
routinely and routine enteral or parenteral feeding should be 
initiated or continued as tolerated [ 116 ].  

    Diabetes Insipidus and Hypernatremia 
 Dysfunction of the posterior pituitary in brain dead donors 
is common; anterior pituitary function is often preserved 
[ 117 ]. Histologic observations of the pituitary gland dem-
onstrate various degrees of edema, hemorrhage, and tissue 
necrosis depending on the mechanism and site of traumatic 
or ischemic brain injury [ 118 ,  119 ]. This is likely to be a 
result of compromised blood supply to the cell bodies aris-
ing in the deep supraventricular and paraventricular nuclei of 
the hypothalamus, whose neurons supply the posterior pitu-
itary and regulate AVP secretion. Anterior pituitary function 
is often preserved, implying that some blood supply via the 
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 hypophyseal arteries, which arise extradurally, is reaching the 
median eminence of the hypothalamus [ 117 ]. Undetectable 
levels of antidiuretic hormone (ADH) have been noted in 
75 % of brain dead donors, and diabetes insipidus is present 
in up to 87 % [ 29 ,  30 ,  54 ,  55 ]. Diabetes insipidus may com-
monly appear prior to the diagnosis of brain death [ 118 ] and 
is associated with hemodynamic instability and the compro-
mise of transplantable organ function [ 2 ,  23 ,  77 ]. 

 Hypernatremia is frequently encountered, resulting from 
the preceding hyperosmolar therapy for initial brain injury or 
poorly controlled diabetes insipidus. Donor hypernatremia > 
155 mmol/L at procurement has been shown to be indepen-
dently associated with hepatic and renal dysfunction or graft 
loss after transplantation [ 115 ,  120 – 122 ], although new 
 evidence may show that these concerns may be less signifi -
cant [ 123 ]. A prospective study demonstrated the benefi t of 
correcting donor sodium (Na) ≤ 155 mmol/L with equivalent 
graft success compared to donors who were never hyperna-
tremic [ 124 ]. The mechanism of hepatic and kidney injury 
related to hypernatremia is unclear but may be related poly-
uria and dehydration and to the accumulation of idiogenic 
osmoles resulting in intracellular swelling after transplanta-
tion into the normonatremic recipient. 

 Ideal serum sodium (Na) target range is ≥130 
≤150 mmol/L [ 25 ]. A reasonable urine output target range 
is 0.5–3 ml/kg/h after brain death. Diabetes insipidus can be 
defi ned as a urine output > 4 ml/kg/h associated with rising 
serum Na ≥145 mmol/L and serum osmolarity ≥300 mosM 
and decreasing urine osmolarity ≤ 200 mosM [ 69 ]. 

 DDAVP (analog 1-desamino-8-D-arginine vasopressin, or 
desmopressin) is commonly used for the treatment of diabetes 
insipidus in brain death without adverse effect on early or late 
graft function after renal transplantation [ 125 ]. It is highly 
selective for the vasopressin V 2  receptor subtype found in 
the renal collecting duct and thus has a relatively pure antidi-
uretic effect with no signifi cant vasopressor activity [ 126 ]. 
DDAVP has multiple potential routes of administration (iv, 
im, sc, intranasal, ETT) and corresponding variability of dose 
recommendations. In brain death, it is preferable to rely on 
the i.v. route with a recommended dosing range is 0.5–10 μg 
iv every 6–8 h [ 127 ]. Given its lack of vasopressor action, it 
can be safely titrated to the effect of ablating polyuria and 
normalizing serum sodium. Improved organ yield is associ-
ated with DDAVP use in donor management [ 11 ,  128 ]. 

 Many authors have advocated the use of AVP for the 
treatment of diabetes insipidus in organ donors to modulate 
both diabetes insipidus and support cardiovascular system 
[ 68 ,  69 ,  74 ,  93 ,  129 ,  130 ]. In pediatric case series, doses 
of vasopressin between 0.25 and 2.7 mU/kg/h have been 
used to successfully treat hypothalamic diabetes insipidus 
[ 131 – 134 ]. Doses between 0.5 and 15 U/h of AVP have been 
advocated in adults, though there are concerns about high 
doses causing coronary, renal and splanchnic vasoconstric-
tion, potentially jeopardizing cardiac, renal, pancreatic and 

hepatic function [ 99 ,  127 ]. The safety and effi cacy of a com-
bination of DDAVP (for its antidiuretic effect) with AVP as a 
vasopressor on cardiovascular and laboratory endpoints has 
been described [ 21 ,  92 ,  135 ]. Many protocols recommend 
separate dosing regimens for diabetes insipidus and sup-
port for perfusion. The upper limit of AVP recommended by 
the Transplantation Committee of the American College of 
Cardiology is 0.8–1.0 U/h (13–17 mU/kg/h) to treat diabetes 
insipidus [ 72 ].  

