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Summary. We consider time series which are realizations of a stochastic 

process. From the time series we construct various estimates of the spectral 
distribution function of the process (Section 3) and we study the sampling dis
tributions of some functionals of these estimates (Sections 4-7). We then obtain 
confidence regions for the spectral distribution function and various tests of 
hypotheses in the normal case (Sections 8-10). 

1. Introduction. Let us consider a real discrete parameter stochastic process' 
that is, a sequence of stochastic variables xt, t = • • • , — 1, 0, 1, • • • .2 We 
introduce the quantities Ext = mt, the mean value sequence, and the covari-
ances p8tt = E(x8 — m8)(xt — mt). The process yt = x% — mt is said to be sta
tionary in the wide sense if p8tt = ps-t • Then it follows from a theorem 

of Herglotz [10] that Pt = / eia dF(\) where F(X) is a bounded and nonde-

creasing function in (—TT, W). F(X) is called the spectral distribution function of 
the process as it can be said to describe the distribution of the spectral energy 
of the process (see Wold [22], p. 16). As xt is real, pt = p~* and the distribution 
of the spectral energy is symmetric about zero. 

Since knowledge of the distribution of the spectral energy is equivalent to 
knowledge of the covariance sequence, it is a matter of convenience which to 
choose in analyzing the process. The reduced process y% can be written as 

(1.1) yt = fe i t xdZ(\) 
J—T 

[3] where .Z(X) is an orthogonal process such that 
EZ(\) - 0 

( L 2 ) E | ZOO - Zip) | 2 = | F{\) - F(M) I . 
(For a discussion of stochastic integrals used in this paper see J. L. Doob, 
Stochastic Processes^ John Wiley and Sons, 1953.) Hence dF(X) can be inter
preted as the variance of the stochastic amplitude dZ(X) corresponding to the 
harmonic euX in the Fourier expansion of yt. F(\) seems to be more directly 
related to the structure of the process than the covariance sequence. Later on 
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538 ULF GRENANDER AND MURRAY ROSENBLATT 

we shall find other reasons for preferring to deal with the spectrum instead of 
the covariances. 

We can decompose F(X) into three parts, F(X) = Fa(X) + Fd(K) + FS(X), 
where Fa(X) = / /(/) dl, Fd(X) = X ^ x AF(X„), and FS(X) is constant except 

on a set of Lebesgue measure zero. Here/(X) = F'(X), the spectral density, is a 
nonnegative integrable function and the X„'s are the points of discontinuity of 
F(X) with associated jumps AF(X„) > 0. We are going to deal with the absolutely 
continuous case, but will make a few remarks later on concerning possible dis
continuities of the spectral distribution function. 

A model of some practical interest is the following one. A linear filter $ can 
be characterized by its output at at time t generated by a unit input at time 0. 
It is not necessary for our purpose to demand that at = 0 for t < 0. Suppose 
we feed independent random impulses & , identically distributed with mean 0 
and standard deviation 1, into the filter. Following Tukey we shall call a process 
of the type £* "pure white noise" as contrasted with a more general process t]t 
with Erjt = 0, E7jsrjt = 5st (called "white noise"), but where the rj's are not nec
essarily independent. Note that in both cases one has a uniform spectrum, 
F'(X) = (27r)_1. The resulting output at time t is then 

00 

(1.3) yt = X) a>n£t-n. 
n=—oo 

If XX> a* < °°> this sum converges with probability 1 (see Levy [15J, p. 139™ 
142). If the input had been t)t we would only be able to state convergence in 
the mean square. In both cases the spectrum is absolutely continuous with 
spectral density (see Karhunen [12], p. 71) 

'w - h —in\ 
ane 

More restrictive conditions will be imposed on the process later. A process of 
the type (1.3) is called a linear process. 

On the other hand, if a real stationary process yt has an absolutely continuous 

spectral distribution function F(X) = / f(l) dl, Doob (see Proceedings of the 

Berkeley Symposium on Mathematical Statistics and Probability, University of 
California Press, 1949, p. 327) has shown that 

(1.4) yt= E an 7]t-n » 

where we can choose an = / etn)iy/f(X) d\ and Etjt = 0, E^srjt = 8st. The 
J—r 

?j's are elements of the real Hilbert space spanned by the y's and an appropri
ately chosen set of real random variables (see [12], p. 42). They are then real 
and so are the a's. In the present paper we shall deal only with the linear proc-
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SPECTRAL ANALYSIS IN TIME SERIES 539 

esses. I t would be interesting to extend the domain in which our results are 
valid to a more general class of processes. 

A normally distributed process with an absolutely continuous spectrum is 
clearly linear as the rfs appearing in (1.4) are then automatically independent 
and identically distributed. 

2. Some methods that have been proposed for time series analysis. An im
portant group of statistical problems arise in the following wray. We observe a 
sample Xi, x2, • • • , xN (a time series) from the stochastic process xt and want 
to make inferential statements concerning the covariances, or equivalently the 
spectrum of xt. There has been a long history of work aimed at answering such 
problems. A considerable part of the literature has been devoted to testing the 
independence of the observations, usually in the case of normal time series (for 
a list of references see [14]). Other statisticians have studied what one could 
call finite parameter schemes. Two important schemes of this type are the auto-
regressive scheme (2.1) and the moving average (2.2) 

(2.1) £ bny*-n = .{, 

rc=0 

(2.2) Vt = £ iSnfc-n 
where the Vs and the /3's are constants. Specifying a priori an order p for the 
process, they have given estimates for the coefficients and have devised tests 
for various hypotheses (for a list of references see [14]). Whittle [21] has gone 
further and has given tests for discriminating between finite parameter schemes 
of different orders without specifying the coefficients a priori. 

