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This paper proves that the scaling limit of a loop-erased random walk 
in a simply connected domain D ~ tC is equal to the radial SLE2 path. In 
particular, the limit exists and is conformally invariant. It follows that the 
scaling limit of the uniform spanning tree in a Jordan domain exists and is 
conformally invariant. Assuming that aD is a C 1-simp1e closed curve, the 
same method is applied to show that the scaling limit of the uniform spanning 
tree Peano curve, where the tree is wired along a proper arc A c aD, is the 
chordal SLEg path in I5 joining the endpoints of A. A by-product of this result 
is that SLEg is almost surely generated by a continuous path. The results and 
proofs are not restricted to a particular choice of lattice. 

1. Introduction. 

1.1. Motivation from statistical physics. One of the main goals of both 
probability theory and statistical physics is to understand the asymptotic behavior 
of random systems when the number of microscopic random inputs goes to 00. 

These random inputs can be independent, such as a sequence of independent 
random variables, or dependent, as in the Ising model. Often, one wishes 
to understand these systems via some relevant "observables" that can be of 
a geometric or analytic nature. In order to understand this asymptotic behavior, 
one can attempt to prove convergence toward a suitable continuous model. The 
simplest and most important example of such random continuous models is 
Brownian motion, which is the scaling limit of random walks. In particular, 
a simple random walk on any lattice in ]Rd converges to (a linear image of) 
Brownian motion in the scaling limit. 

Physicists and chemists have observed that critical systems (i.e., systems at 
their phase transition point) can exhibit macroscopic randomness. Hence, various 
quantities related to the corresponding lattice models should converge as the mesh 
is refined. In fact, one of the important starting points for theoretical physicists 
working on two-dimensional critical models is the assumption that the continuous 
limit is independent of the lattice and, furthermore, displays conformal invariance. 
This assumption has enabled them to develop and use techniques from conformal 
field theory to predict the exact values of certain critical exponents. Until very 
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recently, the existence of the limit, its conformal invariance and the derivation 
of the exponents assuming conformal invariance remained beyond mathematical 
justification for the basic lattice models in critical phenomena, such as percolation, 
the Ising model and random cluster measures. Although there are many interesting 
questions about higher-dimensional systems, we will limit our discussion to two 
dimensions where conformal invariance plays an essential role. 

1.2. Recent progress. In [38], a one-parameter family of random growth 
processes (loosely speaking, random curves) in two dimensions was introduced. 
The growth process is based on Loewner's differential equation, where the driving 
term is time-scaled one-dimensional Brownian motion, and is therefore called 
stochastic Loewner evolution, or SLEK • The parameter K :::: 0 of SLE is the 
time scaling constant for the driving Brownian motion. It was conjectured that 
the scaling limit of the loop-erased random walk (LERW) is SLE2, and this 
conjecture was proved to be equivalent to the conformal invariance of the LERW 
scaling limit (see [38]). The argument given was quite general and shows that a 
conformally invariant random path satisfying a mild Markovian property, which 
will be described below, must be SLE. On this basis, it was also conjectured 
there that the scaling limits of the critical percolation interface and the uniform 
spanning tree Peano curve are the paths of SLE6 and SLEg, respectively, and it 
was claimed that conformal invariance is sufficient to establish these conjectures. 
(For additional conjectures regarding curves tending to SLE, including the 
interfaces in critical random cluster models-also called FK percolation models­
for q E [0,4], see [36].) 

At some values of the parameter K, SLE has some remarkable properties. For 
instance, SLE6 has a locality property (see [27]) that makes it possible to relate 
its outer boundary to that of planar Brownian motion. This has led to the proof 
of conjectures concerning planar Brownian motion and simple random walks (see 
[27]-[29]). 

In [40] and [41], Smimov recently proved the existence and conformal 
invariance of the scaling limit of critical site percolation on the two-dimensional 
triangular lattice: he managed to prove Cardy's formula (see [5]) which is a 
formula for the limit of the probability of a percolation crossing between two arcs 
on the boundary of the domain. Combining this information with the independence 
properties of percolation, Smirnov then showed that the scaling limit of the 
percolation interface is SLE6. This has led to the rigorous determination of critical 
exponents for this percolation model (see [30] and [42]). 

1.3. LERWand UST defined. The uniform spanning tree (UST), which can be 
interpreted as the q = 0 critical random cluster model (see [15]), is a dependent 
model that has many remarkable features. In particular, it is very closely related to 
the loop-erased random walk, whose definition (see [24]) we now briefly recall. 
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Consider any fini te or recurrent connected graph G, a vertex a and a set of 
vertices V . A loop-erased random walk (LERW) from a to V is a random simple 
curve joining a to V obtained by erasing the loops in chronolog ical order from 
a sim ple random walk started at a and stopped upon hitting V. In other words, 
if (f (n) , 0 :5 11 :5 T) is a simple random walk on G started from a and stopped 
at its first hitting time T of V , the loop erasure f3 = (f3o , ... , f3e) is defined 
inductive ly as foll ows: f30 = a ; if f3n E V , then 11 = i; and otherwise f3n +l = r (k ), 
wherek = I + max{m :5 T: r (m) =f3n }' 

A spanning tree T of a connected grap h G is a subgraph of G such that fo r 
every pair of vertices lJ ,1/ in G there is a unique sim ple path (i.e., self-avoiding) 
in T with these vertices as endpoints. A ulliform spallll ing tree (UST) in a finite, 
connected graph G is a sample from the uniform probability measure on spanning 
trees of G. It has been shown in [34] that the law of the self-avoiding path wit h 
endpoint s a and b in the UST is the same as that of the LERW from a to fb i. See 
Figure I . 

Wilson [44] established an even stronger connection between LERW and UST 
by giving an algorithm to generate UST's using LERW. Wilson 's algorithm runs 
as follows. Pick an arbitrary ordering vo, VI, ... 'VII! for the verti ces in G. Let 
To = {vol. Inducti ve ly, for 11 = 1, 2, ... , 111 , define Tn to be the union of Tn- l and 
a (conditiona ll y independent) LERW path from Vn to Tn_ I. (If Vn E Tn_ I, then 
Tn = Tn_ I.) Then, regardless of the chosen order of the vertices, T,/J is a UST 
on G. 

Wilson 's algorithm gives a natural extension of the definiti on of UST to infinite 
recurrent graphs. In fact, for transient graphs, there are two natural definitions 
which often coinc ide, but this interesting theory is somewhat re moved from the 
topic of this paper. Many striking properties of UST and LERW have been 

FI G. 1. The LERIV ill the UST. 
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discovered. See [32] for a survey of UST's and [26] for a survey of properties 
ofLERWin Zd, d > 2. 

Exploiting a link with domino tilings and deriving discrete analogs of Cauchy­
Riemann equations, Kenyon (see [20] and [21]) rigorously established the values 
of various critical exponents predicted for the LERW (see [11], [14] and [32]) in 
two dimensions. In particular, he showed that the expected number of steps of a 
LERW joining two comers of the N x N square in the square grid ZZ is of the order 
of magnitude of N 5/ 4 . He also showed conformal invariance for the leading term 
in the asymptotics of the probability that the LERW contains a given edge. This 
was the first mathematical evidence for full conformal invariance of the LERW 
scaling limit. 

In [3] and [1] subsequential scaling limits of the UST measures in Zd were 
shown to exist, using a compactness argument. Moreover, these papers prove that 
all the paths in the scaling limit that intersect a fixed bounded region are uniformly 
Holder continuous. In [38] the topology of subsequential scaling limits of the UST 
on ZZ was determined. In particular, it was shown that every subsequential scaling 
limit of the LERW is a simple path. 

1.4. A short description of SLE. We now briefly describe SLE; precise 
definitions are deferred to Section 2.1. Chordal SLE is a random growing family 
of compact sets K t , t E [0, (0), in the closure IHr of the upper half plane IHr. 
The evolution of K t is given by the Loewner differential equation with "driving 
function" Brownian motion. From [36], it is known that when K i= 8 the process 
is described by a random curve y : [0, (0) ---+ IHr, in the sense that, for every t ~ 0, 
IHr \ K t is the unbounded component of IHr \ y [0, t]. A corollary of our results is that 
this holds for K = 8 as well. The curve y satisfies y (0) = ° and limt-HXJ y (t) = 00. 

If K :s 4, then y is a simple curve and K t = y[O, t]. 

There is another version of SLE called radial SLE. Radial SLE also satisfies 
the description above, except that the upper half plane IHr is replaced by the unit 
disk 1U, yeO) is on the unit circle a1U and limt-+oo yet) = 0. 

Both radial and chordal versions of SLE may be defined in an arbitrary simply 
connected domain D ~ C by mapping over to D using a fixed conformal map 4> 
from IHr or 1U to D. 

1.5. The main results of the paper. Let D ~ C be a simply connected domain 
with ° ED. For 8 > 0, let J-L8 be the law of the loop erasure of a simple random 
walk on the grid 8Zz, started at ° and stopped when it hits aD. See Figure 2. Let 
v be the law of the image of the radial SLEz path under a conformal map from the 
unit disk 1U to D fixing 0. When the boundary of D is very rough, the conformal 
map from 1U to D might not extend continuously to the boundary, but the proof of 
the following theorem in fact shows that even in this case the image of the SLEz 
path has a unique endpoint on aD. 
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FIG. 2. A sample of the loop-erased random walk; proved to converge to radial SLE2. 

On the space of unparameterized paths in C, consider the metric p (f3, y) = 

infsuPtE[O,I] [S(t) - y(t)[, where the infimum is over all choices ofparameteriza­

tions Sand y in [0, 1] of f3 and y. 

THEOREM 1.1 (LERW scaling limit). The measures J.L8 converge weakly to v 
as 8 ---+ 0 with respect to the metric p on the space of curves. 

Since SLE is conformally invariant by definition, this theorem implies confor­
mal invariance of the LERW. The theorem and proof apply also to some other 
walks on lattices in the plane where the scaling limit of the walk is isotropic 
Brownian motion. It even applies in the nonreversible setting. See Section 6 for 
further details. 

There are two distinct definitions for the UST corresponding to a domain 
D ~ C, as follows. Let G F(D) denote the subgraph of Z2 consisting of all the 
edges and vertices which are contained in D. If G F(D) is connected, then we 
refer to the UST on G F(D) as the UST on D with free boundary conditions. Let 
Gw(D) denote the graph obtained from Z2 by contracting all the vertices outside 
of D to a single vertex (and removing edges which become loops). Then the UST 
on Gw(D) is the UST on D with wired boundary conditions. 

Since the UST is built from the LERW via Wilson's algorithm, it is not 
surprising that conformal invariance of the UST scaling limit should follow from 
that of the LERW scaling limit. In fact, [38], Theorem 11.3, says just that. 

COROLLARY 1.2 (UST scaling limit). The wired andfree UST scaling limits 
(as defined in [38]) in a simply connected domain Dee whose boundary is a 
C I-smooth simple closed curve exist and are conformally invariant. 
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One can eas ily show, using [38] , Theorem Il.l (i), that the wired tree depends 
continuously on the domain, and hence for that case D may be an arbitrary simply 
connected domain. However, some regularity assumption is needed for the free 
UST scaling limit: conformal invariance fa ils for the domain whose boundary 
conta ins the topologist's sine curve (the closure of {x + i sin(l /x):x E (0, I'I}). 

The UST Peano curve is an entirely different curve derived from the UST in 
two dimensions . The curve is rather re markable, as it is a natural random path 
visiting every vertex in an appropri ate graph or lattice . We now roughly describe 
two natural definitions of thi s curve; further detai ls appear in Sect ion 4. 

Let C be a fin ite planar graph , with a particular embedding in the plane, and 
let C t denote its planar dual, agai n with a particular embedding. Then there is 
a bijecti on e <H> et betwee n the edges of C and those of C t such that, for every 

edge e in C , e n e t is a s ingle point, and e does not intersect any other edge of c t . 
Given a spanning tree T of C , let Tt denote the graph whose vertices are the 
ve rtices of c t and whose edges are those edges e t such th at e ¢. T. It is then easy 

to verify that T t is a spanning tree fo r c t . Therefore, if T is a UST on C, then 
Tt is a USTon c t . 

The UST Peano curve is a curve that ,:vinds between T and T t and separates 
them. More precisely, consider the graph C drawn in the plane by taking the union 

of C and C t , where each edge e or e t is subdivided in to two edges by introducing 
a verte x at en e t . The subgraph of the planar dual (; t of (; containing a ll edges 
which do not intersect T U Tt is a simple closed path~the UST Pelino path. See 
Figure 3. 

Some properties of the UST Peano path on Z2 have been studied in the physics 
lite rature; see, for example, [10] and [18]. There, it has been call ed the Hamiltonian 
path on the Manhattan lattice. The reason for this name is as fo llows. On Z2, 
say, orient each horizontal edge whose y-coordinate is even to the ri ght and eac h 
horizontal edge whose y -coordinate is odd to the left. S imilarly, orient down eac h 
vertical edge whose x-coordinate is even and orient up each vertical edge whose 

FI G. 3. The graph. dllal gra"h. lice. dllal Iree mul Pem/O clm'e. The j'erlex oj II/e dllal 8ra"h 
corresponding 10 Ifle unbOlllule(1 face is drawn as a cycle. 
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x-coordinate is odd. Now rescale the resulting oriented graph by 1/2 and translate 
it by (1/4, 1/4). It is easy to check that a Hamiltonian path (a path visiting every 
vertex exactly once) respecting the orientation on the resulting oriented graph is 
the same as the UST Peano path of '1.2 . It should be expected that the uniform 
measure on Hamiltonian paths in '1.2 has the same scaling limit as that of the UST 
Peanopath. 

Given a domain D, one can consider the UST Peano curve for the wired or for 
the free UST (which is essentially the same as the wired, by duality). However, 
the conjecture from [38] regarding the convergence to chordal SLE pertains to the 
UST Peano curve associated with the tree with mixed wired and free conditions. 

Let D C <C be a domain whose boundary is a C1-smooth simple closed curve 
and let a, bEaD be distinct boundary points. Let Ol and f3 denote the two 
complementary arcs of aD whose endpoints are a and b. For all 8 > 0, consider 
an approximation G8 of the domain D in the grid 8'1.2 . (A precise statement of 
what it means for G8 to be an approximation of D will be given in Section 4.) 
Let Y8 denote the Peano curve associated to the UST on G 8 with wired boundary 
near Ol and free boundary near f3. Then Y8 may be considered as a path in D from 
a point near a to a point near b. 

THEOREM 1.3 (UST Peano path scaling limit). The UST Peano curve scaling 
limit in D with wired boundary on Ol and free boundary on f3 exists and is equal 
to the image of the chordal SLE8 path under any conformal map from lHI to D 
mapping ° to a and 00 to b. 

Again, the convergence is weak convergence of measures with respect to the 
metric p. Figure 4 shows a sample of the UST Peano path on a fine grid. 

As explained above, it was proved in [36] that each SLEK is generated by a 
path, except for K = 8. In Section 4.4, the remaining case K = 8 is proved, using 
the convergence of the Peano curve. 

FIG. 4. An arc from a sample of the UST Peano path; proved to converge to chordal SLES. 
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Corollary 1.2 and Theorem 1.3 (and their proofs) apply to other reversible walks 
on planar lattices (the self-duality of Z2 does not play an important role); see 
Section 6. 

To add perspective, we note that the convergence to SLE of the LERW and 
the UST Peano curve are two boundary cases of the conjectured convergence 
in [36] of the critical FK random cluster measures with parameter q E (0,4). 
For these parameter values, the scaling limit of the interface of a critical cluster 
with mixed boundary values is conjectured to converge to chordal SLEK (q), 
where K(q) = 4njcos-1(-,J(ij2). The boundary case K(O) = 8 corresponds to 
the convergence of the UST Peano path to SLE8. 

The outer boundary of the scaling limit of a macroscopic critical cluster is 
not the same as the scaling limit of a critical cluster outer boundary, because of 
"fjords" which are pinched off in the limit. The former is conjectured to "look 
like" SLE16/K(q), but a precise form of this conjecture is not yet known. In the 
case q = 0, however, such a correspondence is easy to explain. In Z2, an arc of 
the Peano curve is surrounded on one side by a simple path in the tree, and on 
the other side by a simple path in the dual tree. Both these paths are LERWs. 
Similar correspondences exist for the UST in a subdomain of ffi.2, but one has to 
set appropriate boundary conditions. Thus, the convergence ofLERW to SLE2 also 
corresponds to the case q = 0, as 16jK(0) = 2. 

Suppose that 0 E D and a, f3 CaD, as before. Consider the simple random walk 
on 8Z2 which is reflected off f3 and stopped when it hits a. Using an analogous 
method to that of the present paper, one could handle the scaling limit of the loop 
erasure of this walk. It is described by a variant of SLE2 where the driving term is 
Brownian motion with time scaled by 2, but having an additional drift. The drift is 
not constant, but can be explicitly computed. 

The identification of the scaling limit as one of the SLEs should facilitate the 
derivation of critical exponents and also the asymptotic probabilities of various 
events, including some results which have not been predicted by arguments from 
physics. This was the case for critical site percolation on the triangular grid; see 
[30], [39], [40] and [42]. 

1.6. Some comments about the proof Since a loop-erased random walk is 
obtained in a deterministic way from a simple random walk (by erasing its loops) 
and since a simple random walk converges to Brownian motion in the scaling 
limit, it is natural to think that the scaling limit of the LERW should simply be 
the process obtained by erasing the loops from a planar Brownian motion. The 
problem with this approach is that planar Brownian motion has loops at every 
scale, so that there is no simple algorithm to erase loops. In particular, there is no 
"first" loop. Our proof does use the relation between the LERW and simple random 
walks, combined with the fact that quantities related to simple random walks, 
such as hitting probabilities, converge to their continuous conformally invariant 
counterparts. 
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The proof of each of our main theorems is naturally divided into two parts. The 
first part establishes the convergence to SLE with respect to a weaker topology 
than the topology induced by the metric p of paths; namely, we show that the 
Loewner driving process for the discrete random path converges to a Brownian 
motion. This part of the proof, which we consider to be the more important one, 
is essentially self-contained. The second part uses some regularity properties of 
the discrete processes from [38] to prove convergence with respect to the stronger 
topology. 