    Thyroid Hormone 
 Thyroid hormone increases cardiac output by improving both 
contractility and chronotropy, as well as by decreasing sys-
temic vascular resistance [ 136 ]. The use of thyroid hormone 
therapy in brain dead donors is largely based on experimental 
animal models and human case series. Investigators describe 
variable levels of thyroid hormones after brain death and 
varying and confl icting effects of thyroid hormone adminis-
tration. Thyroid-stimulating hormone (TSH), T 4  and T 3  levels 
were below normal in a majority of 22 brain dead donors 
[ 137 ]. Other studies have shown that these patients are suffer-
ing from “sick euthyroid syndrome” rather than TSH defi -
ciency and do not require thyroid supplementation [ 54 ]. In 
the baboon model, T 3  levels become depleted after brain 
death and the resulting transition to anaerobic metabolism is 
reversed with T 3  replacement [ 138 ]. The positive effects on 
myocardial gene expression have been demonstrated [ 139 ]. 

 In a comparative study in brain dead patients, T 3 , cortisol 
and insulin promoted aerobic metabolism, reduced the need 
for inotropic support and improved the rate of cardiac graft 
procurement [ 140 ,  141 ]. Other investigators were unable to 
demonstrate any improvement in echocardiographic func-
tion or organ retrieval rates with a similar hormone regimen 
[ 142 ]. Serum free T 3  concentrations in organ donors may not 
correlate with hemodynamic stability [ 118 ] but replacement 
of thyroid hormone (T3) has shown to reduce need for vaso-
pressor support and may improve the likelihood of heart 
transplantations [ 143 – 146 ]. There is equipoise for routine 
use since many other studies did not show improvement in 
cardiac and hemodynamic status [ 147 ,  148 ]. 

 T 4  infusion rather than T3 does not reduce vasopressor 
requirements or especially in pediatric donors [ 21 ] but this 
may be related to impaired peripheral conversion to T 3 . 
While there are numerous theoretical advantages of paren-
teral T 3  over T 4  (stability for iv infusion, does not require 
peripheral tissue conversion), it is extremely expensive in 
comparison to intravenous T 4  and may not be commercially 
available in many countries. In those UNOS patients receiv-
ing hormone therapy, T 4  was used in 93 % and T 3  in 6.9 % of 
cases, with insuffi cient numbers to discriminate any benefi t 
of T 3  over T 4  [Rosendale, Kauffman, personal communica-
tion]. Most studies for thyroid replacement in the context of 
the organ donor are of low quality with poor study design, 
thus limiting objective analysis [ 149 ].  
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    Corticosteroids 
 Several publications have advocated the use of high-dose 
methylprednisolone in an effort to diminish infl amma-
tion thought to be present in donor lungs [ 102 ,  130 ,  150 ] 
and other organs. The initial evidence for this was largely 
based on a single retrospective analysis of 118 consecu-
tive lung donors administered a non-uniform protocol of 
 methylprednisolone (mean 14.5 mg/kg) compared with 38 
donors not receiving methylprednisolone and demonstrating 
a signifi cant improvement in donor oxygenation and lung 
procurement rate [ 151 ]. A recent analysis of the California 
Donor Network database demonstrated an independent 
effect of methylprednisolone on the successful procure-
ment of lungs from the donor [ 152 ]. The UNOS database 
showed that heart graft survival benefi t was also found in 
those donors receiving corticosteroids alone [ 150 ]. Recent 
studies do reveal a highly proinfl ammatory environment in 
donors but do not actually show benefi t from methypred-
nisolone replacement [ 20 ]. Although the optimal dose and 
time effect (if any) of corticosteroids in brain dead donors 
are uncertain, guidelines recommend methylprednisolone 
15 mg/kg q24h [ 69 ].  

    Combined Hormonal Therapy 
 Despite confl icting literature regarding use of hormones 
individually, there is strong evidence supporting the use of 
combined hormonal therapy in organ donors, defi ned as 
vasopressin, thyroid hormone, and methylprednisolone 
(insulin is inconsistently included in this strategy). The 
United Network for Organ Sharing (UNOS) database 
shows a 46 % reduced odds of post-transplant death within 
30 days and a 48 % reduced odds of early cardiac graft 
dysfunction with the use of combined hormonal therapy in 
a large retrospective cohort [ 150 ]. Benefi t was also found 
in those donors receiving corticosteroids alone or in com-
bination with T 3 /T 4  which is supported by independent 
studies [ 153 ,  154 ]. Recovery of organs was most benefi cial 
to heart and lung transplantation [ 155 ]. Analysis of UNOS 
data suggests a substantial benefi t from hormone therapy 
with minimal risk. A multivariate logistic regression analy-
sis of 18,726 brain dead donors showed signifi cant 
increases in kidney, liver and heart utilization from donors 
receiving three-drug hormonal therapy. Signifi cant 
improvements in 1-year kidney graft survival and heart 
transplant patient survival were also demonstrated [ 147 , 
 148 ,  150 ]. More recently, however, in a prospective ran-
domized study T3 and methylprednisolone did not add to 
the effect on cardiac index shown by vasopressin and 
aggressive cardiovascular support [ 156 ]. Despite this 
recent fi nding, current expert consensus still strongly rec-
ommends the use of combined hormonal therapy for any 
donor with hemodynamic instability or reduced ejection 
fraction on echocardiography [ 68 ,  69 ].   