Any linear process can be approximated as closely as is desired by a finite 
parameter scheme of sufficiently high order. In most practical situations, how
ever, it does not seem realistic to take the order of the scheme as some number 
p, usually small, given a priori. 

A great deal of the older literature has been devoted to the so-called periodo-
gram analysis (see Kendall [13] for references). This was originally devised to 
deal with processes of the type 

xt = X) (A* s i n M + Bv cos \yt) + £« 

where m, Av, Bv, and A„ are unknown. Clearly xt has a spectrum with a dis
crete component. To estimate the frequencies \v the following statistic called 
the periodogram 

INO) = 2 
2wN 

1 
2irN 

E —iv\ 

Xp e J>=I 

l [YN V / N V 
-~Tr\ ( 23 %" C°S ^ ) + ( ]C Xv S i n ^ ) 
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540 ULF GRENANDER AND MURRAY ROSENBLATT 

has been used. A rationale for this method is that IK(X) can be shown to diverge 
to infinity as N —> °o if X coincides with some frequency X„. Hence if I#(k) 
is large we suspect that X is one of the frequencies X„ of the scheme. For a corre
sponding test of significance see Fisher [6]. 

Periodogram analysis is not immediately applicable to the case of an ab
solutely continuous spectrum. However, some work of the last few years has 
indicated that when it is properly modified, it is the most powerful method 
that has been found to work without very special assumptions concerning the 
covariance structure of the process. We would like to mention especially Bart-
lett [1], [2], and Tukey [20]. 

A brief discussion of some of the results of this paper can be found in [9]. 

3. Some preliminary considerations. Consider a process 

yt = f e~itx dZ{\) = E Zve~itx + y\ 

where y\ is the component of the process with a continuous spectrum and the 
other term is the one with a discrete spectrum. If we observe a complete realiza
tion yt, — oo < t < oo, we can specify the sample value of any Zv with proba
bility one. However, we cannot estimate E\ZV\2 = AF(X„) consistently unless 
\ZV\ is constant with probability one. We note in passing that the model of 
random phases in which Zv = Aye%(p% where the <pv's are independent and uni
formly distributed in (—w, ic) and the Av's are constants, has this property and 
is not without interest (see Lgvy [16], p. 114). 

Although the periodogram is a legitimate tool for estimating the frequencies 
\v of a discrete spectrum as has been remarked above, it cannot be used to esti
mate the spectral density of an absolutely continuous spectrum consistently 
[7]. Still the periodogram plays a fundamental role in our paper as our estimates 
are closely related to it. 

Let yt be a linear process and let the £'s used in constructing the process have 
a fourth moment m . We set 

e = fii — 3. 

Note that e is the fourth cumulant of the random variables £. The periodogram 
ZAT(X) of the process yt then is 

N, 12 

Vte IM = l 
2TN 

J V - l 

2irN TTN £a 

where Cv = ^IZl ytyt+v ■ We are interested in statistics of the form 

(3.1) $* = f INUMD dl 
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SPECTRAL ANALYSIS IN TIME SERIES 541 

where <t>(l) is bounded, symmetric about zero, and has at most a finite number 
of discontinuities. Let 

(3.2) $ = r jaw) di. 
J—ir 

THEOREM 1. Let $# , 3> be defined as in (3.1), (3.2) and let SEv , & be defined 
analogously with weight function $. If the spectral density f(l) is continuous 

lim E$N = <f>, lim E9N = # 

and 

(3.3) lim N cov ($x, *N) = e$* + 4a- [ fUMDtU) dl. 

PROOF. By definition of $# 

(3.4) E$N = f^ElAUd) dl 

But using (1.1) 

IAD = 1 
i 

—ivl 
iNQi—l) 

2TN 

and hence from (1.2) 

1 / » T 1 iiv*.A— t ; 

iN(K-l) 

dE | Z(X) 

- — r s in — (X — Z) 

sin 
:X - I 

f(\)dh 

which tends to/(Z) as 2V —»• °o. But the integrand in (3.4) is bounded by 

!<KX)|maxx/(X) 
so that we have E^x —■» $ as 2V —> <n. 

Let us now consider N cov (*A- , tyN). We have 

But 

iVcov(Jw(X),Jy0x))=j4v £ c o v C ^ ^ . y ^ ^ ^ ' - - ^ 5 ' . 

^2/a 2//s y7 2/5 = X) <V-n ap-wi ay-pt a$-V4 E£n £„2 £„8 £„4 

= (/i4 — 3 ) 2L^ o>a—vO'fir-vO>y—va,t—v + JL* (xa_^a /3-_pa?_j l ia5_ / i 

oo QO 

+ 2J aa-pa^ay-pas-y + 2-, aa-va>fi-ixa>y-va>h-n 
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so that 

cov 

ULF GRENANDER AND MURRAY ROSENBLATT 

(Vcxl/P, VyVd) = (M4 — 3 ) 2 2 da-pCt^-vdy-vClb-v + Pa-8 P&-y + Pa-y P&-6 • 

The fourth moments of Ya can be shown to exist and the operations that have 
been carried out can be justified by a repeated application of Schwarz' inequality 
and Fatou's lemma. Hence 

N cov ($N, tyN) = 1 
4TT2AT 

AT r oo 

2 2 (M4 — 3 ) 2 2 0>a-vQ>$-va>y-vO>b-V + Pa-6p0-y + Pa-y P0-< 
a,P, 7 , 5 = 1 |_ v=—oo 

where </>v = / e l vV(^) d^ and ^„ is defined analogously. 