The method for the first part can be considered as a rather general method 
for identifying the scaling limit of a dependent system that is conjectured to be 
conformally invariant. It requires having some "observable" quantity that can be 
estimated well and a mild Markovian property, which we now describe. Suppose 
that to every simply connected domain D containing 0 there is associated a random 
path y from aD to 0 (e.g., the orientation reversal of the LERW). The required 
property is that if f3 is an arc with one endpoint in a D and we condition on f3 C Y 
(assuming this has positive probability, say), then the conditioned distribution 
of y \ f3 is the same as the random path in the domain D \ f3 conditioned to 
start at the other endpoint q of f3. [Thus, (D \ f3, q) is the state of a Markov 
chain whose transitions correspond to adding edges from y to f3 and modifying q 
appropriately.] Interestingly, among the discrete processes conjectured to converge 
to SLE, the LERW is the only one where the verification of this property is not 
completely triviaL [For the LERW it is not trivial, but not difficult; see part (iii) of 
Lemma 3.2.] The statement of this property for the UST Peano curve is given in 
Lemma 4.1. The fact that SLE satisfies this property follows from the Markovian 
property of its driving Brownian motion. 

The particular choice of observable is not so important. What is essential 
is that one can conveniently calculate the asymptotics of the observable for 
appropriate large-scale configurations. The particular observable that we have 
chosen for the LERW convergence is the expected number of visits to a vertex 
v by the simple random walk generating the LERW. Conformal invariance is 
not assumed but comes out of the calculation-hitting probabilities for random 
walks are discrete harmonic functions, which converge to continuous harmonic 
functions. One technical issue is to establish this convergence without any 
boundary smoothness assumption. Once the observable has been approximated, 
the conditional expectation and variance of increments of the Loewner driving 
function for the discrete process can be estimated, and standard techniques (the 
Skorohod embedding) can be used to show that this random function approaches 
the appropriate Brownian motion. 

Although Theorem 1.3 can probably be derived with some work from 
Corollary 1.2, instead, to illustrate our method, we prove it by applying again the 
same general strategy of the proof of Theorem 1.1, with the choice of a different 
observable. 
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Actually, it is easier to explain the main ideas behind the proof of Theorem 1.3. 
Fix some vertex v in D and a subarc al Ca. Let.A, be the event that the UST path 
(not the Peano path, but the path contained in the UST) from v to a hits al. By 
Wilson's algorithm the probability of.A, is the same as the probability that a simple 
random walk started at v reflected off fJ first hits a in al. The latter probability can 
be estimated directly. If y [0, n] denotes the restriction of the Peano path to its first 
n steps, then P[.A, I y [0, n]], the probability of .A, conditioned on y [0, n], is clearly 
a martingale with respect to n. But, by the Markovian property discussed above, 
the value ofP[.A,ly[O, n]] may be estimated in precisely the same way that P[.A,] is 
estimated. The estimate turns out to be a function of the conformal geometry of 
the configuration (v, D \ y[O, n], yen), aI, fJ). Knowing that this is a martingale 
for two appropriately chosen vertices v is sufficient to characterize the large-scale 
behavior of y. 

As mentioned above, in the case of the LERW, the observable we chose to look 
at is the expected number of visits to a fixed vertex v by the simple random walk 
r generating the LERW y. The walk r can be considered as the union of y with a 
sequence ofloops r j based at vertices of y. We look at the conditioned expectation 
of the number of visits of r to v given an arc y of y adjacent to the boundary of 
the domain. This is clearly a martingale with respect to the filtration obtained by 
taking larger and larger arcs y C y. This quantity falls into two parts: the visits 
to v in the loops r j based at y, and those that are not. Each of these two parts 
can be well estimated by random walk calculations. Translating the fact that this 
is a martingale to information about the Loewner driving process for y inevitably 
leads to the identification of this driving process as appropriately scaled Brownian 
motion. 

Actually, we first had a longer proof of convergence of the LERW to the SLE2, 
based on the fact that it is possible to construct the hull of a Brownian motion 
by adding Brownian loops to SLE2. This can be viewed as a particular case of 
the restriction properties of SLEK with Brownian loops added, which we study 
in [31]. Let us also mention the following related open question. Consider a 
sequence of simple random walks Sk (n) on a lattice with lattice spacing Ok -+ 0, 
from Sk(O) = ° to au, and let yk denote the corresponding loop-erased paths. 
Theorem 1.1 shows that one can find a subsequence such that the law of the pair 
(yk, Sk) converges to a coupling of SLE2 with Brownian motion [i.e., a law for 
a pair (X, Y), where X has the same distribution as the SLE2 path and Y has the 
same distribution as Brownian motion]. The question is whether, in this coupling, 
SLE2 is a deterministic function of the Brownian motion. In other words, is it 
possible to show that this is not a deterministic procedure to erase loops from a 
Brownian motion? 

2. Preliminaries. The reading of this paper requires some background 
knowledge in several different fields. Some background about Loewner's equation 
and SLE is reviewed in the next section. It is assumed that the reader is familiar 
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with some of the basic properties of Brownian motion (definition, strong Markov 
property, etc.). Some of the basic properties of conformal maps (Riemann's 
mapping theorem, compactness, Koebe distortion) are also needed for the proof. 
This material may be learned from the first two chapters of [35], for example. 
In terms of the theory of conformal mappings, this suffices for understanding the 
argument showing that the driving process of the LERW converges to Brownian 
motion. For improving the topology of convergence, some familiarity with the 
notion of extremal length (a.k.a. extremal distance) is also required. A possible 
source for that is [2]. The reader also needs to know some of the very basic 
properties of harmonic measure. 

2.1. Loewner's equation and SLE. We now review some facts concerning 
Loewner's equations and stochastic Loewner evolutions. For more details, see, for 
example, [27], [28], [36] and [38]. 

Suppose that D ~ C is a simply connected domain with ° ED. Then there is a 
unique conformal homeomorphism 1f; = 1f;D : D ---+ U which is onto the unit disk 
U = {z E C: Izl < I} such that 1f;D(O) = ° and 1f;b(O) is a positive real. If DC U, 
then 1f;b (0) ::: 1, and log 1f;b (0) is called the capacity of U \ D from 0. 

Now suppose that 1] : [0, 00] ---+ U is a continuous simple curve in the unit disk 
with 1](0) E au, 1](00) = ° and 1](0,00] cU. For each t ::: 0, set K t := 1][0, t], 
Ut := U \ K t and gt := 1f;ut • Since t f--+ g; (0) is increasing (by the Schwarz lemma, 
say), one can reparameterize the path in such a way that g;(O) = exp(t). If that is 
the case, we say that 1] is parameterized by capacity from 0. By standard properties 
of conformal maps (see [35], Proposition 2.5), for each t E [0, (0) the limit 

W(t):= lim gt(z), 
Z-H/(t) 

where z tends to 1](t) from within U \ 1][0, t], exists. One can also verify that 

W: [0, (0) ---+ au 
is continuous. Assuming the parameterization by capacity, Loewner's theorem 
states that gt satisfies the differential equation 

(2.1) 
a _ _ gt(z) + Wet) 
tgt(z) - gt(z) gt(z) _ W(t)' 

It is also clear that 

(2.2) Vz EU, go(z) = z. 

We call (W(t), t::: 0) the driving function of the curve 1]. 
The driving function W is sufficient to recover the two-dimensional path 1], 

because the procedure may be reversed, as follows. Suppose that W: [0, (0) ---+ au 
is continuous. Then for every z E U there is a solution gt(z) of the ODE (2.1) with 
initial value go(z) = z up to some time T(Z) E (0,00], beyond which the solution 
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does not exist. In fact, if r(z) < 00 and z i= W(O), then we have limttr(z) gt(z) -

W (t) = 0, since this is the only possible reason the ODE cannot be solved beyond 
time r(z). Then one defines K t := {z E U: r(z) :s t} and D t := U \ K t is the 
domain of definition of gt. The set K t is called the hull at time t. If W arises 
from a simple path rJ as described in the previous section, then we can recover rJ 

from W by using rJ(t) = g;l(W(t)). However, if W: [0, 00) --+ U is an arbitrary 
continuous driving function, then, in general, K t need not be a path, and even if it 
is a path, it does not have to be a simple path. 

Radial SLEK is the process (Kt, t ~ 0), where the driving function wet) is set 
to be Wet) := exp(iBKt ), where B: [0, 00) --+ lR is Brownian motion. Often, one 
takes the starting point Bo to be random uniform in [0, 2n]. It has been shown 
in [36] that the hull K t is a.s. a simple curve for every t > ° if K :s 4 and that, a.s. 
for every t > 0, K t is not a simple curve if K > 4. For every K ~ 0, there is a.s. 
some random continuous path rJ: [0, 00) --+ U such that, for all t > 0, D t is the 
component of U \ rJ[O, t] containing 0. When K i= 8, this was proved in [36], while 
for K = 8 this will be proven in the current paper. This path is called the radial SLE 
path. 

Suppose that D is a simply connected domain containing 0. If Y is a continuous 
simple curve joining a D to ° with only an endpoint in aD, one can reparameterize 
the path rJ := 0/ 0 y according to capacity and find its driving function W, as before. 
The conformal map 

gt = o/D\y[O,tl: D \ y[O, t] --+ U 

still satisfies (2.1), but this time, gO = 0/ D. (Here, the parameterization chosen 
for y is according to the capacity of 0/ 0 y[O, t].) Radial SLE in D is then simply 
the image under 0/ D 1 of radial SLE in the unit disk. 

Similarly, one can encode continuous simple curves rJ from ° to 00 in the closed 
upper half plane lHI via a variant of Loewner's equation. For each time t ~ 0, there 
is a unique conformal map gt from Ht := lHI\ rJ[O, t] onto lHI satisfying the so-called 
hydrodynamic normalization 

(2.3) lim gt(z) - z = 0, z---+oo 

where z --+ 00 in lHI. If we write gt(z) = z + a(t)z-l + o(z-l) near 00, it 
turns out that aCt) is monotone. Consequently, one can reparameterize rJ in 
such a way that aCt) = 2t, that is, gt(z) = z + 2tz- 1 + o(z-l) when z --+ 00. 

This parameterization of rJ is called the parameterization by capacity from 00. 

(This notion of capacity is analogous to the notion of capacity in the radial 
setting; however, these are two distinct notions and should not be confused.) If 
g : lHI \ K --+ lHI is the conformal homeomorphism satisfying the hydrodynamic 
normalization, then limz---+ oo (gt (z) - z) z/2 is called the capacity of K from 00. 

Assuming that rJ is parameterized by capacity, the following analog of Loewner's 
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atgt(z) = gt(z) - W(t)' 
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where the driving function W is again defined by Wet) := gt(l1(t». As above, 11 is 
determined by W. 

Conversely, suppose that W is a real-valued continuous function. For z E 1HI, one 
can solve the differential equation (2.4) starting with ga(z) = z, up to the first time 
T(Z) where gt(z) and W(z) collide [possibly, T(Z) = 00]. Let the hull be defined 
by Kt := {z E 1HI: T(Z) ::s t}. Then gt : 1HI \ Kt ~ 1HI is a conformal map onto 1HI, and 
ga(z) = z. In general, K t is not necessarily a simple curve. If Wet) = BKt , then 
(Kt, t :::: 0) is called chordal SLEK • 

It turns out (see [28], Section 4.1) that the local properties of chordal SLEK 

and of radial SLEK are essentially the same. [That is the reason the normalization 
aCt) = 2t was chosen over the seemingly more natural aCt) = t.] In particular, 
for every K, chordal SLEK is generated by a random continuous path, called the 
chordal SLEK path. 

At some points in our proofs, we will need the following simple observation. 

LEMMA 2.1 (Diameter bounds on Kt). There is a constant C > Osuch thal 
the following always holds. Let W: [0, (0) ~ lR. be continuous and let (Kt, t:::: 0) 
be the corresponding hull for Loewner's chordal equation (2.4) with driving 
function W. Set 

k(t) := v't + max{IW(s) - W(O)I: s E [0, tn. 
Then 

"It:::: 0, C-1k(t)::s diamKt::S C k(t). 

Similarly, when K t C U is the radial hull for a continuous driving function 
W: [0, (0) ~ au, then 

"It ::::0, c-1 min{k(t), 1}::s diamKt ::s C k(t). 

PROOF. This lemma can be derived by various means. We will only give a 
detailed argument in the radial case. The chordal case is actually easier and can 
be derived using the same methods. It can also be seen as a consequence of the 
result in the radial setting (because chordal Loewner equations can be interpreted 
as scaling limits of radial Loewner equations). 

We start by proving the upper bound on diamKt . Let 8 :::: max{IW(s) -
W(O)I: s E [0, tn. Then, as long as Igt(z) - W(O)I :::: 38, we have latgt(z)1 ::s 1/8. 
Hence, if Iz - W (0) I :::: 48, then, for all t ::s 82 , Igt (z) - zl ::s 8 and therefore z ¢. K t . 

Hence, diam K t ::s 8k(t). 
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In order to derive the lower bound, we will compare capacity with harmonic 
measure. It is sufficient to consider the case where diamKt < 1/10. Let fJ., denote 
the harmonic measure on K t U au from O. Because K t is contained in the disk of 
radius diam K t with center W (0) E K t n au, there is a universal constant c such 
that fJ.,(Kt ) ~ cdiamKt • Hence, it suffices to give a lower bound for fJ.,(Kt ). 

Since gt (z) / z is analytic and nonzero in a neighborhood of 0, the function 
h(z) = log Igt(z)1 - log Izl is harmonic in Ut := U \ K t . Note that h(O) = t. 
Because Igt(z)1 --+ 1 as z tends to the boundary of Ut , the mean value 
property of h 0 gt- l implies the following relation between harmonic measure 
and capacity: t = h(O) = J 10g(I/lzl) dfJ.,(z). Since K t contains points in au and 
diamKt ~ 1/10, we have 10g(1/lzl) ~ c'diamKt for all z E K t . Therefore, 
t ~ c' fJ.,(Kt ) diamKt ~ c"(diamKt)2. 

It now remains to compare fJ.,(Kt ) and IW(t) - W(O)I. We still assume 
that diamKt < 1/10. Let At := au \ gt(U \ Kt). If z E au \ Ks and s ~ t, 
then (2.1) shows that au Igs+u (z) - W (s) I :::: 0 at u = O. This implies that 
(As, s ~ t) is nondecreasing. Hence, for all s ~ t, we have W(O) E Ao C At and 
W(s) E As C At so that IW(s) - W(O)I is bounded by the length of At, which is 
equal to 2n fJ.,(Kt ). This completes the proof of the lemma. D 

2.2. A discrete harmonic measure estimate. In this section, we introduce some 
notation and state an estimate relating discrete harmonic measure and continuous 
harmonic measure in domains in the plane. In order to get more quickly to the 
core of our method in Section 3.2, we postpone the proof of the harmonic measure 
estimate to Section 5. 

A grid domain D is a domain whose boundary consists of edges of the grid Z2. 
For an arbitrary domain Dee, and p E D define the inner radius of D with 
respect to p, 

radp(D) := inf{lz - pi : z ¢. D}. 

Let ~ denote the set of all simply connected grid domains such that 
0< rado(D) < 00 (i.e., D f. C and 0 ED). 

Points in ]R2 = C with integer coordinates will be called vertices, or lattice 

points. Let V(D) := D n Z2 denote the lattice points in D. 
Let D E ~ and let v be a vertex in aD. If a D contains more than one edge 

incident with v, then it may happen that the intersection of D with a small disk 
centered at v will not be connected. Hence, as viewed from D, v appears as 
more than one vertex. In particular, 1/1 = 1/ID does not extend continuously to v. 
This is a standard issue in conformal mapping theory, which is often resolved by 
introducing the notion of prime ends. But in the present case, there is a simpler 
solution which suffices for our purposes. Suppose v E Z2 n aD and e is an 
edge incident with v that intersects D. The set of such pairs w = (v, e) will be 
denoted Va(D). If 1/1: D --+ U is conformal, then 1/I(w) will be shorthand for the 
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limit of 1/f(z) as z --+ v along e (which always exists, by [35], Proposition 2.14). 
Similarly, if a random walk first exits D at v, we say that it exited D at w if the 
edge e was used when first hitting v. A reader of this paper who chooses to be 
sloppy and not distinguish between v and w will not lose anything in the way of 
substance. We will not always be so careful to make this distinction. 

If a E V(D) and b E V(D) U Va(D), define H(a, b) = HD(a, b) as the 
probability that the simple random walk started from a and stopped at its first 
exit time of D visits b. 

For any wED and u E Va(D), we define 

(2.5) A = A(W, u; D):= 1 -11/f(w)1 2 = Re(1/f(U) + 1/f(W)). 
11/f(w) - 1/f(u) 12 1/f(u) - 1/f(w) 

Note that A is also equal to the imaginary part of the image of w by the conformal 
map from D onto the upper half plane that maps 0 onto i and u to 00. It is also 
the limit when E --+ 0 of the ratio between the harmonic measure in D of the 
E neighborhood of u in aD, taken, respectively, at w and at 0 (i.e., it corresponds 
to the Poisson kernel). Therefore, A can be viewed as the continuous analog of 
H(w, u)/ H(O, u). Note that the function hew) = H(w, u)/ H(O, u) is discrete 
harmonic on V(D), which means that hew) is equal to the average of h on the 
neighbors of w when w E V(D). 

PROPOSITION 2.2 (Hitting probability). For every E > 0 there is some ro > 0 
such that the following holds. Let DE 1) satisfy rado(D) > ro and let u E Va(D) 
and WE V(D). Suppose I1/fD(W)1 ::::; 1 - E and H(O, u) i= O. Then 

(2.6) IH(W,U) I ----A(w,u;D) <E. 
H(O, u) 

The proof is given in Section 5. 

3. Conformal invariance of the LERW. 

3.1. Loop-erased random walk background. We now recall some well-known 
facts concerning loop-erased random walks. 

LEMMA 3.1 (LERW reversal). Let DE 1) and let I' be a simple random walk 
from 0 stopped when it hits aD. Let f3 be the loop erasure of I' and let y be the 
loop erasure of the time reversal of I' . Then y has the same distribution as the time 
reversal of f3. 

See [25]. A simpler proof follows immediately from the symmetry of (12.2.3) 
in [26]. This result (and the proofs) also holds if we condition I' to exit aD 
at a prescribed u E Va(D), which corresponds to the event {y n aD = {uH = 
{f3 n aD = {u}} (assuming this has positive probability). 
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Throughout our proof, we will use the simple random walk r and the loop 
erasure Y = (Yo, Y1, ... , re) of its time reversal (so that Yo E aD and Ye = 0). 