    Transfusion Thresholds 

 There are no rigorous studies that assess the role of red blood 
cell transfusions for short-term organ preservation during 
organ donor maintenance specifi cally. Prospective studies for 
transfusion thresholds suggest outcomes are similar with 
hemoglobin level at 7 g/dL in critically ill children [ 157 ]. 
However, consensus conferences recommend maintaining a 
hemoglobin level ≥ 10 g/dL or a hematocrit greater than 30 % 
[ 127 ,  130 ]. Large platelet transfusion requirements during 
liver transplant surgery are independently associated with 
more severe hepatic dysfunction after transplantation, but this 
is likely more indicative of a more technically complicated 
procedure and sicker recipient [ 115 ]. There is no literature 
identifi ed to guide platelet or plasma factor replacement in the 
donor. Invasive procedures associated with bleeding risk may 
require correction of thrombocytopenia and coagulation sta-
tus. Blood drawing for donor serology and tissue typing 
should occur prior to transfusions to minimize the risk of false 
results related to hemodilution. In regions where blood is rou-
tinely leukocyte depleted, and the risk of transmission of cyto-
megalovirus (CMV) is negligible and it may not be necessary 
to give CMV-negative blood to CMV-negative donors [ 69 ].  

    Invasive Bacterial Infections 

 Isolated cases of transmission of solid organ infection from 
donor to recipient may have signifi cant consequences includ-
ing graft infection, sepsis, and poor initial graft function 
[ 158 – 163 ]. While approximately 5 % of all donors will be 
bacteremic at the time of procurement, the routine use of 
broad spectrum antibiotics (vancomycin and ceftazidime/
cefotaxime) in the recipient has been shown to prevent trans-
mission of bacterial infection in organ recipients [ 164 ,  165 ]. 
Importantly, donor infections do not show differences in 
acute mortality or graft survival. The current expansion of 
potential marginal donors has increased the risk of infection. 
One study quoted bacteremia rates in the donor up to 21 % 
[ 166 ]. Donors with ICU stays greater than 3 days, rescue 
CPR, and inotropic agents are at increased risk [ 167 ]. Though 
rates of infections in donors may be up, organs obtained 
from donors with positive cultures continue to be trans-
planted safely, likely due to vigilant screening and polymi-
crobial therapy given to recipients [ 168 ,  169 ]. Other authors 
have described the successful transplantation of organs from 
donors declared brain dead from meningitis caused by 
 Neisseria meningitides ,  Streptococcus pneumoniae  and 
 Escherichia coli  without transmission to the recipient [ 170 ]. 
The fi nding of positive cultures does not preclude donation 
but may delay procurement until 24–48 h of treatment has 
been established. Prophylactic antibiotic therapy in the organ 
donor is generally not recommended. 
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 Viral infections in the donor can affect recipients espe-
cially with post transplant immunosuppression. However, 
many chronic infections such as hepatitis B and C virus no 
longer preclude donation. Knowledge of potential risks is 
essential but often manageable in the appropriate recipient 
[ 171 ,  172 ]. 

 Initial baseline blood, urine and endotracheal cultures 
should be obtained for all donors and repeated daily. PCR 
screens for common chronic viral infection are common. 
Positive blood cultures or presumed infections are not con-
traindications to organ donation but antibiotic therapy should 
be initiated early in cases of proven or presumed infection. 
Duration of therapy depends on the virulence of the organ-
ism and should be determined in consultation with the trans-
plant team and infectious disease services.   

    Donor Management: Organ Specifi c 

    Heart 

 Wait list mortality among US children listed for heart trans-
plant has decreased by two-thirds over the last 20 years 
[ 173 ]. Mostly this is related to extended donor and recipient 
criteria including ABO incompatible transplantation [ 174 , 
 175 ]. This has not compromised clinical outcomes after 
transplantation [ 176 ]. Reasons for this are multifactorial but 
include improved donor management [ 177 ]. 

 The majority of studies linking donor variables to heart 
transplant outcomes are in adults and related to known 
risk factors such as coronary artery disease, left ventricu-
lar hypertrophy, older age, diabetes mellitus, and chronic 
hypertension [ 62 ,  130 ,  178 ,  179 ]. While these variables 
may be indications for coronary angiography in the adult 
donor, they generally are not relevant to the pediatric popu-
lation. Extrapolation from adult studies would suggest that 
myocardial dysfunction in the pediatric donor, as manifest 
by greater inotropic support [ 62 ,  180 ], pacemaker support 
[ 181 ], and reduced ejection fraction and/or wall motion 
abnormalities by echocardiography [ 62 ,  130 ] are important 
factors. Interestingly, donor CPR has not shown to be a nega-
tive factor for heart transplant survival [ 182 ,  183 ]. 

