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Definition

The false discovery rate (FDR) is a statistical approach

used in multiple hypothesis testing to correct for
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multiple comparisons. It is typically used in high-

throughput experiments in order to correct for random

events that falsely appear significant. When testing

a null hypothesis to determine whether an observed

score is statistically significant, a measure of confi-

dence, the p-value, is calculated and compared to

a confidence threshold a. When k hypotheses are tested

simultaneously with a confidence level a, the chances
of occurrence of false positives (i.e., rejecting the

null hypothesis when in fact it is true) is equal to

1 � (1 � a)k, which can lead to a high error rate in

the experiment. Therefore, a multiple testing correc-

tion, such as the FDR, is needed to adjust our statistical

confidence measures based on the number of tests

performed.

The FDR is defined as the expected proportion

of false discoveries, i.e., incorrectly rejected null

hypothesis, among all discoveries (Benjamini and

Hochberg 1995). Consider the problem of testing

simultaneously m null hypothesis H0 versus the

alternative hypothesis H1, of which m0 are true.

We define the following random variables (see

Table 1): TN is the number of true negatives;

FP is the number of false positives (or type

I errors); FN is the number of false negatives; TP

is the number of true positives; R is the number

of hypotheses rejected. R is an observable

random variable, while TN, FN, TP, and FP are

unobservable random variables.

The FDR is given by
FDR ¼ E
FP

FPþ TP

� �
¼ E

FP

R

� �
if

R > 0; 0 otherwise: (1)
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False Positive Rate, Table 1 Sample confusion matrix

Predicted

A Non-A

Actual A TP FN

Non-A FP TN

False Discovery Rate (FDR), Table 1 Number of errors com-

mitted when testing m null hypothesis H0 versus H1

Accept H0 Reject H0 Total

H0 true TN FP m0

H1 true FN TP m � m0

Total m � R R m
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The FDR is the proportion of the rejected null

hypotheses which are erroneously rejected. In practice,

the level of acceptable FDR is fixed by the investigator,

depending on the desired stringency.

An example of the practical use of the FDR is in

genomic association studies, for which a large number

of statistical tests are performed simultaneously. In

such studies, the objective is to identify genomic fac-

tors worthy of further analysis. If the multiplicity of the

data is not taken into account, the probability that

a false identification (type I error) is committed can

increase sharply when the number of tested genes

becomes large. The FDR controlling approach is

widely used to avoid such errors.
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Synonyms

Type I error rate
Definition

In statistical analysis, the false positive rate of a test is

defined as the probability of rejecting the null hypoth-

esis H0 when it is true, which can be denoted as:
false positive rate að Þ ¼ reject H0 H0 truejf g

In machine learning (▶Model Validation, Machine

Learning), the false positive rate is closely related to the

notion of specificity, one of statistical measures widely

used to assess the performance of prediction models.

Let TP be true positives (samples correctly classi-

fied as class A), FN be false negatives (samples incor-

rectly classified as not belonging to class A), FP be

false positives (samples incorrectly classified as

class A), and TN be true negatives (samples correctly

classified as not belonging to class A). The relationship

between these prediction outcomes can then be sum-

marized using a confusion matrix (Kohavi and Provost

1998) as illustrated Table 1.

The false positive rate is the proportion of samples

not belonging to class A that were incorrectly classified

as class A, i.e.,
false positive rate ðaÞ ¼ FP=ðFPþ TNÞ
¼ 1� specificity

As an example, suppose we want to build

a ▶ classification model using gene expression micro-

array data to predict whether a subject has a disease or

not. In a total of 100 subjects known to be free

of a disease, the model actually predicts 10 subjects

having the disease. In this scenario, FP ¼ 10 and

TN ¼ 90. Thus, the false positive rate is 10%.
Cross-References

▶Model Validation, Machine Learning
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Synonyms

Flux balance analysis; Pathosystem
Definition

Flux Balance Analysis (FBA) linear programming

based optimization approach that departs from an objec-

tive cell or system function restricted by mass and

energy conservation, which has been widely used for

the analysis of biochemical fluxes in metabolic net-

works. This approach allows researchers to determine

changes in metabolic phenotypes given a set of

biochemical constraints. In the case of plant-pathogen

interactions, or any host-pathogen model, this method-

ology is particularly promising since it offers the oppor-

tunity to analyze the structure, dynamics, and complex

behavior of metabolic networks during a particular

infective process.
Characteristics

Mathematical modeling of plant-pathogen interactions

has been carried out since the 1950s (Pinzón et al.

2009). Typically, plant pathologists have approached

the quantitative and computational modeling of this

type of interactions focusing on processes at high

levels of resolution, such as the description of temporal

dynamics of crops diseases and spatial patterns of

dispersion. From its very beginning these models

belonged to the family of logistic equations and its

application to a broad spectrum of plant diseases has

been a constant since then (Pinzón et al. 2009).
Nevertheless, this type of modeling lacks the

capacity to represent the underlying biological

processes that take place during an infection, for

instance, those that modify infected cell behavior at

the molecular level. Recently, due to the availability

of high-throughput biological data as well as the

development of sophisticated computational tools,

there is a growing interest in the modeling of these

underlying molecular processes.

Computational Modeling of Metabolism

Although the way plants resist a particular pathogen

attack vary according to plant species and specific path-

ogen characteristics, in general terms, plants face

a pathogen attack by shifting their defense mechanisms.

These mechanisms consists of a complex and highly

interconnected set of networks, in which host defense

genes interact with each other as well as with pathogen

proteins present in the cell. Metabolic and regulatory

networks are of particular interest when studying this

kind of biological processes. It is at this level that one

expects that pathogen manipulation lead to phenotypic

and behavioral differences among plants under attack. In

this context, a particular approach for the in silico repre-

sentation and analysis of the set of biochemical reactions

that take place in a given organism, known as metabolic

reconstructions (MRs), is of particular interest.

Typically MRs are based on genomics information

and therefore known as GEMRs or Genome Scale

Metabolic Reconstructions (Thiele and Palsson

2010). This type of reconstructions are based on the

gene content of a complete genome, fromwhere the set

of genes that code for enzymes is selected and the

reactions they belong to are gathered.

Another approach for metabolic reconstruction is

known as TMRs or Targeted Metabolic Reconstruc-

tion (Pinzón et al. 2010), which are not based on

genome content but in transcriptomics information.

Due to its main characteristic TMRs do not cover the

complete set of potential genes present in an organism

genome, but they do provide a way to analyze active

metabolic networks, as the set of enzymes expressed at

a given time point and under particular conditions.

Overall, the main aim of metabolic reconstructions

is the identification of suitable targets for metabolic

engineering, the improvement of production yields and

nutritional value of crops, as well as the understanding

of certain processes such as resistance or defense from

pathogens, for instance, through the study of time
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a constraint-based optimization method that facilitates the com-

putational prediction of systemic phenotypes in the form of

fluxes of reactions. For instance, given a set of available nutri-

ents for an organism, FBA allows for the prediction of the set of

fluxes of metabolic reactions that optimize the growth for that

organism. FBA requires the conversion of the metabolic system

(A) into a stoichiometric matrix “S” (C). In this matrix rows

represent metabolites and columns reactions. In R1, metabolite

A is consumed (�1) and metabolite B is produced (1), metabo-

lite C does not participate in the reaction (0). The FBA model

usually optimizes for a particular characteristic in the organism,

which is commonly called theObjective Function (OF). Usually

growth is used as OF, and it is represented in the form of

biomass. However, under particular conditions for some meta-

bolic reconstructions in plants, other OFs can be described. For

example, in S. tuberosum and other tuber-like plants it is feasible

to use starch production and storage as OF instead of a typical

biomass set of reactions, given that starch storage could be seen

as an indicator of growth. Part B shows a standard form of a FBA

problem where flux through the OF is maximized subject to

some constraints such as reactions stoichiometric and uptake.

In this way reaction fluxes (Vj) are between lower (lb) and upper
(ub) bounds. Since FBA assumes a steady state for all reactions,

metabolite concentrations are fixed (S.v ¼ 0)
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evolution of a host network under pathogen attack.

One of the most important characteristics of MRs is

that they can be interrogated by means of computa-

tional modeling and therefore derive hypothesis based

on model predictions.

Flux Balance Analysis (FBA) in the Context of

Plant-Pathogen Interactions

There are several methodologies than can be used to

interrogate a metabolic reconstruction (Oberhardt et al.

2009). A common constraint-based method, known as

Flux Balance Analysis or FBA (Becker et al. 2007),

has been widely used for this purpose (Fig. 1).
Using FBA it is possible to determine how

microorganisms utilize their metabolism, and predict

their changes under environmental perturbations. For

instance, it is possible to assess the effect that a single

gene deletion can have over the flux of all reactions in

a metabolic network (Fig. 2). These fluxes of reactions

correspond to intracellular biochemical networks that,

due to the lack of kinetics information, are assumed to

operate under pseudo steady-state conditions, which

seems to be in agreement with experimental data. For

instance, this approach showed an 85% consistency of

gene essentiality for the genome scale reconstruction

of Escherichia coli and 70% consistency for gene



FBA Analysis, Plant-Pathogen Interactions, Fig. 2 (a) met-

abolic profile before virtual knockout. (b) Metabolic profile after

virtual knockout of reactions between B and C and between

F and E. OF: Objective function. In part (a) of the figure it is

clear how a different flux of reactions is present for OF optimi-

zation. Based on biological information, such as microarray,

SAGE or protein-protein interaction data, it is possible to silence

some reactions and let FBA to predict flux change under these

new conditions. In the case of plant-pathogen interactions, it is

possible to use data from known host R-proteins and pathogen

effectors interaction, as well as genes with differential expres-

sion obtained by essays of plants challenged with the pathogen
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essentiality for the reconstruction of Pseudomonas
aeruginosa (Reviewed in Pinzón et al. 2009).

This characteristic of FBA is of particular interest in

the study of plant-pathogen interactions, but before

trying to clarify how this approach can be used in this

context, some background on the pathogenicity and

host defense response is necessary.

Plant-pathogen interactions can be divided in two

main mechanisms. During the first one, known also as

basal defense, the plant recognizes general features in

pathogens that are universally associatedwithmicrobes.

These features are known as MAMPs (Microbe-

Associated Molecular Patterns) which are recognized

by membrane receptors in plants. The recognition of

these MAMPs triggers the first line of defense, which

for most plants it is enough to stop pathogen attack.

However, some plant pathogens are specific to a host

and have developed special strategies for the manipula-

tion of host defenses. This is the case for the pathogen

Phytophthora infestans in Solanum tuberosum. During

the pathogenicity process P. infestans releases an arse-

nal of proteins known as effectors, which are injected

into the host plant through specialized secretion sys-

tems, suppressing the first line of defense. S. tuberosum

in turn, have evolved to recognize these effectors using

Resistance proteins (R-proteins), which directly or indi-

rectly interact with them. Not always this interaction
between host R-proteins and pathogen effectors is

effective and then the pathogen is able to suppress

host recognition and the plant defense response

derived from it, leading to a disease known as Late
blight of potato.

This pattern of interaction is also typical for many

other pathosystems such as Arabidopsis thaliana and

Pseudomonas syringae or A. thaliana and Hyaloper-

onospora parasitica, among many others.

Although for many of these pathosystems some

molecular details are known, this is not the reality for

most of them. In the case of P. infestans and

S. tuberosum, some phenotypical responses to plant

attack are recognized to date, such as a decrease

in plant’s photosynthetic capacity several hours after

infection, but the precise biochemical mechanisms that

lead to that phenotype are not known. Although typical

molecular approaches (proteomics, transcriptomics,

etc.) have shown to be effective in revealing

how some of these mechanisms work, the methodolo-

gies are not tractable when trying to understand

a complex network of biochemical interactions. There-

fore, FBA over a metabolic reconstruction can be an

ideal alternative for the comprehension of this type of

networks.

In general, what a FBA analysis describes is the set

of fluxes of reactions that take place in a metabolic
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network under a particular environment. Therefore,

if we take into consideration different environment

conditions, it is possible to evaluate changes over the

same network given those new conditions. If we know,

for instance, that a particular effector protein acts as

repressor for the expression of a host gene involved in

metabolism, we can represent this situation by a virtual

knockout of this gene, for which different software

tools are available (Hoppe et al. 2011; Rocha et al.

2010; Becker et al. 2007). By the study of the network

after and before this knockout it is possible to obtain

a different profile of the reactions implied in both

stages and derive important biological conclusions

from their analysis (Fig. 2).

Although metabolism is crucial for most cellular

activities, it is also important to take into account that

metabolism response is highly integrated to signaling

that comes from different routes. In the case of plant-

pathogen interactions, it is then possible to integrate

into the FBA information regarding typical signal

defense routes, such as ethylene, jasmonic, and

salicylic acids pathways. The information related to

this signaling process can be integrated into FBA as

a set of restrictions, similar to the virtual knockouts

described before.
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Definition

A feasibility problem denotes the mathematical

problem of showing that there exist values for an

unknown variable which satisfy specific constraints.

In an n-dimensional vector space over the real

numbers, the problem is to find x 2 n such that

fi(x) � 0, i ¼ 1,. . ., m, for a given list of m
scalar-valued functions fi. This problem is mathe-

matically written as
find x 2 n

subject to fiðxÞ � 0; i ¼ 1; . . . ; m:

Feasibility problems are tightly linked to optimiza-

tion. Any feasibility problem can be formulated as an

optimization problem with a constantly zero objective

function:
minimize
x2n

0

subject to fiðxÞ � 0; i ¼ 1; . . . ; m:

If the constraints cannot be satisfied, the optimal

value is 1 by definition. On the other hand, if an x

exists that satisfies the constraints, the optimal value

will be 0.

The formulation of a feasibility problem as

optimization problem is particularly attractive for

constraint classes where a solver exists which

is guaranteed to find the optimal value, e.g.,

▶ semidefinite programs. In this case, the optimi-

zation algorithm can directly be used to decide the

feasibility problem.
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Synonyms

Attribute selection; Feature reduction; Variable selec-

tion; Variable subset selection
Definition

Feature selection is a must in data mining. The main

idea of feature selection is to choose a subset of input

variables by eliminating the noisy or redundant features

and keeping the quality patterns. Feature selection can

significantly improve the effectiveness and robustness

of the resulting classifier or regression models. More

importantly, feature selection can help to discover the

features that are really important in the classification.

There are two types of feature selections: filter and

wrapper. Filter methods evaluate the goodness of the

feature subset by using the intrinsic characteristic of

the data. They are relatively computationally cheap,

since they do not involve the induction algorithm.

However, they also take the risk of selecting subsets

of features which may not match the chosen induction

algorithm. Wrapper methods, on the contrary, directly

use the induction algorithm to evaluate the feature

subsets. They generally outperform filter methods in
terms of prediction accuracy, but are generally com-

putationally more intensive. In summary, filter and

wrapper methods can complement each other.
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Synonyms

Feed forward loop motif, FFL
Definition

Feed forward loop (FFL) motif is one of the most

significant one in both E. coli and yeast. The FFL is

composed of a transcription factor X, which regulates

a second transcription factor Y. X and Y both bind the

regulatory region of target gene Z and jointly modulate

its transcription rate. The FFL has three transcription

interactions. Each of these can be either positive (acti-

vation) or negative (repression). There are therefore

eight possible structural configurations of activator and

repressor interactions. Four of these configurations are

termed “coherent”: the sign of the direct regulation

path (from X to Z) is the same as the overall sign of

the indirect regulation path (from X through Y to Z).

The other four structures are termed “incoherent”: the

signs of the direct and indirect regulation paths are

opposite. Mathematical modeling indicates that FFLs

can serve as a novel mechanism for accelerating the

expression of the target genes. Both coherent and inco-

herent FFL behaviors are sign sensitive: they acceler-

ate or delay responses to stimulus steps (Fig. 1).
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Feed Forward Loop,
Fig. 1 The structures for

coherent and incoherent FFL
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Definition

Feedback regulation describes the particular type of

gene regulation, where the current status of gene
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expression will influence the future status of the same

set of genes. In a cell, feedback regulation is an essen-

tial mechanism to ensure the stability of the cellular

system under changing environmental conditions.
Cross-References

▶Gene Regulation
F
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Synonyms

Fibrocytes; Interstitial cells; Mesenchymal cells
Definition

Fibroblasts are cells that reside in connective tissues

and produce extracellular matrix (ECM). Quiescent

fibroblasts, known as fibrocytes, are abundant in the

interstitial tissues of all organs.
Characteristics

Fibroblasts reside in the stroma, are derived from the

mesoderm, and are members of the cell type known as

mesenchymal. Dormant fibroblasts become fibrocytes

that can be easily identified along the margins of many

types of connective tissue.

Fibroblasts are important to the structural integrity

of tissues and organisms, in part because they generate

type I collagen, the most abundant protein in animals.

Collagen I is a triple-helical ECM protein that provides

mechanical strength. Fibroblasts are also a major

source of fibronectin, which serves as a scaffold for

cell adhesion, and generate manyminor components of

the ▶ extracellular matrix. Fibronectin production by

fibroblasts is highly responsive to stress and is alterna-

tively spliced in response to specific signals resulting

in a highly variable protein with a multiplicity of

functions.

Fibroblasts are described by their common

characteristics that include spindle cell morphology,

vimentin cytoskeleton, and (relatively) proliferative

quiescence; yet fibroblasts are highly heterogeneous.

The distribution of fibroblasts varies widely between

organs, from single cells tucked between epithelium

and endothelium to densely packed. Another feature of

fibroblasts is that they are readily cultured because

they attach to tissue-culture plastic and proliferate in

response to serum used in most culture media. Because

of this common trait, many experimental studies have

used fibroblasts as “garden-variety” cells. Yet genome-

wide patterns of gene expression in cultured fetal and

adult human fibroblasts derived from skin at different

anatomical sites revealed that fibroblasts from each

site displayed distinct and characteristic transcriptional

patterns (Chang et al. 2002).