We use Dj to denote the grid domains Dj := D \ U{~J[Yi' Yi+ll. Define, for 
j E {O, 1, ... ,e}, 

nj := min{n 2: 0: r(n) = Yj} 

and note that n j+ 1 < n j for j = 0, 1, ... , e - 1 by the definition of y. Also set 
·+1 r J :=r[nj+1,nj]. 

More precisely, consider r j as the grid path given by 

rj(m):= rem +nj), m =0, 1, ... ,nj-1-nj. 

LEMMA 3.2 (Markovian property). Let j E N and let uo, ... , u j E 71..2 . 

Suppose that the probability of the event (Yo, ... , Yj) = (uo, ... , u j) is positive. 
Conditioned on this event, the following hold: 

(i) The paths r 1, ... , r j and r [0, n j] are conditionally independent. 
(ii) For k E {1, ... , j}, the conditional law of rk is that of a simple random 

walk in Dk-1 started from Uk and conditioned to leave Dk-1 through the edge 
[Uk, uk-ll. 

(iii) The conditional law of r [0, n j] is that of a simple random walk started 
from ° conditioned to leave D j at U j, and Y [j, l] is the loop erasure of the time 
reversal ofr[O, n j]. 

PROOF. Since Y is the loop erasure of the reversal of r, the event 
(Yo, ... , Yj) = (uo, ... , U j) is equivalent to the statement that, for each k = 
0, 1, ... , j -1, the first hit ofr to {uo, ... , uk}UaD is through the edge [Uk+1, Uk]. 
Let Tk := min{n: r(n) E {Uo, ... , Uk} u aD}, k = 0, ... , j. The strong Markov 
property of r with the stopping times Tk now implies the lemma. D 

The following simple lemma will also be needed. 

LEMMA 3.3 (Expected visits). Suppose that v E V(D) and that Uo and U1 
are two vertices satisfying P[yO = Uo, Y1 = ull > 0. Conditioned on Yo = Uo and 
Y1 = U1, the expected number of visits to v by r1 is G(U1, v)H(v, U1). 

Here G (u, v) denotes the discrete Green's function, that is, the expected number 
of visits to v by a simple random walk started at u, which is stopped on exiting D. 

PROOF OF LEMMA 3.3. Let X be a simple random walk from U1 stopped on 
exiting D and let k be the last time such that X(k) = U1. Then r 1 conditioned on 
Yo = Uo and Y1 = U1 has the same distribution as X conditioned on X(k + 1) = Uo. 
But the path j t--+ X(k + j) is independent from X[O, k]. Consequently, the 
expected number of visits of X to v conditioned on X(k + 1) = Uo is equal to 
the expected number of visits to v of X[O, k]. The lemma follows. D 
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3.2. The core argument. We keep the previous notation and also use the 
conformal maps 1/tj : Dj ~ U satisfying 1/tj(O) = 0 and 1/tj(O) > o. Set Uj := 
1/tj(Yj) and U := Uo. Note that Y can also be viewed as a continuously growing 
simple curve from a D to 0 and therefore can be represented by Loewner's 
equation. Let W: [0, (0) ~ au denote the (unique) continuous function such that 
solving the radial Loewner equation with driving function W (t) gives the path y. 
Note that Uj = W(tj), where tj is the continuous capacity of y[O, j] from 0 in D 
(i.e., the capacity of 1/t(y[O, j]) from 0 in U). We denote by (o-(t), t ~ 0) the 
continuous real-valued function with 0-(0) = 0 such that Wet) = W(O) exp(io-(t». 
We also define ~ j = o-(tj), so that Uj = U exp(i ~ j). 

PROPOSITION 3.4 (The key estimate). There exists a positive constant C such 
that,for all small positive 8, there exists ro = ro(8) such that the following holds. 
Let D E ~ satisfy rado(D) > roo For every uo E Va (D) with P[yO = uo] > 0, let 
y denote the random path from Uo to 0 obtained by loop erasure of the time 
reversal of a simple random walk from 0 to a D conditioned to hit a D in Uo. Let 

m:= minU ~ 1 :tj ~ 82 or I~jl ~ 8}, 

where ~ j and t j are as described above. Then 

(3.1) 

and 

(3.2) 

Recall that Lemma 3.1 says that y has the same distribution as the chronological 
loop erasure of a random walk from 0 to a D conditioned to hit a D at uo. 

Here is a rough sketch of the proof. Let v E V(D) satisfy 

(3.3) rado(D)/200 < Ivl < rado(D)/5. 

Let ht denote the number of visits to v by r. (This is the quantity which we 
referred to in Section 1 as the "observable.") The proof is based on estimating the 
two sides of the equality 

(3.4) 

The estimate for the right-hand side will involve the distribution of tm and ~m. 
We get the two relations (3.1) and (3.2) by considering two different choices for 
such a v. 

The estimates for the two sides of (3.4) are rather straightforward. Basically, 
each side is translated into expressions involving the Green's functions G j and 
the hitting probabilities Hj. These are then translated into analytic quantities 
using (2.6). Earlier versions of the proof required other estimates, somewhat more 
delicate, in addition to (2.6). Fortunately, it turned out that (2.6) is sufficient. Since 
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we came across several different variants for the proof, based on choosing different 
observables, it may be said that the proof is inevitable, rather than accidental (and 
this also applies to Theorem 1.3). Basically, the reason the proof works is that the 
expected number of visits to v in Uj=1 [' j given Y [0, m] can be estimated rather 
well given the rough geometry of y[O, m] in a scale much coarser than the scale 
of the grid. Similarly, it is important that E[ht] can be estimated given the rough 
geometry of D, but this fact is not surprising. 

In the following, we abbreviate the Green's functions and hitting probabilities 
in Dj by Gj := GDj and Hj := HDr The following lemma will be needed. 

LEMMA 3.5 (Green's function bounds). There is a constant C > 0 such that, 
for every D E 1) and v E V(D) satisfying (3.3), 

(3.5) l/C:s GD(O, v):s C 

holds. Also, given 8> 0, there is an r = r(8) such that, ifrado(D) > r, then, with 
the notation of Proposition 3.4, 

(3.6) 

PROOF OF PROPOSITION 3.4. Since tm-l < 82, it follows from the Koebe 1/4 
theorem that rado(Dm-l) > rado(D)/5 :::: ro/5 if 8 is small. (Apply [35], Corol­
lary 1.4, with z = 0 to 1/101 and 1/I;;;~1') Moreover, the continuous harmonic mea­
sure in D at 0 of any edge e with a vertex on a D can be made arbitrarily small 
by requiring rado(D) to be large. [A Brownian motion started at 0 has probability 
going to 1 to surround the disk rado(D)U before hitting e, as rado(D) --+ 00.] By 
the conformal invariance of the harmonic measure, this implies that the diameter 
of 1/1 (e) can be made arbitrarily small. Applying this to the domains Dj and using 
Lemma 2.1, we see that we may take ro large enough so that, for all j < m, for all 
t E [tj, tj+l], Il?-(t) - l?- (tj) I :s 83 and Itj+l - tj I :s 83. In particular, tm :s 82 + 83 

and I~m I :s 8 + 83 . We also require ro/8 to be larger than the r(8) of Lemma 3.5. 
Suppose v E V(D) satisfies (3.3). Set Zj := 1/Ij(v) and Z := Zoo For each 

j E {I, ... , R.}, let h j denote the number of visits to v by [' j . Also let 

e 
hj:= L hk, 

k=j+l 

which is the number of visits of v by [,[O,nj]. Let J....j := J....(v, Yj; Dj), where 
J....( v, v'; D j) is as in (2.5). Since, conditionally on Y [0, n, [,[0, n j] is a random 
walk in Dj conditioned to leave Dj at Yj, 

G ·(0 v)H ·(v y.) 
E[h -+: I [0 .]] = l' l' 1 

1 Y ,J H'(O') 
1 'Yl 
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and Proposition 2.2 [together with (3.5)] implies that if ro(8) is sufficiently large, 
then, for every j E {a, 1, ... , m}, 

E[hjIY[O, j]] = Gj(O, V)Aj + 0(83). 

[This 0 (.) notation is shorthand for the statement that there is an absolute constant 
C such that IE[hjIY[O, j]] - Gj(O, v)Ajl :s C83. We freely use this shorthand 
below.] In particular, 

(3.7) E [~ h j ] ~ E[ht - h!] ~ E[ ColO, v)Ao - C m (0, v)Am] + 0(83). 

We will now get a different approximation for the left-hand side. Applying 
Lemma 3.3 to the domain Dj-1 gives 

E[hjIY[O, j]] = Gj-1(Yj, V)Hj-1(V, Yj). 

Proposition 2.2 implies that, for ro(8) large enough, 

(3.8) E[hjIY[O, j]] = (Aj-1 + 0(8»)G j -1(Yj, V)Hj-1(0, Yj). 

Considering the same simple random walk starting at ° and stopped when it exits 
Dj or Dj-1 shows that 

(3.9) Gj-1(0, v) - Gj(O, v) = Hj-1(0, Yj)Gj-1(Yj, v). 

We now derive an a priori bound on max {IA j - Am 1 : j :s m}. Recall that 

(3.10) Aj-Ao=Re(Uj+Zj _ U+Z). 
Uj - Zj U - Z 

But IUj - UI :s 0(8) for j :s m, and Loewner's equation shows that 

U+Z 
Zj = Z +tjZ U _ Z +tjO(8) 

U+Z 
= Z + tjZ + 0(83), 

U-Z 

v j:S m, 
(3.11) 

and, in particular, Zj = Z + 0(82). (The equation blows up when IU - ZI 
is small, and such estimates would not be valid in such a situation. How­
ever, this is not a problem here. First, 0/0(0) :s l/rado(D) by the Schwarz 
lemma applied to the restriction of % to rado(D)1IJ. Now the Koebe 1/4 the­
orem (the case z = ° in the left-hand inequality in [35], Corollary 1.4) gives 
%l((4/5)U) ~ (1/4)10/0(0)1-1 (4/5)U ~ (rado(D)/5)U. In particular, IZI = 

100o(v)1 :s 4/5 by (3.3). Since tm = 0(82 ), it is clear that if 8 is small and one 
starts flowing from Z according to Loewner's equation, it is impossible for Z to 
get close to au up to time tm .) Thus, we get our bound, 

v j:s m, 
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Using (3.8), this implies 

E[hjIY[O, j]] = (Jlom + 0(8))G j -I(Yj, V)Hj-I(O, Yj). 

Now applying (3.9) yields 

E[~h j] = E[(Am + o (S))(Go(O, v) - Gm(O, v))], 

and hence (3.6) implies 

E[~ h j ] = E[Am(GO(O, v) - Gm(O, v))] + O(S3). 

Comparing with (3.7) gives Go(O, v)E[)' .. m - AO] = 0(83), and hence (3.5) implies 

(3.12) E[Am - AO] = 0(83). 

[The reader may wonder about the apparent miracle happening here, namely, 
that A j turns out to be "almost" a martingale. In fact, this is not important for 
identifying the scaling limit. If the right-hand side in (3.12) turned out to be any 
other explicit quantity, up to 83 error terms, the proof would still work, but give 
a different limiting process. In Remark 3.6 below, we give a short proof of (3.12) 
and further comments.] 

Recall that this equation is valid uniformly over all choices of v. We now Taylor­
expand Am - AO with respect to Um - U and Zm - Z, up to 0(83) error terms. 
As we have seen, Um - U = 0(8) and Zm - Z = 0(82), and hence only the first­
order derivative with respect to Zm - Z and the first two derivatives with respect 
to 

Um - U = (e iLlm - I)U = iU ~m - U ~~/2 + 0(83) 

come into play (the mixed derivatives can be ignored). Using (3.10) and (3.11), we 
get 

Am-Ao=~mIm( 2ZU 2)+(2tm-~~)Re(ZU(U+;))+0(83), 
(U - Z) (U - Z) 

and therefore (3.12) gives 

(3.13) Im( 2ZU 2)E[~m] + Re(ZU(U + ;))E[2tm - ~~] = 0(83). 
(U-Z) (U-Z) 

We claim that when ro(8) is large enough we may find VI, V2 E V(D) in the 
range (3.3) satisfying Il/I(VI) - U /301 < 83 and Il/I(V2) - i U /301 < 83 . Indeed, 
by Theorem 1.3 and Corollary 1.4 from [35], for every R E (0, 1), there is a 
C = C(R) < 00 such that Il/I'(z) 1 :::s C/radz(D) and radz(D) ~ C- l rado(D) hold 
for all z E l/I-I(RU). Let VI be a vertex closest to l/I-I(U/30). By integrating 
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the above bound on 1/1,/ along the line segment from 1/I-l(U /30) to VI (whose 
length is less than 1), we get 11/r(Vl) - U /301 < 83 if rado(D) is large enough. 
Another application of Theorem l.3 and Corollary 1.4 from [35] now shows that 
VI satisfies (3.3). An entirely similar argument produces V2. 

Consequently, (3.13) holds with Z E {U /30, i U /30}. Plugging in these two 
values for Z produces two linearly independent equations in the variables 
E[2tm - ..6.~] and E[..6.m ] and thereby proves (3.1) and (3.2). D 

REMARK 3.6. Here is another proof of (3.12). Given a vertex V E V(D), 
let f3 = (f3o, f31, ... ) denote the loop erasure of the reversal of the simple 
random walk r v started from V and stopped on exiting D (i.e., the analog 
of y, but starting from v instead of 0). Abbreviate yn := (Yo, ... ,Yn) and 
similarly f3n := (f3o, ... , f3n). For a sequence of vertices u = (uo, Ul, ... , un), let 
an(u):= p[yn = u] and bn(u):= p[f3n = u]. Set Mn := bn(yn)/an(yn). (In other 
words, Mn is the Radon-Nikodym derivative of the law of f3n with respect to the 
law of yn.) It is easy to verify that Mn is a martingale: 

E [M I n] _ "bn+l (ynw) an+l (ynw) _ Lw bn+l (ynw) - M 
n+l Y - ~ - - n· 

w an+l(ynW) an(yn) an(yn) 

Lemma 3.2 implies that Mn = Hn(v, Yn)/ Hn(O, Yn), since, on the event that 
r v and r first hit {uo, ... , un} u aD at Un, we may couple them to agree after 
that first visit to Un. Now (2.6) implies (3.12). 

Although this proof is shorter than the first proof of (3.12), it is harder to 
motivate and less natural. For this reason, we chose to stress the first proof. 

Let us finally note that (as opposed to the martingale that shows up in the 
analysis of the UST Peano curve), the quantity corresponding to this martingale 
in the scaling limit is unbounded and converges almost surely to ° (it is not 
uniformly integrable), so that it cannot be interpreted as a conditional probability 
or a conditional expectation. Correspondingly, in the discrete setting, Mn is very 
large when the path hits v (if it does) and Mn is very small when the path hits 0. 

3.3. Recognizing the driving process. The objective in this section is to show 
that W of the previous section is close to a time-scaled Brownian motion on the 
unit circle. 

THEOREM 3.7 (Driving process convergence). For every T > ° and E > 0, 
there is an rl = rl(E, T) > Osuch that,forall D E ~ with rado(D) > rl, there is 
a coupling of y with Brownian motion B (t) starting at a random uniform point in 
[0, 2n] such that 

P[sup{W(t) - B(2t)l:t E [0, Tn > E] < E. 
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Recall that a coupling of two random variables (or random processes) A and B 
is a probability space with two random variables A' and B', where A' has the same 
distribution as A and B' has the same distribution as B. In the above statement (as 
is customary), we do not distinguish between A and A' and between B and B'. 

In order to deduce this theorem from Proposition 3.4, we will use the Skorohod 
embedding theorem, which is one of the standard tools for proving convergence to 
Brownian motion (one could work out a more direct proof but the following proof 
seems cleaner). 

LEMMA 3.8 (Skorohod embedding). If (Mn)n~N is an (:Fn)n~N martingale, 
with liMn - Mn-Illoo S 28 and Mo = 0 a.s., then there are stopping times 
o = TO S TI S ... S TN for standard Brownian motion (Bt , t :::: 0) such that 
(Mo, MI, ... , MN) and (Bro, Brl' ... , BrN ) have the same law. Moreover, one can 
impose, for n = 0,1, ... , N -1, 

(3.14) 

and 

(3.15) 

The proof can be found in many probability textbooks, including [9] and [37]. 
Often, it is stated for just one random variable MI; for a statement in terms 
of martingales, see, for instance, [8] and [43]. The relation (3.15) is not stated 
explicitly in these references (since the assumption that the increments of Mn are 
bounded is weakened), but is a consequence of the proof. It can also be derived a 
posteriori from E[Tn+I - Tn] = E[(Mn+I - Mn)2] < 00, since the expected time 
for Brownian motion started outside an interval to hit the interval is infinite. 

PROOF OF THEOREM 3.7. Since the hitting measure of a simple random walk 
from 0 is close to the hitting measure for Brownian motion when rado(D) is large 
(see, e.g., Section 5), it is clear that W(O) is nearly uniform in au. It is therefore 
enough to show that iJ (t /2) is close to standard Brownian motion. 

Assume, without loss of generality, that T :::: 1. Pick 8 = 8 (E, T) > 0 smalL Let 
ro be as in Proposition 3.4 and take rt := 8 exp(20T)ro. Let yt denote the initial 
segment of y such that 1/ID(yt) has capacity t from O. By the Schwarz lemma, 
1/Ib(O) S rado(D)-I. Therefore, the Koebe 1/4 theorem implies rado(D \ yt) :::: 
exp( -t) rado(D)/4. Hence, if rado(D) :::: rI, Proposition 3.4 is valid not only for 
the initial domain D, but also for the domain D slitted by subarcs of y, up to 
capacity 20T. 

As in Proposition 3.4, define m to be the first j = 1, 2, ... such that I ~ j I :::: 8 
or t j :::: 82 . Set mo := 0, m 1 := m and inductively let mn+ 1 be the first j :::: mn + 1 
such that I ~ j - ~mn I :::: 8 or tj - tmn :::: 82 , whichever happens first. Let :Fn denote 
the a-field generated by y[O, mn ]. Set 

N := rIOT 8-21. 
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Our choice of r1 ensures that tj+1 - tj ::: 282 for all j < N and that tN ::: 20T. 
Hence, Proposition 3.4 holds for all domains Dmn with n < N. Applying clause 
(iii) of Lemma 3.2 therefore gives 

(3.16) 

and 

(3.17) 

For n ::: N, set 

(3.18) 
n-1 

Mn := L(D.mj+! - D.mj - E[ D.mj+! - D.mj Irj D· 
j=O 

Clearly, Mo, ... , MN is a martingale for .1"0, ... , rN. The definition of mn and the 
choice of r1 imply that IIMn+1 - Mn 1100 ::: 28. 