= $1 + $2 + $3 

We first deal with S i . Note that 
mlT /»7T 0 0 N 

47T^ iV J - T T J - T T v = - o o a , 0 = 1 7 , 5 = 1 

= ^TTAT (' f £ I E °— ei<"X f I E a*-^*'™ f *(X)*G«) <*X d„. 
4 7 r Z i V J—7i J - T T v = - o o I a = l I I 7 = 1 I 

First we consider the special case 

The function 

Cn,m(X) = z 3 akdk-ne1' z2 aia>i-me u\ 
i—« 

is continuous. We have 

7T~ l £ n , m \ X j 6 ^A = = -Z - / $a—v<*a—n—i> dy—v &y— m—v 
JlW J—TT J » = — 00 

so that 
m i n (iV.iST+m) m i n C J V ^ V + n ) 

S,(«-V') = ,-4v (2*02 E — t (a—7)X 

a = m a x ( l , l + m ) 7 = m a 
E ^- c„.m(x)<n'(« 
X ( l , l + n ) ^?T J-7T 

dx. 
But then 

S / — mX — *m/x\ 
I O e ) /

7T 7r t ( n — m ) X 
. N — m ^ . N — n ^ sin — X sin — X 

c«,m(X) dX 

sin 

= — f 
7T i ( n — m ) X 

sin —-—- X - sm {N — n)\ sm — - — X 2 n — m A , 1 2 cos — - — X + 
. 2X 

sm - sin 2 

dX. 
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Using [5] we see that the second term is dominated by constant (log N)/(N) —> 0 
as N —> oc. The first term tends to ecn,m(0) = epnpm . Now let us consider a 
finite trigonometric polynomial 

&(X,M) = £ hntme~inXe~imfi 

in place of <£(X)̂ (X) in Si. Then 

H m &( / fc ( \ , M)) = 7 -2 2 hn,mPnpm = £ / / &(X, M ) / ( X ) / ( / X ) ^ (fc. 

Now given any <£(X) and #(/*), we can choose two finite trigonometric poly
nomials hi(\, fi), &2(X, p) such that 

/* If pit 

h(\ M) ^ 0 (A¥W ^ fo(A, M), / / MX, n) - h(X, M)] dX dy. < e. 

Then Si(<p(X)\p(p)) lies between Si(hi(\, /*)), Si(h(\, /*)) and hence 
fim , lim Si(<j>(\Mn)) 

N—>oo iV—►oo 

lies between 6 / / /ii(X, M)/(X)/(M) dX <2M and e / / A»(X, M)/(X)/(AO dX d/i. 
. o Jo Jo *o 

On letting e —> 0 we see that 

lim &(0(X)*GO) = 6 f *(X)/(X) dX f *GI)/(M) d/i. 

To evaluate the remainder £2 + £3 of cov ($JV , *#) we note that it would be 
the actual covariance if the process were normal. But in this case the limiting 
covariance has been evaluated in [7] when <t> and $ are even, although under 
the restriction that the spectral density has a continuous derivative. However, 
an argument similar to that just carried out above indicates that the result in 
[7] is valid for continuous/(X). This proves (3.3). 

One should note that as the periodogram is an even function, it is sufficient 

to consider estimates of the form $# = / IJV(X)$(X) d\ corresponding to the 
Jo 

weight function §[<£(X) + <t>(—X)]. Expression (3.3) then becomes 

lim AT cov ($.v, *„) = e$# + 2x / f {1)^(1)^(1) dl. 
N-t-oo • 0 

The following theorem gives an estimate of the speed with which E$N con
verges to $>. 

THEOREM 2. Suppose thatf(X) has a bounded derivative. Then 
BbK = $ + O(log N/N). 

PROOF. By the proof of Theorem 1 
r 1 r sm — (X - I) 

E<$>N - * = - i - / ?- — \f(l) - /(X)]*(X) dX dl. 
J-T dlTi\ J-r . 2 X — I sin 2 
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But we have uniformly f(l) — / ( \ ) = 0(1 — A) so that 

. 2N 
>K ~ * - A f" S^J~ °d * l>V2(2r - I * I) dx ^ * ^ JSft* 

2 # 
s i n -

according to [5]. 
We remark that if the function /(X) defined on the real line with period 2ir 

has a bounded second derivative everywhere we get instead E$x — $ = 0(1/N). 
We now prove three elementary lemmas that are required in the develop

ment of the main results of the paper. These results have been proved under 
conditions that are probably far from necessary. But we believe these condi
tions give an idea of the practical domain of applicability of the results. 

In the remainder of the paper we shall assume that E [ £„ |8 < oo. 
LEMMA 1. Consider the covariances cv = X)nlivl £n£n+i»j . Then if *>, ju ^ 0 

(Ai N if \i ■£ v 
(3.5) | Ecc+jCpCu+j | ^ < 

{A2N2 if fjL « v. 

The reader should notice that Cv refers to the y-process and cv to the ^-process. 
PROOF. I t is clear that (3.5) is made up of terms of the type J ? I l L i ?», • If 

one of the indices n* is different from the rest this term vanishes. As each of the 
terms is bounded by E j £„|8, it is sufficient for our purpose to enumerate the 
nonvanishing terms. But we have restraints, say 

n% = ni + a, n* = nz + b, fte = ^s + c, n& = n7 + dy 

where we do not yet specify the integers a, &, c, d except that they should all 
be different from zero. We can then treat the eight variables in a completely 
symmetric way. Let us fix n\. As n2 -^ n\, n2 has to be equal to some other nt-, 
say n 3 . 