A broad classification discriminate fibroblasts

derived from visceral organs and cutaneous origin. It

was suggested that the site specificity of the molecular

signals and extracellular proteins expressed by fibro-

blasts provide “home addresses” that are monitored by

epithelial cells to restrict their migration, survival, and

proliferation (Chang et al. 2002). Fibroblasts isolated

from different anatomical sites and from the same ana-

tomical site but of different diseases display topographic

differentiation and positional memory. Although this

suggests fibroblasts at different locations in the body

could be considered distinct differentiated cell types,

there has been little success if classification schemes
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based on exclusive markers. Few genes are uniquely

expressed in fibroblasts from any particular site; rather,

combinatorial patterns of large groups of genes define

fibroblasts from different sites.

Fibroblasts play important roles in tissue repair and

wound healing, while aberrant fibroblasts contribute to

disease processes and cancer (Kalluri and Zeisberg

2006). In response to wounding, dermal fibrocytes

undergo a phenotypic change to myofibroblasts that

serve to actively contract during wound closure. How-

ever,▶wound healing differs in adults and fetuses; the

latter do not undergo myofibroblasts differentiation

and also do not form scars. In the adult wound, fibro-

blast synthesis of collagen is delayed while fibroblasts

proliferate, but fetal fibroblasts simultaneously prolif-

erate and synthesize collagen (Buchanan et al. 2009).

Fibroblasts also induce specific transition from acute

inflammation to acquired immunity, while inappropri-

ate production of chemokines and matrix components

by fibroblasts leads to the establishment of chronic

inflammation (Buckley 2011).

Fibroblasts rarely undergo spontaneous apoptosis

or in response to DNA damage. A response of

primary fibroblasts to stress and aging is a permanent

arrest called replicative senescence. The senescence-

associated secretory phenotype (SASP) is distinct from

that of replication competent fibroblasts that is rich in

cytokines and factors that may mediate aging processes.

Fibroblasts are also culprits in tissue-compromising

fibrosis that can starve, restrict, and ultimately replace

functional parenchyma. In this case, exuberant collagen

production is a major characteristic, often mediated by

response to elevated TGFb, a cytokine both produced by
fibroblasts and to which fibroblasts are exquisitely sen-

sitive. An novel source of fibroblasts in fibrotic condi-

tions is the epithelium via epithelial to mesenchymal

transition (EMT) (Kalluri and Neilson 2003). The

parenchymal response to injury, as occurs in ▶wound

healing, causes EMT, but in the disease state, cells fail to

revert to type due to an imbalance in cytokine signaling,

leading to accumulation in the mesenchymal compart-

ment (the significance and occurrence of EMT is the

subject of a controversy [Tarin 2011]). Similarly, cancer

cells can recruit and induce a highly activated fibroblast

phenotype called cancer-associated fibroblasts (CAF).

Together, these examples underscore the remarkably

plasticity and diversity of fibroblasts, whose nature

should be explicitly evaluated when considering tissue

as systems.
Cross-References

▶Bone Marrow-derived Cells

▶Extracellular Matrix

▶Wound Healing
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▶ Fibroblasts
Fick’s Second Law
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Equation
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▶ Stem Cell Networks
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▶ Proteomics Data Formats
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▶Teleology
Fisher’s Linear Discriminant

▶Linear Discriminant Analysis
F

Fisher’s Test

Kejia Xu

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

Fisher’s exact test is a statistical test used to exam-

ine the significance of the association between two

categorical variables. The test is useful for categor-

ical data that result from classifying objects in two

different ways, and it is used to examine the sig-

nificance of the association between the two kinds

of classification.

For an example application of the 2 � 2

test, let X be a journal, either a mathematics

magazine or a science magazine, and let Y be the

number of articles on the topics of mathematics and

biology.
Mathematics

magazine
Science

magazine
 Total
Mathematics
 a
 b
 a + b
Biology
 c
 d
 c + d
Total
 a + c
 b + d
 a + b + c + d
Fisher calculates the conditional probability of get-

ting the actual matrix given the particular row and

column sums:
P ¼ aþ b
a

� �
cþ d
c

� �
aþ bþ cþ d

aþ c

� ��

¼ ðaþ bÞ!ðcþ dÞ!ðaþ cÞ!ðbþ dÞ!
a!b!c!d!ðaþ bþ cþ dÞ! ; (1)
Cross-References
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Fitness

Philippe Huneman

Institut d’Histoire et de Philosophie (IHPST), des

Sciences et des Techniques Université Paris 1

Panthéon-Sorbonne, Paris, France
Definition

The word comes from the phrase “survival of the

fittest,” which Darwin borrowed from Spencer in the

last edition of the Origin of species due to his own

hand. Fitness has two components, survival and repro-

duction. If an organism is very well adjusted to its

milieu, but does not reproduce, it has no evolutionary

impact; hence, reproduction is often taken as crucial,

and survival considered as a proxy for reproduction

(the longer X survives, the higher the chances it has

offspring). However, even if often correct, those

approximations prove to be controversial, for example,

when some organisms grow rather than reproduce. In

some contexts, one has to model the two components

of fitness separately, for instance, when the issue is to

understand how individual resources are partitioned

between reproduction and survival.

More formally, fitness can be defined as the probabil-

ity distribution of the representation of a gene, a trait or

an individual at the next generation; yet often equations

can consider only the expectancy (fitness meaning

expected offspring number of an individual). Because it

concerns expected rather than actual offspring, fitness

is often metaphysically considered as a propensity

(sometimes called “expected fitness”) rather than as

a categorical property (then called “realized fitness”).

Sometimes, several generations have to be taken

into account to understand the evolutionary dynamics
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(e.g., when explaining the constancy of sex ratio, which

involves considering the effect on grandchildren) (Sober

2002). The case of altruism compels biologists to con-

sider selection at the level of genes. According to

▶Hamilton’s rule, the ▶ relatedness between actor

and beneficiary may account for the selection of

the altruistic act because the degree of relatedness

mitigates the cost: if the act increases the number

of altruistic alleles at the next generation (as com-

pared to the selfish alleles), be they directly alleles

of the offspring of the actor, or alleles of the

offspring of the beneficiaries of its altruistic acts,

then altruism evolves. One can therefore reason by

including within fitness all those alleles due to the

altruist activities of the focal individual. Inclusive
fitness is therefore the number of genes directly

passed on to the next generation by a focal indi-

vidual, plus the ones that are passed on by its kin.

What is therefore increased by selection is rather

inclusive than individual fitness, even though

calculating inclusive fitness may be difficult in

practice (Grafen 2009).

Even if mathematically speaking the construal of

fitness is clear and how to construe it in a given prob-

lem is often straightforward, the issue of the bearer of

fitness is difficult. Originally, only organisms had fit-

ness, which was often computed as the number of

offspring; with Modern Synthesis and the formulation

of evolution in terms of gene frequencies in the context

of population genetics, fitness is also ascribed to genes

and genotypes. These values are interdependent of

each other because the fitness of a gene can be seen

as the contribution it makes to the fitness of the organ-

ism, but only in the case of asexual organisms the

number of offspring equals the number of copies of

a given gene. Moreover, fitness is often seen as lifetime

fitness, that is, computed along the whole life of the

organism; yet in behavioral ecology, one mainly

considers individually each act and ascribes fitness to

it (e.g., costs and benefits of various strategies are

measured in terms of fitness).

Often, absolute fitness cannot be measured but rel-

ative fitness can, and only the latter is evolutionarily

important (individuals with identical fitnesses do not

undergo natural selection). Sometimes, one measures

a posteriori the fitness of types of organisms by

counting the number of offspring. Otherwise, one can

consider fitness as strictly correlated to the way indi-

viduals face environmental demands, and then it can be
computed a priori by estimating the performances of

various trait types (race speed, rate of metabolism,

visual acuity, etc.), provided that one has an idea

about the relative importance of all factors for survival

and reproduction.
Cross-References
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Fitness Function

Ke-Qin Liu

Institute of Systems Biology, Shanghai University,

Shanghai, China
Synonyms

Objective function
Definition

In evolutionary algorithm, fitness function is actually

an objective function that is used to determine which

solution within a population is better when solving

a particular problem (Holland 1975; Nelson et al. 2009).

In evolution algorithm, the solution space consists

of a population of chromosomes where each chro-

mosome is one solution that can be evaluated by

the fitness function. Finally, the chromosomes can

be ranked by calculating the fitness function value

(Holland 1975). A proper fitness function is very

important for the speed of the search and the

solution of optimization.
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Fitting of Continuous and Deterministic
Models

▶Grid Computing, Parameter Estimation for Ordinary

Differential Equations
Flemming Body

▶Midbody
Floquet Multiplier

Tianshou Zhou

School of Mathematics and Computational Sciences,

SunYet-SenUniversity,Guangzhou, Guangdong, China
Definition

Consider a linear differential equation of the form:
_x ¼ AðtÞx

where AðtÞ is a continuous periodic function with

period T. If FðtÞ is a fundamental matrix solution to

this system, then for all t 2 R,
F tþ Tð Þ ¼ FðtÞF�1ð0ÞFðTÞ

In addition, for each matrix B (possibly complex)

such that eTB ¼ F�1ð0ÞFðTÞ, there is a periodic

(period T) matrix function t7!PðtÞ such that

FðtÞ ¼ PðtÞetB for all t 2 R. Also, there is a realmatrix

S and a real periodic (period-2T) matrix function

t 7!QðtÞ such that FðtÞ ¼ QðtÞetS for all t 2 R.
This mapping FðtÞ ¼ QðtÞetS gives rise to a time-

dependent change of coordinates (y ¼ Q�1ðtÞx), under
which the original system becomes a linear system

with real constant coefficients dy
dt ¼ Sy. Since QðtÞ is

continuous and periodic it must be bounded. Thus, the

stability of the zero solution for yðtÞ and xðtÞ is deter-
mined by the eigenvalues of S. The representation

FðtÞ ¼ PðtÞetB is called a Floquet normal form for

the fundamental matrix FðtÞ.
The eigenvalues of the matrix eTB are called the

Floquet multipliers of the system (some called charac-

teristic multipliers). They are also the eigenvalues of the

(linear) Poincaré maps xðtÞ ! x tþ Tð Þ. A Floquet

exponent (sometimes called a characteristic exponent)

is a complex m such that emT is a Floquetmultiplier of the

system. Notice that Floquet exponents are not unique

since eðmþð2pik=TÞÞT ¼ emT (where k is an integer), but

Floquet multipliers are unique. The real parts of the

Floquet exponents are called Lyapunov exponents. The

zero solution is asymptotically stable if all Lyapunov

exponents are negative, Lyapunov stable if the Lyapunov

exponents are nonpositive, and unstable otherwise.
Flow Cytometry

Xiaojun Liu

Internal Medicine, The Second Hospital of Hebei

Medical University, Shijiazhuang, Hebei, China
Definition

Flow cytometry is a technology that simultaneously

measures and then analyzes multiple physical charac-

teristics of single particles, usually cells, as they flow in

a fluid stream through a beam of light. The properties

measured include a particle’s relative size, relative gran-

ularity or internal complexity, and relative fluorescence

intensity. These characteristics are determined using an

optical-to-electronic coupling system that records how

the cell or particle scatters incident laser light and emits

fluorescence.
Cross-References
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▶Cell Cycle Analysis, Flow Cytometry
Fluorescence

Xiaojun Liu

Internal Medicine, The Second Hospital of Hebei

Medical University, Shijiazhuang, Hebei, China
Definition

Fluorescence occurs when a fluorescent compound

absorbs light energy over a range of wavelengths

that is characteristic for that compound. It is

a transition of energy produced by the electron

when it decays from higher energy level raised

by the absorption light to its ground state. In

Fluorescence-activated cell sorting fluorescence is

often used to show the particles’ characters

according to the specific antibody conjugated by

the fluorescent compound.
Cross-References
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Fluorescence Microscope

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center for

Pediatric Research, Indiana University School of

Medicine, Indianapolis, IN, USA
Definition

Fluorescence microscope is an optical microscope

used to study properties of organic or inorganic sub-

stances using the phenomena of fluorescence

and phosphorescence, instead of, or in addition to,

reflection and absorption.
Cross-References

▶ Fluorescence Microscopy

▶ Spectroscopy and Spectromicroscopy
Fluorescence Microscopy

Yi Zeng

Department of Pediatrics, University of Arizona,

Tucson, AZ, USA

Synonyms

Epifluorescence microscope; Fluorescence

microscope
Definition

Fluorescence microscopy utilizes fluorescence as

a means of detecting objects through a microscope.
Characteristics

Fluorescence microscopy (FP) has been extensively

used in biomedical research. It allows users to observe

the structure and dynamics of the cell or tissue with

great granules. FP is designed to obtain temporal

and spatial information of objects that are either

autofluorescent, or have been labeled with extrinsic

fluorescent molecules. The combination of fluorescent

specificity and the sensitivity of the latest optical

instruments has enabled the detection of small amount

of materials with high resolution and precision.

Furthermore, the application of the FP offers not just

the qualitative description, but also the quantitative

attributes of the specimens.

The entire procedure of fluorescence microscopy

starts with specimen preparation. The specimen is

then irradiated by excitation light of specific wave-

length. The much weaker emitted ▶fluorescence is

separated from the brighter excitation light and reaches

human eyes or other detectors usually a digital or

conventional film camera. The fluorescent areas shine

brightly against a dark background with sufficient con-

trast to permit detection.
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Fluorescence microscopy has many advantages that

are not readily available in other optical microscopy

techniques:

• Specificity. Fluorescence excitation and emission

spectra are usually inherent characteristics of

a molecule. This property is the foundation for

selective analysis of complex mixtures of molecular

species.

• Sensitivity. By distinguishing autofluorescence

from specific fluorescence, fluorescence micros-

copy can reveal the presence of fluorescent mate-

rial with a scale of even single fluorescent

molecule.

• Environmental sensitivity. The high sensitivity of

fluorescence to physical and chemical environ-

ment enables the investigation of pH, viscosity,

refractive index, ionic concentrations, membrane

potential, and solvent polarity in living cells and

tissues.

• High temporal resolution. Fluorescence measure-

ments can be used to track fast chemical and molec-

ular changes in specimens.

• High spatial resolution. Fluorescence can be mea-

sured from single molecules if the molecules con-

tain a sufficient number of ▶ fluororphores. The

interactions of cellular components whose dimen-

sions are below the diffraction-limited resolution of

the microscope can be visualized using fluores-

cence resonance energy transfer techniques.

• Quantitation. Direct correlation between emitted

▶fluorescence and the fluorescence quantum

yield (the ratio of photon absorption to emission)

allows quantitative measurements by fluorescent

microscope. Quantification can be achieved at

relatively low concentrations due to the greater

sensitivity of emission when compared to absorp-

tion processes.

Fluorescence microscope has five basic compo-

nents: excitation light sources, wavelength selection

devices, objectives, detectors, and stages and specimen

chambers. Powerful compact light sources are needed

to generate sufficient excitation light intensity to pro-

duce detectable emission. Tungsten or halogen lamps

are used in transmitted or incident illumination. The

most common lamps for epifluorescence microscopes

are mercury, xenon, or metal halide arc lamps. In

recent years, there has been increasing use of lasers

as light sources. Lasers are most widely used for

confocal microscopy and total internal reflection
fluorescence microscopy. Commonly used objectives

can be classified into transmitted-light and reflected-

light categories. Transmitted-light objectives are

designed to be used with coverslips. Reflected-light

objectives feature specially collated glass surfaces to

avoid reflection in the optics. Detectors allow visualiza-

tion of low levels of emitted ▶fluorescence without

photobleaching or photodamage to the specimen. They

also allow real time recording of living cell and tissue

physiology. A variety of specimen chambers are

available to allow analysis of live or fixed cells and

tissues.

One of the most important applications of fluores-

cence microscopy is in the field of ▶ immunofluores-

cence, which combines the sensitivity of fluorescence

microscopy and the high degree of specificity exhibited

by antigen-antibody binding. Two commonly used

▶ immunofluorescence techniques are direct immuno-

fluorescence and indirect immunofluorescence. Direct

immunofluorescence uses a single antibody labeledwith

a ▶fluorochrome to bind the target ▶ antigen in the

specimen. The reaction of the chemically attached fluo-

rescent conjugate and antigen is demonstrated when the

fluorochrome is excited. The subsequent emission inten-

sity at various wavelengths can then be observed visu-

ally or captured by a detector system. In indirect

immunofluorescence, an unlabeled primary antibody

first incubates with the target antigen. A secondary fluo-

rochrome-labeled antibody then incubates with the pri-

mary antibody because it recognizes the primary as an

antigen. Subsequently, the labeled complex of antigen

and antibodies is excited at the peak wavelength inten-

sity of the fluorochrome, and any resulting emission is

observed. The fact that each antigen is able to bind to

multiple antibodies allows indirect immunofluorescence

to produce greater fluorescence intensity compared to

direct immunofluorescence. In addition, this approach

reduces the necessity of keeping in stock large numbers

of fluorochrome-labeled antibodies.