By Lemma 3.8, we may couple (Mo, ... , MN) with a standard Brownian motion 
with stopping times TO ::: T1 ::: ... ::: TN such that Brn = Mn and (3.14) hold. 
Extend the coupling to include y (this clearly can be done). 

Note that the definition of tmn and (3.15) ensure that, for all n < N, 

(3.19) 
sup{IBt - Brn!:t E [Tn, Tn+1l} ::: 28, 

sup{I1J(t) - D. tmn I:t E [tmn' tmn+!]} ::: 28 

and (3.16) shows that 

(3.20) sup{lD.tmn -Mnl:n:::N}=0(83 N)=0(8T). 

Hence, as Mn = Brn and Bt is a.s. continuous, it remains to relate the capacities tmn 
with the stopping times Tn and verify that tmN > T with high probability. For this 
purpose, define 

n-1 
Yn = L(Mj+1 - Mj)2. 

j=o 

We first show that Yn is close to 2tmn . Let Zn := Yn - 2tmn . By (3.18) and (3.16), 
we have, for n < N, IMn+1 - Mn - D.tm + D.tm I = 0(83). This implies n+! n 
IMn+1 - Mnl = 0(8) and hence also 

2 ( )2 4 Yn+1 - Yn = (Mn+1 - Mn) = D.tmn+! - D.tmn + 0(8 ). 

Consequently, (3.17) gives 

E[Zn+1 - Znlrn]::: 0(83 ). 

From the fact that the increments of tmn and those of Yn are bounded by 0(82), 
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we also have E[(Zn+l - Zn)2IFn] :::: 0(84 ). Set Z~ := Zn - LJ=1 E[Zj -

Zj-lIFj-IJ. Since this is an Fn-martingale, we have E[Z~,2] = L7=1 E[(Zj -

Zj_l)2] and the above estimates give E[Z~ 2] = O(N 84). Assuming N8 3 < 

81/2/2, without loss of generality, and applying Doob's maximal inequality 
(see [37],11.1.7) for L2-martingales to Z~, we get 

(3.21) 

By the definition of the tmn , we have Yn+l - Yn + tmn+l - tmn ~ 82. Summing 
gives Y N + tmN ~ N 82 ~ 1OT. Therefore, (3.21) implies 

(3.22) P[tmN < 2T] = OCT 8). 

We now show that with high probability Tn is also close to Yn for every n :::: N. 
By (3.15), it is clear that E[(Tn+l - Tn)2IB[0, Tn]] = 0(84 ) and therefore 

E[(Tn+1 - Yn+l) - (Tn - Yn))2IB[0, Tn]] = 0(84 ). 

Also, (3.14) gives 

E[(Tn+1 - Yn+l) - (Tn - Yn)IB[O, Tn]] = 0. 

Doob's inequality therefore implies 

p[maxlTn - Ynl > 81/ 2] = 0(T8). 
n~N 

Combining this with (3.21) leads to 

p[maxlTn - 2tmn I > 81/2] = OCT 8). 
n~N 

Since Bt is a.s. continuous, together with (3.22), (3.19) and (3.20), this completes 
the proof. D 

3.4. Convergence with respect to a stronger topology. Theorem 3.7 provides 
a kind of convergence of the loop-erased random walk to SLE2. As we will see in 
this section, this kind of convergence suffices, for example, to show that the scaling 
limit with respect to the Hausdorff metric of the union of au and the LERW in U 
is the union of au and the SLE2 path. 

Let a: [0, 1] --+ C and f3: [0,1] --+ C be two continuous paths. Define 

pea, (3) := inf sup la(t) - f3 0 ¢(t)l, 
CPE<I> tE[O, 1] 

where <t> is the collection of all monotone nondecreasing continuous maps from 
[0, 1] onto [0, 1]. It is an easy well-known fact that p is a metric on equivalence 
classes of paths, where two paths a and f3 are equivalent if a 0 ¢1 = f3 0 ¢2, where 
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1>1,1>2 E <1>. Since pea, fJ) does not depend on the particular parameterization of 
a or fJ, the metric p is also defined for paths on intervals other than [0, 1]. 

To explain our present goal, let us point out that there is a sequence of paths 
an from 1 to 0 in U such that their Loewner driving functions Wn (t) converge 
uniformly to the constant 1 but an does not converge to the path aCt) = 1 - t, 
t E [0,1], in the metric p, although the driving function for a (reparameterized 
by capacity) is the constant 1. For example, we may take an as the polygonal path 
through the points aI, bl +in-2, a2, b2 -in-2, a3, b3 +in-2, ... , a Ln/2J, 0, where 
aj := 1 - n-1 + (jn)-1 and bj := 1 - j In. 

THEOREM 3.9 (LERW image in U converges). For any sequence Dn E ;.v 
with rado(Dn) ---+ 00, if ILn denotes the law of yn := VtDn 0 yn, where yn is the 
time reversal of the LERW from 0 to aDn, then ILn converges weakly (with respect 
to the metric p) to the law of the radial SLE2 path started uniformly on the unit 
circle. 

The outline of the proof is as follows. We define a suitable family of compact 
subsets of the space of simple paths from au to 0 in U, which we can use to show 
that the sequence ILn is tight. (See, e.g., [9] for background on weak convergence 
and the notion of tightness.) This implies that a subsequence of ILn converges 
weakly to some probability measure. Theorem 3.9 then shows that the law of SLE2 
is the unique possible subsequential limit. 

In order to prove tightness, we will use properties of the loop-erased random 
walk proved in [38]. The actual details will require some background in the 
geometric theory of conformal maps. In particular, some properties of extremal 
distance (a.k.a. extremal length) will be used. See, for example, [2] for background. 
The basic ideas that are used in the proof are taken from [3] and [38]. 

For a simply connected D ~ C containing 0, let Xo(D) denote the space of all 
simple paths y : [0, 00] ---+ D from a D to 0 in D, which intersect a D only at the 
starting point. Given a monotone nondecreasing function Y: (0, (0) ---+ (0, 1], let 
Xy(D) C Xo(D) denote the space of all simple paths y E Xo(D) such that, for 
every O:s SI < S2, 

dist(y[O, sIl u aD, Y[S2, ooD/rado(D) ~ Y(diam(y[sl, s2D/rado(D»). 

Note that whether y E Xy(D) does not depend on the parameterization of y and 
is scaling invariant. 

LEMMA 3.10 (Compactness). Let Y: (0, (0) ---+ (0, 1] be monotone nonde­
creasing. Then Xy(U) is compact in the topology of convergence with respect 
to p. 

PROOF. We use an idea from [3]. For all n EN, let Zn be a finite collection 
of points such that the open balls 93(z, 2-n), z E Zn, cover U. Given a setK C U 
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and a point Z E Zn, let s(K, z, n) denote the diameter of K n 93(z, 21- n) in the 

metric obtained from the Euclidean metric on the disk 93(z, 21-n) by collapsing 
the boundary a93(z, 21- n) to a single point. [In other words, this metric d(x, y) 
is defined as d(x, y) = min{lx - yl, dist(x, a93) + dist(y, a93)}, where 93 = 
93(z, 21- n).] 

Fix y E XT(U). Given t 2: 0, let 

s(t)=Sy(t):= L L s(y[O,t],z,n). 

nEN ZEZn 1 Zn 1 

Clearly, Sy(t) :::: Ln:::O 22- n = 8, and s: [0, 00] --+ [0, (0) is continuous and strictly 
monotone increasing. (To verify that s is strictly monotone increasing, note that, 
if t2 > t1 2: 0, then there is some n E N such that dist(y (t2), Y [0, tIJ) 2: 22- n, and 
so s(y[O, t2], z, n) 2: s(y[O, tIJ, z, n) + 2-n if z E Zn satisfies y(t2) E 93(z, 2-n).) 
Let yes) be y parameterized by s; that is, y = y 0 s-l. Let Sl < S2 and set 
E:= diam9[sl, S2] > 0. Then dist(y(s2), y[O, sIJ u aU) 2: I(E). By the argument 
for strict monotonicity given above, this shows that S2 - Sl 2: 2-n /IZn I, where 
n := min{ kEN: 22- k :::: I (E)}. Therefore, y satisfies an equicontinuity estimate. 
By the Arzela-Ascoli theorem, it follows that the closure of XT(U) is compact in 
the p metric. It is also clear that X T (U) is closed. D 

Our next goal is to use these compact sets to prove tightness, and we start by 
observing that the diameter is tight. 

LEMMA 3.11 (Diameter is tight). There are constants c, C > ° such that for 
every D E :D and every r 2: 1 the simple random walk r starting from ° and 
stopped on hitting a D satisfies 

P[diam(r) 2: rrado(D)] :::: Cr-c . 

Consequently, the same estimate holds for the loop erasure y. 

The first statement is an easy well-known fact. Since the complement of D is 
connected and unbounded, if the random walk makes a loop separating the circle 
rado(D)aU from the circle (r /2) rado(D) au before hitting the latter circle, then it 
must hit aD before (r/2)rado(D)aU. Thus, the lemma is easily proved directly 
and also follows from the convergence of a simple random walk to Brownian 
motion. A rather precise form of this estimate for the random walk, where c = 1/2, 
is known as the discrete Beuding theorem (see [25], Theorem 2.5.2). 

LEMMA 3.12 (Tameness). For every E > 0, there is some monotone nonde­
creasing I: (0, (0) --+ (0,1] and some ro > ° such that for every D E:D with 
rado(D) 2: ro its time-reversed loop-erased walk y = YD satisfies 

P[y E XT(D)] 2: 1 - E. 



957

CONFORMAL INVARIANCE 965 

PROOF. The proof is essentially contained in the proof of [38], Theorem 1.1, 
where it is established that every subsequential scaling limit of LERW is a.s. a 
simple path. We will not repeat the complete proof from [38] here, but indicate 
how it may be adapted to yield the statement of the lemma. 

Let E > O. Clearly, y E Xo(D).1f y fj. Xy(D), then there are O:s Sl < S2 < 00 
such that the distance between y[O, sIl u aD and Y[S2,00] is smaller than 
rado(D)Y(diarny[sl,s2]/rado(D». Let us first deal with the case where the 
distance between Y[S2, 00] and aD is small. Let 1 be the walk generating the 
time reversal of y, and let tn be the first time t where the distance from 1 (t) to aD 
is smaller than 2-n rado(D) and let r = inf{t: let) E aD}. By the Markov property 
of 1 at time tn and Lemma 3.11, 

P[diam [,[tn, r] > 2-n/2rado(D)] :s C2-cn/2. 

Consequently, there is an N = N (E) such that with probability 1 - E /2 for 
every integer n 2: N we have diam['[tn, r] :s 2-n/2rado(D). In this case, if 
diam y [0, S2] > 2 -n /2 rado (D), where n > N, then y [0, S2] is not contained in 
[,[tn, r], which implies that Y[S2, 00] C [,[0, tn] and gives dist(Y[S2, 00], aD) 2: 
2-n rado(D). In other words, if Y satisfies 

(3.23) yet) < min{t2, 2-2N }j4, 

then with probability at least 1 - E /2, for every Sl , S2 E [0, 00], 

(3.24) dist(a D, y [S2, 00]) 2: rado(D) Y (diam y [Sl, S2]/ rado(D»). 

We now focus on the case where the distance between y[O, sIl and Y[S2, (0) is 
small. We shall say that y has a ({3, a)-quasi-Ioop if there are 0 < Sl < S2 < 00 
such that Iy(sl) - y(s2)1:s arado(D) but diamy[sl,s2] 2: {3rado(D). Note that 
if there are 0 < Sl < S2 < 00 such that dist(y[O,sIl, Y[S2, 00]) < arado(D) and 
diamy[sl,s2] 2: {3rado(D), then y has a ({3,a)-quasi-Ioop. Let .A,({3, a) denote 
the event that y has a ({3, a)-quasi-Ioop. Assume, for the moment, that, for all 
n 2: 0, 

(3.25) lim P[.A,(2-n, a)] = 0, 
0:\,0 

uniformly in D. Then we may take a decreasing sequence an ~ 0 such that 
L~l P[.A,(2-n, an)] < E/2 holds for every D E ~. Then with probability at 
least 1 - E /2, y has no (2-n, an)-quasi-Ioop for any n = 1,2, .... Assuming that 
yet) < an holds whenever t:s 2l - n, n EN, and yet) < al for all t, on this event 
we also have 

dist(y[O, sIl, Y[S2, 00]) :s rado(D)Y(diam Y[Sl, S2]/ rado(D») 

for all 0 < Sl < S2 < 00. If we also assume (3.23), then together with (3.24) we get 
P[y E Xy(D)] 2: 1 - E, completing the proof of the lemma. Thus, it remains to 
verify (3.25). 
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Let .A, (ZO, {3, a) denote the event that there are 0 < sl < s2 < 00 such that 
Iy(sl) - y(s2)1 :s arado(D), y(Sl), y(S2) E $(zo, {3rado(D)/4) and diam(y[sl, 
S2]) 2: {3rado(D). In particular, this implies that y[Sl, S2] is not contained in 
the interior of $(zo, {3 rado(D)/2). Assume that 8a < {3. By Lemma 3.11, 
there is an R = R(E) > 0 such that with probability at least 1 - E/2 we have 
y[O,oo] C $(0, Rrado(D)). There is a collection {Zl, Z2, ... , Zk} of points such 
that every disk of radius 2a rado (D) with center in $ (0, R rado (D)) is contained 
in one of the k balls $(Zj, {3 rado(D)/2), j = 1,2, ... , k, and we may take 
k < c((R/{3)2 + 1), where c is an absolute constant. On the event y[O, 00] C 
$(0, Rrado(D)), we have .A,({3, a) C U~=l .A,(Zj, {3, a). Since E > 0 was arbitrary 
and P[y[O, 00] C $(0, Rrado(D))] 2: 1 - E/2, it is therefore sufficient to show 
that P[.A,(Zj, {3, a)] ---+ 0 as a ---+ 0 uniformly in D. The proof of this statement is 
given (with minor changes in the setup) in [38], Theorem 1.1. D 

Let Xy (D) denote the set of paths y E X y (D) that are contained in the ball of 
radius r rado(D) about O. Given y E Xo(D), let y*: [0, 00) ---+ U denote the path 
1/1 D 0 y, parameterized by capacity. 

LEMMA 3.13 (Tameness invariance). For every monotone nondecreasing 
Y: (0, 00) ---+ (0, 1] and every r > 1, there is a monotone nondecreasing 
Y*: (0, 00) ---+ (0, 1] such that,forall D E ~ and y E Xy(D), y* E XY*(U). 

PROOF. Let D E~, Y E Xy(D) and O:s si < s~ :s 00. Note that there exist 
Sl and S2 satisfying si :s Sl :s S2 :s s~ such that 

diam(y*[sl, S2]) 2: diam(y*[si, s~])/4 

and 

(3.26) dist(O, y*[Sl' S2]) 2: diam(y*[sl, S2]). 

Since 

(3.27) dist(y*[O, siJ u au, y*[s~, 00)) 2: dist(y*[O, sll u au, y*[S2, 00)), 

it is sufficient to give a lower bound of the right-hand side of (3.27) in terms of 
E := diam(y*[sl, S2]). 

The Schwarz lemma gives 1/I'v(0) :s l/rado(D). Therefore, by the Koebe 1/4 

theorem (applied to the restriction of 1/1£/ to EU) and (3.26), dist(O, y[Sl, S2]) > 
q rado(D), where q = E /4. On the other hand, the harmonic measure in U from 0 
of y*[Sl, S2] is at least C2, where C2 = C2(E) > 0, so that the harmonic measure 
in D from 0 of y[Sl, S2] is at least C2. Hence, 

(3.28) diam y [Sl, S2] 2: C3 rado(D), 
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Also set 8 := dist(y*[O, siJ u au, y*[S2, 00]). Since 

diam y*[S2, 00] 2: dist(O, y*[Sl' S2]) 2: E, 

the extremal distance between y*[O, Sl] uau and y*[S2, 00] is at most ¢l (8, E) > 0, 
where ¢l is some function satisfying ¢l (8, E) ---+ ° as 8 + 0. By the conformal in­
variance of the extremal distance, this implies that the extremal distance between 
y[O, siJ u aD and Y[S2, 00] is at most ¢l (8, E). Because y is contained in the disk 
of radius r rado(D) about 0, this implies that 

dist(y[O, sll u aD, Y[S2, 00]) :s ¢2(8, E)rrado(D), 

where ¢2 ---+ ° as 8 + 0. Because y E Xy (D), (3.28) and this together imply 

¢2(8, E)r 2: I(C3(E», 

which gives a positive lower bound for 8 = dist(y*[O, siJ u au, y*[S2, 00]) in 
terms of I, r and E = diam(y*[sl, S2]). This completes the proof. D 

LEMMA 3.14 (Convergence relations). Suppose W n, Ware continuous func­
tions from [0, 00) to au such that Wn ---+ W locally uniformly. Let g~, gt be 
the corresponding solutions to Loewner's radial equation and set f tn = (g~)-l, 
ft = gtl. Then ft ---+ ft locally uniformly on [0,00) x 1U. If there are continuous 
curves yn: [0, 00) ---+ U such that, for all t 2: 0, the image of f tn is the compo­
nent ofO in U \ yn[o, t] and there is a y : [0, 00) ---+ U such that yn ---+ y locally 
uniformly on [0, 00), then for all t 2: ° the image of ft is the component of ° in 
U \ y[O, t]. 