 Potential heart donors should undergo routine screening 
by electrocardiogram (ECG) and 2D echocardiography. In 
children, initial echocardiography for heart donor evaluation 
should be performed only after hemodynamic resuscitation 
and repeat echocardiography should be considered after ≥6 h 
[ 69 ]. Intensive donor management has been show to improve 
function on serial echocardiography and may improve trans-
plantability in up to 50 % [ 66 ,  184 ,  185 ]. Some advocate 
that the majority of echographic abnormalities in donor 
hearts resolve in the transplant recipient prior to  discharge 
[ 186 ]. Reduced function should not preclude  consideration 

for transplantation based on a single evaluation. Ejection 
fractions < 40–45 % do not necessarily translate into high 
transplant risk, as they may be related to related to inade-
quate cardiovascular resuscitation or neurogenic myocardial 
dysfunction that is reversible with time (see earlier sections). 
Adult data has shown signifi cant improvements in echocar-
diographic function with time and conventional support [ 65 ], 
with up to 78 % of potential donors demonstrating clinically 
signifi cant improvements [ 63 ,  184 ]. 

 Serological markers such as donor troponin I and T have 
been linked to early cardiac graft failure [ 31 ,  187 ,  188 ] and 
should also be measured. However, these markers do not 
necessarily relate to graft dysfunction in recipients [ 189 ]. 
Though Tri-iodothyronine and methylprednisolone therapy 
is recommended, a recent study of 80 cardiac donors did not 
show acute improvement to cardiovascular function or donor 
yield [ 156 ]. 

 Pulmonary artery catheterization (PAC) data has been 
linked to favorable transplant outcomes [ 70 ]. Reduced ejec-
tion fraction or hemodynamic instability has been recom-
mended as an indication for PAC in adults to allow for both 
precision of hemodynamic support and evaluation of suit-
ability for heart and lung transplantation especially in mar-
ginal donors [ 68 ,  190 ]. PAC use in pediatrics is still limited.  

    Lungs 

 Though lower yield than other organs donated, lung trans-
plantation in pediatrics has increased with better techniques 
and improved management [ 191 – 193 ]. A relatively scarce 
donor pool has limited wider application for lung transplanta-
tion [ 194 ]. This has led to relaxation of donor criteria, specifi c 
donor management protocols that preserve lung function, and 
development of ex-vivo perfusion techniques to recondition 
suboptimal lungs, all of which have optimized transplanta-
tion [ 195 ,  196 ]. Outcomes for pediatric lung recipients are 
similar to adults but young children often do better due to a 
decreased incidence of rejection. Adolescent outcomes are 
poor mainly due to bronchiliolitis obliterans [ 197 ]. 

 The ‘ideal’ lung donor has been previously defi ned but 
signifi cant advances have been made in donor and recipient 
management allowing for increased use of marginal or 
‘extended criteria’ donors [ 198 – 200 ]. There is some evi-
dence that organs transplanted using extended donor criteria 
may have higher rates of early graft rejection [ 201 ,  202 ]. The 
quality of the lung donor and the subsequent recipient out-
comes are related to the possibility of this primary graft dys-
function which is a result of multifactorial hemodynamic, 
metabolic, and infl ammatory insults resulting from the brain 
dead donor [ 203 ]. Primary pulmonary allograft failure has 
pathological features of acute lung injury (ALI) and occurs 
in 12–50 % of transplanted patients [ 204 – 206 ]. This is often 
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associated with inadequate lung preservation, ischemia- 
reperfusion injury and cellular rejection [ 207 ]. Despite this, 
many centers have adopted extended criteria in order to 
increase the number of potential donors [ 208 ,  209 ]. 

 Traditional oxygenation criteria used as a threshold 
in the acceptance of donor lungs include a donor PaO 2  > 
300 mmHg on FiO 2  of 100 % and PEEP of 5 cm H 2 O (P/F 
ratio > 300) [ 210 ]. However, recent and evolving efforts 
have improved the current criteria for donor selection [ 191 , 
 211 ]. Physiological, microbiological and histological evalu-
ation of rejected lungs from the California transplant reg-
istry show 41 % of rejected lungs were judged suitable for 
transplantation based on pulmonary edema, intact alveolar 
fl uid clearance, and histology [ 212 ]. In a case series of 15 
brain dead adults, lung grafts that did not meet the usual cri-
teria for transplantation were found to have higher dynamic 
and static elastance measurements than donor lungs that met 
standard transplantation criteria [ 213 ]. The outcomes of 49 
marginal donors (i.e., failing to meet one or more of the ideal 
criteria) showed no signifi cant difference in duration of post- 
transplant mechanical ventilation or P/F ratio compared to 
ideal donors [ 211 ]. Investigators have also challenged donor 
PaO 2  criteria by arguing that physiological donor factors 
infl uence peripheral arterial PaO 2  independent of isolated 
individual lung function [ 214 ]. Despite poor global oxygen-
ation, parenchymal abnormalities isolated to one lung may 
not preclude procurement of the contralateral lung [ 215 ]. 