Other popular fluorescence microscopy applications

include: fluorescence in situ hybridization, fluorescence

differential interference contrast, automated fluores-

cence image cytometry, fluorescence recovery after

photobleaching, total internal reflectance fluorescence

microscopy, fluorescence resonance energy transfer

microscopy, digitized fluorescence polarization micros-

copy, fluorescence lifetime imagingmicroscopy, Fourier

spectroscopy/spectral dispersion microscopy, delayed

luminescence microscopy.
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Fluorescence Spectroscopy

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center for

Pediatric Research, Indiana University School of

Medicine, Indianapolis, IN, USA

Definition

Fluorescence spectroscopy uses higher-energy pho-

tons to excite a sample, which will then emit lower-

energy photons. This technique has become popular

for its biochemical and medical applications, and

can be used for confocal microscopy, fluorescence

resonance energy transfer, and fluorescence lifetime

imaging.
Cross-References
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Fluorescence-activated Cell Sorting

Steven D. Rhodes

School of Medicine, Indiana University, Indianapolis,

IN, USA

Definition

Fluorescence-activated cell sorting, or FACS for short,

is a specialized type of cell sorting that utilizes flow

cytometry. Fluorescently tagged cells are isolated into

charged droplets which are separated based on their

deflection between two electrodes.

Cross-References
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▶ Fluorescent Markers
Fluorescent Markers

Yongzheng He and Yan Li

Department of Pediatrics, Indiana University School of

Medicine, Indianapolis, IN, USA
Synonyms

Cell marker; Cluster of differentiation (CD); Fluores-

cent marker; Fluorophore; Multicolor flow cytometry
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Definition

A fluorophore is a functional component of a molecule

which can cause a molecule to be fluorescent by the

means of absorbing energy of a specific wavelength

and emitting energy at a different wavelength. Fluo-

rescein isothiocyanate (FITC), rhodamine, and other

derivatives are common fluorophores used for a variety

of applications.

Fluorescent markers are specific molecules, like

protein, which are covalently bound fluorophores that

selectively bind to a functional group of the target for

detection. The most commonly used fluorescent mol-

ecules are antibodies.

Cell markers are specified protein on the surface

of every cell, called receptors, which can selectively

bind or adhere to other “signaling” molecules. The

biological uniqueness of the receptors and chemical

properties of certain compounds are used to mark

cells.

Cluster of differentiation (CD) molecules are

markers on the cell surface, which can be recognized

by specific sets of antibodies. Cluster of differentiation

systems can be used to identify the cell type, stage of

differentiation, and activity of a cell.

Multicolor flow cytometry is a technique in which

cells or cell components (such as DNA) are stained

with multiple fluorescent dyes to detect the fluores-

cence by laser beam illumination using up to 18 inde-

pendently measurable colors for the identification and

sorting of cells. Multicolor flow cytometry offers

a platform to acquire detailed information on specific

cells within a mixed population, which is critical to

maximize the data that can be obtained from a small or

limited sample.
Characteristics

Multicolor Flow Cytometry

A combination of fluorescence conjugated antibodies

in flow cytometry is utilized for the determination and

sorting of certain cell population.

Hematopoietic Stem Cell Markers

Hematopoietic stem cells (HSCs), which constitute

1:10,000 of cells in myeloid tissue, are multipotent

stem cells that give rise to blood cell types of the

myeloid and lymphoid lineages, including myeloid
(monocytes and macrophages, neutrophils, basophils,

eosinophils, erythrocytes, megakaryocytes/platelets,

dendritic cells), and lymphoid lineages (T-cells,

B-cells, NK-cells). In the embryo, hematopoietic

stem cells are formed from the mesoderm during

embryogenesis and are deposited in specific hemato-

poietic sites. In adults, HSCs are found in the bone

marrow and peripheral blood following pretreatment

with cytokines, such as G-CSF (granulocyte colony-

stimulating factors), that induce cells to be released

from the bone marrow compartment. Other sources of

HSCs include the placenta and umbilical cord blood.

There is no single specific marker for stem cell.

Generally, HSCs are characterized by the absence of

lineage-specific marker expression and expression of

a combination of cell markers.

Human HSCs are determined as CD34+, CD59+,

CD90/Thy1+, CD38low/�, c-Kit�/low, and Lin�.
Murine HSCs are determined as CD34low/�, Sca-1+,
CD90/Thy1+/low, CD38+, c-Kit+, and Lin�(Geraerts
and Verfaillie 2009). Alternative methods that allow

for more efficient identification of stem cells, such as

SLAM (Laje et al. 2010) family of cell surface mole-

cules, are now emerging.

Mesenchymal Stem Cell Markers

Mesenchymal stem cells (MSCs) are multipotent stem

cells which are capable of differentiating into a variety

of cell types, such as osteoblasts, chondrocytes, and

adipocytes. Traditionally, MSCs are found in the bone

marrow. Alternatively, other tissues can be a more

accessible source for mesenchymal stem cell isolation,

including adipose tissue, cord blood, and peripheral

blood.

Due to the lack of unique single marker for both

human and murine MSCs so far, a combination of cell

markers is commonly used to identify MSCs. Human

MSCs are determined as CD11c�, CD14�, CD31�,
CD34�, CD45�, CD117�, CD29+, CD44+, CD90+,
CD73+, CD105+, CD106+, and CD166+ (Delorme

et al. 2006; Parekkadan and Milwid 2010; Aicher

et al. 2011); Murine MSCs are determined as CD34�,
CD45�, CD44+, CD90+, CD105+, CD117� SCA1+

(Schrepfer et al. 2007; Soleimani and Nadri 2009;

Zhu et al. 2010).

Cell Cycle

Flow cytometry can be utilized in cell cycle analysis to

distinguish different phases of the cell cycle.
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After being permeablized by detergent like Triton

X-100 or NP-40, or fixed with ethanol, cells are incu-

bated with fluorescent DNA dyes for DNA quantifica-

tion in single cell. Because fluorescent DNA dye also

stains RNA, cells are usually treated with RNase A to

remove RNAs. The fluorescence intensity of each

stained cell at a certain wavelength correlates linearly

with amount of DNA content in it. In this way, the

G0/G1 phase, S phase, G2/M phase (DNA duplicates)

can be distinguished by the intensity of fluorescent

DNA dye according to the amount of DNA the cell

contains.

Besides Propidium iodide, 7-Aminoactinomycin

D (7AAD), DAPI, and Hoechst are frequently used as

fluorescent DNA dye.

Cell Apoptosis

Annexin V affinity assay is a method in molecular

biology that employs flow cytometry to quantify the

number of cells undergoing apoptosis, which uses

the protein Annexin V to tag apoptotic and dead

cells.

The fluorescence conjugated Annexin V protein

binds to negative charged phosphatidylserine (PS) on

the membrane of cells undergoing apoptosis. By con-

jugating FITC to Annexin V it is possible to identify

and quantitate apoptotic cells on a single-cell basis by

flow cytometry.

When cells were stained with Annexin V (AV) and

propidium iodide (PI) simultaneously, it is easy to

distinguish intact cells (AV�PI�), early apoptotic

(AV+PI�), and late apoptotic or necrotic cells

(AV+PI+) (Muppidi et al. 2004).

Proliferation Assay

Cell proliferation may be assessed by flow cytometry

by labeling cells with the dye CFSE, which readily

crosses intact cellular membranes and irreversibly cou-

ples to both intracellular and cell surface proteins.

When cells divide, the CFSE labeling is then distrib-

uted into the two daughter cells equally (Parish et al.

2009).
Cross-References
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Definition

Fluorochromes are molecules capable of exhibiting

fluorescence.
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Department of Pediatrics, University of Arizona,
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Definition

Fluorophore is the structural domain or specific region

of a molecule that is capable of exhibiting fluores-

cence. Fluorochromes that are conjugated to a larger

macromolecule through absorption or covalent bonds

are termed “fluorophores.”
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Synonyms

Metabolic flux balancing
Definition

Flux Balance Analysis (FBA) is a method in ▶meta-

bolic pathway modeling to quantify a metabolic state

of a cell. It is a constraint-based approach, which uses

linear programming, subject to constrains imposed by

the stoichiometry of the metabolic network, thermody-

namics, and the measured rates (rm). The fluxes of
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the metabolic network are computed under these

constraints by optimizing an objective function under

▶ steady state operation of the metabolic network

(Edwards et al. 2002). FBA is used when limited

information about the accumulation rates, typically of

an extracellular metabolite (i.e., measured rates, rm),

is known and the stoichiometric matrix with coeffi-

cients of all the unmeasured reactions (denoted by

Su) is noninvertible to provide a unique solution.
Objective function = Maximize (r7)

0.2 ≤ r4 ≤ 1
0 ≤ r1 < 1

0.3 ≤ r9 ≤ 1
r1−9 ≥ 0b Mass Balance equations

= r1 − r2 = 0

S.r = 0
dA
dt

= r3 − r4 = 0

= r6 − r7 = 0

= r8 − r9 = 0

= r2 − r3 − r5 = 0

= r5 − r6 − r8 = 0

dB
dt
dC
dt
dD
dt
dE
dt
dF

E F
r7

Ex Fx

r9

e Solution
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1
0.2
0.2
0.8
0.5
0.5
0.3
0.3
Characteristics

The first step in FBA is reconstruction of the metabolic

network. Once all the internal and transport reactions

are identified, dynamic mass balance equations for all

the metabolites are formulated. These mass balances

can also be represented in a matrix form representing

the stoichiometric matrix (S), and the flux vector (r).

FBA analyzes the metabolic network assuming

a steady-state condition, therefore the dynamic mass

balance equations are set to zero, as given below:

dt

Flux Balance Analysis, Fig. 1 Flux Balance Analysis (FBA)

of a simple metabolic network. The solution is obtained for

maximizing the accumulation rate of “Ex,” that is, maximizing

the rate, r7
dc

dt
¼ S:r ¼ 0 (1)

The above equation S:r ¼ 0ð Þ forms the constraint

for the linear optimization problem. Since, in

most biological systems, the number of reactions (n) is

usually more than the number of metabolites (m), that is,

n > mð Þ, the system is underdetermined and has

n�mð Þ degrees of freedom and therefore, cannot be

solved algebraically. In order to solve the system,

additional constraints are specified, which constrict the

solution space. These constraints are, as mentioned pre-

viously, thermodynamic (defining reversibility or irre-

versibility of the reactions) and capacities of enzymes

and transporters (defines maximum uptake or reaction

rates) (Edwards et al. 2002). Additionally, certain flux

values are also specified, which are experimentallymea-

sured. These constraints define a range of feasible values

in the solution space. However, to obtain a unique solu-

tion, the space is further constricted by an objective

function. The solution thus obtained is specific to

a metabolic state that optimizes for a specific objective.

Therefore, solving an underdetermined system trans-

lates to an optimization problem for a defined objective

function (Z), wherein linear programming methodolo-

gies may be applicable (Edwards et al. 2002).
Mathematically, the maximization problem can be

stated as:
maxZ ¼ c:r (2)

Subject to the constraints: S:r ¼ 0; r � 0; r � rmax;

rm:min � rm � rm:max

Here, Z denotes the linear objective function and

c is a row vector of weights (coefficients) on the fluxes

“r” used to define an objective function. Weights indi-

cate the contribution of reaction “r” toward an objec-

tive function. rmax is the maximum flux derived from

an enzyme or it corresponds to the maximum transport

capability of an enzyme. rm.min and rm.max are the

minimum and maximum rates achievable for

a particular reaction, respectively.

The methodology of FBA can be elucidated by

solving an example by using a simple hypothetical

metabolic network. Figure 1a illustrates an example

of a hypothetical metabolic network. This system has

nine reactions and ten metabolites. Four of these

http://dx.doi.org/10.1007/978-1-4419-9863-7_384
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metabolites (Ax, Cx, Ex and Fx) are external and the rest

are internal metabolites. All reactions in this system

are irreversible, out of which r1, r4, r7, and r9 are

exchange reactions and r2, r3, r5, r6, and r8 are internal

reactions. For each of the internal metabolites, mass

balance equations can be written as shown in Fig. 1b.

These equations can be represented in the form of

matrix (S), where rows of the matrix correspond to

internal metabolites and column corresponds to reac-

tions (Fig. 1c). A unique flux distribution for the net-

work is obtained for an assumption that the system is

optimized for the accumulation rate of metabolite

“Ex.” Further the solution is also dependent on addi-

tional constraints of the system under study, which are

imposed by the stoichiometric coefficients of the

metabolites, flux carrying capabilities of various reac-

tions, irreversibility, and measured accumulations

rates (Fig. 1d, e).

Since the solution to characterize metabolism is

dependent on the optimization problem, defining

a precise objective function is critical. The objective

function should closely represent the cellular metabo-

lism for a given condition. Typically, the basis of

defining an objective function is the assumption that,

due to evolutionary pressure, cells have evolved to an

optimal behavior and therefore, the phenotypic state

yields an optimal flux distribution. The most com-

monly used objective function is the maximization of

growth or formation of biomass. Prediction of fluxes

with this objective function has yielded results consis-

tent with several experimental findings, such as 86%

cases for Escherichia coli, 85% for Pseudomonas

aeruginosa, 70% for Leishmania major, and 60% for

Helicobacter pylori (Gianchandani et al. 2010). Other

objective functions employed include optimizing ATP

production (to determine optimal energy efficient con-

dition), production of a metabolite, or rate of nutrient

uptake (Raman and Chandra 2009).

Although FBA has been useful in quantifying the

metabolic state consistent with experimental measure-

ments, the formulation of the objective function is the

limitation of this approach. Selection of an inappropriate

objective function will lead to a solution which will not

be an accurate representation of the cellular metabolism

(Edwards et al. 2002). Apart from identification of

a precise objective function, it is also essential to repre-

sent the objective function in a precise mathematical

form. Further, FBA yields only one optimal solution

though there might be other optimal or suboptimal
solutions for a given set of constraints. However, pre-

diction of the metabolic fluxes can be improved by

introducing more number of measured fluxes in the

analysis by which the search space is further

constrained.

Applications of FBA

FBA is widely used for characterizing cellular

metabolism and has given solutions which are

consistent with experimental findings. In this regard,

some of the most studied organisms are Escherichia

coli, Helicobacter pylori, Haemophilus influenzae, Sac-
charomyces cerevisae, and Methanosarcina barkeri.

FBA is extensively used in determining metabolic net-

work properties, identifying redundancies (existence of

alternate optimal solutions) (Papin et al. 2002) and

robustness in the metabolic network. Robustness can

be examined by introducing environmental perturba-

tions and analyzing its effect with respect to optimal

growth rate. Analysis of perturbations in the network by

deleting or inserting genes are important as they yield

information regarding the essentiality of the gene for

survival of an organism and thereby allowing identifi-

cation of potential drug targets (Raman et al. 2005).

Metabolic engineering is another area where FBA is

extensively used. It helps in identifying target genes,

whose manipulation leads to improved production of

metabolite of interest (Wang et al. 2006). Fongs et al.

(2005) observed that strains engineered using findings

of FBA behave suboptimally but after undergoing adap-

tive evolution, the cell can reach a state of metabolic

optimality (Ibarra et al. 2002; Fong et al. 2005). FBAhas

also been used in analyzing the growth of an organism

on different carbon sources (Covert and Palsson 2002).

Recently, FBA has been applied in the area of

medicine to investigate the metabolic network of

human mitochondria and the effect of treatment on

the metabolism. FBA has been applied to optimize

the metabolism of cultured hepatocytes to be used in

bio-artificial liver devices (Thiele et al. 2005). FBA has

also been used to study plant metabolism, but the imple-

mentation of FBA is difficult due to the structural

complexities in plants.

Thus, FBA is a powerful modeling approach

for quantitative simulation of microbial metabolism.

It assumes optimal cell behavior with respect to

a known objective function. Its applicability to genome

scale metabolic networks makes FBA popular in

analyzing cellular physiology in such systems.
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▶Metabolic Control Analysis
Flux Control Coefficient

Emma Saavedra and Rafael Moreno-Sánchez

Department of Biochemistry, National Institute for

Cardiology “Ignacio Chávez”, Mexico City, Mexico
Definition

It is the degree of control that each enzyme exerts on

a metabolic pathway flux. A practical definition is the

percentage of change in the pathway flux when a 1%

change in the activity of a pathway enzyme is achieved.

The corresponding written description isCJ
ai, where J is

flux (or cellular function) and a is the activity of an

enzyme i (or protein, transporter, or cellular process).

The CJ
ai as well as the ▶ concentration control coeffi-

cients (see next description) are systemic properties of

the enzymes when they are working together in the

pathway or cellular network.
Cross-References

▶Metabolic Control Theory
Fokker–Planck Equation

Ruiqi Wang

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

Fokker–Planck equations are a special type of master

equation and are often used as a continuous approxi-

mation to master equations. By the Taylor expansion

of master equation to order two, we obtain the Fokker–

Plank equation.

The Fokker–Planck equation is beneficial in

the sense that some theoretical analysis can be

conducted. For example, for some simple cases,

the equilibrium probability distribution can be

obtained.
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Forward and Inverse Parameter
Estimation for Metabolic Models

I-Chun Chou, Zhen Qi, Melissa L. Kemp and

Eberhard O. Voit

The Wallace H. Coulter Department of Biomedical

Engineering, Georgia Institute of Technology and

Emory University, Atlanta, GA, USA
Definition

One of the most challenging bottlenecks of mathemat-

ical modeling is the identification of optimal parameter

values with which the model matches experimental

data well. This essay discusses distinct strategies for

approaching this identification step.
Characteristics

Modeling Process

The generic process of modeling metabolic systems

consists of six phases (Chou and Voit 2009):
1. Identification of network structure and regulation

2. Selection of a mathematical modeling framework

3. Estimation of parameter values

4. Model diagnostics

5. Model validation

6. Applications and uses of the model

The first phase is dedicated to identifying the net-

work structure and regulation of the system. This phase

relies on a combination of available information and

assumptions or hypotheses, which are derived from the

literature or from de novo experiments. Based on the

available body of knowledge, the modeler needs to

decide which components and interactions to include

in the model and which to omit in order to keep the

model manageable, while retaining the integrity of the

system. Additional assumptions and simplifications

are usually needed in order to fill gaps in information.

