
CHAPTERl 

INTRODUCTION 

1.1 The Need for Nonlinear Control in Industrial 
Processes 

The objective of control is to influence the behaviour of systems. Two im­
portant control problems are regulation and tracking. Regulation involves 
keeping system's variables at desired constant values, while tracking involves 
forcing them to follow prescribed trajectories. The control problem involves 
determining the values of the manipulated input using all available informa­
tion to achieve the control objective. 

Most physical systems are nonlinear and multivariable. By nature, they 
have inherent interconnected nonlinearities in their dynamics where the re­
lationship between the input and output variables varies depending on the 
operating conditions. For example, for a step change on one of the inputs of 
the system, parameters such as steady-state gains, time constants and time 
delays for the outputs depend not only on the amplitude of the step but also 
on the operating values of the rest of the variables. 

Many common control problems involve dynamic systems that exhibit 
nonlinear behaviour. If the nonlinearities are mild or the operating conditions 
do not change much, then the effect of nonlinearities may not be severe, and 
linear control techniques are applicable. However, many industrial systems 
exhibit strong nonlinear behaviour and they may be required to operate over 
a wide range of operating conditions. When conventional linear controllers 
are used to control highly nonlinear systems, the controllers must be tuned 
in a conservative manner in order to avoid unstable behaviour. However, this 
can result in a serious deterioration of control performance. 

1.2 Nonlinear Control Strategies 

An exhaustive review of the nonlinear control theory is very ambitious and is 
beyond the scope of this book. The area is extremely diverse and undergoing 
continuous development. This section narrows the focus to the more relevant 
techniques for the purposes of this book, namely gain scheduling and feedback 
linearisation. 
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Fig. 1.1. Illustration of gain scheduling 

1.2.1 Gain scheduling 

Gain scheduling is an engineering approach that has been widely used to 
compensate for nonlinear process characteristics in single-input single-output 
(8180) systems [1, 2, 3]. In gain scheduling, the controller parameters are 
changed or scheduled following known static nonlinearities of the plant, such 
that the loop gain is approximately constant. Gain scheduling may be im­
plemented using look-up tables or nonlinear transformations. This technique 
has been widely applied in different fields, such as flight control and process 
control. One of the disadvantages of gain scheduling is the lack of a systematic 
procedure for selecting the scheduling variables. The approach is illustrated in 
Figure 1.1. The use of nonlinear transformations in gain scheduling is related 
to the feedback linearization approach [4], which is introduced below. 

1.2.2 Feedback linearisation 

Jacobian linearisation involves approximating a nonlinear system by a linear 
one in the vicinity of a reference equilibrium point. In particular, a system 
described by: 

x(t) = f(x(t), u(t)) 
y(t} = h(x(t)) 

(1.1) 

where f(·,·) and h(·) are differentiable nonlinear vector functions, x E ~n 
is the state, y E ~p is the output and u E ~m is the input, can be locally 
approximated around an equilibrium point given by (xs, Us, Ys) as follows: 
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where x = x - Xs, it = U - Us, and y = y - Ys are deviations from the 
equilibrium state, input and output, respectively. 

In nonlinear control theory, the term feedback linearisation has a very dif­
ferent meaning from Jacobian linearisation. Feedback linearisation is perhaps 
the most important nonlinear control design strategy developed during the 
last few decades [5]. It has attracted a great deal of research interest resulting 
in a rigorously formalised field. The main objective of the approach is to alge­
braically transform nonlinear system dynamics into linear ones by using state 
feedback and a nonlinear coordinate transformation based on a differential 
geometric analysis of the system. By eliminating nonlinearities in the sys­
tem, conventional linear control techniques can be applied. The linearisation 
is carried out by model-based state transformations and feedback rather than 
by linear approximations of the dynamics, as used in Jacobian linearisation 
where the resulting linear model is only locally valid. Differential geometry 
has proved to be a successful means of analysing and designing nonlinear 
control systems, equivalently to that of linear algebra and Laplace transform 
in relation to linear systems. Feedback linearisation is a strong research field 
with rigorous mathematical formulations [6-10]. 