 The cause of brain death does not correlate with lung 
transplant outcomes, but there is improved outcomes with 
longer time interval before retrieval suggesting longer and 
specifi c donor management may reduce lung injury over time 
[ 101 ,  216 ]. Pulse oximetry, serial arterial blood gas moni-
toring, endotracheal tube suctioning, rotational positioning, 
chest x-ray, bronchoscopy and bronchoalveolar lavage are 
considered standard in the lung specifi c care of donor [ 100 ]. 
Mechanical ventilation should be tailored to the general tar-
gets (see previous section) [ 103 ]. Similar to the management 
of lung injury in general, alveolar recruitment and pressure 
limited ventilation strategies should be used in potential 
donors [ 59 ]. New strategies for the improvement of lung 
function in the donor such as airway pressure release ventila-
tion have been utilized [ 217 ]. Excessive fl uid administration 
deteriorates alveolar-arterial oxygenation gradients in poten-
tial donors [ 67 ] and may be an indication for diuresis. Steroid 
administration may also reduce progressive lung water accu-
mulation [ 101 ]. Prolonged ventilation in the supine position 
results in loss of alveolar expansion and microatelectasis. In 
an experimental rat model, donor lungs develop microatelec-
tasis despite PEEP and a relatively short ventilatory period 
before organ procurement [ 218 ]. Prevention of alveolar col-
lapse enhances post mortem preservation of pulmonary grafts 
in a rabbit model [ 219 ]. Recruitment maneuvers in the form 
of high sustained PEEP for short durations may be a useful 
adjunct to prevent alveolar stress and collapse [ 220 ]. Lung 

donors failing traditional oxygenation criteria (P/F < 300) 
respond to aggressive bronchial toilet using bronchoscopy, 
physiotherapy, increasing tidal volume and increasing PEEP 
with improvements in P/F ratio > 300. Lungs were subse-
quently transplanted without differences in ICU length of stay 
or 30-day mortality compared to recipients of ideal donors 
[ 221 ]. Hemodynamic and reperfusion injury seem to play a 
signifi cant role in donor lung injury [ 222 ]. The early use of 
norepinephrine or vasopressin may reduce lung injury [ 223 ]. 

 Recent guidelines suggest that there should be no pre-
defi ned lower limit for the P/F ratio that precludes consider-
ation for transplantation. Timing of evaluation, temporal 
changes, response to alveolar recruitment and recipient sta-
tus should be considered [ 69 ]. In cases of unilateral lung 
injury, pulmonary venous partial pressure of oxygen during 
intraoperative assessment is required to reliably evaluate 
contralateral lung function. 

    Bronchoscopy and Bronchopulmonary Infections 
 The consensus of expert opinion supports the use of bron-
choscopy for the purposes of examining the tracheobronchial 
tree for abnormalities and collecting microbiological speci-
mens [ 68 ,  129 ,  211 ]. Pathological studies of lungs rejected 
for donation have indicated that bronchopneumonia, diffuse 
alveolar damage, and diffuse lung consolidation are the three 
most common reasons for being deemed unsuitable [ 214 ]. 
Between 76 % and 97 % of bronchoalveolar lavages (BAL) 
will grow at least one organism [ 224 ,  225 ]. The most com-
monly identifi ed organisms included  Staphylococcus aureus  
and  Enterobacter , and in 43 % of transplants, similar organ-
isms were isolated from recipient bronchoscopy. Pulmonary 
infection in the graft recipient results in signifi cantly lower 
survival compared with recipients who do not develop early 
graft infection [ 226 ]. Recipients with donor BAL cultures 
positive for either gram positive or gram negative bacteria 
had longer mean mechanical ventilation times and inferior 
6-month to 4-year survival than those with negative bacterial 
BAL cultures [ 227 ]. Trauma donors (versus intracerebral 
hemorrhage) may be at higher risk for aspiration and for 
intubation under less sterile fi eld conditions and were gener-
ally ventilated longer [ 228 ]. The etiology of donor death is 
not associated with lung transplant mortality [ 204 ] but may 
infl uence the type of organisms found on BAL and subse-
quent graft infection risk. The high rates of positive bacterial 
and fungal BAL results suggest the need for more aggressive 
critical care management and antibiotic therapy [ 229 ].   

    Liver 

 Liver transplantation from deceased donors has become 
accepted as standard of care for many children with liver fail-
ure. Advances in donor and recipient management has 
 optimized graft survival with 80–90 % 5 year survival rates 
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[ 230 ]. Whole liver transplants are still more successful with 
less morbidity and mortality than split liver grafts [ 231 ,  232 ]. 
Potential liver donors should be assessed by the following: 
aspartate aminotransferase (AST), alanine aminotransferase 
(ALT), bilirubin (direct and indirect where available), INR 
(or prothrombin time [PT]) (repeat q6h), serum electrolytes, 
creatinine, urea, Hepatitis B surface antigen (HBsAG), hepa-
titis B antibody (HBcAb), hepatitis C virus antibody positive 
(HCV Ab). There is no indication for routine liver imaging. 
The use of donor characteristics (donor risk index) and recip-
ient matching using bicochemical models in end stage liver 
disease (MELD) are becoming more useful in predicting 
liver transplant outcomes [ 233 – 235 ]. 

 There is variation in organ quality and recipient outcomes; 
larger volume centers tend to use higher risk organs but also 
have higher disease severity resulting in worse outcomes 
[ 236 ]. Predictors of early graft dysfunction or failure for 
whole or split liver transplantation include donor history of 
cardiac arrest, older donor age in adult transplantation 
(>40 years), [ 113 ,  237 ,  238 ], very young age in pediatric 
transplantation [ 113 ], reduced size livers, moderate to severe 
steatosis on liver biopsy, prolonged cold ischemia time 
(>6 h) [ 121 ,  239 ,  240 ] and donor hypernatremia (Na > 
155 mmol/L). Donor hypernatremia is independently associ-
ated with death or retransplantation at 30 days [ 121 ] but this 
risk reverses with the correction of hypernatremia [ 124 ]. 