The result of this model design phase is often visual-

ized as a diagram with nodes for the components

(metabolites) and arrows for interactions between

them (fluxes). The second phase is dedicated to the

choice of the best-suited mathematical framework and

the corresponding formulation of a▶ symbolic model,

that is, a model in which no parameter values are

specified yet. This process usually starts with

converting the diagram of the system topology and

regulation into mathematical equations. These may

be linear or nonlinear, stochastic or deterministic,

static or dynamic, and consist of explicit functions,

differential equations, or difference equations (Voit

et al. 2008). Metabolic systems are usually described

with a set of differential equations that represent the

dynamics of the system variables and are composed of

sums and differences of the metabolic fluxes driving

the system. Once the symbolic model is formulated,

the next phase of parameter estimation consists of

numerically configuring the symbolic model, which

requires the determination of parameter values that

render the model consistent with experimental obser-

vations. It is seldom expected that the model will

exactly match all available data points, and the desired

or required degree of consistency is therefore a matter

of judgment. In addition to fitting the data, the numer-

ical model needs to satisfy other characteristics inher-

ent in biological systems, such as stability, robustness,

and possibly different transient behaviors. The diagno-

sis of the model with respect to such features is

followed by the validation of the model through testing

against experimental data and biological, clinical,

http://dx.doi.org/10.1007/978-1-4419-9863-7_863
http://dx.doi.org/10.1007/978-1-4419-9863-7_1598
http://dx.doi.org/10.1007/978-1-4419-9863-7_1526
http://dx.doi.org/10.1007/978-1-4419-9863-7_1252
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pharmacological, or other information that had not

been used for the design of the model. If the model

has successfully gone through these design and testing

phases, one may cautiously deem it appropriate for the

purposes that initially led to the model design. In

particular, one may use the model for explanations,

predictions, and applications, the generation of new

hypotheses, assistance in the design of new biological

experiments, possibly the development of treatment

strategies for diseases, and the manipulation and opti-

mization of the model toward specific goals, such as

the production of organics in metabolic engineering.

The phasing of the modeling process may give the

impression that modeling is straightforward. However,

in most cases it is an iterative process requiring the

repeated return to earlier phases (Voit et al. 2008).

The Challenge of Parameter Estimation

Themost challenging among the phases ofmodel devel-

opment is usually the estimation of parameter values,

especially when the investigated system is moderately

large. Addressing this challenge successfully is crucial,

because it is clear that the parameter values qualitatively

and quantitatively characterize the metabolic model and

distinguish it from others. Furthermore, most model

analyses can only be executed when all parameter

values are specified, and most predictions and many

explanations made with the model are of a numerical

nature that requires parameterization.

The development of parameter estimationmethods is

driven by the availability and characteristics of experi-

mental data. Correspondingly, estimation methods can

be very distinct, thereby reflecting the variety of exper-

imental data types (Voit 2004; Goel et al. 2006). The

currently available methods can be classified as:

1. Forward (bottom-up) approaches and

2. Inverse (top-down) methods using steady-state or

time series data

Forward Estimation

Before molecular high-throughput data were available,

essentially all metabolic models were developed

according to the first strategy, and most models are

still generated in this fashion today. Specifically, a

model is designed based on local kinetic information

that is used to formulate functions for individual bio-

chemical processes, such as enzyme-catalyzed reactions

and transport steps. The default choice for these func-

tions or rate laws is typically aMichaelis–Menten (MM)
or Hill function, or one of their generalizations; how-

ever, other options include power-law functions,

lin-log representations, or more complex mathematical

descriptions (Voit and Chou 2009). The computational

aspects of estimating parameters for kinetic rate func-

tions are rather simple, as these functions are explicit

and usually contain only a few parameters. For

instance, in the case of MM rate laws, the parameters

can be estimated with methods of linear regression.

The data characterizing the kinetic properties of an

enzyme or transporter are usually measured on isolated

enzymes in vitro and account for optimal temperature

and pH ranges, cofactors, modulators, and secondary

substrates. Once sufficient information on individual

rate processes has been assembled, themodeler attempts

to merge this information into an integrative mathemat-

ical model of the entire system, which typically consists

of ordinary differential equations.

Though this forward approach is theoretically

straightforward, it has several disadvantages. First, it

requires that a considerable amount of local kinetic

information is at hand. Second, even if this information

is available in the literature, it had often been obtained

from different organisms or with experiments under

various conditions. As a consequence, the ultimately

emerging integrated model is often not internally

consistent or does not match biological observations,

thus mandating numerous rounds of refinements,

restructuring, and reparameterization. These iterations

are very labor intensive and time consuming and greatly

benefit from a combination of biological and computa-

tional expertise which, however, is still rare.

Inverse Estimation

Instead of first representing one process at a time and

subsequently merging all representations into a system

of differential equations, it is also possible to infer

quantitative information directly from data that char-

acterize the entire system. These inverse approaches

fall into two categories that correspond either to

▶ steady-state data or to time series data.

Steady-state data characterize a metabolic system

under a condition where all concentrations have

reached constant levels and all influxes and effluxes

are in balance. The most common approaches for

parameter estimation from such data use stoichiomet-

ric analysis (▶Conservation Analysis) and▶flux bal-

ance analysis (FBA) (e.g., Palsson 2006). In both

methods, the stoichiometry is assumed to be known,

http://dx.doi.org/10.1007/978-1-4419-9863-7_384
http://dx.doi.org/10.1007/978-1-4419-9863-7_1090
http://dx.doi.org/10.1007/978-1-4419-9863-7_1085
http://dx.doi.org/10.1007/978-1-4419-9863-7_1085
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some influxes and effluxes are measured as they enter

or leave the system under steady-state conditions, and

all other fluxes are inferred with computational

methods. In addition, FBA accounts for physico-

chemical constraints on the fluxes in the system and

furthermore assumes that the cell attempts to optimize

an overall objective, such as maximal growth. This

objective and all constraints are reformulated as

a constrained linear optimization task, which permits

an effective determination of a unique, optimal flux

distribution that satisfies all constraints and maximizes

the selected objective. These stoichiometrically based

methods solely characterize a steady-state flux distri-

bution and do not provide information on concentra-

tions, regulation, or parameters associated with

dynamic features of the system.

To a limited degree, parameter values can also be

obtained from data close to a steady state. In this case,
the data are obtained from experiments that measure

the responses of a biological system to small perturba-

tions (Sorribas and Cascante 1994). Such experiments

may use biochemical inhibitors, artificial ligands,

genetic mutations, or a variety of other methods.

The second category of inverse estimation

approaches is very different from these methods at, or

close to, a steady state. Namely, they are based on time

series data that characterize the full dynamic response

of a system to some stimulus, such as an environmental

stress or the sudden availability of food. These types of

data are becoming more prevalent, thanks to recent

advancements in molecular high-throughput tech-

niques at the genomic, proteomic, and metabolomic

levels. At least in principle, these data have the capa-

bility of characterizing global responses in a dynamic

manner, which subsequently permits the estimation of

parameter values and even the identification of the

topology and regulation of a system in a “top-down”

manner.

The experimental tools that can generate dynamic

data of metabolites include nuclear magnetic resonance

(NMR), mass spectrometry (MS) coupled with high-

performance liquid chromatography (HPLC), and flow

cytometry. The experiments can be performed under

many different conditions, such as different initial set-

tings, various gene knock-outs or knock-downs, or dif-

ferent types of enzyme inhibition, and shed light on the

system from different angles. Clear advantages of such

“global” data include that their information content is

rich, that they can be collected from the same organism,
sometimes even in vivo, and that insights gained from

their analysis are therefore as close to reality as is

currently feasible.

The concept of these methods is intuitively simple:

Use the chosen symbolic model and an optimization

algorithm to determine values for all model parameters

such that the dynamics of the model matches the

observation data as closely as possible. The attraction

of this approach is that time series data, if obtained

from in vivo perturbation or stimulus–response exper-

iments, directly or indirectly account for all processes

associated with the reaction of the system to the

perturbation.

Algorithms for Inverse Estimation

Many optimization algorithms have been proposed for

inverse estimation tasks in biology. Most of them

attempt to minimize the difference between the exper-

imental data and a model response that is obtained per

computer simulation. However, in spite of substantial

efforts, none of these algorithms is truly satisfactory in

realistic situations of moderately large systems or

where time series data are sparse, incomplete, or

corrupted by noise.

Themost prominent algorithms for inverse tasksmay

be divided into three groups. The first group consists

of gradient-based, steepest-descent, or hill-climbing
methods. Best known among these are the Gauss–New-

ton and Levenberg–Marquardt algorithms, which are

included in all major software packages of the field,

such as Mathematica and Matlab. The second group

consists of stochastic search algorithms (▶Evolution

Programming). These include evolutionary computa-
tion (EC) (▶Stochastic Simulation Algorithm), ▶ sim-

ulated annealing (SA), adaptive stochastic methods,

▶ clustering methods, and other meta-heuristics, such

as ant colony optimization (ACO) and▶ particle swarm

optimization (PSO). Some of these algorithms are bio-

logically inspired and have been applied to parameter

estimation tasks with the goal of finding global solu-

tions, especially in the context of identifying the struc-

tures of gene regulatory networks (Moles et al. 2003).

The best-known evolutionary method among these is

the genetic algorithm (GA), which is now widely avail-

able in many variants that have proven useful and prac-

tical in a variety of biological applications. The third

group of methods accounts for the fact that observed

data are affected by random events. Thus, these

approaches consider parameter estimation as a branch

http://dx.doi.org/10.1007/978-1-4419-9863-7_415
http://dx.doi.org/10.1007/978-1-4419-9863-7_415
http://dx.doi.org/10.1007/978-1-4419-9863-7_768
http://dx.doi.org/10.1007/978-1-4419-9863-7_414
http://dx.doi.org/10.1007/978-1-4419-9863-7_414
http://dx.doi.org/10.1007/978-1-4419-9863-7_370
http://dx.doi.org/10.1007/978-1-4419-9863-7_416
http://dx.doi.org/10.1007/978-1-4419-9863-7_416
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of statistics and use statistical or machine-learning tech-

niques as solution strategies. These techniques include

maximum likelihood estimation, Markov chain Monte

Carlo methods, and Kalman filtering.

One significant issue with time series analysis is

that the differential equations of the model have to be

solved thousands of times. Approximation methods

have been developed to avoid this numerical solution

step. While they save an enormous amount of comput-

ing time, they face their own challenges, which are not

always easily overcome (Chou and Voit 2009; Voit

and Almeida 2004; Ramsay et al. 2007).

Quality of Fit

Comparisons between parameter estimation algorithms

are usually based on the goodness of their fits to exper-

imental data, which is typically assessed as the sum of

squared errors (SSE) between model results and the

observed data (Voit 2011). However, the best fit should

not be the only criterion, whether the estimation occurs

in the forward or inverse direction. Inmany actual cases,

the “best” model, as judged by the smallest SSE, actu-

ally tends to run into ▶ overfitting problems, which

means that the model contains too many parameters.

As a consequence, its extrapolation and prediction

power with respect to untested conditions is low.

Related to this issue is the observation that the same

dataset can often be fitted by distinctly different param-

eter sets or even different model structures with similar

accuracy. This issue of unidentifiability and sloppiness

has receivedmuch attention in recent times (Gutenkunst

et al. 2007; Srinath and Gunawan 2010).

The insistence on a good fit is not necessarily the

best strategy due to the nature of biological phenomena.

First, biological data are often affected significantly by

inter-individual variability, as well as uncertainties

due to slight variations in experimental conditions. As

a consequence, biological observations are not as exactly

replicable as experiments in physics. For instance, the

KM value is often seen as a genuine property of an

enzyme, and in vitro characterizations are taken as true.

However, the same enzyme might slightly vary between

species and strains, and even a high degree of sequence

homology may not prevent differences in the affinity

between enzyme and substrate, which directly affects

the KM value. In other areas of science, the intrinsic

variability among items can often be characterized with

large numbers of measurements, but this strategy is not

always feasible in biology. While variability is natural,
biological phenomena are usually also very robust, so

that modest alterations in parameter values often do not

change their behavior. One contributor to this robustness

is redundancy, which allows the compensation of fail-

ures in one component with changes in other compo-

nents. This compensation directly translates into

different sets of parameter values, which all perform

with similar effectiveness and create biological sloppi-

ness that may or may not be related to the sloppiness in

optimized parameter sets. Thus, precise solutions,

consisting of unique sets of parameter values, may not

even be the ultimate criterion for a quality fit, and instead

of aiming for a model with the smallest residual error,

one might set as the goal to identify all sets of different

parameterizations that are consistent with the data,

within some acceptable error. Some of these may be

discarded if they correspond to models with high sensi-

tivities, a low degree of stability, or other undesirable

properties. The remaining set of parameter values may

turn out to be clustered tightly, consist of several distinct

clusters, or be scattered throughout a large domainwithin

the search space. In each case, the characteristics of this

set, combined with comparative analyses of the candi-

date models, may identify one model as more likely than

its alternatives or suggest hypotheses and critical labora-

tory experiments that may ultimately yield deeper

insights into the system under investigation.
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Forward-scattered Light (FSC)

Xiaojun Liu

Internal Medicine, The Second Hospital of Hebei

Medical University, Shijiazhuang, Hebei, China
Definition

FSC is a measurement of mostly diffracted light.

It is the part of the laser light that is detected just off

the axis of the incident laser beam in the forward

direction by a photodiode. It is proportional to cell-

surface area or size. FSC provides a suitable method of

detecting particles greater than a given size indepen-

dent of their fluorescence and is, therefore, often used

in immunophenotyping to trigger signal processing.
Cross-References

▶Cell Sorting
Foundational Model of Anatomy

Mark A. Musen

Stanford Center for Biomedical Informatics Research,

Stanford University, Stanford, CA, USA
Definition

The most thorough, thoughtful, and comprehensive

▶ ontology of human anatomy in existence, initiated by

Prof. Cornelius Rosse at theUniversity ofWashington in

the 1990s.
Cross-References

▶ Protégé Ontology Editor
Founders Effect

Sabina Leonelli

ESRC Centre for Genomics in Society, University of

Exeter, Exeter, Devon, UK
Definition

Founders effect is the narrowing of experimentation to

a few well-studied organisms, usually portrayed as the

opposite of bestowing resources on comparative

research among organisms (Joergensen 2001 and

Krebs 1975).
Cross-References
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Fourier Transform Infrared
Microspectroscopy (FTIR)

Xiaohua Wu

Department of Pediatrics, Herman B Wells Center for

Pediatric Research, Indiana University School of

Medicine, Indianapolis, IN, USA
Definition

FTIR spectroscopy is a long-established and invalu-

able technique, which is based on the principle that

molecules absorb mid-IR radiation, yielding richly

structured IR absorption spectra.
Cross-References

▶ Spectroscopy and Spectromicroscopy
Frame Language

Mark A. Musen

Stanford Center for Biomedical Informatics Research,

Stanford University, Stanford, CA, USA
Definition

A knowledge representation based on prototype clas-

ses, where subclasses of each superclass specialize the

superclass in some way. Frames are like objects in

object-oriented programming. Frame classes have

slots (or properties or attributes) that take on values

when the frame is instantiated.
Cross-References

▶ Protégé Ontology Editor
Framework Region

▶ Framework Region (FR-IMGT)
Framework Region (FR-IMGT)

Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire, Institut

de Génétique Humaine UPR 1142, Université

Montpellier 2, Montpellier, France
Synonyms

Framework region; FR-IMGT
Definition

A Framework region (FR-IMGT) is a region made of

one or several beta strands, part of the framework of

a V-DOMAIN (▶Variable (V) domain), and delimited

according to the ▶ IMGT unique numbering for

V domain (Lefranc et al. 2003). There are four

FR-IMGT in a V-DOMAIN: FR1-IMGT (beta strands

A and B), FR2-IMGT (beta strands C and C0),
FR3-IMGT (beta strands C00, D, E and F), and

FR4-IMGT (beta strand G).

In a V-DOMAIN (V domain of the immunoglobu-

lins (IG) or antibodies and T cell receptors (TR)),

the first three FR-IMGT are part of the V-REGION

(encoded by a ▶ variable (V) gene), whereas the FR4-

IMGT corresponds to part of the J-REGION (encoded

by a ▶ joining (J) gene).

By comparison, in a V-LIKE-DOMAIN (V domain

of ▶ immunoglobulin superfamily (IgSF) other than

IG and TR), the nine strands that correspond to the

four FR-IMGT of a V-DOMAIN are usually encoded

by one exon of a gene.

Amino acid positions of the FR-IMGT of a

V-DOMAIN have always the same number according

to the▶ IMGTunique numbering forV domain (Lefranc

et al. 2003). This allows to define, in an▶ IMGT Collier

de Perles, the lengths of the FR-IMGT, the anchor posi-

tions that support the complementarity determining

regions (▶Complementarity Determining Region

(CDR-IMGT)) and the five conserved amino acids of a

V-DOMAIN (by comparison, four for a V-LIKE-

DOMAIN). These characteristics, based on the

▶ IMGT-ONTOLOGY concepts and managed in the

▶ IMGT® information system, are reported in Table 1.