PROOF. Since gt is obtained by flowing along a vector field depending on W, 
the inverse ft is obtained by flowing along the opposite field, with the time 
reversed. Hence, the first statement is an immediate consequence of the principle 
that solutions of ODE depend continuously on the parameters of the ODE. The 
second statement is an immediate consequence of the Caratheodory kernel theorem 
(see [35], Theorem 1.8). D 

PROOF OF THEOREM 3.9. Let Wn denote the Loewner parameter of 9n and 
let fln denote the law of the pair (9n, wn). By Theorem 3.7, we know that the 
law of Wn tends weakly to the law of Brownian motion. Lemmas 3.10-3.13 show 
that the set of measures {JLn} is tight with respect to the metric p. Consequently, 
the sequence fln is also tight. Prokhorov's theorem (e.g., [9] and [37]) implies that 
there is a subsequence such that fln converges weakly along the subsequence. Let 
fl be any subsequential weak limit and let (9, W) be a sample from fl. The lemmas 
show that 9 is a.s. a simple path, and Theorem 3.7 shows that W is Brownian 
motion (with time scaled). By the properties of weak convergence, we may couple 
the subsequence of pairs (9n, wn) and (9, W) so that a.s. p(9n, 9) ---+ ° and 
W n ---+ W locally uniformly. 
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Recall that the capacity is continuous with respect to the metric p; that is, if 
f3, f3n : [0, 1] ~ 1U \ {OJ and p(f3n, (3) ~ 0, then the capacity of f3n[O, 1] tends to 
the capacity of f3[0, 1]. (In fact, it is enough that f3n[O, 1] tends to f3[0, 1] in the 
Hausdorff metric.) Indeed, this follows immediately from CaratModory's kernel 
theorem (see [35], Theorem 1.8) and the fact that the local uniform convergence of 
conformal maps implies the convergence of the derivatives (by Cauchy's formula 
for the derivative). 

Since ji is almost surely a simple path, the capacity of ji increases strictly, and 
one can parameterize the path continuously by its capacity. We also parameterize 
the paths jin by capacity. The next goal is to show that jin ~ ji locally uniformly 
on [0, (0). Since p(ji, jin) ~ 0, there are strictly monotone continuous onto maps 
Sn : [0, (0) ~ [0, (0) so that jin 0 Sn ~ ji locally uniformly. If tn E [0, (0) and 
tn ~ t E [0, (0), then it follows from the continuity of capacity with respect to p 
that snCtn) ~ t [because if s is a subsequential limit of snCtn), then the capacity 
of ji(s) must be t; i.e., s = t]. This implies that Sn converges to the identity map 
t ~ t, locally uniformly. By the continuity of ji, it follows that ji 0 S;; 1 ~ ji locally 
uniformly. This gives jin ~ ji locally uniformly. 

We can now finally apply Lemma 3.14 to show that ji is the SLE2 path. As the 
law of the limit ji does not depend on the subsequence, the theorem follows. D 

In the following proof of Theorem 1.1, the main technical point is that we do 
not make any smoothness assumptions on aD. If a D is a simple closed path, 
the theorem follows easily from Theorem 3.9, because the suitably normalized 
conformal maps from 1U to the discrete approximations of D converge uniformly 
to the conformal map onto D. 

PROOF OF THEOREM 1.1. Let D8 be the component of 0 in the complement 
of all the closed square faces of the grid 0 Z2 intersecting aD. Let Y8 be the time 
reversal of the loop-erased random walk from 0 to aD 8 and let f3 be the radial 
SLE2 path in 1U. Let CP8 : 1U ~ D8 be the conformal map satisfying CP8 (0) = 0 and 
cP~ (0) > 0 and let cP : 1U ~ D be the conformal map satisfying cP (0) = 0, cp' (0) > O. 
Theorem 3.9 tells us that we may couple f3 with each of the paths Y8 such that 
p(cpi 1 0 Y8, (3) ~ 0 in probability as 0 + O. Moreover, the proof shows that if we 
use the capacity parameterization for both, then, in probability, 

sup{lcpi l 0 Y8(t) - f3(t) I : t 2:: O} ~ O. 

(There is no problem with convergence in a neighborhood of t = 00, because we 
know that the weak limit of cpi 1 0 Y8 with respect to p is a simple path tending to 0 
as t ~ 00.) 

The CaratModory kernel theorem (see [35], Theorem 1.8) implies that CP8 ~ cP 
uniformly on compact subsets of 1U as 0 ~ O. Consequently, the above gives 

(3.29) "Ito> 0, SUP{IY8(t) - cP 0 f3(t)1 : t 2:: to} ~ 0, 
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in probability. Let E > 0 be small. Then, by Lemma 3.11, there is an E' > 0 such 
that for every D' E :D the probability that a simple random walk from 0 gets to 
distance rado (D') / (2E') before hitting a D' is less than E /2. Let A be the connected 
component of 0 in the set of points in D n (rado(D)/E')1U having distance at 
least EE' rado(D) from aD. By considering the first point where the random walk 
generating Y8 exits A, it follows that, with probability at least 1 - E, the diameter 
of Y8[0, 00] \ A is at most E rado(D) + o. Now note that there is a compact A' C 1U 
such that ¢i1(A) c A' for all sufficiently small 0, since ¢8 --+ ¢ uniformly on 
compacts. Therefore, there is some t1 > 0 such that Y8 [0, tIl n A = 0 a.s. for all 
sufficiently small 0 > O. In particular, 

(3.30) P[ diam Y8[0, tIl > E rado(D) + 0] < E. 

If we take t2 E (0, t1), then taking 0 '\. 0 in (3.29) implies 

P[diam¢ 0 ,8 [t2, tIl> 2Efado(D)] < E. 

Since this holds for every t2, it follows that 

P[diam¢ 0 ,8(0, tIl> 2Efado(D)] < E. 

Using this with (3.30) and choosing to = t1 in (3.29) gives 

P[SUp{IY8(t) - ¢ 0 ,8(t) I :t > O} < 3Efado(D)] --+ 1. 

Since this holds for every E > 0, the theorem follows. D 

4. The UST Peano curve. 

4.1. Setup. The UST Peano curve is obtained as the interface between the 
UST and the dual UST. The setup which corresponds to chordal SLEs is where 
there is symmetry between the UST and the dual UST. Loosely speaking, the UST 
is the uniform spanning tree on the grid inside a domain D but with an entire arc 
a C aD on the boundary identified (wired) as a single vertex, and the dual UST 
also has an arc ,8 CaD on the boundary which is identified. The arcs a and ,8 
are essentially complementary arcs. See Figure 5, where D is approximately a 
rectangle. As mentioned in Section 1, it was conjectured in [36] that, for an 
analogous setup, the interface defined for the critical random cluster models with 
q E (0,4] converges to SLEK , where K = K(q) E [4,8). 

A combinatorial framework is necessary in order to be more precise. There are 
several different possible setups that would work, and the following is somewhat 
arbitrary. 

If a tree T lies in the grid 7i}, then its dual tree Tt will lie in the dual grid 
(Z + 1/2)2, and the Peano path Y will lie in the graph G whose vertices are 
(1/4 + Z/2)2 and where v, u neighbor iff Iv - ul = 1/2. We have three kinds of 
vertices: elements of Z2 are the primal vertices, elements of (1/2+ Z)2 are the dual 
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dual tl'CC 

tree 

Pcallo 

a ~============~~~ 
FIG.5. The tree. dual free and 'Jeano UST path y. 

vertices and e lements of ( 1/ 4 + '£./2)2 are the Peano vertices. If wi-v are vertices 
of any kind , 110t necessarily the same, we say that they are adjacellt if the distance 
between them is as small as it can be for distinct vert ices of these particular kinds. 
In other words, if they are of the same kind, this means thal lhey are neighbors, if 
v E (1 / 4 + Z/2)2 and WE Z2 U( I/ 2+ Z)2, this means Ilv - wlloo = 1/ 4 , while if 

v E Z2 and W E (1/2 + Z)2, thi s means IIv - wll oo = 1/ 2. 
Since there is no added complicat ion, we consider a more general case where a 

and f3 are trees , rather than arcs . Let a be some finite tree in the primal grid Z2 and 
let fJ be a finite tree in the dual grid (1 / 2 + Z)2. Suppose that no edge of a intersects 
an edge of {J . Further suppose that there are two Peano vert ices a , b E (1 / 4 + Z/2)2 
such that a is adjacent to both a primal ve rtex et(l E a and a dual ve rtex {J1l E {J, and 
b is adjacent 10 both a primal vertex etb E a and a dual vertex {Jh E {J. See Figure 6. 
Note that the line segment [et(l, {Jill has a as its midpoint, and the line segment 
lab ,{JhJ has b as its midpoint. Let D = D(a ,{J, a , b) be the (unique) bounded 

+ 

1 

FI G. 6. The bOlll/dary daw Glulthe Peallo grid. 
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connected component of C \ (a U [ab, t3b] U t3 U [t3a, aaD. Let Vp = Vp(D) 
denote the collection of all Peano vertices in D, and, as before, V(D) denotes 
the collection of all primal vertices in D. Let l = leD) denote the cardinality of 
Vp \ {a, b}. By switching the role of a and b, if necessary, assume that D lies to 
the immediate right of the oriented segment [aa, t3a]. Let;D* denote the collection 
of all domains obtained in this way. 

Let H = H(D) denote the subgraph of Z2 whose vertices are the vertices 
of a and V(D) and whose edges are those edges on this set of vertices which 
do not intersect t3. Since t3 is a tree, H is connected. 

Since H is connected, there is at least one spanning tree T of H which 
contains a. If we replace a by T and apply the dual argument, it follows that there 
is also a tree Tt in the dual grid (1/2 + Z)2, which is disjoint from T, contains t3 
and whose vertices are the dual vertices in t3 and the dual vertices in D. In fact, Tt 
contains every dual edge lying in D \ T. 

We now need to give an orientation to the Peano grid G. Every edge in G 
is either on the boundary of a square face of G centered on a primal vertex 
or on the boundary of a square face of G centered on a dual vertex, and these 
two possibilities are exclusive. We orient the edges of G by specifying that 
the square faces of G containing a primal vertex are oriented clockwise, while 
those containing a dual vertex are oriented counterclockwise. When we want to 
emphasize the orientation of the edges, we write G ---+ instead of G. Note that the 
edges of G contained in a horizontal or vertical line all get the same direction 
in G ---+, and consecutive parallel lines get opposite orientations. For this reason, 
G ---+ is often called the Manhattan lattice. 

Let Y = Y (T) denote the set of all edges of G ---+ which do not intersect T U Tt 
and which have at least one endpoint in D. Let v E Vp \ {a, b} be some Peano 
vertex in D. Note that there are precisely two oriented edges of G---+ with initial 
point v, say el and e2, where one of these, say el, intersects an edge h of the 
primal grid Z2, and the other intersects an edge 12 of the dual grid (1/2 + Z)2. 
Note also that h n 12 i- 0. It therefore follows that exactly one of the edges h, 12 
is in T U Tt . Consequently, exactly one of the edges el, e2 is in y. This shows that 
y has out-degree I at every v E Vp \ {a, b}. An entirely similar argument shows 
that y has in-degree I at every such v. In particular, this shows that y does not 
contain the entire boundary of a square face of G that does not contain a primal 
or dual vertex. If y had a cycle, the cycle therefore would have to surround some 
primal or dual vertex. But as T and Tt are connected and disjoint from y, this is 
impossible. It therefore follows that y is an oriented simple path (i.e., self-avoiding 
path), and the endpoints of y are a and b. Since we are assuming that D lies to the 
right of [aa , t3a], the initial point of y is a and the terminal point is b. 

Conversely, suppose that y* = (YO', ... , Ye*+l) is any oriented simple path 
in G---+, respecting the orientation of G---+, from a to b, whose vertices are Vp. 
For n E {O, ... , l + I}, let Vn be the (unique) primal vertex adjacent to y: and 
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let vJ be the dual vertex adjacent to y;. Note that Vn and Vn+1 are either the same 
vertex or adjacent vertices when n = {O, ... ,£}. Let an = an (y*) denote the union 
of a with the collection of all edges [Vk, vk+rJ for k < n such that Vk i= Vk+I and, 
similarly, let 13 = f3n(Y*) denote the union of 13 with the collection of all dual 
edges [vk, Vk+I] for k < n such that vk i= vk+1. Then T(y*) := ae+1(Y*) and 
Tt (y*) := f3e+1 (y*) are obviously connected, and there are no edges in T (y*) 
intersecting edges in Tt (y*). Now, T(y*) cannot contain a cycle, for such a 
cycle would have to separate Tt(y*). Hence, T(y*) is a spanning tree of H 
containing a.1t is also clear that y* = y(T(y*». That is, T ~ y(T) is a bijection 
between the set of spanning trees of H containing a and the set of oriented paths in 
G --+ n D from a to b containing V p. Hence, when T is the UST on H conditioned 
to contain a, y is uniformly distributed among such Peano paths; it is the UST 

Peano path associated with (a, 13, a, b). 
Let (a = Wo, WI, ... , WHI = b) be the order of the vertices in the UST Peano 

path y. For n E {O, 1, ... , £}, let y[O, n] denote the initial arc of y from Wo to Wn . 

Since y is uniformly distributed among simple oriented paths in G --+ from a to b 
which contain V p, we immediately get the following Markov property. 

LEMMA 4.1 (Markovian property). Fix any n E {I, 2, ... , £}. Conditioned on 
y[O, n], the distribution of (y \ y[O, n]) U {wn } is the same as that of the UST 

Peano curve associated with (an(y), f3n(y), W n, b). 

This lemma will play the same role in the proof as Lemma 3.2 in the case 
of the LERW. We will also use the convergence of certain discrete harmonic 
functions toward their continuous counterparts. To facilitate this, we have to set 
the combinatorial notation for the discrete Dirichlet-Neumann problem. 

Let H be a finite nonempty connected sub graph of Z2 with vertices V Hand 
let E a denote the set of oriented edges in Z2 whose initial endpoint is in V H , 

but whose unoriented version is not in H. Suppose Ea = Eo U EI U E2 is a 
disjoint union, where Eo U EI i= 0. Suppose also that h: VH ---+ [0,1] is some 
function. For v E VH, set llH,Eo,E}.E2h(V) := Ldh[v, u], where the sum is over 

all neighbors u of v in Z2, and dh[v, u] := h(u) - h(v) when [v, u] ¢. Ea, 

dh[v, u] := ° - h(v) when [v, u] E Eo, dh[v, u] := 1 - h(v) when [v, u] E EI 
and dh[v, u] := ° when [v, u] E E2. Note that there is a unique h: VH ---+ [0, 1] 
such that llH,EO,E],E2h(V) = ° in VH: h(v) is the probability that a simple random 
walk on H U Eo U E 1 started from v will use an edge in E 1 before using an edge 
of Eo. This h will be called the llH,EO,E],E2-harmonic function. 

PROPOSITION 4.2 (Dirichlet-Neumann approximation). For every E > 0, 
there is an ro = rO(E) such that the following holds. Let Dee be a simply 
connected domain satisfying rado(D) :::: roo Let Ao, Al c au be two disjoint arcs, 
each of length at least E, and set A2 := au \ (Ao U Ad. Let 1} C D be a simple 
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closed path which surrounds 0, sllch that each point of 1) is within distance 5 
from a D. Suppose that A~ , AJ C 1) are two disjoint arcs, Az ;= 'I \ (Ao U A J) and 
the triple (Ab, A'l' Az) corresponds to (AO, AI , A2) under VrD, in the sense that 
for each j = 0, 1, 2 and each p E Aj there is a contilluOIlS path a : [0 , 1) -+ D 
satisfying diam a [0, I) :::: 5, a(O) = p, alld limst 1 t/I D 0 a (s) exists and is in A j. 

Let H be the component of 0 in the set of edges of ,!} that do not intersect 1). 

For j = 0, I , 2, let E j dellote the set of oriented edges [v , Il ] intersecting 1). where 
v is in H , and the first point of intersection fivm the direction of v is in A j . Let 

I~ denote the t:1H.Eo. El.E2-harmonic fi lllction. Let h : 1U -+ [0, I] be the continuous 
harmonic fllnction which has boundary vallll! 0 Oil Ao, 1 all A I, and satisfies the 
Neumann boundary condition on A2. Then Ih(O) - h(O)1 < E. 

The proof will be given in Section 5.4. 

4.2. Driving process convergence. Let a , {J,a, band D = D(a , {J , a , b) be as 
above and suppose now that 0 E D. As before, let e denote the number of Peano 
vertices in D and let y = (y(O), ... , y(e + I» be the UST Peano path from a to 
b in G -l> n D. For each /I :::: e, there are two domai l2s that are nalural ly associated 
to yI.O, nj . The fi rst one (as in Lemma 4. 1) is Dn := D(an, /3n ,y(n) , b) (see 
Figure 7). But Dn is not so useful if we want to make estimates using Loewner's 
equati on. We therefore also define Dn ;= D \ y [O, /I ]. Let 4>0 = ¢; D -+ 1HI be 
the conformal map which takes D to lHI, takes b to 00, takes a to 0 and satisfies 
I¢(O) 1 = I . Let ¢n : Dn -+ 1HI be the conformal maps satisfying ¢n (z ) - 4>o(z ) -+ 0 
as z -+ b within Dn. Define Wn := ¢n(y(n» E lR. Also let tn denote the capac ity 
from 00 in 1HI of 4>0 0 y [O,II ] , so that ¢no¢;;I(Z)=z+2tn/z+o( l /z) when 
Z -+ 00 in 1HI. 

, 
I 
I 
I 
I 

b 

I • 

1 i 
i 1'(n)-;- : 
I I I 
I I I 

i : ..... : 
J .----. 

i (In! [=~~ I I a 
~--------------~-----

FIG. 7. Tlte domaill btl is shaded. 
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We now prove the analog of Proposition 3.4 for the UST Peano curve. Let 
SJD(Z, A) denote the continuous harmonic measure of A from Z in the domain 
D\A. 

PROPOSITION 4.3 (The key estimate). For every sufficiently small 8, E > 0, 
there is some ro = ro(8, E) such that the following holds. Let y, Dn, ¢n, Wn and tn 
be as above, let kEN and let m be the first n :::: k such that I Wn - Wk I :::: 8 or 
tn - tk :::: 82 . Then 

(4.1) 

and 

(4.2) 

PROOF. Assume first k = O. Let Vo E V(D) be some vertex such that 
I¢ (vo) I ::: 2 and 1m ¢ (vo) :::: 1/2, say. [As we have seen in Section 3.2, there is such 
a Vo when rado(D) is large.] If Q = [q, q'] is a line segment where qED is a dual 
vertex and q' E a is the midpoint of a dual edge containing q, then let ¢* (Q) E lR+ 
denote the limit of ¢(z) as z tends to aD along Q (which always exists by [35], 
Proposition 2.14). Fix such a Qo satisfying U := ¢*(Qo) E [1/2,2]; there clearly 
is such Qo when ro is large, because the harmonic measure from 0 of any square 
of the dual grid adjacent to the boundary of D is small. Let T/ C D be the set of 
points within distance 1/10 from aD. Then T/ is a simple closed path. Consider it 
as oriented counterclockwise around the bounded domain of C \ T/. Let Po be the 
point of T/ closest to a, PI the point in T/ n Qo and P2 the point of T/ closest to b. 
Let Ao be the positively oriented subarc of T/ from Po and PI, Al the positively 
oriented arc from PI to P2 and A~ the positively oriented arc from P2 to po. 