To illustrate the basics of feedback linearisation, consider a second order 
nonlinear 8180 system described by the following state equations: 

XI(t) = X2(t) 
X2(t) = 12 (x(t)) + g2(X(t))u(t) 
yet) = XI(t) 

(1.3) 

where 120 and g20 are known nonlinear functions and x(t) = [Xl (t) X2(t) ]T. 
Assume that g2(X(t)) i- 0 and let: 

u(t) = vet) - 12 (x(t)) 
g2(X(t)) 

where vet) is an artificial input variable. Replacing 1.4 in 1.3: 

Xl(t) = X2(t) 
X2(t) = 12 (x(t)) + g2(X(t)) x [V(t~;(~2(~)?))] 
yet) = Xl(t) 

(1.4) 

(1.5) 

In this way, the original nonlinear system 1.3 has been transformed into 
the following linear system that uses the artificial input variable vet): 
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Note that in order to compute the input u(t) as given by Equation 1.4, 
information about the state x(t) is required, so that state feedback is being 
employed as is illustrated in Figure 1.2. This is why the approach is known 
as feedback linearisation. 

1.2.3 Feedback linearisation-decoupling 

For multi variable nonlinear systems, feedback linearisation may be used not 
only to eliminate nonlinearities in the input-output relations but also to 
cancel the interactions between variables. A state feedback linearising law is 
designed to compensate for these interconnections in order to decompose the 
multivariable nonlinear system into several single-input single-output linear 
systems [6, 11, 12]. 

1.3 Nonlinear System Models: a Key Issue 

The information about the nonlinear dynamic behaviour of a system is en­
capsulated in a dynamic model that often takes the form of a set of nonlinear 
differential equations plus a measurement model: 

X = f(x(t), u(t)) 
y = h(x(t)) (1.7) 

where f : Rn x Rm --+ Rn is a nonlinear mapping, x E Rn is a state vector, 
u E Rm is a vector of input variables, y E RP is a vector of measured outputs 
and h : Rn --+ RP is a state to output mapping, and t is a continuous time 
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variable. Many nonlinear control techniques are model-based in that they re­
quire the use of this type of dynamic model. A way of obtaining a nonlinear 
model of the plant is to derive it from physical principles. These models pro­
vide a rich insight into the process and are applicable over a wide range of 
operating conditions. However, physical models are often not available due to 
the high engineering effort and cost associated with their development and 
maintenance. Also, due to the complexity of industrial processes, physical 
models are unsuitable for control purposes. An alternative way for obtaining 
the required model is to identify it using measured input-output data. The 
development of techniques of system identification has made possible the syn­
thesis of empirical dynamic models using data measured from the system [13). 
In recent years, there has been considerable interest in developing nonlinear 
dynamic models from input-output data and a variety of model structures 
and techniques are available [10). The predominant family of structures for 
obtaining nonlinear empirical models is known as artificial neural networks, 
which are inspired by the connectionism of biological neurons [14). 

1.4 Neural Networks 

Neural networks are distributed, adaptive and generally nonlinear learning 
machines built from many processing elements, which are often called neu­
rons. Each processing element receives connections from other processing 
elements. The interconnectivity and number of processing elements define 
the network architecture. Neural networks are inspired by the connectionism 
of biological neurons and are capable of approximating arbitrary nonlinear 
input-output maps. 

The field of neural computations has evolved from its neurological roots 
when the first artificial neural models were proposed [15), to its formalised 
mathematical foundations [16, 17, 14). Neural networks can be divided into 
static and dynamic networks. A static neural model is described by an alge­
braic equation while a dynamic neural network is represented by a difference 
or differential equation depending on whether it is based on a discrete or 
continuous domain, respectively. The most common architectures for static 
neural networks are the single-layer feedforward networks [14), multilayer 
feedforward networks or multilayer perceptrons (MLPs) [16], [18], radial basis 
functions (RBF) [19, 20, 21, 22) and cerebellar model articulation controller 
(CMAC) networks [23, 24). When feedback was introduced other relevant 
architectures were suggested, such as Hopfield networks [25, 26), Bolzmann 
machines [27, 28], Kohonen self-organising networks [29J and adaptive reso­
nance networks [30J. 