Starting from amino acid sequences, the FR-IMGT

lengths are obtained using the IMGT/DomainGapAlign
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Framework Region (FR-IMGT), Table 1 Characteristics of the framework regions (FR-IMGT) of a V-DOMAIN

FR-IMGT Beta strands

FR-IMGT lengths of a basic

V-DOMAIN without gaps Anchors and conserved amino acidsa

FR1-IMGT A, B 26 1st-CYS 23

Anchor 26

FR2-IMGT C, C0 17 Anchor 39

CONSERVED-TRP 41

Anchor 55

FR3-IMGT C00, D, E, F 39 Anchor 66

Conserved hydrophobic amino acid 89

2nd-CYS 104 (Anchor 104)

FR4-IMGT G 11 Anchor 118 (J-TRP or J-PHE in V-DOMAIN)a

Total 93

aBy comparison, the amino acid at position 118 is not conserved in a V-LIKE-DOMAIN. Otherwise, the anchors and conserved

amino acids are identical between a V-DOMAIN and a V-LIKE-DOMAIN (▶Variable (V) Domain).
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tool that compares the V-DOMAIN with the closest

germline V and J genes (http://www.imgt.org) (Lefranc

2009; Ehrenmann et al. 2010). The lengths of the indi-

vidual beta strands (for both V-DOMAIN and V-LIKE-

DOMAIN) are provided with amino acid changes

according to the IMGT physicochemical classes

(Pommié et al. 2004).

The lengths of the four FR-IMGT of a V-DOMAIN

are shown between brackets and separated with dots.

For a basic V-DOMAIN without gaps, the lengths of

the FR-IMGT are [26.17.39.11] with a total of 93

positions in the ▶ IMGT Collier de Perles. For

a human VH (V-DOMAIN of an IG-Heavy chain),

the FR-IMGT lengths are [25.17.38.11] with a total

of 91 amino acids, whereas for a human VL

(V-DOMAIN of an IG-Light chain), the FR-IMGT

lengths are [26.17.36.10] with a total of 89

amino acids.
Cross-References

▶Complementarity Determining Region

(CDR-IMGT)

▶ IMGT Collier de Perles

▶ IMGT Unique Numbering

▶ IMGT® Information System

▶ IMGT-ONTOLOGY

▶ Immunoglobulin Superfamily (IgSF)

▶ Joining (J) Gene

▶Variable (V) Domain

▶Variable (V) Gene
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Frequency

Tianshou Zhou

School of Mathematics and Computational Sciences,

Sun Yet-Sen University, Guangzhou, Guangdong,

China

Definition

For cyclical processes, such as rotation, oscillations, or

waves, frequency is defined as a number of cycles per

unit time. In physics and engineering disciplines, such

as optics, acoustics, and radio, frequency is usually

denoted by a Latin letter f or by a Greek letter n (nu).
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In SI units, the unit of frequency is the hertz (Hz),

named after the German physicist Heinrich Hertz. 1 Hz

means that an event repeats once per second.

A previous name for this unit was cycles per second.

A traditional unit of measure used with rotating

mechanical devices is revolutions per minute, abbre-

viated RPM. 60 RPM equals 1 Hz. The period, usually

denoted by T, is the length of time taken by one cycle,

and is the reciprocal of the frequency f:

T ¼ 1

f

The SI unit for period is the second.

Calculating the frequency of a repeating event is

accomplished by counting the number of times that

event occurs within a specific time period, then dividing

the count by the length of the time period. For example,

if 71 events occur within 15 s the frequency is:

f ¼ 71

15 s
� 4:7ðHzÞ

If the number of counts is not very large, it is

more accurate to measure the time interval for

a predetermined number of occurrences, rather than

the number of occurrences within a specified time. The

lattermethod introduces a random error into the count of

between 0 and 1, so on average half a count. This is

called gating error and causes an average error in the

calculated frequency of Df ¼ 1/(2 Tm), or a fractional

error of Df / f ¼ 1/(2 f Tm), where Tm is the timing

interval and f is the measured frequency. This error

decreases with frequency, so it is a problem at low

frequencies where the number of counts N is small.
Frequent Pattern Mining

Jesús Aguilar-Ruiz1, Domingo Rodrı́guez -Baena1 and

Ronnie Alves2

1School of Engineering, Pablo de Olavide University,

Escuela Politécnica Superior, Seville, Spain
2Instituto de Informática, Universidade Federal do Rio

Grande do Sul, Porto Alegre, Brazil
Definition

Frequent Pattern Mining is a ▶Data Mining subject

with the objective of extracting frequent itemsets from
a database. Frequent itemsets play an essential role in

many ▶Data Mining tasks and are related to interesting

patterns in data, such as ▶Association Rules. Some

concepts are necessary in order to understand this

definition:

1. Transaction: Let X ¼ {x1, x2, . . ., xm} be a set of m
elements called items and let T ¼ {t1, t2, . . ., tn} be

a set of n subsets of items called transactions. Each

transaction in T identifies a subset of items.

2. Frequent itemset: Given a set of itemsX¼ {x1, x2,. . .,

xm} and a set of transactions T ¼ {t1, t2, . . ., tn},

a subset of X, S, is called a frequent itemset if S
occurs in a percentage of all transactions in T that

exceeds a threshold, named support.

3. Support: The support of an itemset Y, support (Y),

is defined as the number of transactions in T which

contain the itemset Y.

What exactly constitutes an item or a transaction

depends on the application and on the type of infor-

mation to be extracted. In a ▶Gene Association

Analysis context, the meaning of transaction is usu-

ally associated with “Over-expression,” that is, only

those “Over-expressed” genes will be understood to

be included in the transaction. Equivalently, the

term frequent itemset is related to frequent subset

of genes.

Frequent Pattern Mining (FPM) techniques provide

methods to extract automatically all the frequent

itemsets from a dataset, being an extremely costly

task (Alves et al. 2010). In▶Microarray data analysis,

the specific ▶Gene Expression dataset structure

(thousands of genes against only hundreds of exper-

imental conditions) increases the frequent itemsets

mining process complexity. Due to this fact, devel-

oping efficient FPM techniques to be applied to

▶Genomic studies has been an important challenge

during the last years.

Next, in order to provide a better understanding of

Frequent Pattern Mining methods, a simple APRIORI

(see the review paper of Han et al. 2007 for further

information) example is illustrated in Fig. 1.

Let M be a discretized matrix, where 1 and 0 mean

“Over-expressed” and “Under-expressed,” respec-

tively. Table T represents the transactions and their

items. The APRIORI algorithm generates, iteratively,

candidate itemsets. In every iteration, the support of

every candidate itemset is calculated, eliminating

those itemsets with a support value under a threshold

(set to 2/4 in this example). Based on the idea that an

http://dx.doi.org/10.1007/978-1-4419-9863-7_599
http://dx.doi.org/10.1007/978-1-4419-9863-7_599
http://dx.doi.org/10.1007/978-1-4419-9863-7_838
http://dx.doi.org/10.1007/978-1-4419-9863-7_225
http://dx.doi.org/10.1007/978-1-4419-9863-7_225
http://dx.doi.org/10.1007/978-1-4419-9863-7_100869
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
http://dx.doi.org/10.1007/978-1-4419-9863-7_100574
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Frequent Pattern Mining, Fig. 1 Example of the Apriori algorithm with support set to 2/4, that is, every itemset, to be considered

as a valid candidate, has to appear in at least two of the four transactions
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itemset is candidate if all its subsets are known to be

frequent, the resulting itemsets are combined to create

new candidate itemsets. The algorithm ends when no

new candidate group can be generated. In Fig. 1 , after

three iterations the final frequent itemset is composed

of the genes g2, g3, and g5.
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Synonyms

Frequentist inference
Characteristics

In statistics, the goal is to make inference about

parameters of the population. In frequentist infer-

ence, the parameters are constant, unknown values

and data are viewed as repeatable random samples

from the distribution. The parameters are estimated

using point estimates and confidence intervals. Both

point and interval estimators vary from sample to

sample.

The point estimator is chosen with respect to its

properties including unbiasedness, consistency, and

efficiency. The unbiased estimator has its expecta-

tion equal to the population parameter, the consis-

tent estimator converges in probability to the

parameter value, and the relative efficiency of two

estimators is defined by the ratio of their mean

squared errors.

For example, consider data sampled from the

univariate normal distribution with mean m and

variance s2. The sample mean, the sample median,

and the midrange of a sample are the examples

of a point estimator of the mean m. All three estimators

are consistent and converge to the true population

mean as the sample size increases, but it is the sample

mean that is efficient.

In the above example, the sample mean has

desirable theoretical properties. A single number,

however, gives little information as to how close

http://dx.doi.org/10.1007/978-1-4419-9863-7_100518
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the estimated mean is to the true mean.

A confidence interval gives an interval estimate

of the population parameter. The length of the

confidence interval indicates how well sample

statistic estimates the population parameter.

Confidence intervals are constructed at a certain

confidence level (1 � a), where a is the type

I error rate, i.e., the probability of rejecting

null when it is true. The 95% confidence interval

means that if one repeatedly samples data from

the population, 95% of the corresponding

confidence intervals would contain the true popu-

lation parameter.

In the frequentist approach, the hypothesis test-

ing about the parameters uses the distribution of

the test statistics under the null hypothesis. When

the exact distribution is not available, the hypoth-

esis testing relies on large-sample theory to con-

struct the approximate null distribution. Using the

sampling distribution of the test statistic, the p-

value is computed as the probability of observing

a statistic as or more extreme than the given one.

The decision is guided by comparing the p-value

to the selected significance level a. The p-value

should not be overinterpreted but rather it should

be considered with respect to a given study

design, sample size, and wider knowledge of the

subject.
Frequentist Hypothesis Testing

▶Hypothesis Testing
Frequentist Inference

▶ Frequentist Approach
FR-IMGT

▶ Framework Region (FR-IMGT)
FuGE

Peter Wilkinson1 and Andrew R. Jones2

1Vaccine and Gene Therapy Institute, Port St. Lucie,

FL, USA
2Institute of Integrative Biology, University of

Liverpool, Liverpool, UK
Synonyms

FuGE-OM; Functional genomics experiment model
Definition

The Functional Genomics Experiment (FuGE) model is

a set of computational resources, designed to facilitate

rapid prototyping of new data exchange formats and

corresponding relational database schemas for the life

sciences. It comprises a Unified Modeling Language

(UML) object model with software for automatically

generating different implementations, including an

XML Schema (XSD) for the exchange standard,

a relational database schema, and a programming layer

in Java to interface between the XSD and the database.

Bioinformatics groups can develop extensions of FuGE

through two modes – either by extending the object

model in free graphical editing software, or by working

directly with a cut-down version of the XSD (FuGE-

light), to create new models for the biological domain

of interest. FuGE is particularly useful for “omics” inves-

tigations and systems biology, where numerous hetero-

geneous data types may describe the biological system.

The use of FuGE ensures that different data models have

the same underlying core, allowing rapid development of

new models and supporting software, and facilitating the

integration of the resulting data.
Characteristics

FuGE Overview

The core resource in the FuGE project is an object model,

comprising 10 packages (Fig. 1), each of which pertains

to a particular type of data or metadata that is generically

required for digitally representing any type of life sci-

ences experiment (Jones et al. 2007). An example is the

http://dx.doi.org/10.1007/978-1-4419-9863-7_1181
http://dx.doi.org/10.1007/978-1-4419-9863-7_1180
http://dx.doi.org/10.1007/978-1-4419-9863-7_262
http://dx.doi.org/10.1007/978-1-4419-9863-7_100520
http://dx.doi.org/10.1007/978-1-4419-9863-7_100525


FuGE

Common

Bio

Measurement

Audit

Ontology

Protocol

Reference

Investigation

Data

Material

Conceptual
Molecule

Description

Contacts, auditing and security settings for all objects.

Additional annotations and free-text descriptions for all objects.

Classes for providing measurements within FuGE, including slots for 
the measurement value, the unit and the data type.

A mechanism for referencing external ontologies
or terms from a controlled vocabulary.

A model of procedures, software, hardware and parameters. The 
package can define workflows by relating input and output materials 
and/or data to the protocols that act on them.

External bibliographic or database references that can 
be applied to many objects across the FuGE model.

Models material types such as organisms, samples or solutions, 
characterized by ontology terms or by extension of the package.

Defines the dimensions of data and storage matrices, 
or references to external data formats.

Captures database entries of biological molecules such as DNA, RNA or 
proteins and an extension point for other types, such as metabolites.

An overview of the investigation, capturing the overall design, the 
experimental variables and the associations to related data.

FuGE, Fig. 1 An overview of the FuGE package structure
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Protocol package (Fig. 2), which contains a set of UML

classes and diagrams showing the relationships between

objects. The key components in the Protocol package are

theProtocol class – a description of what should be done,
for example, a standard operating procedure – and the

ProtocolApplication class – a description of what was

done, that is, with any runtime parameter values differing

from the defaults defined in the Protocol. Similarly, the

Data package contains structures for capturing data

values in regular multidimensional matrices or as exter-

nal files. ProtocolApplication is used to map between the

input and output data (or biological samples) used at each

stage of an experimental or data analysis pipeline, and

thus can track the full audit trail for how the final results

were generated through each stage in the process.

FuGE for Data Format Development

One of the primary uses of FuGE is to develop new data

exchange formats or standards (Jones et al. 2009).

A user interacts with the FuGE model with a UML

editing tool or an XSD editing tool if working in the

FuGE-light mode. Extensions are built to capture the

data types specific to the experimental or analysis
method. For example, extensions built for proteomics

capture the essential parameters of protein separation

techniques (Gibson et al. 2010) as defined by the

associated minimum reporting guidelines documents –

MIAPE (Taylor et al. 2007). In this way, the format

developer does not have to recreate all the models for

the basic core; FuGE provides all the elements for

handling protocols, data files, samples, and ontologies.

New data models can be developed quickly, and the

associated project software can be used to create

a relational database or format an editing software auto-

matically (Belhajjame et al. 2008; Swertz et al. 2010).

Systems biology investigations typically use a range

of experimental approaches to understand cellular

processes. In the absence of using an extensible model,

developing a new data format or exchange standard can

be a challenging process, and resulting models for differ-

ent domains tend to represent similar concepts (such as

protocols and parameters) using different terminologies

and different levels of detail, thus making data integra-

tion more difficult. Furthermore, some models do

not allow for audit trails to capture all the processes

that have been applied to the sample or data file.
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Adoption of the FuGE methodology for model develop-

ment should encourage developers to capture this level

detail where appropriate, which will help with unambig-

uous interpretation of the results by the diverse commu-

nity of potential consumers of the data.

FuGE for Database Development

Another use of FuGE is to develop an SQL

or object-based database schema for data storage. Data-

base systems are designed to meet specific project

requirements and are generally purpose built for opti-

mized query execution or data entry. Fundamentally,

the datamodel is themost critical aspect of system design

and function, and the model should reflect “real world”

objects and their relationships to ensure durability that

can outlast any application, many of which are not

known when the system is first put into production.

These assertions are important in addressing the needs

of systems biology investigations because investigations

are large, lengthy, multi-institutional, and often need to

be integrated with one another, and, as such, require

long-term data persistence, protocol management, and

data exchange. FuGE is a “real world” model of

functional genomics experiments and can thus be

used as a reference to derive a suitable database persis-

tence layer. SyMBA (http://symba.sourceforge.net/), for

example, provides a persistence layer directly based on

the FuGEXMLSchema. FuGE can also be used to create

an efficient, relatively generic, SQL-based schema that

can be queried based on description or ontology types as

consistent with the FuGE model, as described at the

project website (http://fuge.sourceforge.net/).

FuGE for Pipeline Management

Systems Biology experiments also provide another

challenge in terms of analysis execution. Using ad hoc

analysis, similar challenges to data persistence emerge

that include a reduced ability to audit and manage large

amounts of data and reporting. The FuGE Protocol
Package provides a suitable model to describe in silico

protocols and applications of protocols. For example, it

is straightforward to describe an analysis workflow as

a pipeline by using the ProtocolApplication to describe

the sequence of steps with their respective parameter

values, inputs, and outputs. Furthermore, the results of

such a workflow can be moved to a persistence layer,

and exchanged later on.

The FuGEmodel is a real world description of omics

experiments that also provides a means for tractable
management of high-throughput systems biology

investigations. FuGE captures the necessary object

abstractions that can be implemented across three layers

of data management: (1) data persistence, (2) in silico

and bench protocolmanagement, and (3) data exchange.
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Function, Biological

Arno Wouters
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Definition

The activity, role, value or purpose of a part, activity,

or trait of an organism.
Characteristics

Terms like “function,” “functions,” and “functional”

are used in many different ways. The 2005 edition of

theNewOxford American Dictionary gives the follow-

ing as the first meaning of “function”: “an activity or

purpose natural to or intended for a person or thing”

with “Vitamin A is required for good eye function” as

an example. This definition is suitable as a general

characterization of the term “function” and at the

same time it contains the seeds of many confusions

about the notion of biological function, especially

because it talks about “activity or purpose”

and”natural to or intended for.”

The idea that biological function is somehow

related to purposes and the idea that there can be

natural purposes in addition to intended ones has

been a source of inspiration for philosophical discus-

sion. In the 1950s and 1960s, philosophers of science,

of a logical positivist inclination, searched for ways to

define the notion of biological function without appeal

to purpose. Since the 1980s, many philosophers

think that evolutionary theory provides us with

a notion of natural purpose that can be used to develop

a naturalized account of purposes, norms, and meaning

in the philosophy of mind and language. According to

these “etiological theories,” it is the natural purpose

and, for that matter, the “proper function” of a trait of
an organism to produce the effects for which that trait

was maintained in the process of natural selection in

the (possibly recent) past of that organism’s population

(Wright 1976; Millikan 1989; Neander 1991). In the

philosophical debate that emerged in reaction to these

theories, many different understandings of function

and functional explanations have been developed (see

Wouters [2005] and Garson [2008] for overviews).

In biology, the connotation of “function” is usually

not purpose but activity, in a broad sense of that term,

including “what it does,” “how it works,” and “how it

is used.” For example, “functional morphology” is

typically defined as the study of the form of organisms

and their parts in relation to their activity and use. The

many articles yielded by a Google Scholar search on

“structure and function” typically discuss both the way

in which a part of an organism is built (its structure)

and the way it works (its function). Within this broad

sense of function as activity, two uses of the term

function can be distinguished: function as activity in

a stricter sense (what it does and how it works) and

function as biological role (how it is used).