Now we separate two cases. As n& T± nt, it has to be equal to one of n\ , n2, 
n 3 , ni or to one of n7, n 8 . Let us consider the first alternative. Then n7 has to 
be equal to one of n\, n2 , nz, n±, n s , n6 and whichever we choose, we have 

(3.6) ni = nx + a{, i = 2, 3, • • • , 8. 

As 1 ^ ni ^ N this gives us at most N possibilities. 
In the second alternative let us take n$ — n7. If any of n±, n 2 , nz, n4 is equal 

to any of n& ,n* ,n7, n8 we have again a system of restrictions of type (3.6) and 
hence again at most N possibilities so we can exclude this case. But n2 = n% ^ n\ 
and n6 7* n7 = n$ so that the only other way of getting a nonvanishing term is 
n2 = n 4 , n6 = fts, which requires that a = b, e = d. If that is the case we clearly 
get at most N2 possibilities. The result now follows easily. __ 

LEMMA 2. 7%e distribution of the variables (c0 — N)/y/N9ci/y/N, • • • , ck/\^N 
tends to the distribution of k + 1 normal and independent variables with mean 
zero and variances e + 2, 1, 1, • • • , 1. 
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PROOF. Introduce 

Zj = fo(& — 1) + <i£i£/+i + • • • + tkZj^j+k 

so that 

1 v 1 
UN = — ^ Z) 2; = 7 7 = [to(co - N) + ix c[ + • • • + fe cj[] 

where 
N 

Cv = Cv + Yl &&+*, V > 0. 

It is evident that (c, — cv)/{-\/N) —» 0 in probability as N —» oo. But zy is a 
stationary (fc + l)-dependent sequence of random variables. Applying a theorem 
of Hoeffding and Robbins [11] we see that Ujr is asymptotically normal with 
mean zero and variance tl(e + 2) + J^i £„. Hence 

Be*™ = 1? exp {* ^ + i± U ^ i -> eW™i* 

wrhich proves the lemma. 
LEMMA 3. If yt is a normal process with a positive spectral density having an 

integrable second derivative, then av can be chosen so that av = 0(l/v ). 

PROOF. Choose av so that av = / e%vX\/f(X) d\ and integrate by parts 
J—TT 

twice. The result follows immediately. 

4. Treatment of pure white noise. 
THEOREM 3. Consider the empirical spectral distribution function 

.x 
F$,iQ0 = IN.&) dl 

where 

'-^ - mt^~M 
Then the limiting probability distribution of 

max VN\F%,^(\) - — 

as N —> <*> is the same as that of 

max | f (A) 

where f (X) is a normally distributed process with mean zero and covariance 

£f(X)f(M) = g^ + ^min(A,M). 
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PROOF. We have 

VN ^* / x ^ 1 X / Co /-—\ v^1 c„ si sin J/X 

7TJ> 

= sN,k(\) + rN,k§i) 

where sN>k(X) consists of the first term and the k — 1 first summands of the 
sum. We shall show that with probability close to one, for sufficiently large k, 
| rjv,&(X) | is small uniformly in N7 X. 

Let us consider 

J^ cv sin v\ 

where 0 < m < I < N. But 

X cv eivX 

VN v 

A cv eivX 

£i» VN v 
To get a bound for this sum we consider 

^2Z 
i-j Cy Cy-\-j 

(4.1) E 
i-i Cv Cv-{.j Ecv Cy-{.j Cy. Cff\-j 

j ^ m NZV(V + j)fl(jl + j) 

2 l-j 

Nv(v + j) 

We know by Lemma 1 that 

(A2N2 if v = n 
JbCvCv+j Cy Cp+j j ^ i 

[AxN if ^ / i . 

Thus the expression in (4.1) is bounded (use the Schwarz inequality) by 

1 « ^3 ^4.2X1 2 ^ A*' + j)2 ^ Ar ,,^n y(i/ + j)fx(fi + j) = „=7n v\v + y)2 * ' ^ + £2 
Now we choose m = 2P and £ = 2 p + \ Then again using the Schwarz inequality 
we get 

E max 
0 < X <7T 

2V^ cv sin ^X j A S^ 2 P + 1 - 1 
V-2P V*(v + jT ' J 

1/2 

2P 1 

=5 ^.5 2-f ^3^/2 = As/2 

Let k = 2n . Then with probability greater than 1 — ^ 5 / 2 p / 4 

op+l 

Tp = max 
0 <;X<7r v^p VN v < 2 W 4 . 

Consequently 
[log.V]+l J 
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with probability greater than 1 — ^ 6 / 2 n / 4 . Choosing n sufficiently large j rNtk(\) | 
is uniformly small. 