The best-known type of neural network is the multilayer perceptron. The 
mathematics of the multilayer percept ron are briefly described below. Figure 
1.3 shows a static processing element and associated signals. 



6 1. Introduction 
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Fig. 1.3. Illustration of a static processing element or neuron 

Define the inputs to a processing element j for a given sample n as Uji, 
i = 1, ... ,mj' Then the input dj to the activation of this processing element 
is given by: 

mj 

dj(n) = L WjiUji(n) + bj (1.8) 
i=1 

where Wji the weight at the connection between input i and processing ele­
ment j and bj is the bias applied to processing element j. 

The output of the processing element is the result of passing the scalar 
value dj(n) through its activation function O'j('): 

(1.9) 

The actual shape ofthe activation function O'j varies between applications. 
Figure 1.4 shows two different activation functions: the linear activation func­
tion and the hyperbolic tangent activation function. 

Figure 1.5 shows a typical three-layer perceptron, with three input signals 
in the input layer, one hidden layer with two nodes and a single output signal. 

For the multilayer perceptron shown in Figure 1.5 it is possible to write 
the output variable as follows: 

(1.10) 

where U E ~3 is an input vector, 0'1 : ~2 -+ ~2 is the activation function of 
the hidden layer, 0'2 : ~ -+ ~ is the activation function of the output layer, 
b1 E ~2 is a vector associated with the hidden layer, b2 is the scalar bias 
associated with the output layer, WI E ~2x3 is a weight matrix associated 
with the hidden layer, W2 E ~IX2 is a weight matrix associated with the 
output layer. 

A training algorithm is used to adjust the weights of the interconnections 
according to the training data, which consists of input and output values that 
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Fig. 1.4. Two common activation functions. (a) Linear a(x) = X; (b) hyperbolic 
tangent a(x) = tanh(x) 
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Fig. 1.5. A typical multilayer percept ron 

the network is required to learn. The most widely used training methods to 
determine the weights of a multilayer perceptron is known as the backprop­
agation algorithm [14J. There are several variants of the backpropagation 
algorithm. 
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1.5 System Identification 

System identification is the experimental approach to modelling dynamical 
systems. Using system identification techniques, it is possible to find dynamic 
models of systems based on measured input-output data. System identifica­
tion involves the following steps [31, 32]: 

• Experiment. The data needed to identify dynamic models is collected 
from the system. This involves changing the inputs in an appropriate way 
to excite the system, and measuring the output history over a period of 
time, as illustrated in Figure 1.6. The result of an identification experiment 
is a set of M discrete data points, ZM = { [y(tk)' U(tk)], k = 1,· .. , M }, 
where y and u are vectors of measured and input variables, respectively. 
The resulting data set may need some pre-processing (e.g. filtering) before 
it can be used for parameter estimation. 

• Model structure selection. A model structure is a set of possible mod­
els with a number of free parameters. The choice of model structure is 
dependent on the purpose of the model, but the designer often has to 
choose between linear and nonlinear modes, input-output or state space 
descriptions, continuous or discrete-time models, etc. 

• Parameter estimation. The free parameters of a model are estimated 
using an optimisation procedure that is typically aimed at minimising the 
differences between the measured outputs and the model outputs. Depend­
ing on the model structure used, simple non-iterative techniques like the 
least squares method may be used, although for nonlinear model structures 
iterative procedures are required. 

• Model validation. This step involves evaluating the model to see if it 
satisfies the requirements for acceptance, which are in turn connected to the 
purpose of the model. A data set different from the one used for parameter 
estimation is typically employed for validating the model. If the model is 
not acceptable, then it may be necessary to repeat some of the above steps. 