“Function as activity” refers to what a system does

by itself (in abstraction of its effects on its environ-

ment) and the way it works – internally (e.g., the way

in which the activity is generated) or externally (e.g.,

the order of its changes). The notion of function as

what it does is typically used to distinguish form

(or structural) characteristics from functional charac-

teristics. The form characteristics of a system concern

its appearance (shape, volume, color, pattern, texture,

etc.), structure (composition, size, and spatial arrange-

ment of the parts, e.g., amino acid sequences), and

statics (hardness, weight, mass, etc.); the functional

characteristics of a system concern its activity

(frequency, order, velocity, momentum, reaction rates,

oxygen consumption, kinetic energy, etc.). For example,

talk of “functional homology” might refer to a common

pattern in muscle movement, whereas talk of “structural

homology” might refer to a common pattern in the

spatial arrangement of the muscles. The notion of func-

tion as how it works is typically used to make compar-

isons. For example, when it is said that the heart’s

ventricle functions as a pressure pump and the atrium

as a suction pump, one compares the way in which these

two systems work.

The notion of function as biological role refers to

the role of a system in enabling life. In general, role

functions concern the role of a system or activity in

http://dx.doi.org/10.1007/978-1-4419-9863-7_665
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bringing about an organized characteristic of an

encompassing system (a role function of a brake is to

enable the driver to stop the car because stopping the

car is how the brake contributes to the car’s organized

ability to transport people). The biological role of

a part of an organism is the role of that part in bringing

about the organism’s state of being alive. For example,

the main biological role of the glycolysis is the

production of ATP because that is how the glycolysis

contributes to an organism’s ability to stay alive. Note

that role functions are positions in an organization

rather than measurable properties.

Ascriptions of biological roles are the handle to

understand life. Just as it is possible to explain how

a company works by means of an organization chart

that outlines the tasks of the different functionaries and

departments and the way in which they interact, the

ability of an organism to stay alive can be explained by

outlining the roles the different organ systems play in

bringing about the living state. The ability of each

organ system to perform its biological role, in turn,

can be explained by describing the roles the different

parts of that system play in bringing about that ability,

and so on, until a level is reached at which the relevant

subsystems can be explained in terms of the physical

and chemical characteristics of the molecules that

make up that subsystem (cf. Cummins 1975). Such an

organization chart provides a unifying framework

for biology that relates detailed studies of specific

mechanisms at different levels to the general aim of

understanding life.

Yet, another use of the term “function” stems from

behavioral biology. In this area of study, “function”

often refers to the advantages of behaving in one way

rather than another. More generally, the notion of

function as biological advantage (also called “survival
value,” “adaptive value,” or “biological value”) is used

to refer to the way in which a certain trait influences the

life chances of an organism in a certain environment as

compared to other traits that might replace it. An

advantage of a trait in a certain environment is an

ability resulting from that trait due to which the life

chances of organisms with that trait are higher than the

life chances would be of organisms in which that trait

were replaced by another one (Canfield 1964; Bigelow

and Pargetter 1987).

Advantage articulations compare organisms with

a certain trait with similar organisms in which that

trait is replaced by another one (or removed).
The hypothetical organisms with which the real organ-

isms are compared need not be real. Quite often,

a comparison is made between a real organism and

a hypothetical organism that cannot possibly exist and

the point of the comparison is precisely that: to show that

it cannot exist (because it lacks an essential ability).

Advantages differ from role functions in many ways.

Advantages are abilities to solve certain problems, not

positions in an organization. Advantages are, unlike role

functions, relative to an environment and to the traits

used for comparison. In addition, role functions are typ-

ically attributed to parts or activities,whereas advantages

are effects of traits (i.e., of the properties of systems or

activities, including the presence of certain items or the

performance of certain activities). It is, for example, the

biological role of the heart (a part of an organism) to

pump the blood around, whereas pumping blood by

means of a heart (a trait) is advantageous relative to

pumping blood by means of beating blood vessels (the

trait for comparison) in environments with certain types

of prey and predators because this allows for faster

oxygen transport (an ability resulting from the presence

of a heart), which allows the organism to be more active

and, hence, to escape from predators or to catch prey

in situations where an organism with beating blood ves-

sels would not be able to do so (more distal abilities

resulting from that trait).

Functional biology can be defined as the study of

how living systems (organisms) and their parts work.

Functional biologists are concerned with two kinds of

explanations that deal with synchronic relations

between the different parts and activities of organisms

and the environment in which they live: mechanistic

explanations (also called “causal explanations”) and

functional explanations (also called “ecological expla-

nations” or “design explanations”). The ascription of

role functions is central to explanations of both kinds

(see ▶Explanation in Biology).

Mechanistic explanations address questions about

how a certain biological role is performed (e.g., “how

does the glycolysis generate ATP?”), by describing

a mechanism that produces the behavior that enables

that system to perform this role. Because of their

concern with biological roles, mechanistic explana-

tions in biology are sometimes called “functional

explanations” or “functional analyses” (especially by

philosophers) (Cummins 1975). This kind of explana-

tion is discussed in the entry on mechanistic

explanation.

http://dx.doi.org/10.1007/978-1-4419-9863-7_61
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Functional explanations address questions about why

a biological role is performed theway it is (e.g., “why do

many pathways that generate ATP start by activating

their substrate?”) by pointing to the advantages of

performing the role in that way rather than in some

conceivable alternative way (Wouters 2007). This kind

of explanation is often called “functional explanation”

(especially by biologists) because it is concerned with

the advantages of certain forms of organization rather

than with the question of how those forms are brought

about. It is discussed in the entry on functional explana-

tion (▶Explanation, Functional).

Biological roles also play an important role in certain

explanations in evolutionary biology (the study of

the history and dynamics of lineages of organisms),

especially in adaptation explanations. Adaptation expla-

nations (also called “selection explanations”) are evolu-

tionary explanations that explain certain characteristics

of a population as the result of past interaction in that

population between variants that differed in their fitness.

If a certain trait evolved because the fitness of past

variants having that trait was higher than that of their

competitors lacking that trait because the presence of that

trait improved the performance of a certain role function,

one might say that the trait evolved as an adaptation for

performing that role function. For this reason, adaptation

explanations are sometimes called “functional explana-

tions” (especially by philosophers) (Brandon 1990). This

kind of explanation is discussed in the entry on evolu-

tionary explanation (▶Explanation, Evolutionary).
Cross-References
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Function, Distributed

Jonathan F. Davies

Fondazione Bruno Kessler, Trento, Italy
Synonyms

Delocalized; Function
Definition

A distributed function is a feature of mechanistic

explanations of some of the properties of complex

systems (▶Complex System). It is a component

causal-role ▶ function that cannot be localized onto

a readily identified component structure. A function

may be distributed across multiple nonlinearly

interacting elements or processes, across the whole sys-

tem or even transcend systemic boundaries.
Characteristics

Central strategies in the mechanistic explanation of the

properties and behaviors of biological systems are

decomposition and functional localization. Decomposi-

tion depends on the assumption that the behavior of

a system is a product of a set of subordinate functions,

and that the interactions between the functional ele-

ments are minimal and can be handled additively

(Bechtel and Richardson 2010). Functional localization

is achieved when a structural decomposition of the

system – in simple cases achieved through observation,

and in more complex cases by the identification, of

regions of maximal causal interaction, bounded with
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regions of low interactivity (see ▶Top-down Decom-

position of Biological Networks) – yields identifiable

components that are held to be responsible for these

functions (▶Functional Modules and Complexes).

The full explanation is achieved by the localization of

a complete set of bottom-level component functions

(activities) in particular structures (entities) possessing

the requisite characteristics or capacities that enable

them to be the bearer of these functions (Machamer

et al. 2000). Although it is not necessary to assume that

a single component (in the sense of an individual, spa-

tially localized entity or structure identified as

a component of the system) is responsible for a specific

activity, this assumption is often made, if only as a first

approximation. Even in caseswhere components interact

(a feature of what Herbert Simon (1996) called near-

decomposable systems), the primary explanatory burden

rests on the intrinsic (context-independent) properties of

the components. Interactions are usually modeled in

a linear, additive fashion and organizational factors are

relegated to a secondary role, as constraints.

A well-known example of this explanatory strategy

in molecular biology is Jacob and Monod’s (1961)

operon model of ▶ gene regulation. They posited regu-

latory genetic elements as a solution to the problem of

accounting for changes in gene expression. The details

of this model include the functionally defined▶ repres-

sor. This consists of a protein that exhibits certain struc-

tural features allowing it to bind to the operator and so

prevent the expression of the structural genes. The shape

and molecular constitution of the regulatory protein

ensures that it is able to perform the bottom-level activ-

ities (in this case, geometrical/mechanical and chemical

bonding) that constitute an instance of gene regulation.

Other component functions (structural genes, ▶Pro-

moter, operator, etc.) are performed by identified struc-

tures each constituted in such a way as to make their

individual contribution to the behavior of the system

intelligible. The adequacy of the explanation is a result

of the gross systemic behavior being the sum of the

linear sequence of sub-tasks (functions), which in turn

are the sum of their component sub-tasks until we reach

the lowest level of entities and activities of concern to

the field (Machamer et al. 2000).

Standard strategies for the development of this kind

of mechanistic explanation often involve the intuitive

parsing of the systemic behavior into component func-

tions giving rise to a plausible ▶mechanism sketch or

schema (Craver 2007). Competing schemas are then
tested, for example, through the use of targeted ▶ per-

turbation experiments. Successful explanations are

achieved when functional decompositions map onto

structural decompositions. Problems arise, however,

when this mapping is not achieved or when the pertur-

bation of components yields counterintuitive results.

Some features of biological systems do not appear to

be analyzable into functionally discrete components and

the functionally relevant properties of many compo-

nents are context sensitive to some degree. Bechtel and

Richardson (2010) identify systems in which the struc-

tural components seem to perform tasks that would not

appear in an intuitively plausible functional decomposi-

tion of the system. This makes the localization of com-

ponent functions onto identified discrete structures

impossible and has given rise to the suggestion that the

emergent behavior of the system is inexplicable in

mechanistic terms (▶Emergence).

Kauffman’s (1993) explanation of the stability of

▶ gene regulatory networks on the basis of their con-

nectivity is an extreme example of an explanation of

a systemic feature that does not make use of functional

localization. His network model consists of simple

nodes, each node being in one of two states (on, off).

The interactions between the nodes are simple activa-

tion or repression, so making transitions between suc-

cessive states of the network Boolean operations

(▶Boolean Networks). Kauffman argues that networks

of this sort exhibit behavior that encounters stable cycles

(▶Stability) even in the face of perturbations and that

a gene network characterized by a similar architecture

will be robust. The explanatory properties for the

▶ robustness of the network are distributed across

the entire system and the intuitively satisfying parsing

of the systemic behavior into functionally discrete

components is not possible. Any explanatory properties

of individual nodes are dependent on their relations to

other nodes rather than on their intrinsic properties; for

example, a▶ hub is a hub in virtue of its high number of

connections and if it is functionally significant, it is so

because of these connections.

A less radical example of a process of the distribution

of a functional component of a biological system is the

notion of a eukaryotic gene. Genes are made up of

non-contiguous exons (▶Exon) interspersed with non-

coding introns (▶ Intron), which, to complicate matters

further, are utilized in differing ways in different devel-

opmental processes. The localization of the functional

unit (“gene”) onto a discrete molecular structure
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(i.e., a contiguous section of DNA) does not appear to be

possible. This, and further complications with regard to

the physiological roles of the gene products, has led

Moss (2003) to argue that the functional unit (called

“gene-P” to signify its connection to phenotype) cannot

be mapped onto any recognizable molecular structure

(called “gene-D” to signify status as a developmental

resource). The phenotypic (functional) role of any par-

ticular molecular gene (gene-D) is not fixed by its intrin-

sic structural properties, but is rooted in features

distributed throughout a dynamic network of regulatory

and developmental resources. The extent of this distri-

bution will depend on the particular process and the

context in which it is taking place.

It is argued that biological systems are characterized

by a spectrum from highly localized to radically

distributed functional elements and that neither the

“reductionistic” (▶Reduction) localization of bottom-

level component functions in discrete structures nor the

“holistic” (▶Holism) representation of system dynamics

constitute adequate explanatory strategies (Krohs and

Callebaut 2007). Instead a plurality of explanatory

approaches, which depend on the nature of the subject

matter and the interests of the investigator, should be

pursued (Mitchell 2003). In systems biology, this means

dealing with hierarchically organized dynamic systems

and networks (see ▶Hierarchy and ▶Organization),

the features of which are explicable in terms of combi-

nations of network and system dynamics and the prop-

erties of components structures, sub-networks, and

pathways (Kitano 2002). Addressing such▶ complexity,

non-linearity, and heterogeneity is only possible with

huge quantities of data across the full range of omic

levels and the capacity to analyze these data in parallel.

Traditional techniques for localizing functions through,

for example, single gene knockout experiments cannot

deal with robust systems or organizational and dynamic

properties. One suggestion is to attempt simulations in

silico that integrate network and dynamical systems

models with molecular data concerning known compo-

nents (Kitano 2002). Another suggestion, which relates

directly to the problems of explaining systems

containing distributed functional components, is to

focus on the “unbiased” structural decomposition of the

system. Making use of quantitative methods for delin-

eating network modules, through the identification of

local maxima of interaction, avoids the need for the

intuitive decomposition of the system into functional

components (Krohs and Callebaut 2007). The secondary
ascription of functional roles to individual modules,

combinations of modules, and other network features

(e.g., connectivity, small world architecture; see

▶Small-World Property and ▶Functional Modules

and Complexes) can then be attempted by coordinated

perturbation experiments, conducted in vitro or in silico

(or even in vivo) on the basis of molecular data and

theoretical work.

The assumption underlying thesemethodological sug-

gestions is that functionality in biological systems is not

always readily localizable onto discrete structural com-

ponents. An individual function (which is defined in

relation to the concerns of the investigator) may be

located onto a single molecular component, a discrete

structure, a networkmodule or complex, a chemical path-

way, a dynamic process, an architectural feature of the

whole system or may even interfere in the interaction

between the system and its environment. One of the

novel features of systems biology is thought to be that it

facilitates the empirical investigation into the extent of

distribution of any particular function in cases in which

our intuitions and mental capacities let us down. Even

in cases inwhich the function bearer is a dynamic process

(so involving multiple structural components over

a period of time), it may be possible to construct

a simulation that accounts for its role in the overall system

and ascertain to what extent it is spatiotemporally distrib-

uted. It remains to be seen to what extent the computa-

tional and theoretical tools available to systems biologists

will overcome the obstacles to achieving such ambitious

aims. However, the developments in the capacity of

systems biologists to account for the behaviors of com-

plex biological systems are already throwing new light on

the roles of decomposition and functional localization

and encouraging philosophers of science to think again

about the limits of mechanistic explanatory strategies.
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Marie-Paule Lefranc
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Montpellier 2, Montpellier, France
Definition

“Functional” is a ▶ leafconcept of the “▶Functiona-
lityType” concept of identification (generated from
the ▶ IDENTIFICATION Axiom) of ▶ IMGT-

ONTOLOGY, the global reference in ▶ immunogenet-

ics and ▶ immunoinformatics (Giudicelli and Lefranc

1999; Lefranc et al. 2004, 2005, 2008; Duroux

et al. 2008), built by IMGT®, the international ImMu-

noGeneTics information system® (http://www.imgt.

org) (▶ IMGT® Information System). “Functional”

identifies, whatever themolecule type (▶MoleculeType),

the functionality of▶Molecule_EntityType leafconcepts

in undefined or germline configuration (▶Configuration

Type), whose coding region has an open reading frame

without stop codon and for which there is no described

defect in the splicing sites, recombination signals

(▶Recombination Signal (RS)) and/or regulatory

elements.

“Functional” is one of the three leafconcepts (the

other two being “▶ORF” and “▶Pseudogene”) that

identify the functionality of Molecule_EntityType

leafconcepts in undefined configuration (▶Configura-

tion Type) conventional genes (▶Conventional Gene)

and immunoglobulin (IG) and T cell receptor (TR) con-

stant (C) genes (▶Constant (C) Gene), or in germline

configuration (▶Configuration Type) (IG and TR vari-

able (V), diversity (D), and joining (J) (▶Variable (V)

Gene, ▶Diversity (D) Gene, ▶ Joining (J) Gene) genes

before DNA rearrangements) (Giudicelli and Lefranc

1999; Lefranc et al. 2004; Duroux et al. 2008).
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Functional Differential Equations

▶Dynamical Systems Theory, Delay Differential

Equations
Functional Enrichment Analysis

Jiguang Wang

Beijing Institute of Genomics, Chinese Academy of

Sciences, Beijing, Beijing, China
Definition

For a given cluster of biological elements such as gene,

functional enrichment analysis is to compare the

enrichment of any type of biologically relevant labels

such as gene ontology terms in these genes to that in

the background. Hypergeometric distribution or bino-

mial distribution is usually applied to give the p-value

for whether the enrichment is significantly different in

the given gene cluster and in the background. So

the choice of background and the cutoff value are

important for the reporting result. There have been

several available tools for application, e.g., FatiGO

(Al-Shahrour et al. 2004), g:profiler (Reimand et al.

2007), etc.
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Functional Genomics Experiment Model

▶ FuGE
Functional GO and Pathway-Based
Network

▶ Functional/Signature Network Module for Target

Pathway/Gene Discovery
Functional Interaction Network

▶Organelle and Functional Module Resources
Functional Model

▶ Process-based Model
Functional Modules and Complexes

Xianwen Ren

Key Laboratory of Systems Biology of Pathogens,

Ministry of Health, Institute of Pathogen Biology,

Chinese Academy of Medical Sciences and Peking

Union Medical College, Beijing, China

Definition

Proteins act in concert in cells. Some form complexes

in which member proteins bind to each other stably to
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act as a whole functional unit, e.g., ribosomes.