We want to find the limiting value of 

p(max VNIFZM -A. 
But from what we have just shown, we see that for any e, 5 > 0 

P ( max | sNfk (X) | < a — e) — 5 ^ P ( max S/N KM - 2x ^ a) 

^ P{ max | s*,fc (X) | < a + e) + 5 

for ft sufficiently large, uniformly in N > 2V(«, 5). But 

A \ Co ~~ N I f c sin v\ 
SNAX) = 2 7 r V F X + 7 r V V i V * 

and we have shown in Lemma 2 that the joint distribution of (co — N)/\/N, 
CI/\/N, • • • , Ck/^N (k fixed) converges to the distribution of & independent 
normal variables with common mean zero and variances e + 2, 1, 1 , - - - , 1 . 
Consider the related process 

Sk(X) = f. V7T2 x V t y- ^ 
where the 7*s are 2V(0, 1) and independent. I t is easily seen that 

lim P( max | sN,k (X) | ^ a) = P ( max | sk (X) | ^ a) 
iV—>00 O^X^TT O ^ X ^ T 

as the relevant point set in (k + l)-space is closed [18]. But on letting k tend 
to infinity s*(X) converges uniformly to 

(see Paley-Wiener [17], p. 148-151). But then 

P{ max | f (X) | < a - e) 
0 < X ^ 7T 

5 < P ( max ViV 
\ 0 ^ X g 7T 

F ; , ( X ) - A 
" ) 

< P ( max | f(X) | < a + «) + 5 
0 < X < 7 T 

and if AT -^ oo we can let 6, e —> 0. Since the distribution function of m a x ^ x ^ , 
| f (X) | is continuous (see Section 7), this completes the proof. 

x 
5. Reduction to pure white noise* Let G(X) = j p{l) dl. 

Jo 
THEOREM 4. Let /(X) be a nonnegative absolutely continuous function. Then 

lim P < max VN 
N-*QO l o < X < x 

/ /(Z){ 2 * 1 ^ ( 0 - 1} dl 
Jo 
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where r?(X) is the normal process with, Eri(\) = 0, Er)(\)i)(/j.) = eF(X)F(n) 
+ 2irG (min (X, /*)). 

PROOF. Integrating by parts we have 

( J(1){^INAI) ~l}dl = 2TT/(X) fe!?(X) - A ] 

Given e > 0, by Theorem 3 we know that 

max VN ( i ^ ( X ) - £-) - **.* (X) < € 

with probability 1 — e uniformly in N > N(e) for k sufficiently large. But then 

max 
O^X^TT 

/(x) V t f ( * l * ( X ) - £ ) - 8JM(X) 

fV(0 VNIFIAD 
2TT 

SNAD dl\ < Bit 

with probability 1 — e. However, 

P < max 
U<X^7T 

/(x)«*.*(x) - f f'(i)sNAD di £ a 

P< max 
10 < X < ir 

/(x)«*(x) - f / m o ) 
*>0 

(2Z < a 

as iV -^ oo as the relevant set is again closed in (k + l)-space. We know that 
for any e > 0 

max | sk(X) - f(X) | < e 

with probability 1 — e for sufficiently large k. Let 

i?(X) - /(X)f (X) - f /(Of (0 #. 

In summary 

P < max | T?(X) | < 
10 <X<7T 

- . V 8 < Pi max VN 
[osX<ir 

j ffl{2KlN,iW-Udl\£a 

< P< max j rj(X) | < a + e> + 5 lo<x<x 
and on letting N —» oo so that e, 5 —> 0 we obtain the desired result. Note that 
the event max0^x^7r | i?(X)| ^ a has a well defined probability since T?(X) is a 
process with continuous sample functions with probability one. 
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T H E O R E M 5. Let av = 0(v8) where (3 < — %. Then given any e > 0 

VN max 
o <x< T 

[IAD - 2wf(i)iN,i(i)} di < € 

with probability 1 — e for Ar > Ar
e 

P R O O F . We have 

(5.1) 2irVN I [IN(l) - 2wf(l)IN,M dl = ^ 7 - Z arasdrs 

where 
t(n—m)X -4 i(n—ra)X + 

^ r , s ^ ^ £n—r fra—s ""77 \~" ^L-/ ? » - r ? m - « 
n , w = l t(n — m) n=l+r,iV-fr %\Th — TYl) 

m=l-j-s,2V-i-s 

The coefficients of the terms when n = ra should be interpreted as X. We note 
t h a t there may be a lattice rectangle R^J of points (ft, m) common to both 
sums. Let us call the complement of R^J with respect to the set consisting of 
all the lattice points in both summations CrV . Then we have 

E max I dr,s | ^ m f ^ w g(n - m) 
0 ^ X < | 7 r 

where 

" 2 if x 9* 0 
flf(s) = 4 I x I 

7T if X = 0 . 

I t is easily verified tha t 
y , [2N\ogNii\r\> N or\s\> N 

n'mECr,s U(s + r) log i\T otherwise. 

The expression in (5.1) is then bounded by 
O oo O oo 

—7= Z Z I a, a. | 2Ar log N + 77== Z Z I ara. | r log iV 
V i V a=—oc |r|>A' V i V «=-«, |r|gAT 

=g(Z I a. |V4 ViV log iV Z K I + ^ # Z r |a , |Y 
\s=-oc / \ [r|>AT V i V jr[^Ar / 

Under the assumption made above, this expression tends to zero as N —> <*> 
which proves the theorem. 

6. Trea tment of the general case. Let F*(X) - / 7*(Z) efl. 
•'0 

T H E O K E M 6. Let 
1. /(X) 6e absolutely continuous 
2. a, = 0 ( / ) , 0 < -V2. 
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Then 

lim P{ max y/N \ F*(\) - F(\) | £ a] = P{ max | v(\) | ^ a} 

w&ere r}(\) is the process defined in Section 5. 
The proof follows immediately from Theorems 3, 4 and 5. An important 

special case is contained in the following corollary. 
COROLLARY 1. When yt is a normal process with a positive spectral density with 

an integrable second derivative, Theorem 6 reduces to the following statement: 

lim P\ max VN | F*(X) - F(\) \ S a} 
JV-KJO O ^ X ^ T T 

(6.1) 
= E (-l)*[*((2fc + \)a/x) - *((2fc - l)a/x)] = A(a/x) 

t̂ ftere *(w) is #ie normal distribution function and x = S/2TG(T). 
PROOF. Lemma 3 implies that the assumptions of Theorem 6 are satisfied. 
As e = 0 the process 17 (X) reduces to the Wiener process with the following 

changed scale of time: t = 2wG(k), 0 ^ X ^ 7r. The reader may note that (6.1) 
is the probability that a particle in Brownian motion on the line is not absorbed 
by the barriers a, —a in the time interval 0, 2x6? (71-), given that the particle 
starts from 0 at time 0 (see Sommerfeld [19], pp. 74-79). 