 Although liver allograft dysfunction has been reported to 
be associated with prolonged ICU stay [ 113 ,  241 ], this was 
supported by univariate analysis but did not hold true by 
multivariate analysis [ 241 ]. In a cohort of 323 orthotopic 
liver transplants (OLT), longer donor hospitalization was not 
found to be associated with primary liver graft dysfunction 
[ 239 ]. Large platelet transfusion requirements during sur-
gery are independently associated with more severe hepatic 
dysfunction after transplantation [ 115 ], although this may be 
indicative of a more technically complicated procedure, 
sicker recipient, or poor quality graft with subsequently 
greater sequestration of platelets within the donor liver [ 242 ]. 
As with other organs, the mechanisms of brain death itself 
impact the donor liver [ 243 ]. With the use of marginal livers 
for transplantation, studies are identifying more factors that 
may impact graft survival such as the liver’s gross appear-
ance, the donor P/F ratio, and the donor hemoglobin [ 244 ]. 

 The sinusoidal lining cells (SLC) of the liver are particu-
larly vulnerable to the effects of preservation-reperfusion 
injury, the extent of which depends on the duration of cold 
ischemia rather than reperfusion. Cold preservation causes 
the SLC to become edematous and detach into the sinusoidal 
lumen [ 245 ]. While some authors recommend routine donor 
liver biopsies in all liver donors in an effort to decrease the rate 
of early graft dysfunction or failure [ 246 ,  247 ], the use of a 
biopsy in the decision making of liver suitability has generally 
been restricted to evaluating the amount of steatosis or in the 
presence of active hepatitis C in the appropriate risk groups.  

    Kidney 

 Donor age ≥ 40 or ≤10 years were thought to be indepen-
dently associated with risk for graft failure [ 248 ,  249 ]. Now, 
recipients of kidneys from young donors < 5 years old have 
equivalent patient and graft survival [ 250 ]. En bloc kidneys 
from pediatric donors now show comparable outcomes with 
living kidney donation [ 251 ]. Older kidneys have a higher 
incidence of renovascular or parenchymal injury [ 249 ]. Adult 
donor characteristics that are independently associated with 
graft failure risk include creatinine > 133 μmol/L, history of 
hypertension independent of duration and cerebrovascular 
accident (CVA) as the cause of donor death [ 248 ]. During the 
past few years, there has been a renewed interest in the use of 
expanded criteria donors for kidney transplantation to 
increase number of donations with improving outcomes 
[ 252 ]. However, these kidneys have worse long-term survival 
and are only recommended for older recipients [ 253 ,  254 ]. 

 A normal creatinine clearance (>80 ml/min/1.73 m 2 ), as 
estimated by the Schwartz formula [ 255 ], defi nes the optimal 
function threshold for transplantation. However, an abnor-
mal serum creatinine or calculated creatinine clearance in a 
donor does not necessarily preclude use of the kidneys [ 256 ]. 
Urinalysis is essential to rule out kidney abnormalities and 
serum creatinine and serum urea (blood urea nitrogen) mea-
surements should be obtained q6h. Ultrasound with Doppler 
fl ow of renal vessels is often requested if creatinine levels are 
abnormal. If contrast angiography is performed (e.g. cere-
bral, coronary) N-acetylcysteine with hydration should be 
administered both before and after the angiographic proce-
dure in order reduce the risk of contrast nephropathy [ 257 ] in 
potential donors, particularly in those with reduced renal 
function. 

 Delayed graft function predicts the development of 
adverse events such as decreased graft survival, decreased 
recipient survival and increased allograft nephropathy [ 258 ]. 
Most studies do not link a specifi c cause of brain death as a 
predictor of graft function in children [ 259 ]. The brain death 
process itself can affect acute rejection in renal transplanta-
tion [ 260 ,  261 ]. Greater sympathetic activity during the pro-
cess produces endothelial damage, complement activation, 
and a proinfl ammatory state increases organ immunogenic-
ity, then promoting rejection after transplant [ 262 ,  263 ]. 
Targeting this infl ammatory state may improve outcomes of 
recipients [ 264 ,  265 ]. 

 Other donor risk factors predicting kidney allograft dys-
function include hemodynamics, age, last creatinine level 
prior to donation, and cold ischemic time [ 266 ]. Donor 
hemodynamic instability is correlated with post-transplant 
acute tubular necrosis in adults [ 77 ,  267 ,  268 ] and children 
[ 2 ]. Reduced graft survival or acute tubular necrosis may 
occur in organs retrieved from donors receiving high-dose 
dopamine (>10 μg/kg/min) but these effects may be limited 
to donors who are hypotensive at the time of organ retrieval 
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[ 268 ]. Hemodynamic resuscitation may improve outcome as 
donor use of dopamine and/or noradrenaline is indepen-
dently associated with a lower risk of acute rejection [ 269 ], 
lower rate of delayed graft function [ 84 ,  270 ], and reduces 
the need for recipient dialysis [ 271 ]. In adults, donor hyper-
tension is also a risk factor for inferior outcomes [ 272 ]. It is 
suggested that the time taken to optimize donor cardiovascu-
lar status may reduce renal ischemic injury and optimize 
donor yield [ 273 ,  274 ]. 