....... Measured 
outputs 

Fig. 1.6. The system identification experiment 
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1.6 Static Neural Networks for Identification and 
Control 

Given the ability of multilayer perceptrons to approximate arbitrary continu­
ous functions, neural networks have found wide applications both for function 
approximation and pattern recognition. Since the seminal work by N arendra 
and Parthasarathy [33], in which the use of neural networks was proposed 
for identification and control, a great deal of progress has been made in this 
field. The purpose of this section is to introduce a number of basic ideas on 
the use of static neural networks for identification and control. 

General nonlinear discrete-time input-output models can be described as 
follows l : 

y(t) = y(tle) + e(t) = g(a(t, e), e) + e(t) (1.11) 

where y E ~p is the output of the system, y E ~p is the output of the 
model, 9 : ~n<7 X ~n8 ----t ~p is a nonlinear mapping, a E ~n<7 is known as the 
regression vector (which depends on past input-output information), 19 E ~n8 

is the parameter vector, and e E ~p is known as the model residual. 
A common nonlinear discrete-time structure, which is illustrated in Figure 

1.7, is known as nonlinear auto-regressive with exogenous input (NARX). For 
this structure, the regression vector is given by: 

a(t, e) = [y(t - 1),··· , y(t - na), u(t - d),··· , u(t - d - nb + l)]T (1.12) 

where na is the number of past outputs, nb is the number of past inputs and 
d an integer representing pure delay. The values of n a , nb, and d determine 
the size of the regression vector and the external structure of the model. 

A multilayer percept ron is often used with the NARX structure to provide 
the static mapping 9 between the model input (the regression vector a(t, e)) 
and the model output y(tle). In that case, there is an internal structural 
choice in terms of the number of hidden layers and the number of neurons in 
each hidden layer. Once the structure is fixed, the vector of free parameters 19 
contains all the weights and biases associated with the multilayer perceptron. 
In this way, a static neural network can be used for modelling a discrete-time 
dynamical system. 

Many strategies have been proposed to use neural networks for control. 
A recent review was provided by Agarwal [34]. Neural network based control 
may be classified as being direct or indirect, depending on the role played by 
neural networks in the control strategy. Direct neural network based control 
implies the use of a neural network as the controller. Indirect neural network 
based control involves the use of a neural network as an aid for modelling, 
control action or supervisory action. 

1 Notice that in the case of discrete-time models like Equation 1.11, variable t 
represents an integer time index. 
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Fig. 1.7. The NARX structure 

Direct inverse control. One of the first and simplest strategies proposed 
for direct neural network based control was the use of a neural network to 
approximate the inverse mapping of a system. Assume for simplicity that the 
system is SISO. If the controlled system can be described by: 

y(t+1) =g(y(t), ... ,y(t-na+1),U(t),··· ,u(t-nb+1)) (1.13) 

then, the inverse model of the system computes the required input u(t) to 
achieve a desired output yCdl(t + 1) at the next time step: 

u(t) = g-1(yCdl (t+1),y(t),··· ,y(t-na+1),u(t),··· ,u(t-nb+1)) (1.14) 

where the mapping g-l may be obtained by training a static neural network, 
such as a multilayer perceptron [35]. This approach is illustrated in Figure 
1.8. Direct inverse control is simple and intuitive, but problems occur when 
the inverse models are not well damped or unstable. Also, this approach is 
very sensitive to noise and disturbances. 

Internal model control (IMC). In this direct strategy, the difference e 
between the output of a neural network forward model y and the output of the 
plant y is used as feedback signal, while a neural network approximating the 
inverse of the system is placed in the forward path [36]. If the forward model 
is perfect, the error signal will be zero and the control system will operate as 
if it was under direct inverse control. This approach is illustrated in Figure 
1.9. The forward model can be a multilayer percept ron based NARX model. 