Let.A, be the event that the path in the tree T (y) = aH I (y) from Vo to a hits AI. 
We will now estimate both sides of the identity 

(4.3) P[.A,] = E[P[.A,IDm ]] 

using Proposition 4.2. By Wilson's algorithm, P[.A,] is the probability that a simple 
random walk on the graph H (D) started at Vo stopped on hitting a will cross AI. 
This is exactly h(vo), where the function h is as defined in Proposition 4.2. Set 

h(z):= ~coCI( l-lzl ) = ~coCI( l-r ), 
n 21m.Jz n 2,Jrsin(8/2) 

where z = re i8 and we take the value of coe l between 0 and n. Note that h is 
harmonic in 1HI, is equal to 0 on (0,1), is equal to 1 on (1, (0), and ayh = 0 on 
(-00,0). (Of course, we found the map h satisfying these boundary conditions by 
reflecting the domain along the negative real axis, mapping this larger domain to 1HI 
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with z t-+ "fi and then using a conformal map from 1HI to 1[J to calculate the hitting 
probabilities.) Consequently, Proposition 4.2 shows that if ro is sufficiently large, 
then 

(4.4) P[rA] = h(c/>(vo)/ U) + 0(83 ). 

Set Vj := c/>j(vo) and Uj := c/>j 0 c/>Ol(U). By the chordal version of Loewner's 
equation and the definition of m, we have 

(4.5) 
2tm 3 

Vm = Vo + - + 0(8 ), 
Vo 

2tm 3 
Um = Uo + - + 0(8 ). 

Uo 

Note also that rado(Dm) > rado(D)/2, Vo E Dm and Um E [1/4,4] provided that 
8 is small enough. 

We now employ a similar argument to estimat~ P[rAIDm]. Recall that On = 
D(an, fin, yen), b). Assume that Qo intersects Dn, which will be the case if 
Un > 1/4, say. Let 1Jn be the set of points in On at distance 1/10 from oOn. Again, 
1Jn is a simple closed path, and we write 1Jn = A~(n) U A~ (n) U A~(n), where A~(n) 
is the arc of 1Jn from the closest point to y (n) to the point of intersection of Qo 
with 1Jn, A~ (n) is the arc of 1Jn from the point in Qo n 1Jn to the point of 1Jn closest 
to b and A~(n) is the remaining part of 1Jn. By Lemma 4.1, P[rAIDn] is the same 

as the quantity hn(vo), where hn is the function h defined in Proposition 4.2, but 
with A~(n), A~ (n), A~(n) an_d 1Jn replacing A~, A~, A~ and 1J and Dn replacing D. 
(It is Dn replacing D, not Dn. The conditions of Proposition 4.2 hold for either 
of these, but the conformal map we consider is defined on Dn.) Proposition 4.2 
therefore gives 

(4.6) 

Write feU, V, W) := h((V - W)/(U - W». We Taylor-expand the right-hand 
side in (4.6) to second order in Wm and to first order in Vm - Vo and Um - Uo. 
Together with (4.3)-(4.5) this gives 

0= E[P[rAIDmJ] - P[rA] 

= ~o?v fE[W~] + Ow fE[Wm] + ov f2E~~m] + ou f2E~~m] + 0(83). 

Here, the derivatives of f are evaluated at (Vo, Wo, Uo). (Note that V is complex 
valued, and we interpret ov f as an lR-linear map from CC to JR.) If we plug in 
Vo = i + 0(83 ) and Uo = 1 + 0(83 ) [as we have seen in Section 3.2, one can 
certainly find Vo and Uo satisfying c/>(vo) = i + 0(83 ) and c/>(uo) = 1 + 0(83 ) if 
ro is large], then after some tedious but straightforward computations the above 
equality simplifies to 
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while Vo = 2i + 0(83 ) and Uo = 1 + 0(83 ) give 

3E[W~] + 8E[Wm] - 24E[tm] = 083). 

Combining these two relations implies (4.1) and (4.2) in the case k = O. For k > 0, 
the proof is basically the same; the only essential difference is that one must use 
T/k in place of T/. D 

THEOREM 4.4 (Driving process convergence). For every positive E1,E2, E3 

and i, there is some positive r1 = r1 (E1, E2, E3, i) such that the following holds. 
Let D = D(a, {3, a, b) E i)* satisfy rado(D) > r1 and SJD(O, a) E [E1, 1 - Ed. Let 
y be the corresponding UST Peano path, let </Y : D --+ lHI denote the conformal map 
which takes a to 0, b to 00 and satisfies I</Y (0) 1 = 1, let '9 := </Y 0 y, parameterized 
according to capacity from 00, and let Wet) denote the Loewner driving process 
for '9. Then there is a coupling of standard Brownian motion B : [0, i] --+ ~ and 
W such that 

P[sup{IW(t) - B(8t)l: t E [0, i]} > E2] < E3. 

PROOF. The proof is almost identical to the proof of Theorem 3.7, where 
we used Skorohod's embedding, but one has to be a little careful because it may 
happen that 0 is "swallowed" before time i. 

Let us first assume that </y(0) is close to i, say I</Y(O) - il < 1/100, and that i is 
small enough so that 

(4.7) i:::: 1/100 and P[ B[O, i] c [-1/10,1/10]] > 1 - E3/3, 

where B is standard Brownian motion. Take 8 = 8(E1, E2, E3) > 0 small and 
E = 1/10. Define rO(E, 8) as in Proposition 4.3. Let kEN be the first integer where 
rado(Dk) :::: ro or SJDk(O, ak) fj. [E, 1- E] and define io:= min{i, td, where tn is as 
in the proposition. Exactly as in the proof of Theorem 3.7, Proposition 4.3 implies 
that we may couple W with a Brownian motion B in such a way that 

P[sup{IW(t) - B(8t)l:t E [O,to]} > E2/3] < E3/3, 

if rado(D) ~ r1 and r1 is large enough. By our assumptions regarding i, we have 
with high probability that, for all t E [0, io], Wet) E [-1/5, 1/5]. If we choose TI 
large enough, this guarantees that P[io i= i] < E3/3 and proves the theorem when 
(4.7) is satisfied and </Y (0) is close to i. 

Consider now a general i < 00. Let i1 > 0 be some constant satisfying (4.7) and 
let zo := </Y -1 (2i i 2 Ii?). From the Koebe distortion theorem, it follows that there is 
a constant c = c(i, E1) such that radzo (D) ~ c rado(D). (See, e.g., Theorem 1.3 and 
Corollary 1.4 in [35].) Consequently, by choosing r1 appropriately larger, we may 
invoke the above argument with the basepoint moved from 0 to a vertex near zo 
and with a smaller E2. Rescaling now completes the proof of the theorem. D 



969

CONFORMALINVAruANCE 977 

4.3. Uniform continuity. In order to prove convergence with respect to a 
stronger topology, tightness will be needed, and we therefore derive in this section 
some regularity estimates for UST Peano curves with respect to the capacity 
parameterization. Some results from [38] will be used. 

Let Dee be a simply connected domain containing 0, whose boundary is a 
C I-simple closed path. Let a and b be two distinct points on aD. In this section, 
we consider for large R the UST Peano curve from a point near Ra to a point near 
Rb on a grid approximation of RD. One reason not to consider arbitrary domains 
is that we need to partially adapt to the framework of [38] in order to quote results 
from there. Also, it is natural (since the UST Peano curve is asymptotically space 
filling) to impose regularity conditions on a D in order to get uniform regularity 
estimates for the UST Peano curve. 

Let aD and fJ D be, respectively, the clockwise and anticlockwise arcs of 
aD from b to a. Given R large, let DR = D(aR, fJR, a R, bR) E 1'* be an 
approximation of (RD, RaD, RfJD) in the following sense. Fix some sufficiently 
large constant C > 0; for example, C = 10 would do. We require a R to be a 
simple path in 71.,2 satisfying p(aR, RaD) :::: C and require fJR to be a simple 
path in the dual grid (1/2 + 71.,)2 satisfying p (fJ R , RfJ D) :::: C. We also require that 
fJR n a R = 0, of course, and that each of a R, b R is a Peano vertex adjacent to an 
endpoint of a R and an endpoint of fJR. 

Let y = yR be the UST Peano path in DR. Let ¢: D -+ H be the con­
formal homeomorphism satisfying ¢(a) = 0, ¢(b) = 00 and I¢(O)I = 1. Let 
¢R: DR -+ H be the conformal homeomorphism satisfying I¢R (0) I = 1, taking 
a R to 0 and b R to 00. Then limR---+oo R-l¢"Rl(Z) = ¢-l(Z) uniformly in H. (This 
follows, e.g., from Corollary 2.4 in [35].) Let y := ¢R 0 y, parameterized accord­
ing to capacity from 00. Let gt: H \ 9[0, t] -+ H be the conformal map with the 
usual normalization gt(z) - z -+ 0 when Izl-+ 00. 

PROPOSITION 4.5 (Uniform continuity estimate). For every E > 0 and t > 0, 
there are some positive Ro = Ro(D, t, E) and 8 = 8(D, t, E) such that, for all 
R >Ro, 

We first prove a slightly modified version of this proposition. 

LEMMA 4.6. For 0 < tl < t2 < 00, let Y(tl, t2) := diam(gtl 0 y[tl, t2]). For 
every E > 0, there is a 8 = 8(D, E) > 0 and an Ro = Ro(D, E) > 0 such that,for 
all R 2: Ro, 

(4.8) P[sUp{ly(t2) - y(tdl: 0:::: tl :::: t2:::: r, Y(tl, t2):::: 8} 2: E] < E, 

where r := inf{t 2: 0: Iy(t) I = E- l }. 
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The proof will use Theorems 10.7 and 11.1(ii) of [38]. As explained there, 
the proofs of these theorems are now easier, because we have established the 
conformal invariance of the UST; see Corollary 1.2. 

PROOF OF LEMMA 4.6. Let OR be a positive function of R such that 
limR--+oo OR = 0. It suffices to show that (4.8) holds for all sufficiently large R 
with OR in place of O. Let Z denote the semicircle 2E-1aU n lHI, say. For R large, 
let tl and t2 be such that 19(t2) - 9(tl)1 is maximal subject to the constraints 
0:::: tl :::: t2 :::: r and Y(tl, t2) :::: OR. Note that mint<T dist(gt(Z), gt 0 9[t, r]) is 
bounded from below, as 9 [0, r] C E-1U. [Considering the harmonic measure from 
a point near 00, one deduces that the diameter of gt«1/2)Z) is bounded below. 
The extremal distance between gt(Z) and gt«I/2)Z) is the same as the extremal 
distance between Z and O/2)Z. This shows that dist(gt(Z), gt 0 9[t, r]) ~ 
dist(gt(Z), gt«1/2)Z» is bounded from below.] Since Y(tI, t2) :::: OR ---+ ° as 
R ---+ 00, the extremal length of the collection of simple arcs in lHI \ gtl 0 9 [tl, t2] 
which separate gtl 09 [tI, t2] from gtl (Z) goes to 0. By the conformal invariance of 
the extremal length, it follows that the extremal length of the collection of simple 
arcs in lHI \ 9 [tI, t2] which separate 9 [tI, t2] from Z in lHI \ 9[0, td tends to ° as 
well. In particular, the shortest such arc for the Euclidean metric, say 1], satisfies 
limR--+oo length(1]) = 0. 

We are going to study separately the three cases where 1] is close to the origin, 
close to the real line but not to the origin and not close to the real line. In each 
case, we will see that the existence of such an 1] is very unlikely. Let .A be the 
event 19(td - 9 (t2)1 ~ E. For S > 0, let Xo(s) be the event dist(O, 1]) < s and let 
Xl (s) be the event dist(lR., 1]) < s. We will prove 

(4.9) "lsI> 0, 3Ro > 0, V R > Ro, P[.A \ XI(SI)] < E, 

V SO > 0, 3 SI > 0, 3 Ro > 0, V R > Ro, 
(4.10) 

P[.A n Xl (SI) \ Xo(so)] < E, 

(4.11) 3so > 0, 3 Ro > 0, V R > Ro, P[.A n Xo(so)] < E. 

U sing these statements, the proof of the lemma is completed by choosing so 
according to (4.11), then choosing SI according to (4.10) and, finally, choosing 
Ro according to (4.9), (4.10) and (4.11). 

We start with (4.9). Fix some SI > ° and assume that .A \ Xl (SI) holds. We 
also assume that E < SI. There is no loss of generality in that assumption, since 
.A is monotone decreasing in E. Since limR--+oo length(1]) = 0, for large R the two 
endpoints of 1] must be in 9[0, td. Because 9 tends to 00 with t, it is clear that 
9[t2, 00) n 1] =f. 0. In fact, the crossing number of 9[t2, 00) and 1] must be ±1, 
since 9 and 1] are simple curves. Consider the concentric annulus A whose inner 
circle is the smallest circle surrounding 1] and whose outer circle has radius E /4. 
Let 33 denote the open disk bounded by the outer circle of A and note that 
33 C lHI, by our assumption E < SI. On the event .A, there is a t* E [tI, t2] such 
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that the distance from 9 (t*) to 1] is at least E /2. In particular, 9 (t*) ¢. $. Now, 
1] separates 9(t*) from 00 in lHI \ 9[0, til. Therefore, if .A, \ Xl (s) holds, then 
9[0, til U 1] separates 9(t*) from 00. Since 9 is a simple path, this implies that the 
arc of 9[0, til between the two points 11 n 9[0, til does not stay in $. Hence, 
9[0, (0) n $ has three distinct connected components, say 91, 92, 93, each of 
which intersects the inner circle of A such that 91, 93 C 9 [0, t*] and 92 C 9 [t*, (0) 
and 92 separates 91 from 93 within $. See Figure 8. 

Note that adjacent to one side of <Pi? 1 (92) lies T, the UST, and Tt, the dual UST, 

is adjacent to the other side. Both are connected, and they do not intersect <Pi? 1 (9). 

It follows that there are paths Xl C T and X2 C Tt with endpoints in <Pi? 1 (a$), 

each of which intersects the inner boundary of <Pi? 1 (A). But the diameter of the 

inner boundary of R-l<pi?l(A) goes to ° as R --+ 00, and the distance between the 
two boundary components of R-l<pi?l(A) does not. Hence, by [38], Theorem 10.7, 
the probability that such a configuration appears somewhere goes to ° with R. 
(Although the result from [38] refers to the UST in the whole plane, the proof is 
local, and since we are bounded away from the boundary, the result is applicable 
here.) This proves (4.9). 

Now fix So > ° and let Sl > ° be much smaller. Assume that .A, n Xl (Sl) \ 
Xo(so) holds, E < Sl and R is large. Also assume that 1] is closer to [0, (0) 
than to (-00,0]. Note that 1] is then bounded away from (-00,0]. Let A be 
defined as above and let $ be the intersection of lHI with the disk bounded 
by the outer boundary component of A. We now need to consider two distinct 
possibilities. Either both endpoints of 1] are on 9[0, til, and then the configuration 
is topologically as in the argument for (4.9), or one endpoint of 1] is on [0, (0). 
But it is east' to see that in either case there is a simple path in Tt which 
intersects <Pi? (1]) whose endpoints are in <Pi? 1 (a$), by an argument very similar 
to the one given above. Now [38], Theorem 11.1(ii), shows that these events 
have small probabilities if Sl is small. The case where 1] is closer to (-00,0] is 
treated similarly, with the roles of the tree and the dual tree switched. Thus, (4.10) 
is established. 

FIG. 8. The paths 91,92 and 93 and the annulus A. 
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To prove (4.11), let s > 0 and let v E 71} be a vertex closest to ¢"R1(is). Let 
v t E (Z + 1/2)2 be a dual vertex adjacent to v. Let X be the simple path from v 
to OlR in T and let X t be the simple path from v t to f3R in Tt. We may sample 
X by running a simple random walk from v on H(DR) stopped on hitting OlR 
and loop-erasing it. It therefore follows by Proposition 4.2 that if s is sufficiently 
small, then the diameter of ¢ R (X) is smaller than E /10 with probability at least 
1 - E/lO. Moreover, there is some So > 0 such that for all sufficiently large R 
with probability at least 1 - E/lO the distance from ¢R(X) to 0 is at least so, 
and the same two estimates will hold for X t. Let D' be the domain bounded by 
[v, v t] U X U X t U a DR which has the initial point a R of y on its boundary. Note 
that y crosses the boundary of D' exactly once, through the segment [v, vt ]. In 
particular, if diam(¢R(D')) < E and .A, holds, then T/ is not contained in ¢R(D'). 
This proves (4.11) and completes the proof of the lemma. D 

PROOF OF PROPOSITION 4.5. Theorem 4.4 implies that we may find some 
r > 0 such that P[ sup{ I W (t) I : t E [O,t]} 2: r] < E /4 for all sufficiently large R. 
Let E' := min{E, r-1} and let 8' denote the 8 obtained by using Lemma 4.6 with 
E' in place of E. Since Brownian motion is a.s. continuous, Theorem 4.4 implies 
that there is some 8 > 0 such that if R is large enough we have 

P[sup{IW(t1) - W(t2) I :t1, t2 E [0, t], It 1 - t21 < 8} 2: 8'] < E/4. 

Lemma 2.1 applied to the path t 1--+ gtl 0 yet - t1) - W(t1) now implies 

P[SUp{Y(t1, t2):0::::: t1::::: t2::::: t, It 1 -t21 < 8} 2: C(8 1/2 +8')] < E/4. 

Now the proof is completed by using Lemma 4.6. D 

4.4. Consequences. In this section we gather some consequences, starting 
with the following two theorems. 

THEOREM 4.7 (Chordal SLE8 traces a path). Let gt denote the chordal SLE8 
process driven by B(St), where B(t) is standard Brownian motion. Then, a.s.for 
every t > 0, the map g;l extends continuously to IHI and yet) := g;l (B(St)) is a.s. 
continuous. Moreover, a.s. g;l(IHI) is the unbounded componentofIHI \ y[O, t]for 
every t 2: o. 