 In an analysis of the Collaborative Transplant Study data-
base of kidney transplants, cold ischemic preservation time > 
12 h resulted in progressively worsening recipient graft sur-
vival, particularly once the cold ischemia time (CIT) was 
≥48 h [ 275 ]. Other analyses have suggested that CIT is pre-
dictive of poorer graft survival [ 248 ] or function [ 267 ] if it 
was >24 h. Preservation incorporating pulsatile perfusion, 
rather than cold storage, may reduce the incidence of delayed 
graft function [ 276 ,  277 ].  

    Intestine 

 Small bowel transplantation has been become an increas-
ingly feasible option for short bowel syndrome and liver fail-
ure [ 278 ]. Long term survival following intestinal transplant 
is above 60 %, but the incidence of morbidity and mortality 
is still signifi cant [ 279 ,  280 ]. Because of this, many feel that 
intestinal transplantation as an option is still premature and 
remains unique to specialized centres only [ 281 ,  282 ]. For 
the brain dead donor, non-absorbable antibiotics for selective 
bowel decontamination are sometimes used for liver and 
intestine transplantation to prevent postoperative infections. 
Results are best if given >3 days prior to transplantation 
[ 283 ]. A meta-analysis showed an 84 % relative risk reduc-
tion in the incidence of gram negative infection following 
liver transplantation; however, the risk of antimicrobial resis-
tance should be considered [ 284 ]. More recent studies have 
not duplicated these results. At this time, selective bowel 
decontamination is not routinely administered [ 285 ].   

    Logistics of Organ Donation 

    Donor Management Protocols and Education 

 One of the main reasons for insuffi cient organ procurement 
has been low organ yield due to poor multiorgan failure man-
agement in the potential donor [ 82 ]. Evidence has shown 
that multidisciplinary donor management protocols can 
improve donation outcomes [ 286 ,  287 ]. When these strat-
egies are used, there are a signifi cantly improved  number 
of organs transplanted per donor [ 3 ,  4 ]. This is mostly 

attributed to the improvement in basic cardiovascular and 
respiratory monitoring and treatment [ 288 – 290 ]. Improved 
multimodal  strategies aimed at preserving organ function 
specifi cally may increase numbers of potential donors, 
especially with the increasing use of “marginal” donors 
[ 81 ]. These protocols need to be supported with appropriate 
medical and nursing education [ 291 – 293 ] and infl uencing 
attitudinal changes for the role of donor [ 294 ]. Policies for 
organ donation and management should be developed with 
aim to change the culture at the bedside and with hospital 
administration [ 295 ,  296 ].  

    Optimal Time of Organ Procurement 

 In general, after brain death has been declared and consent to 
organ donation has been granted, all efforts are made to com-
plete logistics and initiate procurement as quickly as possi-
ble. Expediting the interval from brain death to surgical 
procurement may allow grieving families to leave the hospi-
tal sooner and reduce ICU length of stay. This approach may 
also have been infl uenced by the misperception that brain 
dead patients are irretrievably unstable [ 77 ]. 

 As a concept fundamental to ICU multiorgan support, 
resuscitation of the cardiopulmonary system benefi ts all end 
organs. Neurogenic myocardial injury related to primary 
brain injury is largely reversible with time and treatment 
[ 30 ,  65 ,  184 ]. Australian investigators advocate a delay in 
organ procurement until marginal donor lungs have been 
optimized with aggressive bronchial toilet using bronchos-
copy, physiotherapy, increasing tidal volume and increasing 
(   PEEP) [ 152 ,  221 ]. In a large cohort study of 1,106 renal 
transplant recipients, longer duration of brain death (time 
from declaration of brain death to onset of cold ischemia) 
was associated with improved initial graft function and graft 
survival, suggesting that the time taken to optimize donor 
cardiovascular status may reduce ischemic injury [ 273 ]. 
Despite early reports to the contrary [ 113 ], liver allograft 
dysfunction is not associated with prolonged ICU stay by 
multivariate analysis [ 239 ,  241 ]. A period of time may be 
needed to determine the trend of elevated AST or ALT, as 
generally accepted upper limits may be exceeded if the lev-
els are falling rapidly (e.g.,  following a hypotensive episode 
with resuscitation). 

 Temporal changes in multi-organ function after brain 
death demand fl exibility in identifying the optimal time 
of procurement. Recent consensus guidelines stress the 
importance of taking the necessary time in the ICU to opti-
mize multi-organ function for the purposes of improving 
organ utilization and transplant outcomes [ 69 ]. Reversible 
organ dysfunction can be improved with resuscitation and 
 re- evaluation and may include:
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•    Myocardial/cardiovascular dysfunction  
•   Oxygenation impairment related to potentially reversible 

lung injury  
•   Invasive bacterial infections  
•   Hypernatremia  
•   The need to evaluate temporal trends in aspartate amino-

transferase (AST) and alanine aminotransferase (ALT)  
•   The need to evaluate temporal trends in creatinine  
•   Any other potentially treatable situation.    