1.7 Dynamic Neural Networks for Nonlinear 
Identification 

The introduction of feedback into a feedforward neural network architecture 
produces a state space dynamic model. A dynamic recurrent neural network 
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(DRNN), or simply a dynamic neural network (DNN), is a collection of dy­
namic neurons partially interconnected to a function of their own output. 
Such networks can be represented by a state space neural model of the form 

:i; = -(3x + wcr(x) + ,u 
Yn = Cnx 

(1.15) 

where x are coordinates on WN, W E WNxN ,cr(x) = [cr(xd, ... ,cr(XN )]T, , E 

WNxp , U E WP, Cn = [Ipxp0px(N-p)] and (3 E WNxN is a diagonal matrix 
with diagonal elements {(31, ... , (3 N }. 

The use of a dynamic neural network model for system identification 
purposes seems now a straightforward task. Introducing inherent dynamic 
capabilities in the neurons has made possible that an array of these elements 
be used as generic model for system identification. 
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1.8 Input-Output Linearisation-Decoupling and the Use 
of Dynamic Neural Networks 

Many industrial processes are multivariable in the sense that they have sev­
eral inputs and outputs. In addition to nonlinear behaviour, such processes 
often exhibit interactions, in the sense that a change in an input variable 
may originate changes in several output variables. In a multivariable system, 
in addition to linearising the behaviour from inputs to outputs, it is possible 
to use feedback in order to eliminate or weaken the interactions and reduce 
the system, at least from an input-output perspective, to several indepen­
dent single-input single-output systems. This synthesis method is known as 
the input-output linearisation-decoupling scheme and it requires a model of 
the system. Instead of using a process model derived from physical consid­
erations, the control strategies proposed in this book are based on dynamic 
neural network models as given in Equation 1.15. These models approximate 
the behaviour of the system and are trained using input-output data. A 
feedback linearising-decoupling law is synthesised for the neural model and 
applied on the MIMO plant. Once the dynamics are linearised and decou­
pled to a certain extent, the system is immersed in an outer loop with a 
standard multivariable Proportional+Integral (PI) scheme. The use of neu­
ral networks for feedback linearisation started recently and similar general 
motivations appear to underlie recent approaches where the existence of a 
neural network model encouraged the use of feedback linearising techniques. 
Feedback linearisation of SISO systems has been carried out by means of 
feedforward networks [37, 38], while other work has used dynamic networks 
from a robust control perspective [39]. Input-output linearisation of multi­
variable processes within an inverse model control framework has also been 
carried out [40, 41]. Also for SISO systems, input-output linearisation tech­
niques have been proposed using dynamic neural networks [42] and CMAC 
neural networks [43]. Later work suggested the use of discrete time neural 
models for feedback linearisation of chemical processes [44]. In recent work, 
an adaptive linearising feedback technique has been developed for induction 
motor control based on dynamic neural networks [45]. 

1.9 Potential applications 

Model predictive control (MPC) is a technique that periodically uses a model 
of the controlled system to calculate the control action based on optimal 
input-output predictions over a time horizon. This technique has enjoyed 
remarkable industrial success since the first reported industrial implementa­
tions in the late 1970s [46]. Key features contributing to its success are that 
multivariable systems and constraints can be accommodated effectively in 
the control problem, and the use of empirical models which can be built from 
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measured input--output data. The traditional application areas were refining 
and petrochemicals, but significant growth in areas such as chemicals, pulp 
and paper, food processing, aerospace and automotive industries has been 
noticed in the last few years [47]. To date, most commercial predictive con­
trollers employ linear empirical models. However, nonlinear empirical models 
are starting to be used in some commercial predictive control packages [48]. 
The resulting approach is known as nonlinear predictive control. The control 
problem is analogous to the linear version of MPC except that a nonlinear 
dynamic model is used. It can be expressed as determining the control ac­
tions by solving a nonlinear programming problem at each sampling interval 
in order to minimise the error between the outputs and their set points over 
the optimisation horizon [49, 50]. One of the drawbacks of this approach 
is the great computational burden associated with the on-line solution of 
the nonlinear programming problem [51]. Feedback linearisation techniques 
based on empirical nonlinear models can potentially be used to enable MPC 
techniques to consider nonlinearities, while at the same time have the com­
putational advantage of a linear model, as preliminary research has shown 
[52, 53, 54, 55]. 