THEOREM 4.S (Peano path convergence). Let D C <C be a domain contain­
ing 0 such that a D is a C I-smooth simple closed path. Let aD = OlD U f3 D be a par­
tition of the boundary of D into two nontrivial complementary arcs. For R > 0, let 
(DR, OlR, f3R) be an approximation of (RD, ROl, Rf3), as described in Section 4.3. 
Let y = yR denote the UST Peano curve in DR with the corresponding boundary 
conditions. Let ¢R : DR ---+ IHI denote the conformal map which takes the initial 
point of y to 0, the terminal point to 00 and satisfies I¢R (0) I = 1. Let '9 := ¢R 0 y, 
parameterized by capacity from 00. Then the law of'9 tends weakly to the law of y 
from Theorem 4.7. 
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Here, we think of 9 and 9 as elements of the space of continuous maps from 
[0, (0) to lHI, with the topology of locally uniform convergence. 

A consequence of the theorem is that R-1y is close to R-1¢ii1 09. That is, we 
may approximate the UST Peano path y by the image of chordal SLEs in DR. 

The analog of Theorem 4.7 was proven in [36] for all K i- S, but the particular 
case K = S could not be handled there. It is fortunate that the convergence of the 
UST Peano path to SLEs settles this problem. By Remark 7.5 in [36], it follows 
that with the notation of Theorem 4.7 for K :::: S we have gt 1(lHI) = lHI \ 9[0, t] for 
every t :::: ° a.s. 

PROOF OF THEOREMS 4.7 AND 4.S. Let Wet) = WR(t) denote the chordal 
Loewner driving process for 9. Fix a sequence Rn ---+ 00. First, note that the family 
of laws of 9 is tight, because of Proposition 4.5 and the Arzela-Ascoli theorem 
(see, for instance, [17], Theorem 2.4.10). Also, Theorem 4.4 implies that the law 
of W converges weakly to the law of B(St). Hence, there is a subsequence of 
Rn such that the law of the pair (9, W) converges weakly to some probability 
measure J-l. Let (y*, W*) be random with law J-l. Then we may identify W*(t) with 
B(St). By the chordal analog of Lemma 3.14, which is valid with the same proof, 
it follows that, for all t > 0, gt1 (lHI) is the unbounded component of lHI \ y*[O, t]. 
Since y* is continuous, elementary properties of conformal maps imply that gt1 

extends continuously to lHI (e.g., Theorem 2.1 in [35]). It is easy to verify that, a.s. 
for every t > 0, gt1(B(St» = y*(t), using the fact that y*[t, t'] is contained in a 
small neighborhood of y*(t) when t' - t > ° is smalL This proves Theorem 4.7. 
Because the law of the limit path y * does not depend on the subsequence, the 
original sequence converges, and so Theorem 4.S is proved as well. D 

We now list some easy consequences of Theorems 4.7 and 4.S. 

COROLLARY 4.9 (Radial SLEs traces a path). Let gt denote a radial SLEs 
process driven by Wet) = exp(iB(St», where B is standard Brownian motion. 
Then, almost surely, for every t > 0, the map gt1 extends continuously to 1U. 
Moreover, gt1(W(t» is almost surely continuous. 

PROOF. This follows readily from Theorem 4.7 and the absolute continuity 
relation between radial and chordal SLEs derived in [2S], Proposition 4.2. D 

PROOF OF THEOREM 1.3. Define G8 = 8D 1/8, where D1/8 is defined as in 
Theorem 4.S. Consider the situation of Theorem 4.S. As previously remarked, it 
follows from [35], Corollary 2.4, that limR-Hlo R-1¢i/(z) = ¢-1(Z) uniformly 
in lHI. Consequently, Theorem 4.S shows that, for all t > 0, the UST Peano curve 
scaling limit up to capacity t from b is equal to ¢ -1 0 9 up to time t. It therefore 
suffices to prove that for all E > ° there is an E' > ° such that for all sufficiently 
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large R with probability at least 1 - E the part of y after the first time it hits the 
Ef -neighborhood of b stays within the E-neighborhood of b. This is easily proved 
by the same argument used to prove (4.11) applied to the reversal of the UST Peano 
path, which is also a UST Peano path. D 

COROLLARY 4.10 (Path reversal). The law of the chordal SLE8 curve is 
invariant under simultaneously reversing time and inverting in the unit circle, up to 
a monotone increasing time change. More precisely, if y is the chordal SLE8 curve 
from 0 to 00 defined in Theorem 4.7, then a time change of( -l/y(1/t), t ~ 0) has 
the same law as y. 

PROOF. This follows immediately from the fact that the reversed UST Peano 
curve is also a UST Peano curve. D 

5. Random walk estimates. The goal of this section is to prove the remaining 
random walk estimates and thereby complete the proofs of the theorems. Basically, 
we show that, under certain boundary conditions, discrete harmonic functions 
converge to continuous harmonic functions satisfying corresponding boundary 
conditions, as the mesh of the grid goes to O. This general principle is not new, 
of course (see, e.g., [6]), but it seems that the precise statements which are needed 
here do not appear in the literature. In particular, our results make no smoothness 
assumptions on the boundary. It should perhaps be noted that some of the following 
proofs (and most likely the results, too) are special to two dimensions. 

5.1. Preliminary lemmas. We now state some lemmas on discrete harmonic 
functions, which will be helpful in the proofs of Proposition 2.2, Lemma 3.5 and 
Proposition 4.2. 

For 8 > 0, define the discrete derivatives 

a~f(v) := 8-1(j(v + 8) - f(v)), 

a~f(v) := 8-1 (j(v + i8) - f(v)). 

Let :D8 := {8D: D E :D}, that is, domains adapted to the grid 8712 . Similarly, for 
D8 = 8D E :D8, define V 8(D8) := D8 n 8712 = 8V(D) and Vt(D8) := 8Va(D). 

LEMMA 5.1 (Discrete derivative estimate). There is a constant C > 0 such 
that,for every D E:D and every boundedfunction h: V(D) U Va(D) --+ JR that is 
harmonic in V(D), 

(5.1) a;h(O):::: Crado(D)-lllhlloo, a;h(O):::: Crado(D)-ll1hlloo. 

This lemma is proved using the Green's functions in [25], Theorem 1.7.1; see 
also [16], Lemma 7.1, for a proof of the analogous statement in the triangular 
lattice using the maximum principle. In Section 6, we rewrite and adapt the proof 
from [25] to more general walks on planar lattices. One can also rather easily prove 
the lemma using coupling. 
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LEMMA 5.2. For all E > 0 and kEN, there exists a c = q(E) > 0 such that 
the following always holds. Let 8 E (0, c- I ) and let DE:D8 satisfy rado(D) 2: 1/2. 
Let a~l' ... , a~k E {a~, a~}. Let h: V 8(D) U Vg(D) ---+ [0, (0) be nonnegative and 

harmonic in V 8(D). If V E V 8(D) satisfies 11/ID(V) I :::: 1- E, then 

(5.2) la~l a~2 ... a~kh(v)1 :::: ch(O). 

Note that the case k = 0, which is included, is a kind of Harnack inequality. 
It is easy to give quantitative estimates for q(E), but they will not be needed 

here. Only k :::: 3 will be used in the rest of the paper. 
In the proof of the lemma, the following simple conformal geometry conse­

quences of the Koebe distortion theorem (see [35], Theorem 1.3) will be needed. 
Let D, E and v be as in the statement of the lemma. First, note that 1/4 :::: 
rado(D)1/Ib(0) :::: 1 follows from the Koebe 1/4 theorem and the Schwarz lemma, 

respectively. Let l = leE) be large and set Zj := j 1/ID(v)/l and Wj := 1/Ii/(zj), 
j = 0,1, ... , l. The Koebe distortion theorem gives upper and lower bounds for 
rado (D) 11/Ib I on the preimage of the line segment [0, Zi]. This implies that there 
is a constant Cl = Cl (E) > 0 such that radwj(D) 2: Cl rado(D) and that if l = leE) 
is large, then, IWj - wj-Il:::: Clrado(D)/20, j = 1, ... ,£. In particular, if Vj is 
the vertex in V 8 (D) closest to W j, then, provided that 8 is sufficiently small, 
IVj - vj-Il :::: radvj_1 (D)/lO. 

PROOF OF LEMMA 5.2. We start with k = O. Suppose first that Ivi :::: 
rado(D)/lO. Let W C V 8(D) be the set of vertices W satisfying hew) 2: h(v). 
Then W contains a path from v to aD. But the probability p that the path 
traced by a simple random walk from 0 before exiting D separates v from aD 
is bounded away from o. On that event, the simple random walk hits W before 
exiting D. Consequently, h(O) 2: ph(v), as needed. For arbitrary v E V 8(D) 
satisfying 11/1 D (v) I :::: 1 - E, as we have noted, the Koebe distortion theorem implies 
thatthere is an l = l (E) depending only on E and a sequence 0 = VO, VI, ... , Vi = v 
in V 8(D) with l:::: leE) such that IVj - vj-Il :::: radv/D)/l0 for each j = 1, ... , £. 

Consequently, iterating the above result gives h(O) 2: pih(v) and proves the case 
k=O. 

Using the above, we know that hew) :::: c'h(O) on the set of vertices W E V 8(D) 
such that Iw - vi:::: radv(D)/lO, where c' = C'(E) is some constant depending only 
on E. Consequently, the case k = 1 now follows from Lemma 5.1 applied with v 
translated to O. 

For k > 1, the proof is by induction. By the above, we may assume v = O. 
Let M be the maximum of la~kh(w)l/ h(O) on the set V of vertices W E V 8(D) 

satisfying Iwi :::: rado(D)/lO. The above shows that M is bounded by a universal 
constant. Since a~k h is discrete harmonic on V, the proof is completed by applying 

the inductive hypotheses to the function agkh(w) + Mh(O). D 
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LEMMA 5.3 (Continuous hannonic approximation). For every E > 0, there is 
some ro = rO(E) > 0 such that the following holds. If D E ~ satisfies rado(D) ::: ro 
and h: V(D) U Va(D) -+ [0, (0) is discrete harmonic in V(D), then there exists a 
harmonic function h*: D -+ [0, (0) such that 

(5.3) Ih*(v) - h(v)1 ~ Eh(O) 

holds for every vertex v E V(D) satisfying IVrD(V)1 < 1 - E. 

PROOF. Suppose that the lemma is not true. Then there exists E > 0 and a 
sequence of pairs (Dn, hn), where Dn E ~ satisfies rado(Dn) ::: n and hn > 0 is 
discrete harmonic in V(Dn), satisfies hn(O) = 1, but (5.3) fails for every hannonic 
function h. 

Set 0 = On := 1jrado(Dn). Our objective is to apply compactness to show 
that the maps hn 0 Vr D 1 converge locally uniformly in U as n -+ 00 along some 
subsequence to some harmonic h, so that (5.3) does hold for some n. We put 
hn(v):= hn(vj8n). 

First, standard compactness properties of conformal maps say that one can 
take a subsequence such that the maps On Vr D~ converge locally uniformly in U to 
some conformal map, say ¢. (This follows, e.g., from the Arzela-Ascoli theorem, 
together with [35], Corollary 1.4, with z = 0 and part two of [35], Theorem 1.3.) If 
K c U is compact, then Lemma 5.2 shows that there is a constant C > 0 such that, 
for all sufficiently large n in the subsequence, the discrete derivatives I o~ hn I and 
lo~hnl are bounded by C in ¢(K) n V(oDn). By a variant of the Arzela-Ascoli 
theorem, it then follows that there is some continuous h*: ¢(U) -+ [0, (0) and a 
further subsequence such that, for every compact K C ¢ (U), 

sup{lhn(v) - h*(v)l: v E K n OlE?} -+ 0 

along the subsequence. The same argument may also be applied to prove the 
convergence of the discrete derivatives of hn to arbitrary order, possibly in a 
further subsequence. Obviously, the discrete derivatives of hn will converge to 
the corresponding continuous derivatives of h*; that is, 

(5.4) sUp{iO~l ... o~khn(v) - oal ... oakh*(v)i: v E K n oZ2} -+ 0, 

where ogj E {o~, o~} and Oaj E {ox, Oy} is the corresponding continuous derivative, 

j = 1,2, ... ,k. Thefactthathn is discretehannonic translates to (o~)2hn(v-0)+ 
(o~)2hn(v - io) = O. Therefore, (5.4) shows that h* is hannonic. This completes 
the proof. D 

LEMMA 5.4 (Boundary hitting). For every El, E2 > 0, there is a 0 = 
O(El, E2) > 0 such that if D E ~ and W E V(D) is a vertex satisfying IVrD(W)1 ::: 
1 - 0, then the probability that the simple random walk started at w will hit 

{v E V(D): IVrD(V) -VrD(w)1 > Ed 
before hitting oD is at most E2. 
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PROOF. We first prove the lemma in the case where E2 is very close to 1. 
Let 8 > 0 be much smaller than EI. Fix some vertex w E V(D) and suppose that 
IVrD(W)1 2: 1 - 8. Let 

a := {z ED: IVrD(Z) -VrD(w)1 = Ed. 

Let Zl be a point in aD closest to w and set r := dist(w, aD) = IZI - wi. Let 
Al be the line segment [w, ztJ. Let Q be the connected component of C(ZI, r) n D 
which contains w, where C (z, r) denotes the circle of radius r and center z. Then 
Q is an arc of a circle. Let A2 and A3 denote the two connected components of 
Q \ {w}. See Figure 9. For j = 1,2,3, let Kj be the connected component of 
D \ (A I U A2 U A3) which does not have A j as a subset of its boundary. 

Because 8 is small compared to EI, the Koebe distortion theorem (e.g., 
Corollaries 1.4 and 1.5 in [35]) shows that a n C (w, r /8) = 0. For j = 1, 2, 3, 
let -8 j be the collection of all paths which stay in K j from the first time they 
hit C(w, r/8) until they first exit from D. Let B(t) denote Brownian motion 
started from w. It is easy to see that there is a universal constant ct > 0 such 
that P[B E -8j] > ct for j = 1,2,3. For example, to prove this for j = 3, observe 
that the collection of Brownian paths which first hit C (w, r /8) in K 3 and later hit 
A3 before Al U A2 has probability bounded away from O. 

Suppose for the moment that a intersects Al and A2. Consider a subarc a' C a 
whose endpoints are in Al and A2, which is minimal with respect to inclusion. 
Then a' C K3 or a' C KI U K2. If a' C K3, then a' separates C(w, r/8) from aD 
in K 3. Consequently, on the event B E -8 j, B hits a before hitting aD. However, 
by choosing 8 to be sufficiently small and invoking the conformal invariance of 
the harmonic measure, we may ensure that the latter event has probability smaller 
than ct. An entirely similar argument rules out the possibility that a' C K I U K2. 
Similarly, it is not possible that a intersects both Al and A3 or that a intersects 

w 

FI G. 9. The arcs A j and the components K j . 
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both A2 and A3. Hence, there is some j E {1, 2, 3} such that a n Kj = 0. Let j' be 
such a j. 

By the convergence of a simple random walk to Brownian motion, it is 
clear that there is some universal constant ro > 0 such that if r > ro, then the 
probability that the simple random walk started from w is in -8 j' is at least q 12. 
This establishes the lemma in the case where E2 E (1 - q/2, 1] and r > roo 
Suppose r ~ roo Then there are two grid paths of bounded length starting from w 
to a D that are disjoint except at w. If a intersects both these paths, then this gives a 
lower bound for the continuous harmonic measure of a from w. Consequently, by 
making 8 small enough, we can make sure that this does not happen. Thus, again, 
with probability bounded away from 0, the random walk from w hits a D before a, 
since it may follow anyone of these two paths. This proves the lemma in the case 
where E2 E (c2, 1], where e2 is some universal constant. 

The Koebe distortion theorem implies that there is a constant e > 0 such that 
if VI, V2 E V(D) are neighbors, then 1 - I 1/ID(V2) I ~ e(l - 11/ID(VI)l). (See, e.g., 
Corollaries 1.4 and 1.5 in [35].) Consequently, we may iterate the above restricted 
case of the lemma and use the Markov property, thereby proving the lemma for 
arbitrary E2 > O. D 

5.2. The hitting probability estimate. 

PROOF OF PROPOSITION 2.2. Let EI > 0 be much smaller than E. We 
consider the discrete harmonic function hew) := H(w, u)1 H(O, u). For 8 > 0, let 

V(8, EI) := {z E V(D): I 1/ID(z) I 2: 1 - 8, 11/ID(Z) -1/ID(u)1 > Ed· 

Our first goal is to show that, for every E I E (0, 1 14), there is some 8 = 8 (E I) > 0 
and some ro = ro(EI) > 0 such that 

(5.5) max{h(z):z E V(8, EI)} < EI, 

provided that rado(D) > roo This will be achieved by first showing that h is not too 
large on the set 

W:= {z E V(D): El/2 2: 11/ID(Z) -1/ID(u)1 2: EI/3} 

and then letting 8 go to 0 and appealing to Lemma 5.4. 
Assume that rado(D) is sufficiently large so that any nearest neighbor path from 

o to u in D has a vertex in W. Let M denote the maximum of h on W. We claim 
that M is bounded by a constant e = e(EI) depending only on EI. Indeed, let K be 
the set of all V E V(D) satisfying h(v) 2: M 12 and let K' be the union of all edges 
where both endpoints are in K U {u}. Then the maximum principle shows that 
K' is connected and contains a simple nearest neighbor path J joining W to u 
whose vertices are in {z E V(D): 11/ID(Z) -1/ID(u)1 ~ E1/2} U {u}. Note that, in 
particular, diam(1/ID(J)) 2: E1/3. Consequently, the continuous harmonic measure 
from 0 of J in D is bounded from below by some constant q (EI) > O. 
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We claim that the discrete harmonic measure HD(O, J) of J at the origin is 
also bounded away from 0 if ro is large enough. Indeed, let D' = D \ J and let 
A be the arc on au corresponding to J under the map l/fD" The length of A 
is bounded from below, since it is equal to 2n times the harmonic measure 
of J. Let A' denote the middle subarc of A having half the length of A. By 
Lemma 5.4 applied to the domain D', it follows that there is a C2 = C2(E) E 

(0, 1/10), such that HD'(V, J) ~ 1/2 on vertices v such that l/fD'(V) is within 
distance C2 of A'. Using Lemma 5.3 with E replaced by C2/4, we find that if 
ro is large, there is a nonnegative harmonic function h~ : D' ---+ [0, (0) such that 
Ih~(v) - HD'(V, J)I :::: C2/4 for all v E V(D') satisfying I l/fD' (v) I < l-c2/4. Take 
a E A' and z := (1 - c2/2)a. Then it follows from the Koebe distortion theorem 
(as in the argument toward the end of the proof of Proposition 3.4) that we may 
find a vertex v E V(D') such that Il/fD'(V) - zl < C2/4, assuming that ro is large 
enough. Thus, h~(v) > HD'(V, J) - C2/4 ~ 1/2 - C2/4 > 1/4. By the Harnack 
principle applied to h~, there is a universal constant C3 > 0 such that h~(z) ~ C3. 
Since this applies to every z E (1 - c2/2)A', the mean value property for h~ gives 
h~(O) ~ c3Iength(A')/(2n). Since Ih~(O) - HD'(O, J)I < C2/4, our claim that 
H'v (0, J) is bounded away from 0 is established. Since h is positive, harmonic 
h(O) = 1 and h ~ M/2 on J, this also gives the bound M:::: C(E). 