7. The limiting distribution in the case of pure white noise. When the process 
yt is pure white noise (so that/(X) = constant, say 1) the limiting probability 
we are interested in is given by 

(7.1) P{ max | f(X) | ^ a} 
o < ; x ^ -a-

where f (X) is the normal process with 

#f (X) = 0 

#f (X)f (M) = e\n + 2w min (X, M). 

Now (7.1) has been explicitly evaluated when 6 = 0 (see 6.1). However, the 
limiting distribution can still be evaluated when e ^ 0 . 

THEOREM 7. 

P{ max | f(X) | ^ a\ = t (_i)y-*'«> /- 'm-<T/«» 
O ^ X ^ T T k=— 00 

ft^KM^H))] 
where y = e + 2. 

PROOF. Let r = A/TT. Let X be a normal random variable with mean zero and 
variance one. Let X{T) be a normal process with 

EX(r) = 0 

£ X ( T ) X ( T ' ) = min (T, T') - TT', 
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that is, X(T) is the Wiener process conditioned so that X( l ) = 0. X and X(r) 
are independent. Consider the process U(T) = s/ywTX + W\/2X(T). The proc
ess U{T) has the same probability distribution as f (X) so that 

P{ max | f(X) | ^ a] = P{ max | u(r) j ^ a} . 

But 
P{ max | U(T) I ^ a} 

(7 2) — -
= r J-a-VyTrrx ^ x ( ^ a-vW 0 ^ T g A (aj) d x 

•*-« I 7rV2 X V 2 J 

where ^(#) is the normal frequency function. Let 

Y(t) = (t + 1)X ^ - i ^ ) , 0 ^ < < oo. 

Then F(0 is the Wiener process (see [4]), 0 ^ t < °o. We have then to consider 
(7.3) P{ - a - (a + &)* ^ y(t) S a + (a - &)*; 0 ^ < < °o } 

where a = a/ir\/2, b = y/yx/y/2. The integrand in (7.2) is clearly zero unless 
| V S ^ I ^ a/V. But supposing this inequality to hold, Doob [4] has evaluated 
(7.3) as 

E { -2[(2m-l)2a2_(2m-l)6a] . -2[(2m-l)202+(2m-l)6a] -2 [(2m) 2a2-2m&a] -2[ (2m) 2a2+2mba] > 

{6 + e — e —e ) 

= 2 £ ( -D^+V 2 " 2 " 2 cos/* 2»&a. 

Thus (7.1) is equal to 

\ 7 r V 7 / \ i r V T / »=i «*-<*/*V"Y 7r 

\v\/yj W T / «=I 

/* (^5? + « \ _ ̂  ( n ^ _ « \ + $ / zWJ? + a\ 
L \ 7T 7TV7/ \ x TT-y/y/ \ * WVy/ 

_ <f> / — n V T a __ a \ \ = ^ / -j\n -(n*aS/ir»)(l-(7/2)) 

\ ^ 7TV7/J n^-oo 

. [ # ( ^ ( . + i ) )_ .^( . i))]. 
This expression parallels (6.1) and will be used in a later publication in which 
we will study some applications of the theory. 

8. Statistical applications. The corollary of Theorem 6 lends itself to impor
tant statistical applications. First, however, we will have to estimate G(ir) which 
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is in general unknown. We note that G(ir) = (47r)~123!!00 pi. Of course the Cv/N 
are consistent estimates of pv. I t is natural to consider an estimate of the form 
(8.1). One reason for this particular choice is that in practice one will try to 
avoid the cumbersome calculation of all the lagged product sums Cv. 

LEMMA 4. If av = 0 ( / ) , j8 < — 1, the statistic 
1 [KN<*] 

(8.1) G*M = ^ 5 [Co2 + 2 E Cl], 0 < a < 1, K>0, 

is a consistent estimate of G(TT). 

PROOF. 

(8.2) (?*« = - L j C„2 + 2 E Cl\ + 5^= E Cl 

But we see using (3.5) that the last sum is less than or equal to 
[KNa] N oo 

Z-/ 2s 2s { | fl/-0i ai+v-$i dk-02 G>k+p-p2 I + I aJ~01 aJ+>-&2 ak-Pi ak+y-02 | 
j>=m-fl j,k=X fiifiz——oo 

+ | aj~p1 aj+v-02 Q>k-$2 0'k+v-p11} (4 + fn) = QCi + Z-/2 + ZJ3) (4 + /**) * 

Let the rv be understood to be the covariances of the process ]TX-*> I an-v | £*. 
The spectral density (27r)_1 | 2 I a^ I e%vX ? °f ^ s Process is continuous and hence 
quadratically integrable, so that ]>2-«> rl < *>. But then 

| Z i | - Z Nyl^N2 E rl 

so that | ]T)i |/Ar2 < € for m sufficiently large uniformly in iV\ Also we get 

iVw iVZ y=m+l i,fc=l iV m+1 n=-co iV -oo 

as iV —> 00. The third sum is handled in almost the same way but using Schwarz' 
inequality. We now choose m so large that the last sum in (8.2) is less than 5 
with probability larger than 1 — 5. The term in brackets in (8.2) consists of a 
fixed number of terms each of which converges in probability to the correspond
ing term in the expression for G(TT). This proves the lemma. 