Complexes are expected to be predicted from protein-

protein interaction networks through identifying

functional modules.

Functional module refers to a set of proteins that are

densely connected within themselves but sparsely

connected with the rest in the biological molecular

network.
F

Cross-References

▶ Pathway, Functional Units
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Functional/Signature Network Module
for Target Pathway/Gene Discovery

Shipra Agrawal1 and M. R. Satyanarayana Rao2

1BioCOS Life Sciences Pvt. Limited, Institute of

Bioinformatics and Applied Biotechnology,

Bangalore, Karnataka, India
2Chromatin Biology Laboratory, Molecular Biology

and Genetics Unit, Jawaharlal Nehru Center for

Advanced Research, Bangalore, Karnataka, India
Synonyms

Co-expression network; Expression signature; Func-

tional GO and pathway-based network; Genomics

network
Definition

High-throughput molecular biology data is often

analyzed and represented today through molecular

networks. The network of interacting proteins/genes

is an undirected network, where proteins/genes
are represented by nodes and the interaction

between them are represented by edges. The multi-

ple nodes and corresponding edges in a network

together form modules/subnetworks that manifest

high internal similarity/correlation (i.e., modular

networks). These modules form an independent

connected component with each other, while they

are sparsely connected with the rest of the network

(Erten et al. 2009). The network modules carrying

biologically meaningful information are termed as

functional modules. A general concept on identify-

ing signature and functional module is described

below.
Characteristics

Identification of Signature and Functional

Network Modules

Modular networks are analyzed to identify signa-

ture/function network modules from larger molecu-

lar networks. It involves topological analysis of the

networks to find the maximally scoring regions in

the network, followed by mapping the results to the

true function categories like those present in the

protein function annotation databases, e.g., the

Gene Ontology (GO) and pathway databases. Net-

work topology is the layout pattern of interconnec-

tions of the various elements like nodes and edges.

The functional annotation of signature modules is

based on their gene/protein enrichment analysis

from GO and pathway database. The gene or protein

enrichment analysis of networks is carried out by

mapping network genes to known pathways and

gene ontology terms to determine which pathways/

GO terms are overrepresented in a given set of

genes.

Functional modules are significantly enriched

in known target genes and can be used as fingerprints

to identify genes relevant to some specific biological

functions or diseases or to discover new potential

drug targets (Wong et al. 2008). The system level expres-

sion network is processed to identify upregulated/

downregulated signature and functional expression

network modules. For example, identification of

downregulated synaptic vesicle module for brain disor-

ders that includes Alzheimer’s disease, bipolar disorder,

Schizophrenia, and glioblastoma (Suthram et al. 2010)

(refer Expression Network Module Box for details).
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Expression Network Modules

Expression modules consist of clusters of genes

whose expression profiles share a local similarity

or coordinate expression. The local similarity/

co-expression across genes is measured using

statistical correlation parameters, i.e., Pearson’s

Correlation Coefficient. The genes with very

high co-expression levels constitute a cluster/

module, which usually indicates that they have

a common biological function or share

a common physiological condition. The condi-

tion-specific co-expression information provides

clues to the dynamic features of these network

modules. For example, dilated cardiomyopathy,

which is a leading cause of heart failure, has been

well studied using expression network modules.

These networks have facilitated identification of

putative biomarkers or therapeutic targets for

heart failure and the underlying molecular

mechanism of dilated cardiomyopathy (Lin

et al. 2010)

The modular structure of complex biological

networks also facilitates identification of biologi-

cally relevant gene hubs, bottleneck nodes, network

motifs, and biomarker nodes, which are described

below.

1. Gene Hubs

In a molecular network, nodes (gene/protein)

which are highly connected to other nodes are

called gene hubs/network hubs. The gene hubs

have a high degree of connectivity with their

neighboring genes. The latest method for scoring

a functional hub is based on the role the nodes

play in providing connectivity among genes or

proteins of interest relative to their role in the

global network. They are centrally important for

the cellular functions and tend to be essential and

conserved in a network module. In the context of

disease pathways, hubs may represent potential

drug targets (Wuchty 2004; Levy and Siegal

2008). Scientists working on common diseases

have reported several important drug targets by

identifying important functional hubs across

larger molecular networks derived from high-

throughput expression as well as protein complex

data.
2. Bottleneck Nodes

Bottleneck nodes are those, which have a higher

betweenness (i.e., “bottleneck-ness”) and lower

degree of connectivity with neighboring

genes/proteins. Betweenness is one of the most

important topological properties of a network. It

measures the number of shortest paths (the shortest

distance between two nodes) between nodes going

through a certain node. Therefore, nodes with the

highest betweenness control most of the informa-

tion flow in the network, representing the critical

points of the network (Fig. 1). They act as important

links between modules in protein interaction net-

works, just as bridges connecting two important

hubs/modules. Bottlenecks control the major infor-

mation flow in a network and correspond to the

dynamic components of the interaction network.

They are observed to be significantly less well

co-expressed with their neighbors. They have been

found to be present in the yeast interactome in

abundance (Yu et al. 2007).

3. Network Motifs

Network motifs are patterns of a larger and more

complex network. They are overrepresented node

connectivity patterns and recur frequently in

a given network than expected at random. They

may represent autoregulation or feed-forward

loops in a regulatory network and indicate func-

tional and evolutionary constraints in a network

(Lee et al. 2002). The transcription networks of

well-studied microorganisms are made up of

a small set of network motifs. These motifs are

also found in protein modification network and

interactions between neuronal cells and signaling

networks. The specific ways (i.e., autoregulation or

feed-forward loops) in which the network motifs

are wired together describes the dynamics of each

individual motif. These patterns exhibit a robust

dynamical stability across a complex biological

network (Fig. 1).

4. Biomarker Nodes

Biomarkers are biomolecular signatures, which are

detectable and measurable and can be used to study

the diagnosis/prognosis of disease or therapy.

Under normal conditions, they may be present at

basal levels in the cell. However, if the amount of

these molecules changes, they may indicate

response to therapies, complications or diseases.

Biomarker nodes can be identified by studying



Network Module Network Motif

Expression Module

Group of nodes forming
independent component

Group of genes performing
distinct biological functional

Group of genes whose
expression profiles share a

local similarity  

Overrepresented patterns
in a complex network

Nodes with high betweenness
centrality and low degree

Functional Module

Bottleneck Node

Functional/Signature Network Module for Target Path-
way/Gene Discovery, Fig. 1 A complex biological network

and functionally important network elements. Topological anal-

ysis of a system level biological network leads to the identifica-

tion of network modules, network motifs, and bottleneck nodes.

If the network is constructed from co- expression (expression

similarity data), its statistical analysis leads to identification of

expression module. The expression modules or network module

can be functionally annotated to have a biological function,

which is finally termed as a functional module
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gene network models having disease-associated

gene expression profiles and biofluid proteomes

(Schiess et al. 2009). A gene, which is coordinately

and consistently connected to critical disease

causal candidate genes and pathways are termed

“biomarker nodes.” A highly connected biomarker

node sometimes targets multiple related diseases;

e.g., AZGP1 gene is a biomarker node for cardiac

hypertrophy, idiopathic cardiomyopathy, and idio-

pathic thrombocytopenic purpura, (Dudley and

Butte 2009).

Mapping Pathway/Gene Target From Networks

Protein–protein interaction and transcriptional regula-

tory networks can be used to identify putative

biomarkers, target genes, target pathways, etc. The tar-

get pathways and genes are more reliably detected from

expression profiling–based perturbation experiments.
The statistically significant functional gene/protein net-

works can be further analyzed and annotated to map

biologically important pathways and gene hubs as tar-

gets. This section is focused on identification of pertur-

bation targets, target pathways/genes, using network

biology approach.

1. Perturbation Targets from Network Biology

The network biology approach can be used to com-

pare gene expression profiles of drug-treated or

diseased-cell population with those of the normal

cells. This helps in identifying the target genes and

pathways that are directly affected by the perturba-

tion experiments, e.g., genes that are deregulated in

some disease pathways or genes whose products

can be used as potential targets of some drug

(Mani et al. 2008, Karlebach and Shamir 2008).

Topologically important networks are processed

for gene ontology and pathway annotations to
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define the effect of perturbation experiment and

subsequently to identify the targets of molecular

perturbation from global expression profile data.

2. Target Pathways

Biologically significant pathways can be identified

by performing functional annotation and pathway

enrichment analysis of molecular networks. The

high-scoring and conserved pathways can be used

in disease-related studies, i.e., for understanding the

pathogenesis of disease, identifying important

deregulated metabolic and signaling networks and

subsequently discovering potential drug targets for

the disease (Fig. 2) (Zheng and Christina 2009;

Zhou and Wong 2009). Further analysis of biologi-

cally significant pathways and their cross talk across

networks leads to identification of the most critical

pathways in a complex diseasemechanism that could

also serve as potential key target pathways. For

example, human Toll-like receptor signaling net-

work has been used to establish the important control

points through pathway cross talk studies. The anal-

ysis identified potential candidates for inhibitory

mediation of TLR signaling with respect to their

specificity and potency (Li et al. 2008).

3. Target Genes

A system level network biology approach can be used

to identify novel target genes of interest which are

found to have significant involvement in some dis-

ease, biological process, or an abnormality.
This involves constructing networks and studying

the kinetic interactions of a gene/protein with other

genes/proteins in a network (Fig. 2) (Dezso et al.

2009; Gilchrist et al. 2006). The discovery of target

pathways and genes is interrelated. A researcher can

always narrow down the list of target genes from the

list of target pathways discovered from modular

networks.
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Functionality Type

▶ FunctionalityType
FunctionalityType

Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire, Institut

de Génétique Humaine UPR 1142, Université

Montpellier 2, Montpellier, France
Synonyms

Functionality type
Definition

FunctionalityType is a concept of identification

(generated from the ▶ IDENTIFICATION Axiom)

of ▶ IMGT-ONTOLOGY, the global reference in

▶ immunogenetics and ▶ immunoinformatics (Duroux

et al. 2008), built by IMGT®, the international ImMuno-

GeneTics information system® (http://www.imgt.org)

(▶ IMGT® Information System), that allows to

identify, whatever the molecule type (▶MoleculeType)

(gDNA, cDNA, mRNA, or protein), the type of

functionality of a ▶Molecule_EntityType leafconcept

(Giudicelli and Lefranc 1999; Lefranc et al. 2004;

Duroux et al. 2008).

The “FunctionalityType” concept comprises five

leafconcepts, divided into two categories, according

to the configuration type (▶Configuration Type) of

the Molecule_EntityType leafconcept.

Three leafconcepts, ▶ functional, ORF (open read-

ing frame), and ▶ pseudogene, identify the functional-

ity of Molecule_EntityType leafconcepts in undefined

configuration (conventional genes (▶Conventional

Gene) and immunoglobulin (IG) and T cell receptor

(TR) constant (C) genes (▶Constant (C) Gene) or

in germline configuration (IG and TR variable (V),

diversity (D) and joining (J) (▶Variable (V) Gene,

▶Diversity (D) Gene, ▶ Joining (J) Gene) genes

before DNA rearrangements).

Two leafconcepts, ▶productive and unproductive,

identify the functionality of Molecule_EntityType

leafconcepts in rearranged or partially-rearranged
configuration (IG and TR entities after DNA

rearrangements, and by extension fusion entities resulting

from translocations, and hybrid entities obtained by

biotechnology molecular engineering).
Cross-References

▶Configuration Type
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▶Conventional Gene

▶Diversity (D) Gene
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▶ IMGT-ONTOLOGY

▶ IMGT-ONTOLOGY, IDENTIFICATION Axiom

▶ IMGT-ONTOLOGY, Leafconcept

▶ IMGT-ONTOLOGY, Unproductive

▶ IMGT® Information System
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▶ Immunogenetics

▶ Immunoinformatics

▶ Joining (J) Gene

▶Molecule Entity Type

▶MoleculeType

▶Open Reading Frame (ORF)

▶ Productive

▶ Pseudogene

▶Variable (V) Gene
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Functional-Structural Plant Modeling

Gerhard Buck-Sorlin

Institut de Recherche en Horticulture et Semences,

UMR 1345 (INRA/Agrocampus-ouest/Université

d’Angers) Agrocampus Ouest, Angers, France
Synonyms

Virtual plant modeling
Definition

Functional-structural plant modeling (FSPM) refers to

a paradigm for the description of a plant by creating

a (usually object-oriented) computer model of its struc-

ture and selected physiological and physical processes,

at different hierarchical levels: organ, plant individual,

canopy (a stand of plants), and in which the processes

are modulated by the local environment. Structure

comprises the explicit topology (connection between
organs) and geometry (orientation, inclination, and

shape) of the organs and the plant. At the individual

level, this is also referred to as plant architecture. An

FSPM may consider a change in organ and plant struc-

ture in time, thereby simulating growth, extension, and

branching processes of a given plant. This type of

FSPM is referred to as dynamic. A static FSPM, on

the other hand, only considers an unchanging structure,

which is used as a model input in order to explain

spatial heterogeneity in physiological processes.

Physiological and physical processes considered

usually comprise essential, basic, and characteristic

functions, such as ▶ photosynthesis, growth (biomass

accumulation and organ extension in length and diam-

eter), and branching, with physiological processes

depending on environmental factors such as tempera-

ture, radiation, CO2 content of the air, and relative

humidity. These processes (or functions) are usually

implemented at the level of each organ and then

require local environmental parameters. The explicit

consideration of the geometry and topology of struc-

tural elements at the organ level distinguishes FSPM

from its predecessor, ▶ process-based models.

In an FSPM, a feedback relation exists

between the structure and certain functions: A given

structure (static or resulting from application of

rules) can modulate the local output of processes (e.g.,

self-shading of leaves diminishing locally intercepted

light for ▶ photosynthesis); on the other hand,

all structures are built and maintained by processes

(e.g., growth of newbiomass fed by assimilates resulting

from photosynthesis).
Characteristics

According to the FSPMparadigm, a plant responds to its

environment by adaptive modification of processes

constituting its physiology (e.g., ▶ photosynthesis) and

plant architecture (e.g., bud break or dormancy, growth,

development, morphogenesis), thereby explicitly

addressing the feedbacks between structure and func-

tion. In addition, such feedbacks can be implemented

and verified at different levels, e.g., locally at the organ

scale and globally at the plant or canopy scale.

A typical reaction of the plant to a change in envi-

ronment or to an intervention (cutting, bending, etc.)

by management or in the course of an experiment

will thus be the relatively rapid readjustment of

http://dx.doi.org/10.1007/978-1-4419-9863-7_259
http://dx.doi.org/10.1007/978-1-4419-9863-7_265
http://dx.doi.org/10.1007/978-1-4419-9863-7_668
http://dx.doi.org/10.1007/978-1-4419-9863-7_100948
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http://dx.doi.org/10.1007/978-1-4419-9863-7_672
http://dx.doi.org/10.1007/978-1-4419-9863-7_674
http://dx.doi.org/10.1007/978-1-4419-9863-7_675
http://dx.doi.org/10.1007/978-1-4419-9863-7_681
http://dx.doi.org/10.1007/978-1-4419-9863-7_101623
http://dx.doi.org/10.1007/978-1-4419-9863-7_1543
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Functional-Structural Plant Modeling 779 F

F

physiological functions and a somewhat slower reac-

tion in terms of structural adaptation by growth of new

structures or active shedding of existing structures

(Vos et al. 2010).

Usually, the dynamics in an FSPM is simulated

using rules (for growth, extension, and branching)

always starting from a growing tip (meristem) which

produces ▶ phytomers (consisting of a leaf, a node, an

axillary bud, and an internode). The axillary bud can

itself produce a phytomer (with a meristem on top) to

form a new shoot; this is referred to as branching. For

each of the organs of a phytomer, specific dynamics for

extension or growth in biomass apply, which can be

described using nonlinear functions of time. If

such a dynamics follows a logistic function, then it is

characterized by three parameters: time of onset

of process, time of maximum rate, and maximum

dimension. Thus, using a rule-based notation (e.g.,

a ▶Lindenmayer system) to describe these processes,

two types of rules are usually sufficient:

(a) For the formation of a new ▶ phytomer from

a (terminal or axillary) meristem:

M !conditions
IN L½ � M½ �M

where M symbolizes the meristem and I, N, L the

internode, node, and leaf, respectively; ! designates

a replacement of the left-hand side symbol

(meristem M) by the string of symbols on the right

hand-side, i.e., the organs constituting a phytomer,

plus another meristem at the end of the string, thereby

ensuring that the rule can be applied over and over

again (as long as certain conditions are fulfilled); the

square opening [ and closing ] brackets represent

the beginning and end of a branch.

(b) For the dynamics of growth or extension:
OðlÞ )conditions
O lþ dlð Þ

where O is one of {I, N, L,. . .} (can also be a fruit or

flower), l is its dimension (e.g., length), and) denotes

a rule in which the dimension of an already

existing organ (resulting from the application of rule

(a)) is updated by adding a fraction dl to the dimension

l (specified on the right-hand side of the rule).

Expressed as a rate, dl/dt would be the derivative

of the function employed to describe the growth or

extension dynamics of the organ in question.
History

The concept of Functional-Structural Plant Modeling

arose in the 1990s from the desire to link existing

▶ process-based models of crops with spatially

explicit representations of plants (usually represented

in a rule-based manner as ▶Lindenmayer systems) in

order to consider, in a mathematical model, interactions

between plant structure and functioning (Siev€anen et al.