Since h is harmonic, Lemma 5.4 with EI = EI/2 and E2 := EI/C(E) instead of EI, 
E2 implies that if 8 = 8(EI) is sufficiently small, and rado(D) is large enough to 
guarantee that W separates V (8, E I) from u (in the graph-connectivity sense), then 
h(z) :::: ME2 < EI for all Z E V(8, EI): (5.5) holds. 

Now apply Lemma 5.3 again to conclude that there is a harmonic function 
h : U ---+ [0, (0) such that 

Ih 0 l/fD(Z) - h(z)1 < EI 
_ A 

for all z E V(D) such that I l/fD(z) I < 1 - 8/4. Set h(z) := h((1 - 8/2)z). We 
know that h ~ 0 in au, h(z') :::: 2EI on the set S:= {z' E au: Iz' -l/fD(u)1 ~ 2EI}. 
Consequently, the Poisson representation of h gives 

- fa - 1 -lzl 2 
h(z) = O(EI) + h(z') 2 Idz'l. 

au\s Iz - z'l 

Since h(O) = 1 + O(Ed and EI is arbitrary, the proposition follows. 0 

5.3. Some Green's function estimates. As opposed to Proposition 2.2, 
Lemma 3.5 requires only crude bounds. It is actually possible to prove that 
Go(O, O) - Gm (0,0) is close to tm , but we do not need this result here. 

PROOF OF LEMMA 3.5. We start with (3.5). Let S be the set of vertices in 
V(D) satisfying (3.3) and assume S"# 0. For a random walk starting from a vertex 
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in S, there is probability bounded away from ° that within rado(D)2 steps it will 
exit D. This gives 

(5.6) L GD(O, w)::::: 0(1) rado(D)2. 
WES 

On the other hand, with probability bounded away from 0, the number of steps 
into vertices in S for the random walk started at ° that is stopped on exiting D is 
greater than rado(D)2. Therefore, 

(5.7) 0(1) L GD(O, w) ::: rado(D)2. 
WES 

By reversing the walk, we know that GD(O, w) = GD(W, 0). Since GD(W, 0) is 
harmonic on V(D) \ {OJ, the Harnack principle [i.e., k = ° in (5.2)] can be used 
to show that GD(W, O)jGD(W', 0) = 0(1) when w, w' E S. Combining this with 
GD(O, w) = GD(W, 0) and the estimates (5.6), (5.7) gives (3.5). 

By Lemma 2.1, we have 

(5.8) diam(VrD 0 y[O, m]) = 0(8). 

In the following, we fix y[O, m] (i.e., it will be considered deterministic). 
Let z be the vertex where a simple random walk from ° first exits Dm. By 
considering what happens to the random walk after first hitting z, we get the 
identity Go(O, v) - Gm(O, v) = E[Go(z, v)] [where Go(z, v) = ° for z fj. V(D), 
by definition]. Consequently, 

Go(O, v) - Gm(O, v) ::::: P[z E y[O, mJ] max{E[Go(Yj, v)]: j = 1, ... , m}. 

By (5.8), the continuous harmonic measure from ° of VrD 0 y[O, m] in U is 0(8). 
Therefore, the continuous harmonic measure from ° of Y[O, m] in D is also 0(8). 
As in the argument given in Section 5.2, this implies that if rado(D) is large 
enough, P[z E y[O, m]] = 0(8). 

Let K denote the disk {w ED: Iw - vi < rado(D)j10} and fix some j E {I, 
2, ... , m}. Since VrD 0 Y[O, m] is contained in U \ (1 - 0(8»U. It follows that 
the continuous harmonic measure of K from Yj in D is 0(8). If VrD(Yj) is 
sufficiently close to au (how close may depend on 8), then we can make sure 
that the corresponding discrete harmonic measure HD(Yj, K) is less than 8 by 
Lemma 5.4. If VrD(Yj) is not close to au, then when rado(D) is large the bound 
HD(Yj, K) ::::: 0(8) follows by the convergence of the discrete harmonic measure 
to the continuous harmonic measure, as we have seen before. If W E V(D) n K 
neighbors with a vertex outside of K, then Go(w, v) = 0(1) follows from (5.7) 
by translating W to 0. Hence, Go(Yj, v) = 0(1) HD(Yj, K) = 0(8). Putting these 
estimates together completes the proof. D 
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5.4. Mixed boundary conditions. Recall that Proposition 4.2, which we will 
now prove, is not used in the proof of Theorem 1.1. 

PROOF OF PROPOSITION 4.2. Suppose first that the distance between 
Ao and A 1 is at least E. Let Ao and A i denote the two connected components 
of 'fI \ (A~ U A~) such that the sequence (A~, Ao, A~, Ai) conforms to the 
counterclockwise order along 'fl. This induces a corresponding partition E2 = 
Eo U Ei of E2, according to whether or not the first point on the edge is in Ao 

. A* orm 1. 

We need to use the discrete harmonic conjugate function k of h. To be perfectly 
precise, it is necessary to set some combinatorial infrastructure: we first define 
a (multi-) graph fi, and k will be defined on the planar dual fit of fi. The 
vertices of fi are VH U {vo, vd (where Vo and VI are new symbols not appearing 
in V H). As edges of fi, we take all the edges of H, and, additionally, for every 
j = 0, 1 and every directed edge [v, u] in E j, there is a corresponding edge [v, v j] 

in 4. Finally, there is also the edge [vo, vIJ in fi. Consider a planar embedding 
of H which extends the planar embedding of H such that Vo and VI are in the 
unbounded component of C \ H. Let fit denote the planar dual of fi. Then there 
is a unique edge [vJ, v{] in fit which crosses [vo, vIJ. We choose the labels so 

that v} naturally corresponds to Aj, j = 0, 1. Set h(vj) := j, j = 0, 1. If we 

consider h as a function on fi, then it is discrete harmonic except at Vo and VI. 
This easily implies (see, e.g., [7] or, more explicitly, [4]) that there is a discrete 
harmonic conjugate k defined on the vertices of fit; that is, for every directed edge 
e = [u, v] in fi if {u, v} =f. {vo, VI}, then the discrete Cauchy-Riemann equation 
h(v) - h(u) = k(v t) - k(u t) holds, where [u t, vt] is the edge of fit intersecting e 

from right to left. In fact, k is harmonic in fit except at vJ and v{. The function k 
is unique, up to an additive constant. We choose the additive constant so that 
k(vJ) = O. Since h 2: 0, by considering the neighbors of Vo and the orientation, 

it follows that k(v{) 2: O. 
Consider a sequence Dn of such domains satisfying rado(Dn) 2: n, with arcs 

'fI = 'fin and such harmonic functions hn, kn. Let Ln denote the maximum value 
of kn, which is the value of kn on v{. 

Since E > 0 is fixed, we can consider a subsequence of n ~ 00 such that the arcs 
Ao and A 1 converge to arcs Ao and A 1 of length at least E, and the distance between 
them is at least E. Let Ao and Ai denote the two components of au \ (Ao U AI), 
so that Ao, Ao, AI, Ai is the positive order along au of these arcs. 

We now separate the argument into two cases according to whether or 
not Ln > 1. Suppose that Ln > 1 for infinitely many n and take a further 
~ubsequence of n such that Ln > 1 along that subsequence. Then kn I Ln and 
hnl Ln are both bounded by 1. It follows from Lemma 5.3 that after taking a 
further subsequence, if necessary, there are harmonic functions h and k on U 
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such that L;; 1 hn 0 0/;; --+ h and L;; 1 kn 0 0/;; --+ k uniformly on compact subsets 

of 1U (appropriately interpreted, since hn and kn are only defined on vertices and 
dual vertices, not on every point of Dn). Moreover, (5.4) shows that hand k are 
harmonic conjugates, because the discrete Cauchy-Riemann equations tend to the 
continuous Cauchy-Riemann equations. 

By Lemma 5.4, it follows that k is, respectively, equal to 0 and 1 in the 
relative interior of AD, Ai, and similarly h has boundary values 0 and l/i in 

Ao and AI, where i := limn - H1o Ln (where the limit is along the subsequence 
and must exist and be finite). By Schwarz reflection, say, this implies that hand k 
satisfy Neumann boundary conditions in AD U Ai and Ao U AI, respectively. It 
now easily follows (e.g., from the maximum principle) that h + ik is the (unique) 
conformal map taking 1U to the rectangle [0,1/ i] x [0, 1] which takes the four arcs 
Ao, AD, AI, Ai to the corresponding sides of the rectangle. 

The argument in the case where Ln :::: 1 for infinitely many n proceeds in the 
same manner, except that one should not divide hn 0 0/;; and kn 0 0/;; by Ln. 

It remains to remove the assumption that the distance between Ao and A 1 is at 
least E. Observe that the probabilistic description of h shows that it is monotone 
increasing in Al and monotone decreasing in Ao. Take E' > 0 much smaller than E. 

Then h (0) for the given configuration is bounded from above by the value of h (0) 
for the configuration where arcs of length E' are removed at the two ends of AI, 
and Al is adjusted accordingly. Similarly, h(O) is bounded from below by the 

value of h(O) for the configuration where such arcs are removed at the two ends 
of Ao. The difference between the value of h for the original versus any of the 
modified configurations goes to 0 as E' --+ 0, since h depends continuously on 
(AI, A2), as long as the length of Al U A2 is not O. Consequently, we get the 
proposition by applying the restricted version proved above with E' in place of E 

and by "sandwiching." D 

6. Other lattices. For convenience and simplicity, the proofs up to now have 
been written for the loop-erased random walk and UST Peano curve on the square 
grid. The purpose of this section is to briefly indicate how to adapt the proofs to 
more general walks on more general grids. In order to keep this section short, we 
will not try to consider the most general cases. 

Let L be a (strictly two-dimensional) lattice in ]R2; that is, L is a discrete additive 
subgroup of]R2 that is not contained in a line. Discrete means that there is some 
neighborhood of 0 whose intersection with L is {O}. Suppose that G is a planar 
graph whose vertices are the elements of L, and G is invariant under translation 
by elements of L. That is, if u, VEL are neighbors in G and.e E L, then.e + u 
neighbors .e + v. It is not hard to verify that there is a linear map taking L to the 
triangular lattice such that neighbors in G are mapped to vertices at distance 1. In 
particular, as a graph, G is isomorphic to the triangular grid or to the square grid. 
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Let N be the set of neighbors of 0 in G and let N' := {O} U N. Let X be an 
N'-valued random variable and let Xl, X2, ... be an i.i.d. sequence where each 
Xn has the same law as X. Consider the random walk 

n 

Sn:= LXj 
j=l 

on G. We are interested in the situation where the scaling limit of Sn is standard 
Brownian motion. For this purpose, we require that E[X] = 0 and that the 
covariance matrix of X is the identity matrix. (Note that if the covariance matrix 
of X is nondegenerate but not equal to the identity, we can always apply a linear 
transformation to the system to convert to the above situation. Therefore, what 
we say below also applies in that case, provided that we appropriately modify the 
linear complex structure on JR.2 .) 

Note that, under these assumptions, the Markov chain corresponding to the walk 
Sn does not need to be reversible. An interesting particular example the reader may 
wish to keep in mind is where P[X = exp(2nij /3)] = 1/3 for j = 0,1,2. 

THEOREM 6.1. Theorem 1.1 applies to the loop erasure of the random 
walk Sn. 

PROOF. An inspection of the proof of Theorem 1.1, including all the necessary 
lemmas, shows that only the generalization of the proof of Lemma 5.1 to the 
present framework requires special justification, which is given below. D 

LEMMA 6.2. Let Tr denote the first time n with ISnl ::: r. There exists a 
constant C, depending on X but not on r, such that, for all r ::: C, wEN and 
y EL, 

Here, pw denotes the law of the Markov chain started from w; that is, the law 
of (Sn + w:n EN) under P = pO. This lemma is clearly sufficient to provide the 
necessary analog of Lemma 5.1 for Sn. 

PROOF OF LEMMA 6.2. There are various ways to prove the lemma (via 
coupling, for instance). We give here a proof based on the Green's functions, as 
in [25]. Without loss of generality, we assume that P[ X = 0] > 0 and that L is the 
minimal lattice containing {w EN: Pw > O}. Then the random walk is irreducible 
on L. The discrete Laplacian t1x associated with X is defined by 

t1xf(z):= E[f(z + X)] - fez). 

Let a be the potential kernel for the random walk, 
00 

a(z) := L(po[Sj = 0] - pO[Sj = -z]). 
j=O 
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It is known that the series converges and, in fact, 

(6.1) a(z) = CI log Izl + C2 + O(lzl- I ) 

as Iz I ---+ 00, Z E L (where CI , C2 depend on the law of X). This is proved in [12] for 
the lattice:;z2 with arbitrary nondegenerate covariance matrix (with an appropriate 
dependence on the matrix), so the above follows for other L by applying a linear 
transformation. Since pO[Sj = -z] = PZ[Sj = 0], it follows that 

/
1, 

~xa(z) = 0, 
z=o, 
z#o. 

Let Gr denote the Green's function for the walk in L n rlU, that is, Gr(z, z') := 
LjEN pZ[j < fr, Sj = z']. Note that, for all z, W E L n rlU, 

(6.2) a(z - w) + Gr(z, w) = EZ[a(Srr - w)], 

since for fixed w both sides are ~x-harmonic for z E L n rlU and equality holds 
for z E L \rlU. SetM:= max{lwl: wEN} and Z = {z E L :r/2 ~ Izl < M +r/2}. 
By (6.1) and (6.2), Gr(z, w) = CI log 2 + O(r-I) for z E Z and wEN'. The 
same argument applied to the rev~rse walk -Sj, which has potential kernel 
a(z) = a( -z) and Green's function Gr(z, w) = Gr(w, z), gives 

(6.3) V wEN', V z E Z, Gr(w, z) = CI log 2 + O(r-I). 

Assuming r > 4M, by considering the last vertex in Z visited by the walk before 
time fr, we obtain, for all wEN' and all y E L, 

PW[ Srr = y] = L Gr(w, Z)PZ[Srr = y, minU ~ 1: Sj E Z} > fr]. 
ZEZ 

Together with (6.3), this completes the proof of the lemma. D 

Observe that Theorem 1.1 also holds for the simple random walk on the 
honeycomb grid, because two steps on the honeycomb lattice are the same as a 
single step on a triangular grid containing every other vertex on the honeycomb 
grid, and so Lemma 6.2 may be applied. 

We now tum our attention to spanning trees and the generalizations of 
Corollary 1.2 and Theorem 1.3. Suppose that X and -X have the same 
distribution, so that the walk S is reversible. For an edge e = [x, y], define 
Pe = P[X = y - x] = P[X = x - y]. In this case, it is easy to generalize the 
definition of UST to a measure on trees related to the law of X. This can be done 
either by using Wilson's algorithm or, equivalently, by giving to each tree T a 
probability that is proportional to the product of the transition probabilities along 
the edges of T. In other words, P[T] = Z-l fleET Pe, where Z is a normalizing 
constant. (The equivalence is proved in [44]; see also [26].) We call this the UST 
corresponding to the walk S (even if this probability measure is not uniform). Note 
that Lemma 4.1 also holds in the present setting because the probability P[T] is 
given in terms of a product. 
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THEOREM 6.3. Assuming that -x has the same distribution as X (i.e., Sj is 
reversible), Corollary 1.2 and Theorem 1.3 hold for the UST corresponding to the 
walk S. 

PROOF. The proof of Corollary 1.2 holds in this generality. In the proof of 
Theorem 1.3, the only significant changes concern the discrete harmonic conjugate 
function, used in the proof of Proposition 4.2. Recall that there is an appropriate 
definition for the discrete harmonic conjugate for reversible walks on planar 
graphs, where the discrete Cauchy-Riemann equation is modified (see [7] or [19], 
Section 6.1). If G is graph isomorphic to the square grid, the same is true for 
the dual graph. If G is graph isomorphic to the triangular grid, then the dual is 
graph isomorphic to the honeycomb grid. As pointed out above, Lemma 6.2 may 
therefore be applied to the harmonic conjugate. The details are left to the reader. 

D 

In the nonreversible setting, instead of a spanning tree, one should consider 
a spanning arborescence, which is an oriented tree with a root and the edges 
are oriented toward the root. Fix a finite Markov chain with state space V 
and a root 0 E V. Consider the measure on spanning arborescences of V with 
root 0, where the probability for T is proportional to the product of the transition 
probabilities along the directed edges of T. This is the analog of the UST in 
the nonreversible setting. Wilson's algorithm holds in this generality (see [44]); 
however, the choice of the root 0 clearly matters. 

If we consider a finite piece of the lattice L, and we wire part or all of the 
boundary, it is natural to pick the wired vertex as the root. With this convention, 
Corollary 1.2 holds for the wired tree. It would be interesting to see if the free tree 
with root chosen at ° E D is invariant under conformal maps preserving 0, say (in 
the nonreversible setting). Of course, one needs to choose a grid approximation 
of D where there is an oriented path from each vertex to the root 0. 

In the proof of Theorem 1.3, we have used reversibility in two places. The 
proofs of Theorems 10.7 and 11.1 of [38], which we quoted, currently require 
reversibility. However, these results were only used to improve the topology of 
convergence to SLE. More seriously, Section 5.4 uses the conjugate harmonic 
function, whose definition in the nonreversible setting is not clear. Notwithstanding 
the obstacles, it seems likely that these results can be proven in the nonreversible 
setting, too. 
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