The corollary of Theorem 6 shows that in the normal domain the asymptotic 
distribution of maxx s/N \ F*(X) — F(X) \ depends only on one parameter G(TT). 
This together with Lemma 4 enables us to construct confidence bands for F(\). 

THEOREM 8. Suppose that yt is a normal process and that its spectral density is 
positive and has an integrable second derivative. Then 

(8.3) # 0 0 - a y ^ | © ^ F(X) ^ Ft(X) + « | / ^ ^ 

holds with a probability tending to A (a) as N tends to infinity. 
The proof follows immediately from Lemma 4 and Corollary 1 as A (a) is 

continuous. 
Clearly Theorem 8 also gives a test of significance for the simple hypothesis 
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of a completely specified spectrum. A more interesting case, however, is the 
following. 

THEOREM 9. From a stochastic process satisfying Theorem 8 we observe two 
independent time series of length Ni and N2. Compute the corresponding estimates 
F%x(\), F*2(X), Gi (7r), Gt(IT). Then, assuming that N1/N2 —> c > 0 and putting 
N = 2N1N2/(N1 + N2), 

max VN\FU\) -F£2(X)| 
(8.4) °*x** , ± — — > a, 

holds with a probability tending to 1 — A (a) as N tends to infinity under the 
hypothesis FX(X) = F2(X). 

Theorems 8 and 9 are somewhat restricted in their applicability as they stand, 
since in many contexts mt = Ext is not identically zero. We shall consider the 
case 

mt = dip^ + d2<p?) + •" • + dp<p(
t
p), 

where &\l), <p¥\ • • • , <plp) are given sequences and the regression coefficients dv 
are unknown. To avoid unnecessary complications we will confine ourselves to 
the case p = 2, which illustrates the general situation. We have to introduce 
the following condition which prevents the two regression variables v\l) and yT 
from becoming linearly dependent in the limit 

I 2 - r H>% <Pt I 
(8.5) R = lim A-i Tf-L- < 1. 

A'—oo —* ( l ) * V * ( 2 ) 2 

Z^ <Pt Zs<Pt 
1 1 

We will use the least square estimates df , dt of d\, di as they have been shown 
to be asymptotically efficient [8]. 

THEOREM 10. Under the conditions of Theorems 8 and 9 and (8.5), formulas 
(8.3) and (8.4) remain valid if F*(X) is computed using xt — dt<p\l) — d*<p?) in 
place of yt. 

PROOF. I t is sufficient to prove that 

max s/N 
0 < X ^ IT 

, X I A' 

IT A, Jn „ „ 1 

2 

eft 

■J / . X I *V 

'n 1 

2 

27TiV Jo I 1 

tends to zero in probability as N —> cc. The expression inside the absolute value 
sign is 

+ (d* — d^^pv <pfi" + 2(c?i — di)(d2 — c Q ^ <Pti 3 • 

2ir2V V,M=I 

~ 2^i + 2-̂ 2 + 2-̂ 3 + 2^4 + 2-̂ 5,] 
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where the same convention as before is used in interpreting the terms with 
v = fx. The least square estimates d* , dt are unbiased linear estimates with 
coefficients depending only upon the <p{

v
lhs and <pp2)'s. A simple argument using 

the fact that the spectral density is bounded shows that 
y ^ (2)2 

( 8 , , var g S * „ « JM s , , . . . ^ . ' : ^ , , , ^ , 

2TT max /(A) , 

1 - R £ *S U) J 

Now 

TTVN max | S i | ^ 77~ S 1 <£ - di | £ - £ ^>+; 

+ 7r | d* — di 

But we have 

(8.7) E 

N 12 1 -j 

z2 VVVP1 \ + \ d* — di \ z l i— 
p=l—p 

'N—p 

Z (i) 
2 AT 

^ 2TT max /(A) £ ^ 1 ) 2 -

)* 

We know from (8.6) that with as large a probability as desired \d* -~ di\ \s 
less than V ^ X ^ i ^ * 2 * * - Then it follows from Schwarz' inequality and (8.7) 
that with large probability 

WN max | E i I < K' log N/VN -» 0. 

2^2 can be handled in the same way. Now 

2WN max | Z a | = @-=M f \ ± ,< V " \ dl S (dt ~ ^ T t v? 

and the expectation of this tends to zero as N~~\ ]T^ a n d ^ s can be treated in a 
similar manner which proves the theorem. 

An important special case is <pv = 1, which corresponds to a constant unknown 
mean value of the process. Another situation of some interest arises when the 
spectrum of the process has a discrete component with frequencies Ai, X2, • • • , \p . 
There we take the <pv's as trigonometric functions with these frequencies. 

9. Alternative estimates of the spectral distribution function. I t is clear that 
Theorems 6, and 8-10 are still valid if the estimate F%(X) is replaced by a trun
cated estimate 

n.„(x) - ^ + i i a ^ 4 ff 7,(0 
Z7TiV 7TiV v=l V ZlT JQ J - T T 

sin (hN + §)(£ — n) 
sin (I - fi/2) 

dl dfi 
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where hM —> <*> as N —> «>, as they can be proved in exactly the same manner 
since the weighting factors are 1 from v = 0 up to v = hN and 0 from that point 
on. Note that the estimate F*,*r(A), in general, is not nondecreasing with prob
ability 1 which may at times be an unpleasant feature. We can choose hN = [kNa] 
as in Lemma 4. This reduces the computational work considerably as one then 
only needs to compute the CVs for v S [kNa]. 