1997). Early representatives of FSPMswere restricted to

one aspect of plant functioning and showed how the

selected function was affected by morphology (e.g.,

light interception, assimilate allocation, xylem sap

flow). In these models, information was frequently uni-

directional (from structure to function). Furthermore,

due to the lack of conventions among modelers, these

models were very specific and difficult to reuse or to

transfer to other plant systems.

During a second wave, FSPMs were designed to be

more modular, exhibiting submodels contributed by

several authors and considering more than one aspect

of functionality at the same time. Examples for this type

of model are LIGNUM (Perttunen et al. 2001) or

Greenlab (Guo et al. 2006). New features included

in these models were, e.g., bidirectional information

flow between structure and function (Hemmerling

et al. 2008); processes taking place at more than one

hierarchical level, e.g., phytohormone biosynthesis and

transport (Buck-Sorlin et al. 2005); or the fluxes of

phloem and xylem within the tree (Lacointe and

Minchin 2008). Recent simulation studies addressed

also aspects of agricultural pestmanagement, the impact

of biomechanics on tree architectural development, and

more refined models of light distribution in canopies,

including the effects of light quality on growth regula-

tion (Vos et al. 2010). FSPMs have been created for crop

plants such as the cereals maize, wheat, rice, and barley,

but also for trees (Vos et al. 2010). In most of these

FSPMs, the structure was modeled dynamically, from

an initial meristem, but there exist also static FSPMs in

which the structure is fixed (Vos et al. 2010).

Elements for Conception and Construction of a

Functional-Structural Plant Model

The establishment of an FSPM starts with the

observation of plant morphology, i.e., topology

(arrangement of ▶ phytomers in shoots, with lateral

shoots up to a maximum branching order) and

geometry, including the biometry and morphology of

the different plant organs at different positions within

http://dx.doi.org/10.1007/978-1-4419-9863-7_1541
http://dx.doi.org/10.1007/978-1-4419-9863-7_1542
http://dx.doi.org/10.1007/978-1-4419-9863-7_1541
http://dx.doi.org/10.1007/978-1-4419-9863-7_1545
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http://dx.doi.org/10.1007/978-1-4419-9863-7_1541
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the plant. As with every model, it is wise to determine

the boundaries, the scale, and the elements of

the system to be modeled: Usually, the scope of

an FSPM is not more than a dozen plant individuals;

the scales are that of the (sub)organ, shoot, individual

and canopy level, and the elements considered are

the organs constituting the phytomer, plus collective

entities (the “plant” as the sum of all shoots, the shoot

as the sum of its phytomers, etc.). Sometimes, other

elements characteristic of a crop production system are

simulated, such as a greenhouse with lamps or a patch

of soil. Key topological parameters for an FSPM are

maximum branching order, maximum rank of

a phytomer within a shoot of a given branching order,

or rank of lowest flower. Using rank and order as

parameters forM in equation (a), those measured max-

imum values are used to restrict the production of

phytomers by the meristems (see phytomer for

a definition of rank and order). For each considered

plant element, a number of (physical or) physiological

processes (growth, extension, respiration,▶ photosyn-

thesis, etc.) are defined. This will yield an object-

oriented model prototype.

In order to parameterize the dimensions and

orientations of organs (e.g., growth and extensionmodels

(equation (b)), a database with lengths, diameters, areas,

and angles (phyllotaxis, divergence) of representative

organs needs to be established. Statistical analysis

(regression) ideally returns a relationship between

an organ dimension and its topology (rank, order). The

same relation can be established between a physiological

function (e.g., leaf photosynthesis) and topology.

Methods used to establish a biometric database are man-

ual measurement using a ruler and caliper, digitizing

(using a stylus or laser scanning), and image analysis.

After calibration of the FSPM, it is tested using a number

of scenarios and then validated in the usual way by

reparameterization with a calibration data set (measured

at organ scale) and comparison with output variables,

usually measured at canopy or plant scale.

FSPM Algorithms, Languages, and Software

Languages and formalisms employed for FSPM are

usually following the rule-based or object-oriented

paradigm, often in combination with the procedural

paradigm. The most widespread rule-based formalisms

are ▶Lindenmayer systems and ▶ relational growth

grammars. Dedicated languages for FSPM are

L + C (Prusinkiewicz et al. 2007) and XL (Hemmerling
et al. 2008); in addition, some FSPMs have been

devised using a standard programming language

(e.g., C, C++, Java, Simula). Platforms used for

FSPM include L-Studio, GroIMP, and OpenAlea.
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Functor

Baltasar Trancón y Widemann

Ecological Modelling, University of Bayreuth,

Bayreuth, Germany
Synonyms

Category homomorphism; Category map
Definition

A functor is a mapping that respects the structure of

a category (Lawvere and Schanuel 1997; Adámek et

al. 2004). A functor F from category C to category D
consists of the following:

• A mapping that associates with every object X 2 C
an object FðXÞ 2 D

• A mapping that associates with every arrow

f 2 HomCðX; YÞ an arrow Fðf Þ 2
HomD FðXÞ;FðYÞð Þ
Such that

• Identities are mapped to identities
FðidXÞ ¼ idFðXÞ (1)

• Compositions are mapped to compositions
Fðg � f Þ ¼ FðgÞ � Fðf Þ (2)

where the left composition is in C and the right com-

position is in D.
A consequence of the properties of a functor

F : C ! D is that it can be applied to all parts of

a diagram in category C, yielding a valid diagram in

category D. Furthermore, the resulting diagram will

commute if the original commutes.

Many mathematical constructions that relate enti-

ties of different nature can be understood as functors

between suitable categories. Typical examples are

(tensor) products or the mapping from Lie groups to

Lie algebras. Functors also play a crucial role in uni-

versal algebra and coalgebra, where they specify

expression languages for the construction and decon-

struction of structured elements, respectively (Jacobs

and Rutten 1997).
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Fuzzy Logic

Eyke H€ullermeier, Thomas Fober and

Marco Mernberger

Philipps-Universit€at Marburg, Marburg, Germany
Synonyms

Fuzzy set theory
Definition

The term “fuzzy logic” is used with different meanings

in the literature. In a narrow sense, it refers to a branch

of mathematical logic, where it is studied as a special

type of multivalued logic, that is, a logic with more

than two truth degrees (Hajek 1998). In a wider (and

more common) sense, fuzzy logic is used as an

umbrella term for a collection of methods, tools, and
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techniques for constructing intelligent systems that, by

virtue of the very idea of partiality of truth, are capable

of handling, processing and exploiting uncertain,

imprecise, and incomplete information. These

methods build on the key concept of a fuzzy set, as

introduced by the founder of fuzzy logic, Lotfi A.

Zadeh, in his seminal paper (Zadeh 1965). Fuzzy sets

formalize the idea of graded class membership,

according to which an element can partially belong

to a set. In conjunction with generalized logical

(set-theoretical) operators and derived notions like

a fuzzy relation, the concept of a fuzzy set can be

developed into a generalized set theory, which in turn

provides the basis for generalizing theories in different

branches of (pure and applied) mathematics as well as

fuzzy set-based approaches to intelligent systems

design, encompassing methods for information

processing, decision making, optimization, and data

analysis.
Characteristics

The notion of truth is commonly considered as

a bivalent concept: Logically, a proposition is either

true or false, but nothing in-between. This conception,

which pervades modern science and thinking, has

a long-standing tradition in Western philosophy, and

manifests itself in standard mathematical theories,

notably logic and set theory. And admittedly, formal

systems based on bivalent logic (including theories of

uncertainty based on such systems, like probability

theory) have proved extremely useful in the scientific

terrain, where they paved the way for the amazing

success of the exact and engineering sciences in the

last century.

In many other less exact fields of science, however,

ranging from the biological and life sciences over legal

practice to the modeling of cognitive processes and

human intelligence, the bivalence of truth can be called

into question. In fact, it was already noticed by

Bertrand Russell in 1923 that “All traditional logic

habitually assumes that precise symbols are being

employed. It is therefore not applicable to this terres-

trial life, but only to an imagined celestial existence”

(Russell 1923). Roughly speaking, this is because of

the vagueness and ambivalence of the concepts dealt

with in these fields: for the intension of these concepts,

there is rarely a precise extension (in the sense of a set
of real objects belonging to that concept) in the real

word. For example, what is a “short DNA molecule”?

Biologists have a vague though sufficiently clear idea

of this concept, without using a precise definition in

terms of an exact upper bound on the number of base

pairs (bp) or the length in mm. Given such bounds,

a proposition like “DNA molecule XYZ is small”

would be either true or false; likewise, the truth

degree of a natural language proposition like “Einstein

was born around noon” could be determined in

a unique way, given a precise definition of the

meaning of “around noon” in terms of a time interval

(e.g., 12 o’clock 	 15 min) and the possibility to

pinpoint the exact time of a birth.

Needless to say, this way of adapting human think-

ing and language to conventional logic and set theory

would be neither desirable nor useful. Instead, fuzzy

logic offers an approximation in the other direction:

logic and set theory are generalized, so as so enable

a more faithful mathematical modeling of human con-

ception. The core idea in this regard is the notion of

a fuzzy set, which allows for partial membership and

soft class boundaries (Pedrycz and Gomide 2007).

Fuzzy Sets

A fuzzy subset A of a reference set  is identified by

a so-called membership function, often denoted mAð
Þ,
which is a generalization of the characteristic function

Að
Þ of an ordinary set A � . For each element

x 2 , this function specifies the degree of member-

ship of x in the fuzzy set; it can be interpreted as the

truth degree of the proposition that x 2 A. Usually,

membership degrees mAðxÞ are taken from the unit

interval [0,1], i.e., a membership function is an

X ! ½0; 1� mapping. In principle, however, more gen-

eral membership scales (such as ordinal scales or com-

plete lattices) can be used. We denote by ðÞ the set
of all fuzzy subsets of .

Fuzzy sets are often used for discretizing numerical

attributes in a “soft” manner, taking advantage of their

ability to model “non-sharp” boundaries between clas-

ses. Thus, they serve as an interface between the orig-

inal numerical scale and a symbolic scale comprised of

the (natural language) terms associated with the fuzzy

sets. For example, in ▶ gene expression analysis, one

typically distinguishes between normally expressed,

under-expressed, and over-expressed genes. This clas-

sification is made on the basis of the expression level of

the gene (a normalized numerical value), by using

http://dx.doi.org/10.1007/978-1-4419-9863-7_819
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corresponding thresholds. For example, a gene is often

called over-expressed if its expression level is at least

twofold increased. Needless to say, a precise threshold

of that kind is arbitrary to some extent and implies

an unnatural sudden jump from completely over-

expressed to not at all over-expressed. Figure 1

shows a fuzzy partition of the expression level with

a “smooth” (and arguably less arbitrary) transition

between under-, normal, and over-expression, formal-

ized in terms of fuzzy sets with trapezoidal member-

ship functions. For instance, according to this

formalization, a gene with an expression level of at

least 3 is definitely considered over-expressed, below 1

it is definitely not over-expressed, but in-between, it is

considered over-expressed to a certain degree.

Generalized Logical Connectives

To operate with fuzzy sets in a formal way, fuzzy set

theory offers generalized set-theoretical resp. logical

connectives (like in the classical case, there is a close

correspondence between set theory and logic). Espe-

cially, important in this regard is a class of operators

called triangular norms or t-norms for short (Klement

et al. 2002).

• A t-norm � is a ½0; 1� � ½0; 1� ! ½0; 1� mapping

which is associative, commutative, monotone

increasing (in both arguments) and which satisfies

the boundary conditions a� 0 = 0 and a� 1 = a for

all 0 � a � 1. Well-known examples of t-norms

include the minimum ða; bÞ 7! minða; bÞ, the prod-
uct ða; bÞ 7! ab, and the Łukasiewicz t-norm

ða; bÞ 7! maxðaþ b� 1; 0Þ.
A t-norm naturally qualifies as a generalized logical

conjunction. Moreover, it can be used to define the

intersection of fuzzy subsets A;B 2 ðÞ as fol-

lows: mA\BðxÞ ¼ mAðxÞ � mBðxÞ for all x 2 .
In a quite similar way, the Cartesian product of

fuzzy sets A 2 ðÞ and B 2 ðÞ can be defined:

mA�Bðx; yÞ ¼ mAðxÞ � mBðyÞ for all ðx; yÞ 2 � .
• The logical disjunction can be generalized

analogously, namely by means of a t-conorm


. If � is a t-norm, then 
 defined by

a
 b ¼ 1� ð1� aÞ � ð1� bÞ is a t-conorm.

Well-known examples of t-conorms include the

maximum ða; bÞ 7! maxða; bÞ, the algebraic sum

ða; bÞ 7! aþ b� ab, and the Łukasiewicz

t-conorm ða; bÞ 7! minðaþ b; 1Þ. A t-conorm can

be used for defining the union of fuzzy sets:

mA[BðxÞ ¼ mAðxÞ 
 mBðxÞ for all x 2 .
• A generalized implication ⇝ is a

½0; 1� � ½0; 1� ! ½0; 1� mapping which is monotone

decreasing in the first and monotone increasing in

the second argument, and which satisfies the bound-

ary conditions a ⇝ 1 = 1, 0 ⇝ b = 1, 1 ⇝ b = b.
(Apart from that, additional properties are

sometimes required.) Implication operators of that

kind, such as the Łukasiewicz implication ða; bÞ 7!
minð1� aþ b; 1Þ, are especially important in con-

nection with the modeling of fuzzy rules.

The Extension Principle

Apart from basic logical connectives, fuzzy logic

offers a number of tools for generalizing and

“fuzzifying” existing theories and methods. One of

these tools is the so-called extension principle, which
allows for extending a mapping f : n !  to a fuzzy

mapping F : ðÞn ! ðÞ in a generic way.

F accepts fuzzy subsets of  as input and, correspond-

ingly, produces fuzzy subsets of  as output. More

specifically, for fuzzy subsets A1; . . . ;An as input, the

output B ¼ FðA1; . . . ;AnÞ is a fuzzy subset of  with

membership function
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mBðyÞ ¼ sup
y¼f ðx1;...; xnÞ

minfmA1
ðx1Þ; . . . ; mAn

ðxnÞg

The supremum operator in this expression is

playing the role of a generalized existential quantifier.

Thus, mBðyÞ can be interpreted as the truth degree

of the following proposition: 9ðx1; . . . ; xnÞ 2 n :

8i 2 f1; . . . ; ng : ðxi 2 AiÞð Þ ^ ðy ¼ f ðxÞÞ. Or, stated

differently, y belongs to the fuzzy output F(A) insofar
as there exist x1; . . . ; xn that belong, respectively, to

A1; . . . ;An and are mapped to y.

Fuzzy Inference

Fuzzy sets can be used to formalize vague and

imprecise knowledge. For example, a basic propo-

sition of the form “X is A”, where X is a variable

with domain  and A a fuzzy subset of , can be

understood as a flexible ▶ constraint on the value of

X: those values x 2  with mAðxÞ ¼ 0 are excluded,

while all other values x are considered as possible to

some degree, namely to the degree mAðxÞ; in partic-

ular, those x with mAðxÞ ¼ 1 are declared as fully

plausible.

In principle, fuzzy ▶ inference can then be real-

ized by combining and propagating constraints of

that type, using suitable logical operators as well as

projection and extension operators for fuzzy rela-

tions. Fuzzy rule-based ▶ inference can be seen as

an important special case. Here, the idea is to

express knowledge about the (functional) depen-

dency between attributes in the form of a set of

IF–THEN rules:
Ri : IFðX1 is A
ðiÞ
1 Þ AND ðX1 is A

ðiÞ
2 Þ AND . . .AND

ðXm is AðiÞ
m Þ THEN ðY is BðiÞÞ

As an example, consider a rule like “If gene X is

over-expressed and gene Y is under-expressed,

then gene Z is over-expressed”. A rule of that

kind can be seen as a soft ▶ constraint that partly

excludes some value combinations

ðx1; x2; . . . ; xm; yÞ 2 1� 2 � . . .� m � . Given
a fuzzy specification of the input attributes Xj in

terms of fuzzy subsets Ajð j ¼ 1; . . . ;mÞ, the output

produced by the fuzzy rule system consisting of n

rules Riði ¼ 1; . . . ; nÞ is a fuzzy subset B of  such

that
mBðyÞ ¼ sup
x21�...�m

min mAðxÞ; min
i¼1;...;n

ðmAðiÞ ðxÞ⇝mBðiÞ ðyÞÞ
� �

;

where mAðiÞ ðxÞ ¼ m
A
ðiÞ
1

ðx1Þ � m
A
ðiÞ
2

ðx2Þ � . . .� m
A
ðiÞ
m
ðxmÞ:

for a t-norm �, and ⇝ is a fuzzy implication.

Applications

Fuzzy methods have not only been developed

for ▶ knowledge representation and information

processing, but also in many other branches of applied

mathematics, including optimization, decision making,

statistics, and data analysis. Moreover, a plethora of

concrete applications have been developed in different

fields, ranging from fuzzy control systems over flexible

querying in databases to medical expert systems.

In bioinformatics and systems biology, fuzzy

methods have been used with the aim to capture the

intrinsic fuzziness of terms, concepts, and relation-

ships in the biological sciences, and advantages of

fuzzy sets and fuzzy logic for analyzing biological

data and modeling biological systems are becoming

more and more recognized. As a concrete example, we

mention the use of fuzzy▶ clustering as a data analysis

tool for inferring homogeneous groups of related bio-

logical entities (like genes) in a data-driven way; oblig-

ing to biological reality, these groups may have soft

boundaries and are allowed to overlap (Dembélé and

Kastner 2003; M€oller-Leveta et al. 2005). Apart from

this, fuzzy methods have been applied to many other

problems in this field; for an overview of recent

advances, see (Xu et al. 2008; Jin and Wang 2009).
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