 This treatment period may be extended 24–48 or longer 
and should be accompanied by frequent re-evaluation to 
demonstrate improvement in organ function toward defi ned 
targets. Extending the interval of donor care in the ICU to 
optimize transplant outcomes should be factored into dona-
tion consent discussions and should be consistent with the 
wishes of the family or surrogate decision maker. Adequate 
PICU resource allocation should be anticipated.  

    Decisions Regarding Transplantability 

 End-of-life care in the ICU includes all efforts to actualize 
the opportunity and expressed intent to donate organs. Given 
the management of brain death and the organ donor is the 
exclusive domain of ICU practice, it is incumbent on critical 
care practitioners to assume leadership in this regard, in col-
laboration with organ procurement agencies and transplant 
programs. Table  38.3  provides an example of standing orders 
for pediatric donors to help guide practice [ 69 ].

   It is important for ICU staff to know that individual programs 
may have different function thresholds for accepting organs, 
dependent on program experience and urgency of recipient 
need. Although the non-utilization of organs is most commonly 
related to organ dysfunction, it is also related to donor charac-
teristics and/or fl aws in the processes of transplant evaluation 
and decision making. A four-center Canadian review of heart 
and lung utilization identifi ed defi cits in the consent to individ-
ual organs, the offering of organs, and the utilization of offered 
organs unrelated to organ dysfunction [ 297 ]. Consent should be 
requested for all organs regardless of baseline function and all 
organs should be offered. Ideally, fi nal decisions about trans-
plantability should rest with the individual transplant programs 
represented by the organ-specifi c transplant doctors. 

 Management of marginal organs should include resuscita-
tion and reevaluation to allow for potential organ rescue and 
utilization. Transplant programs should be accountable to 
the donor family and ICU donation efforts for the non- 
utilization of organs, to ensure that all useable organs are 
used. This evolving collaboration to establish best donor 
management practices in the ICU must be linked to ensuring 
optimal organ utilization, which in turn, must be linked to 
transplant graft and patient outcomes.      

   Table 38.3    Standing orders for organ donor management: pediatrics   

  Standard monitoring  
 1. Urine catheter to straight drainage, strict intake and output 
 2. Nasogastric tube to straight drainage 
 3. Vital signs q1h 
 4. Pulse oximetry, 3-lead electrocardiogram (EKG) 
 5. Central venous pressure (CVP) monitoring 
 6. Arterial line pressure monitoring 
  Laboratory investigations  
 1. Arterial blood gas (ABG), electrolytes, glucose q4h and PRN 
 2. CBC q8h 
 3. Blood urea nitrogen (BUN), creatinine q6h 
 4. Urine analysis 
 5.  AST, ALT, bilirubin (total and direct), international normalized 

ratio (INR) (or prothrombin time [PT]), partial thromboplastin 
time (PTT) q6h 

  Hemodynamic monitoring and therapy  
 General targets: age-related norms for pulse and blood pressure (BP) 
 1. Fluid resuscitation to maintain normovolemia, CVP 6–10 mmHg 
 2. Age-related treatment thresholds for arterial hypertension: 
   Newborns–3 months  >90/60 
   >3 m–1 year  >110/70 
   >1 year–12 year  >130/80 
   >12 year–18 year  >140/90 

   a. Wean inotropes and vasopressors, and, if necessary 
   b. Start 
    Nitroprusside 0.5–5.0 μg/kg/min, or 
    Esmolol 100–500 μg/kg bolus followed by 100–300 μg/kg/min 
  3. Serum lactate q2–4h 
  4.  Central venous oximetry q2–4h; titrate therapy to central 

SVO 2  ≥ 60 % 
  Agents for hemodynamic support  
 1. Dopamine 1–10 μg/kg/min 
 2.  Vasopressin 0.0003–0.0007 U/kg/min (0.3–0.7 mU/kg/min) 

to a maximum dose of 2.4 U/h 
 3.  Norepinephrine, epinephrine, phenylephrine (caution with doses 

> 0.2 μg/kg/min) 
  Glycemia and nutrition  
 1. Routine intravenous (iv) dextrose infusions 
 2. Continue enteral feeding as tolerated 
 3. Continue parenteral nutrition if already initiated 
 4.  Initiate and titrate insulin infusion to maintain serum glucose 

6–10 mmol/L 
  Fluid and electrolytes  
 Targets: 
  1. Urine output 0.5–3 ml/kg/h 
  2. Serum sodium (Na) ≥ 130 ≤ 150 mM 
  3. Normal ranges for potassium, calcium, magnesium, phosphate 
  Diabetes insipidus  
 Defi ned as: 
  1. Urine output > 4 ml/kg/h, associated with: 
   a. Rising serum Na ≥ 145 mmol/L and/or 
   b. Rising serum osmolarity ≥ 300 mosM and/or 
   c. Decreasing urine osmolarity ≤ 200 mosM 

(continued)
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