We shall now consider a class of estimates of the spectral distribution func

tion with nondecreasing weight functions. Let W#(\) = I Wx(l) dl where 
J—TT 

Wx(l) ^ 0 in (—7r, 7r), / WKQ) dl = 1 and 
J—r 

fo if x < o 
lim W„(\) = j 
*-«> [1 if X > 0. 

Let 
K<\, WN) = f I„(l)W„(\ - I) dl 

Jo 

F(\, WN) = ( f(l)W„(\ - I) dl 
«'0 

We prove the following theorem. 
THEOREM 11. Under the conditions of Theorem 6 

lim P{ max VN \ K(\, WN) - F{\, WN) | ^ a} = P{ max | 

PROOF. On integrating by parts we have 

VN[F%(\ WN) - F{\, Ws)] = \/N f [I AD - f(l)\ dlWN(X - TT) 

+ [ VN f [IAn) - /GO) d»w„(\ - I) dl 
JQ JQ 

By Theorem 5 we can replace (9.1) by 

VN ff{l)[2irINS) - 1] dlWN{\ - T) 
Jo 

(9-2) „ _ « 
+ [ VN f [2T/J,.{0*) - 1]/(M) dnwN(\ - I) dl 

Jo Jo 

committing an error of at most e > 0 uniformly in X with probability 1 — c. 
However, on integrating by parts twice we obtain 

VNMK.M - i]fMWN(\ - x) - f VN2T \F%,&) - i-1 
(9.3) 

• | (f(DWN(X - /)) dl. 
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But 
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y/N max F%,t(\) - ^ ~7^ sN,m(\); < € 

with probability 1 — e where m is a large but fixed number. We can then replace 
(9.3) by 

j[ fflW„(\ - l)s'„,m(Q dl = ^y= [ /(Z)TfJV(X - I) dl 

1 A /" _£j_ 
W 1 JQ 

cos vlj(l)WN(\ - Z) dZ 

with an error of at most e uniformly in X. But then reasoning as in Theorem 4 
we get 

lim P< max f(l)W„(\ - lK,Jl) dl 

>( 

a 

P< max j f(l)sUDdl 
Jn 

< a 

making use of the fact that 

max / cos vlf(l)WN(\ — I) dl — / cos vlf{l) dl\ 

^ max /(X) i [ WN{1) dl + [' \ WN(l) - 1 | dl\ -» 0 

asiV But 

max 
0 < X < r h 

f(l)sUD dl - *(X) < € 

with large probability if m is sufficiently large and the theorem follows imme
diately. 

We are usually more interested in estimating F(X) than F(X, WN). The follow
ing corollary enables us to do this. 

COROLLARY 2. Theorems 6, 8-10 remain valid when F%(\) is replaced by 
F*(X, WN) if 

(9.4) [ WN(X) d\ + l * [1 - WN(\)] dX = o(N-*). 
J—TT JO 

PROOF. The proof follows immediately as 
max VN I P(X) - P(X, WN) j 

^ VN max /(X) ( f WN(\) d\ + f [1 - Wjtf] d\[ = o(l) 
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It is clear from the comment above that the time series analyst has a large 
class of estimates of the spectral distribution function at his disposal. At present 
we are not able to claim that certain estimates are preferable to others. We 
hope to investigate such problems in a later paper. 

It is worthwhile noting that the Fej£r kernel 

1 s m Y 
—— = wN(\) 2whN sin 2 il 

2 
satisfies (9.4) if log hx/hN = o(N~~*)9 so that we can choose the truncation point 
hx as hx = [kN% § < a < 1. Note that the estimate corresponding to this 
kernel is 

This estimate of the spectral distribution function is closely related to an esti
mate of the spectral density given by Bartlett [1]. It is nondecreasing and does 
not require the computation of all the CVs. 

10. Alternative statistics and the corresponding limit theorems. In some in
stances one might prefer to consider statistics other than max^x^* | F%(X) — F(X) | 
in analyzing time series. We shall therefore consider some alternative statistics 
in this section. 

Consider the linear space consisting of continuous functions c = c(X) on 
0 ££ X ^ 7r with the norm \\c\\ = sup0^x^x | c(X) | . Consider a functional <p(c) 
uniformly continuous in this topology. 

THEOREM 12. Under the conditions of Theorem 6 we have 

lim P{<P(VN[FM - F(X)]) ^ «,0 ^ X S TT} = PMtiQO) ^ a,0 ^ X £ ir}. 

PROOF. Writing 
VN [KOO - F(\)] = s*,*(X) + r*,*(X) 

as before we note that || r̂ ^CX) || < e if k is chosen sufficiently large. Hence we 
commit only a small error by considering instead the probability of the event 

{<p(sN$k(X)) £ a, 0 ^ X £ x} 
which is a closed set in (k + l)-space. This probability converges to 

P{*Gfc(X)) ^ « } 0 ^ X g f | 
as N —> oo. But we can choose k so large that || s&(X) — i?(X) || < 5 with prob
ability 1 — 5. This together with the uniform continuity of <p(c) proves the 
theorem. 

As an example we can choose 

^ ^ / j j c c ^ r ^ c x ) ^ p^ i, 
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where n(\) is bounded and nondecreasing. This will give a statistic of the von 
Mises type. 

11. Acknowledgement. We are indebted to J. L. Doob who suggested the 
problem that led to the investigation resulting in this paper. 
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